1
|
Katrakova-Krüger D, Öchsner S, Ferreira ESB. Material Characterization of Silicones for Additive Manufacturing. Polymers (Basel) 2024; 16:2437. [PMID: 39274070 PMCID: PMC11397840 DOI: 10.3390/polym16172437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/24/2024] [Accepted: 08/12/2024] [Indexed: 09/16/2024] Open
Abstract
Three-dimensional printing is ideally suited to produce unique and complex shapes. In this study, the material properties of polysiloxanes, commonly named silicones, produced additively by two different methods, namely, multi-jet fusion (MJF) and material extrusion (ME) with liquid printing heads, are investigated. The chemical composition was compared via Fourier-transform infrared spectroscopy, evolved gas analysis mass spectrometry, pyrolysis gas chromatography coupled to mass spectrometry, and thermogravimetry (TGA). Density and low-temperature flexibility, mechanical properties and crosslink distance via freezing point depression were measured before and after post-treatment at elevated temperatures. The results show significant differences in the chemical composition, material properties, as well as surface quality of the tested products produced by the two manufacturing routes. Chemical analysis indicates that the investigated MJF materials contain acrylate moieties, possibly isobornyl acrylate linking branches. The hardness of the MJF samples is associated with crosslinking density. In the ashes after TGA, traces of phosphorus were found, which could originate from initiators or catalysts of the curing process. The ME materials contain fillers, most probably silica, that differ in their amount. It is possible that silica also plays a role in the processing to stabilize the extrusion strand. For the harder material, a higher crosslink density was found, which was supported also by the other tested properties. The MJF samples have smooth surfaces, while the ME samples show grooved surface structures typical for the material extrusion process. Post-treatment did not improve the material properties. In the MJF samples, significant color changes were observed.
Collapse
Affiliation(s)
- Danka Katrakova-Krüger
- Materials Laboratory, Faculty of Computer Science and Engineering Science, TH Köln, Campus Gummersbach, Steinmüllerallee 1, 51643 Gummersbach, Germany
| | - Simon Öchsner
- Materials Laboratory, Faculty of Computer Science and Engineering Science, TH Köln, Campus Gummersbach, Steinmüllerallee 1, 51643 Gummersbach, Germany
| | - Ester S B Ferreira
- Cologne Institute of Conservation Sciences, Faculty of Cultural Sciences, TH Köln, Campus Südstadt, Ubierring 40, 50678 Cologne, Germany
| |
Collapse
|
2
|
Delacourt C, Chemtob A, Goddard JP, Spangenberg A, Cormier M. 3D-Printed Eosin Y-Based Heterogeneous Photocatalyst for Organic Reactions. Chemistry 2024; 30:e202304363. [PMID: 38411305 DOI: 10.1002/chem.202304363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 02/28/2024]
Abstract
Heterogenization of Eosin Y by 3D-printing and its application in photocatalysis are reported. The approach allows a fine tuning of the photocatalyst morphology and its rapid preparation. Photocatalytic activity was evaluated through model organic reactions involving oxidation, reduction, and photosensitization pathways. The efficiency, recyclability and stability of 3D printed EY is remarkable paving the way to new generation of heterogeneous photocatalysts with a perfect control of their shape and adaptable to any photoreactors.
Collapse
Affiliation(s)
- Cloé Delacourt
- Laboratoire d'Innovation Moléculaire et Applications (LIMA), UMR 7042, Université de Haute-Alsace, Université de Strasbourg, CNRS, 3 rue Alfred Werner, 68093, Mulhouse, France
- Institut de Science des Matériaux de Mulhouse (IS2 M) UMR 7361, Université de Haute-Alsace, Université de Strasbourg, CNRS, 15 rue Jean Starcky, 68057, Mulhouse, France
| | - Abraham Chemtob
- Institut de Science des Matériaux de Mulhouse (IS2 M) UMR 7361, Université de Haute-Alsace, Université de Strasbourg, CNRS, 15 rue Jean Starcky, 68057, Mulhouse, France
| | - Jean-Philippe Goddard
- Laboratoire d'Innovation Moléculaire et Applications (LIMA), UMR 7042, Université de Haute-Alsace, Université de Strasbourg, CNRS, 3 rue Alfred Werner, 68093, Mulhouse, France
| | - Arnaud Spangenberg
- Institut de Science des Matériaux de Mulhouse (IS2 M) UMR 7361, Université de Haute-Alsace, Université de Strasbourg, CNRS, 15 rue Jean Starcky, 68057, Mulhouse, France
| | - Morgan Cormier
- Laboratoire d'Innovation Moléculaire et Applications (LIMA), UMR 7042, Université de Haute-Alsace, Université de Strasbourg, CNRS, 3 rue Alfred Werner, 68093, Mulhouse, France
| |
Collapse
|
3
|
Franco Urquiza EA. Advances in Additive Manufacturing of Polymer-Fused Deposition Modeling on Textiles: From 3D Printing to Innovative 4D Printing-A Review. Polymers (Basel) 2024; 16:700. [PMID: 38475383 DOI: 10.3390/polym16050700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/16/2023] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
Technological advances and the development of new and advanced materials allow the transition from three-dimensional (3D) printing to the innovation of four-dimensional (4D) printing. 3D printing is the process of precisely creating objects with complex shapes by depositing superimposed layers of material. Current 3D printing technology allows two or more filaments of different polymeric materials to be placed, which, together with the development of intelligent materials that change shape over time or under the action of an external stimulus, allow us to innovate and move toward an emerging area of research, innovative 4D printing technology. 4D printing makes it possible to manufacture actuators and sensors for various technological applications. Its most significant development is currently in the manufacture of intelligent textiles. The potential of 4D printing lies in modular manufacturing, where fabric-printed material interaction enables the creation of bio-inspired and biomimetic devices. The central part of this review summarizes the effect of the primary external stimuli on 4D textile materials, followed by the leading applications. Shape memory polymers attract current and potential opportunities in the textile industry to develop smart clothing for protection against extreme environments, auxiliary prostheses, smart splints or orthoses to assist the muscles in their medical recovery, and comfort devices. In the future, intelligent textiles will perform much more demanding roles, thus envisioning the application fields of 4D printing in the next decade.
Collapse
Affiliation(s)
- Edgar Adrian Franco Urquiza
- Advanced Manufacturing Department, Center for Engineering and Industrial Development, CIDESI-Airport, Carretera Estatal 200, km 23, Queretaro 76270, Mexico
| |
Collapse
|
4
|
Thavarajah R, Penny MR, Torii R, Hilton ST. Rapid Lewis Acid Screening and Reaction Optimization Using 3D-Printed Catalyst-Impregnated Stirrer Devices in the Synthesis of Heterocycles. J Org Chem 2023; 88:16845-16853. [PMID: 38011901 PMCID: PMC10729026 DOI: 10.1021/acs.joc.3c01601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/30/2023] [Accepted: 10/31/2023] [Indexed: 11/29/2023]
Abstract
We describe the development of Lewis acid (LA) catalyst-impregnated 3D-printed stirrer devices and demonstrate their ability to facilitate the rapid screening of reaction conditions to synthesize heterocycles. The stereolithography 3D-printed stirrer devices were designed to fit round-bottomed flasks and Radleys carousel tubes using our recently reported solvent-resistant resin, and using CFD modeling studies and experimental data, we demonstrated that the device design leads to rapid mixing and rapid throughput over the device surface. Using a range of LA 3D-printed stirrers, the reaction between a diamine and an aldehyde was optimized for the catalyst and solvent, and we demonstrated that use of the 3D-printed catalyst-embedded devices led to higher yields and reduced reaction times. A library of benzimidazole and benzothiazole compounds were synthesized, and the use of devices led to efficient formation of the product as well as low levels of the catalyst in the resultant crude mixture. The use of these devices makes the process of setting up multiple reactions simpler by avoiding weighing out of catalysts, and the devices, once used, can be simply removed from the reaction, making the process of compound library synthesis more facile.
Collapse
Affiliation(s)
- Rumintha Thavarajah
- Department
of Pharmaceutical and Biological Chemistry, UCL School of Pharmacy, 29-39 Brunswick Square, London WC1N 1AX, U.K.
| | - Matthew R. Penny
- Department
of Pharmaceutical and Biological Chemistry, UCL School of Pharmacy, 29-39 Brunswick Square, London WC1N 1AX, U.K.
| | - Ryo Torii
- Department
of Mechanical Engineering, UCL, Torrington Place, London WC1E 7JE, U.K.
| | - Stephen T. Hilton
- Department
of Pharmaceutical and Biological Chemistry, UCL School of Pharmacy, 29-39 Brunswick Square, London WC1N 1AX, U.K.
| |
Collapse
|
5
|
Fei J, Rong Y, Zhu L, Li H, Zhang X, Lu Y, An J, Bao Q, Huang X. Progress in Photocurable 3D Printing of Photosensitive Polyurethane: A Review. Macromol Rapid Commun 2023; 44:e2300211. [PMID: 37294875 DOI: 10.1002/marc.202300211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/15/2023] [Indexed: 06/11/2023]
Abstract
In recent years, as a class of advanced additive manufacturing (AM) technology, photocurable 3D printing has gained increasing attention. Based on its outstanding printing efficiency and molding accuracy, it is employed in various fields, such as industrial manufacturing, biomedical, soft robotics, electronic sensors. Photocurable 3D printing is a molding technology based on the principle of area-selective curing of photopolymerization reaction. At present, the main printing material suitable for this technology is the photosensitive resin, a composite mixture consisting of a photosensitive prepolymer, reactive monomer, photoinitiator, and other additives. As the technique research deepens and its application gets more developed, the design of printing materials suitable for different applications is becoming the hotspot. Specifically, these materials not only can be photocured but also have excellent properties, such as elasticity, tear resistance, fatigue resistance. Photosensitive polyurethanes can endow photocured resin with desirable performance due to their unique molecular structure including the inherent alternating soft and hard segments, and microphase separation. For this reason, this review summarizes and comments on the research and application progress of photocurable 3D printing of photosensitive polyurethanes, analyzing the advantages and shortcomings of this technology, also offering an outlook on this rapid development direction.
Collapse
Affiliation(s)
- Jianhua Fei
- Key Laboratory of Medical Metal Materials of Shanxi Province, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, P. R. China
| | - Youjie Rong
- Key Laboratory of Medical Metal Materials of Shanxi Province, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, P. R. China
| | - Lisheng Zhu
- Key Laboratory of Medical Metal Materials of Shanxi Province, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, P. R. China
| | - Huijie Li
- Key Laboratory of Medical Metal Materials of Shanxi Province, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, P. R. China
| | - Xiaomin Zhang
- Key Laboratory of Medical Metal Materials of Shanxi Province, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, P. R. China
| | - Ying Lu
- Key Laboratory of Medical Metal Materials of Shanxi Province, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, P. R. China
- Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Taiyuan, 030032, P. R. China
| | - Jian An
- Shanxi Coal Center Hospital, Taiyuan, 030006, P. R. China
- Department of Cardiology, Cardiovascular Hospital Affiliated to Shanxi Medical University, Taiyuan, 030001, P. R. China
| | - Qingbo Bao
- Shanxi Coal Center Hospital, Taiyuan, 030006, P. R. China
- Department of Cardiology, Cardiovascular Hospital Affiliated to Shanxi Medical University, Taiyuan, 030001, P. R. China
| | - Xiaobo Huang
- Key Laboratory of Medical Metal Materials of Shanxi Province, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, P. R. China
| |
Collapse
|
6
|
The Role of 3D Printing in the Development of a Catalytic System for the Heterogeneous Fenton Process. Polymers (Basel) 2023; 15:polym15030580. [PMID: 36771881 PMCID: PMC9921051 DOI: 10.3390/polym15030580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/17/2023] [Accepted: 01/20/2023] [Indexed: 01/24/2023] Open
Abstract
Recycling of catalysts is often performed. Additive manufacturing (AM) received increasing attention in recent years in various fields such as engineering and medicine, among others. More recently, the fabrication of three-dimensional objects used as scaffolds in heterogeneous catalysis has shown innumerable advantages, such as easier handling and waste reduction, both leading to a reduction in times and costs. In this work, the fabrication and use of 3D-printed recyclable polylactic acid (PLA) scaffolds coated with an iron oxide active catalyst for Fenton reactions applied to aromatic model molecules, is presented. These molecules are representative of a wider class of intractable organic compounds, often present in industrial wastewater. The 3D-printed PLA-coated scaffolds were also tested using an industrial wastewater, determining the chemical oxygen demand (COD). The catalyst is characterized using electron microscopy coupled to elemental analysis (SEM/EDX) and thermogravimetry, demonstrating that coating leach is very limited, and it can be easily recovered and reused many times.
Collapse
|
7
|
Croci F, Vilím J, Adamopoulou T, Tseliou V, Schoenmakers PJ, Knaus T, Mutti FG. Continuous Flow Biocatalytic Reductive Amination by Co-Entrapping Dehydrogenases with Agarose Gel in a 3D-Printed Mould Reactor. Chembiochem 2022; 23:e202200549. [PMID: 36173971 PMCID: PMC9828473 DOI: 10.1002/cbic.202200549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 09/28/2022] [Indexed: 02/03/2023]
Abstract
Herein, we show how the merge of biocatalysis with flow chemistry aided by 3D-printing technologies can facilitate organic synthesis. This concept was exemplified for the reductive amination of benzaldehyde catalysed by co-immobilised amine dehydrogenase and formate dehydrogenase in a continuous flow micro-reactor. For this purpose, we investigated enzyme co-immobilisation by covalent binding, or ion-affinity binding, or entrapment. Entrapment in an agarose hydrogel turned out to be the most promising solution for this biocatalytic reaction. Therefore, we developed a scalable and customisable approach whereby an agarose hydrogel containing the co-entrapped dehydrogenases was cast in a 3D-printed mould. The reactor was applied to the reductive amination of benzaldehyde in continuous flow over 120 h and afforded 47 % analytical yield and a space-time yield of 7.4 g L day-1 using 0.03 mol% biocatalysts loading. This work also exemplifies how rapid prototyping of enzymatic reactions in flow can be achieved through 3D-printing technology.
Collapse
Affiliation(s)
- Federico Croci
- van' t Hoff Institute for Molecular Sciences HIMS-Biocat & Analytical ChemistryUniversity of AmsterdamScience Park 9041098 XHAmsterdamThe Netherlands
| | - Jan Vilím
- van' t Hoff Institute for Molecular Sciences HIMS-Biocat & Analytical ChemistryUniversity of AmsterdamScience Park 9041098 XHAmsterdamThe Netherlands
| | - Theodora Adamopoulou
- van' t Hoff Institute for Molecular Sciences HIMS-Biocat & Analytical ChemistryUniversity of AmsterdamScience Park 9041098 XHAmsterdamThe Netherlands
| | - Vasilis Tseliou
- van' t Hoff Institute for Molecular Sciences HIMS-Biocat & Analytical ChemistryUniversity of AmsterdamScience Park 9041098 XHAmsterdamThe Netherlands
| | - Peter J. Schoenmakers
- van' t Hoff Institute for Molecular Sciences HIMS-Biocat & Analytical ChemistryUniversity of AmsterdamScience Park 9041098 XHAmsterdamThe Netherlands
| | - Tanja Knaus
- van' t Hoff Institute for Molecular Sciences HIMS-Biocat & Analytical ChemistryUniversity of AmsterdamScience Park 9041098 XHAmsterdamThe Netherlands
| | - Francesco G. Mutti
- van' t Hoff Institute for Molecular Sciences HIMS-Biocat & Analytical ChemistryUniversity of AmsterdamScience Park 9041098 XHAmsterdamThe Netherlands
| |
Collapse
|
8
|
Shakeri A, Khan S, Jarad NA, Didar TF. The Fabrication and Bonding of Thermoplastic Microfluidics: A Review. MATERIALS (BASEL, SWITZERLAND) 2022; 15:ma15186478. [PMID: 36143790 PMCID: PMC9503322 DOI: 10.3390/ma15186478] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/02/2022] [Accepted: 09/14/2022] [Indexed: 05/27/2023]
Abstract
Various fields within biomedical engineering have been afforded rapid scientific advancement through the incorporation of microfluidics. As literature surrounding biological systems become more comprehensive and many microfluidic platforms show potential for commercialization, the development of representative fluidic systems has become more intricate. This has brought increased scrutiny of the material properties of microfluidic substrates. Thermoplastics have been highlighted as a promising material, given their material adaptability and commercial compatibility. This review provides a comprehensive discussion surrounding recent developments pertaining to thermoplastic microfluidic device fabrication. Existing and emerging approaches related to both microchannel fabrication and device assembly are highlighted, with consideration toward how specific approaches induce physical and/or chemical properties that are optimally suited for relevant real-world applications.
Collapse
Affiliation(s)
- Amid Shakeri
- Department of Mechanical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4L7, Canada
| | - Shadman Khan
- School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4L8, Canada
| | - Noor Abu Jarad
- School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4L8, Canada
| | - Tohid F. Didar
- Department of Mechanical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4L7, Canada
- School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4L8, Canada
| |
Collapse
|
9
|
Review on design strategies and applications of metal-organic framework-cellulose composites. Carbohydr Polym 2022; 291:119539. [DOI: 10.1016/j.carbpol.2022.119539] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/13/2022] [Accepted: 04/23/2022] [Indexed: 12/18/2022]
|
10
|
Simonenko NP, Fisenko NA, Fedorov FS, Simonenko TL, Mokrushin AS, Simonenko EP, Korotcenkov G, Sysoev VV, Sevastyanov VG, Kuznetsov NT. Printing Technologies as an Emerging Approach in Gas Sensors: Survey of Literature. SENSORS (BASEL, SWITZERLAND) 2022; 22:3473. [PMID: 35591162 PMCID: PMC9102873 DOI: 10.3390/s22093473] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 04/28/2022] [Accepted: 04/29/2022] [Indexed: 02/04/2023]
Abstract
Herein, we review printing technologies which are commonly approbated at recent time in the course of fabricating gas sensors and multisensor arrays, mainly of chemiresistive type. The most important characteristics of the receptor materials, which need to be addressed in order to achieve a high efficiency of chemisensor devices, are considered. The printing technologies are comparatively analyzed with regard to, (i) the rheological properties of the employed inks representing both reagent solutions or organometallic precursors and disperse systems, (ii) the printing speed and resolution, and (iii) the thickness of the formed coatings to highlight benefits and drawbacks of the methods. Particular attention is given to protocols suitable for manufacturing single miniature devices with unique characteristics under a large-scale production of gas sensors where the receptor materials could be rather quickly tuned to modify their geometry and morphology. We address the most convenient approaches to the rapid printing single-crystal multisensor arrays at lab-on-chip paradigm with sufficiently high resolution, employing receptor layers with various chemical composition which could replace in nearest future the single-sensor units for advancing a selectivity.
Collapse
Affiliation(s)
- Nikolay P. Simonenko
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, 31 Leninsky pr., 119991 Moscow, Russia; (N.A.F.); (T.L.S.); (A.S.M.); (E.P.S.); (V.G.S.); (N.T.K.)
| | - Nikita A. Fisenko
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, 31 Leninsky pr., 119991 Moscow, Russia; (N.A.F.); (T.L.S.); (A.S.M.); (E.P.S.); (V.G.S.); (N.T.K.)
- Higher Chemical College of the Russian Academy of Sciences, D. Mendeleev University of Chemical Technology of Russia, 9 Miusskaya sq., 125047 Moscow, Russia
| | - Fedor S. Fedorov
- Laboratory of Nanomaterials, Skolkovo Institute of Science and Technology, 3 Nobel Str., 121205 Moscow, Russia;
| | - Tatiana L. Simonenko
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, 31 Leninsky pr., 119991 Moscow, Russia; (N.A.F.); (T.L.S.); (A.S.M.); (E.P.S.); (V.G.S.); (N.T.K.)
| | - Artem S. Mokrushin
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, 31 Leninsky pr., 119991 Moscow, Russia; (N.A.F.); (T.L.S.); (A.S.M.); (E.P.S.); (V.G.S.); (N.T.K.)
| | - Elizaveta P. Simonenko
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, 31 Leninsky pr., 119991 Moscow, Russia; (N.A.F.); (T.L.S.); (A.S.M.); (E.P.S.); (V.G.S.); (N.T.K.)
| | - Ghenadii Korotcenkov
- Department of Theoretical Physics, Moldova State University, 2009 Chisinau, Moldova;
| | - Victor V. Sysoev
- Department of Physics, Yuri Gagarin State Technical University of Saratov, 77 Polytechnicheskaya Str., 410054 Saratov, Russia
| | - Vladimir G. Sevastyanov
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, 31 Leninsky pr., 119991 Moscow, Russia; (N.A.F.); (T.L.S.); (A.S.M.); (E.P.S.); (V.G.S.); (N.T.K.)
| | - Nikolay T. Kuznetsov
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, 31 Leninsky pr., 119991 Moscow, Russia; (N.A.F.); (T.L.S.); (A.S.M.); (E.P.S.); (V.G.S.); (N.T.K.)
| |
Collapse
|
11
|
du Preez A, Meijboom R, Smit E. Low-Cost 3D-Printed Reactionware for the Determination of Fatty Acid Content in Edible Oils using a Base-Catalyzed Transesterification Method in Continuous Flow. FOOD ANAL METHOD 2022. [DOI: 10.1007/s12161-022-02233-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AbstractA low-cost flow system was designed, manufactured, and tested to perform automated base-catalyzed transesterification of triacylglycerols to determine the fatty acid content in edible oils. In combination with traditional gas chromatographic analysis (GC-FID), this approach provides a semi-automated process that requires minimal manual intervention. The main flow system components, namely syringe pumps, connectors (i.e., flangeless fittings), and reactors, were manufactured using 3D-printing technology, specifically fused deposition modeling (FDM). By fine-tuning 3D-printer settings, high-quality leak-tight fittings with standard threading were manufactured in polypropylene (PP), which reduced the overall cost of the flow system significantly. Due to the enhanced reactivity in flow, lower catalyst concentrations (≤ 1.5 wt.%) were needed compared to traditional batch reactions (5 wt.%). The suitability of the automated flow method was determined by comparing results with the certified fatty acid content in sunflower seed oil from Helianthus annuus. Acceptable levels of accuracy (relative errors < 5%) and precision (RSD values ≤ 0.02%) were achieved. The mostly 3D-printed flow system was successfully used to determine the fatty acid content of sunflower and other commercial edible oils, namely avocado oil, canola oil, extra virgin olive oil, and a canola and olive oil blend. Linoleic acid (C18:2) was the major component in sunflower oil, whereas all other oils consisted mainly of oleic acid (C18:1). The fatty acid content of the edible oils was comparable to certified and literature values.
Collapse
|
12
|
Park Y, Yun I, Chung WG, Park W, Lee DH, Park J. High-Resolution 3D Printing for Electronics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2104623. [PMID: 35038249 PMCID: PMC8922115 DOI: 10.1002/advs.202104623] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 12/04/2021] [Indexed: 05/17/2023]
Abstract
The ability to form arbitrary 3D structures provides the next level of complexity and a greater degree of freedom in the design of electronic devices. Since recent progress in electronics has expanded their applicability in various fields in which structural conformability and dynamic configuration are required, high-resolution 3D printing technologies can offer significant potential for freeform electronics. Here, the recent progress in novel 3D printing methods for freeform electronics is reviewed, with providing a comprehensive study on 3D-printable functional materials and processes for various device components. The latest advances in 3D-printed electronics are also reviewed to explain representative device components, including interconnects, batteries, antennas, and sensors. Furthermore, the key challenges and prospects for next-generation printed electronics are considered, and the future directions are explored based on research that has emerged recently.
Collapse
Affiliation(s)
- Young‐Geun Park
- Department of Materials Science and EngineeringYonsei UniversitySeoul03722Republic of Korea
- Center for NanomedicineInstitute for Basic Science (IBS)Seoul03722Republic of Korea
- Graduate Program of Nano Biomedical Engineering (NanoBME)Advanced Science InstituteYonsei UniversitySeoul03722Republic of Korea
| | - Insik Yun
- Department of Materials Science and EngineeringYonsei UniversitySeoul03722Republic of Korea
- Center for NanomedicineInstitute for Basic Science (IBS)Seoul03722Republic of Korea
- Graduate Program of Nano Biomedical Engineering (NanoBME)Advanced Science InstituteYonsei UniversitySeoul03722Republic of Korea
| | - Won Gi Chung
- Department of Materials Science and EngineeringYonsei UniversitySeoul03722Republic of Korea
- Center for NanomedicineInstitute for Basic Science (IBS)Seoul03722Republic of Korea
- Graduate Program of Nano Biomedical Engineering (NanoBME)Advanced Science InstituteYonsei UniversitySeoul03722Republic of Korea
| | - Wonjung Park
- Department of Materials Science and EngineeringYonsei UniversitySeoul03722Republic of Korea
- Center for NanomedicineInstitute for Basic Science (IBS)Seoul03722Republic of Korea
- Graduate Program of Nano Biomedical Engineering (NanoBME)Advanced Science InstituteYonsei UniversitySeoul03722Republic of Korea
| | - Dong Ha Lee
- Department of Materials Science and EngineeringYonsei UniversitySeoul03722Republic of Korea
- Center for NanomedicineInstitute for Basic Science (IBS)Seoul03722Republic of Korea
- Graduate Program of Nano Biomedical Engineering (NanoBME)Advanced Science InstituteYonsei UniversitySeoul03722Republic of Korea
| | - Jang‐Ung Park
- Department of Materials Science and EngineeringYonsei UniversitySeoul03722Republic of Korea
- Center for NanomedicineInstitute for Basic Science (IBS)Seoul03722Republic of Korea
- Graduate Program of Nano Biomedical Engineering (NanoBME)Advanced Science InstituteYonsei UniversitySeoul03722Republic of Korea
| |
Collapse
|
13
|
Klingler S, Holland JP. Automated light-induced synthesis of 89Zr-radiolabeled antibodies for immuno-positron emission tomography. Sci Rep 2022; 12:668. [PMID: 35027637 PMCID: PMC8758695 DOI: 10.1038/s41598-021-04626-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 12/28/2021] [Indexed: 02/07/2023] Open
Abstract
Clinical production of 89Zr-radiolabeled antibodies (89Zr-mAbs) for positron emission tomography imaging relies on the pre-conjugation of desferrioxamine B (DFO) to the purified protein, followed by isolation and characterization of the functionalized intermediate, and then manual radiosynthesis. Although highly successful, this route exposes radiochemists to a potentially large radiation dose and entails several technological and economic hurdles that limit access of 89Zr-mAbs to just a specialist few Nuclear Medicine facilities worldwide. Here, we introduce a fully automated synthesis box that can produce individual doses of 89Zr-mAbs formulated in sterile solution in < 25 min starting from [89Zr(C2O4)4]4- (89Zr-oxalate), our good laboratory practice-compliant photoactivatable desferrioxamine-based chelate (DFO-PEG3-ArN3), and clinical-grade antibodies without the need for pre-purification of protein. The automated steps include neutralization of the 89Zr-oxalate stock, chelate radiolabeling, and light-induced protein conjugation, followed by 89Zr-mAb purification, formulation, and sterile filtration. As proof-of-principle, 89ZrDFO-PEG3-azepin-trastuzumab was synthesized directly from Herceptin in < 25 min with an overall decay-corrected radiochemical yield of 20.1 ± 2.4% (n = 3), a radiochemical purity > 99%, and chemical purity > 99%. The synthesis unit can also produce 89Zr-mAbs via the conventional radiolabeling routes from pre-functionalized DFO-mAbs that are currently used in the clinic. This automated method will improve access to state-of-the-art 89Zr-mAbs at the many Nuclear Medicine and research institutions that require automated devices for radiotracer production.
Collapse
Affiliation(s)
- Simon Klingler
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Jason P Holland
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.
| |
Collapse
|
14
|
Penny MR, Rao ZX, Thavarajah R, Ishaq A, Bowles BJ, Hilton ST. 3D printed tetrakis(triphenylphosphine)palladium (0) impregnated stirrer devices for Suzuki–Miyaura cross-coupling reactions. REACT CHEM ENG 2022. [DOI: 10.1039/d2re00218c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In a novel approach, SLA 3D-printed Pd(PPh3)4 containing stirrer beads have been used to catalyse the Suzuki–Miyaura reaction between a range of substrates.
Collapse
Affiliation(s)
- Matthew R. Penny
- UCL School of Pharmacy, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Zenobia X. Rao
- UCL School of Pharmacy, 29-39 Brunswick Square, London WC1N 1AX, UK
| | | | - Ahtsham Ishaq
- UCL School of Pharmacy, 29-39 Brunswick Square, London WC1N 1AX, UK
| | | | | |
Collapse
|
15
|
Kundra M, Zhu Y, Nguyen X, Fraser D, Hornung CH, Tsanaktsidis J. 3D printed nickel catalytic static mixers made by corrosive chemical treatment for use in continuous flow hydrogenation. REACT CHEM ENG 2022. [DOI: 10.1039/d1re00456e] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Catalytic static mixers, 3D printed from nickel alloys, were treated with etching or leaching solutions to activate their surfaces for use in hydrogenation of alkenes, aldehydes and nitro-groups.
Collapse
Affiliation(s)
- Milan Kundra
- CSIRO Manufacturing, Bag 10, Clayton South, Victoria 3169, Australia
| | - Yutong Zhu
- CSIRO Manufacturing, Bag 10, Clayton South, Victoria 3169, Australia
| | - Xuan Nguyen
- CSIRO Manufacturing, Bag 10, Clayton South, Victoria 3169, Australia
| | - Darren Fraser
- CSIRO Manufacturing, Bag 10, Clayton South, Victoria 3169, Australia
| | | | - John Tsanaktsidis
- CSIRO Manufacturing, Bag 10, Clayton South, Victoria 3169, Australia
| |
Collapse
|
16
|
Ng SSY, Walker DM, Hawkins JM, Khan SA. 3D-printed capillary force trap reactors (CFTRs) for multiphase catalytic flow chemistry. REACT CHEM ENG 2022. [DOI: 10.1039/d1re00462j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Figure of 3D illustration of a capillary trap force reactor (CFTR) with transiently trapped liquid nanoparticle catalysts in dimple-shaped capillary traps in the presence of a gas–liquid segmented flow, for the hydrogenation of 1-hexene to n-hexane.
Collapse
Affiliation(s)
- Stella S. Y. Ng
- Pfizer Asia Manufacturing Pte Ltd, Manufacturing Technology Development Centre (MTDC), 1 Pesek Road, Singapore 627833, Singapore
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117576, Singapore
| | - David M. Walker
- Pfizer Asia Manufacturing Pte Ltd, Manufacturing Technology Development Centre (MTDC), 1 Pesek Road, Singapore 627833, Singapore
| | - Joel M. Hawkins
- Pfizer Worldwide Research and Development, Groton, Connecticut 06340, USA
| | - Saif A. Khan
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117576, Singapore
| |
Collapse
|
17
|
Medici F, Resta S, Presenti P, Caruso L, Puglisi A, Raimondi L, Rossi S, Benaglia M. Stereoselective Visible‐Light Catalyzed Cyclization of Bis(enones): A Viable Approach to the Synthesis of Enantiomerically Enriched Cyclopentane Rings. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100397] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Fabrizio Medici
- Dipartimento di Chimica Università degli Studi di Milano Via Golgi, 19 20133 Milano Italy
| | - Simonetta Resta
- Dipartimento di Chimica Università degli Studi di Milano Via Golgi, 19 20133 Milano Italy
| | - Piero Presenti
- Dipartimento di Chimica Università degli Studi di Milano Via Golgi, 19 20133 Milano Italy
| | - Lucia Caruso
- Dipartimento di Chimica Università degli Studi di Milano Via Golgi, 19 20133 Milano Italy
| | - Alessandra Puglisi
- Dipartimento di Chimica Università degli Studi di Milano Via Golgi, 19 20133 Milano Italy
| | - Laura Raimondi
- Dipartimento di Chimica Università degli Studi di Milano Via Golgi, 19 20133 Milano Italy
| | - Sergio Rossi
- Dipartimento di Chimica Università degli Studi di Milano Via Golgi, 19 20133 Milano Italy
| | - Maurizio Benaglia
- Dipartimento di Chimica Università degli Studi di Milano Via Golgi, 19 20133 Milano Italy
| |
Collapse
|
18
|
Iffelsberger C, Wert S, Matysik FM, Pumera M. Catalyst Formation and In Operando Monitoring of the Electrocatalytic Activity in Flow Reactors. ACS APPLIED MATERIALS & INTERFACES 2021; 13:35777-35784. [PMID: 34283572 DOI: 10.1021/acsami.1c09127] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Flow reactors are of increasing importance and have become crucial devices due to their wide application in chemical synthesis, electrochemical hydrogen evolution reaction (HER), or electrochemical waste water treatment. In many of these applications, catalyst materials such as transition-metal chalcogenides (TMCs) for the HER, provide the desired electrochemical reactivity for the HER. Generally, the flow electrolyzers' performance is evaluated as the overall output, but the decrease in activity of the electrolyzer is due to localized failure of the catalyst. Herein, we present a method for the spatially resolved (tens of micrometers) In Operando analysis of the catalytic activity under real operation conditions as well as the localized deposition of the catalyst in an operating model flow reactor. For these purposes, scanning electrochemical microscopy was applied for MoSx catalyst deposition and for localized tracking of the TMC activity with a resolution of 25 μm. This approach offers detailed information about the catalytic performance and should find broad application for the characterization and optimization of flow reactor catalysis under real operational conditions.
Collapse
Affiliation(s)
- Christian Iffelsberger
- Future Energy and Innovation Laboratory, Central European Institute of Technology, Brno University of Technology, Purkyňova 123, 61200 Brno, Czech Republic
| | - Stefan Wert
- Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, 93053 Regensburg, Germany
| | - Frank-Michael Matysik
- Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, 93053 Regensburg, Germany
| | - Martin Pumera
- Future Energy and Innovation Laboratory, Central European Institute of Technology, Brno University of Technology, Purkyňova 123, 61200 Brno, Czech Republic
- Department of Food Technology, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea
- Department of Medical Research, China Medical University Hospital, China Medical University, No. 91 Hsueh-Shih Road, Taichung 40402, Taiwan
| |
Collapse
|
19
|
Silva AL, Salvador GMDS, Castro SVF, Carvalho NMF, Munoz RAA. A 3D Printer Guide for the Development and Application of Electrochemical Cells and Devices. Front Chem 2021; 9:684256. [PMID: 34277568 PMCID: PMC8283263 DOI: 10.3389/fchem.2021.684256] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 05/31/2021] [Indexed: 12/12/2022] Open
Abstract
3D printing is a type of additive manufacturing (AM), a technology that is on the rise and works by building parts in three dimensions by the deposit of raw material layer upon layer. In this review, we explore the use of 3D printers to prototype electrochemical cells and devices for various applications within chemistry. Recent publications reporting the use of Fused Deposition Modelling (fused deposition modeling®) technique will be mostly covered, besides papers about the application of other different types of 3D printing, highlighting the advances in the technology for promising applications in the near future. Different from the previous reviews in the area that focused on 3D printing for electrochemical applications, this review also aims to disseminate the benefits of using 3D printers for research at different levels as well as to guide researchers who want to start using this technology in their research laboratories. Moreover, we show the different designs already explored by different research groups illustrating the myriad of possibilities enabled by 3D printing.
Collapse
Affiliation(s)
- Ana Luisa Silva
- Grupo de Catálise Ambiental e Sustentabilidade Energética, Instituto de Química, Departamento de Química Geral e Inorgânica, Universidade do Estado do Rio de Janeiro, Maracanã, Rio de Janeiro, Brazil
| | - Gabriel Maia da Silva Salvador
- Grupo de Catálise Ambiental e Sustentabilidade Energética, Instituto de Química, Departamento de Química Geral e Inorgânica, Universidade do Estado do Rio de Janeiro, Maracanã, Rio de Janeiro, Brazil
| | - Sílvia V F Castro
- Núcleo de Pesquisa em Eletroanalítica, Instituto de Química, Universidade Federal de Uberlândia, Uberlândia, Brazil
| | - Nakédia M F Carvalho
- Grupo de Catálise Ambiental e Sustentabilidade Energética, Instituto de Química, Departamento de Química Geral e Inorgânica, Universidade do Estado do Rio de Janeiro, Maracanã, Rio de Janeiro, Brazil
| | - Rodrigo A A Munoz
- Núcleo de Pesquisa em Eletroanalítica, Instituto de Química, Universidade Federal de Uberlândia, Uberlândia, Brazil
| |
Collapse
|
20
|
Awad A, Fina F, Goyanes A, Gaisford S, Basit AW. Advances in powder bed fusion 3D printing in drug delivery and healthcare. Adv Drug Deliv Rev 2021; 174:406-424. [PMID: 33951489 DOI: 10.1016/j.addr.2021.04.025] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 04/03/2021] [Accepted: 04/28/2021] [Indexed: 12/17/2022]
Abstract
Powder bed fusion (PBF) is a 3D printing method that selectively consolidates powders into 3D objects using a power source. PBF has various derivatives; selective laser sintering/melting, direct metal laser sintering, electron beam melting and multi-jet fusion. These technologies provide a multitude of benefits that make them well suited for the fabrication of bespoke drug-laden formulations, devices and implants. This includes their superior printing resolution and speed, and ability to produce objects without the need for secondary supports, enabling them to precisely create complex products. Herein, this review article outlines the unique applications of PBF 3D printing, including the main principles underpinning its technologies and highlighting their novel pharmaceutical and biomedical applications. The challenges and shortcomings are also considered, emphasising on their effects on the 3D printed products, whilst providing a forward-thinking view.
Collapse
|
21
|
Heard DM, Doobary S, Lennox AJJ. 3D Printed Reactionware for Synthetic Electrochemistry with Hydrogen Fluoride Reagents. ChemElectroChem 2021. [DOI: 10.1002/celc.202100496] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- David M. Heard
- School of Chemistry University of Bristol Cantock's Close Bristol BS8 1TS
| | - Sayad Doobary
- School of Chemistry University of Bristol Cantock's Close Bristol BS8 1TS
| | | |
Collapse
|
22
|
Gambacorta G, Sharley JS, Baxendale IR. A comprehensive review of flow chemistry techniques tailored to the flavours and fragrances industries. Beilstein J Org Chem 2021; 17:1181-1312. [PMID: 34136010 PMCID: PMC8182698 DOI: 10.3762/bjoc.17.90] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 04/22/2021] [Indexed: 12/28/2022] Open
Abstract
Due to their intrinsic physical properties, which includes being able to perform as volatile liquids at room and biological temperatures, fragrance ingredients/intermediates make ideal candidates for continuous-flow manufacturing. This review highlights the potential crossover between a multibillion dollar industry and the flourishing sub-field of flow chemistry evolving within the discipline of organic synthesis. This is illustrated through selected examples of industrially important transformations specific to the fragrances and flavours industry and by highlighting the advantages of conducting these transformations by using a flow approach. This review is designed to be a compendium of techniques and apparatus already published in the chemical and engineering literature which would constitute a known solution or inspiration for commonly encountered procedures in the manufacture of fragrance and flavour chemicals.
Collapse
Affiliation(s)
- Guido Gambacorta
- Department of Chemistry, University of Durham, Stockton Road, Durham, DH1 3LE, United Kingdom
| | - James S Sharley
- Department of Chemistry, University of Durham, Stockton Road, Durham, DH1 3LE, United Kingdom
| | - Ian R Baxendale
- Department of Chemistry, University of Durham, Stockton Road, Durham, DH1 3LE, United Kingdom
| |
Collapse
|
23
|
Puglisi A, Rossi S. Stereoselective organocatalysis and flow chemistry. PHYSICAL SCIENCES REVIEWS 2021. [DOI: 10.1515/psr-2018-0099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Organic synthesis has traditionally been performed in batch. Continuous-flow chemistry was recently rediscovered as an enabling technology to be applied to the synthesis of organic molecules. Organocatalysis is a well-established methodology, especially for the preparation of enantioenriched compounds. In this chapter we discuss the use of chiral organocatalysts in continuous flow. After the classification of the different types of catalytic reactors, in Section 2, each class will be discussed with the most recent and significant examples reported in the literature. In Section 3 we discuss homogeneous stereoselective reactions in flow, with a look at the stereoselective organophotoredox transformations in flow. This research topic is emerging as one of the most powerful method to prepare enantioenriched products with structures that would otherwise be challenging to make. Section 4 describes the use of supported organocatalysts in flow chemistry. Part of the discussion will be devoted to the choice of the support. Examples of packed-bed, monolithic and inner-wall functionalized reactors will be introduced and discussed. We hope to give an overview of the potentialities of the combination of (supported) chiral organocatalysts and flow chemistry.
Collapse
Affiliation(s)
- Alessandra Puglisi
- Dipartimento di Chimica , Università degli Studi di Milano , via Golgi 19 , Milano , 20133 Italy
| | - Sergio Rossi
- Dipartimento di Chimica , Università degli Studi di Milano , via Golgi 19 , Milano , 20133 Italy
| |
Collapse
|
24
|
Kundra M, Grall T, Ng D, Xie Z, Hornung CH. Continuous Flow Hydrogenation of Flavorings and Fragrances Using 3D-Printed Catalytic Static Mixers. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.0c05671] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Milan Kundra
- CSIRO Manufacturing, Private Bag 10, Clayton South, Victoria 3169, Australia
| | - Tom Grall
- CSIRO Manufacturing, Private Bag 10, Clayton South, Victoria 3169, Australia
| | - Derrick Ng
- CSIRO Manufacturing, Private Bag 10, Clayton South, Victoria 3169, Australia
| | - Zongli Xie
- CSIRO Manufacturing, Private Bag 10, Clayton South, Victoria 3169, Australia
| | | |
Collapse
|
25
|
Rastelli EJ, Yue D, Millard C, Wipf P. 3D-printed cartridge system for in-flow photo-oxygenation of 7-aminothienopyridinones. Tetrahedron 2021. [DOI: 10.1016/j.tet.2020.131875] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
26
|
Gordeev EG, Ananikov VP. Widely accessible 3D printing technologies in chemistry, biochemistry and pharmaceutics: applications, materials and prospects. RUSSIAN CHEMICAL REVIEWS 2020. [DOI: 10.1070/rcr4980] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
27
|
Hansen A, Renner M, Griesbeck AG, Büsgen T. From 3D to 4D printing: a reactor for photochemical experiments using hybrid polyurethane acrylates for vat-based polymerization and surface functionalization. Chem Commun (Camb) 2020; 56:15161-15164. [PMID: 33210691 DOI: 10.1039/d0cc06512a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The vat-based 3D printing of a chemical reactor with flow-meter geometry from an isocyanate-functionalized acrylate monomer followed by post-processing with amino-functionalized photocatalysts is described. This approach results in solvent- and air-stable flow photochemical reactors with UV-A transparent windows that can be applied for photooxygenation and photo redox catalysis.
Collapse
Affiliation(s)
- Anne Hansen
- Department of Chemistry, University of Cologne, Greinstr. 4-6, 50939 Köln, Germany.
| | | | | | | |
Collapse
|
28
|
Bornemann‐Pfeiffer M, Kern S, Maiwald M, Meyer K. Calibration‐Free Chemical Process and Quality Control Units as Enablers for Modular Production. CHEM-ING-TECH 2020. [DOI: 10.1002/cite.202000150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Martin Bornemann‐Pfeiffer
- Bundesanstalt für Materialforschung und -prüfung (BAM) Richard-Willstaetter-Straße 11 12489 Berlin Germany
- Technical University of Berlin Chemical and Process Engineering Fraunhoferstraße 33–36 10587 Berlin Germany
| | - Simon Kern
- Bundesanstalt für Materialforschung und -prüfung (BAM) Richard-Willstaetter-Straße 11 12489 Berlin Germany
- S-PACT GmbH Burtscheider Straße 1 52064 Aachen Germany
| | - Michael Maiwald
- Bundesanstalt für Materialforschung und -prüfung (BAM) Richard-Willstaetter-Straße 11 12489 Berlin Germany
| | - Klas Meyer
- Bundesanstalt für Materialforschung und -prüfung (BAM) Richard-Willstaetter-Straße 11 12489 Berlin Germany
| |
Collapse
|
29
|
Sagandira CR, Siyawamwaya M, Watts P. 3D printing and continuous flow chemistry technology to advance pharmaceutical manufacturing in developing countries. ARAB J CHEM 2020; 13:7886-7908. [PMID: 34909056 PMCID: PMC7511217 DOI: 10.1016/j.arabjc.2020.09.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 09/12/2020] [Accepted: 09/13/2020] [Indexed: 12/18/2022] Open
Abstract
The realization of a downward spiralling of diseases in developing countries requires them to become self-sufficient in pharmaceutical products. One of the ways to meet this need is by boosting the local production of active pharmaceutical ingredients and embracing enabling technologies. Both 3D printing and continuous flow chemistry are being exploited rapidly and they are opening huge avenues of possibilities in the chemical and pharmaceutical industries due to their well-documented benefits. The main barrier to entry for the continuous flow chemistry technique in low-income settings is the cost of set-up and maintenance through purchasing of spare flow reactors. This review article discusses the technical considerations for the convergence of state-of-the-art technologies, 3D printing and continuous flow chemistry for pharmaceutical manufacturing applications in developing countries. An overview of the 3D printing technique and its application in fabrication of continuous flow components and systems is provided. Finally, quality considerations for satisfying regulatory requirements for the approval of 3D printed equipment are underscored. An in-depth understanding of the interrelated aspects in the implementation of these technologies is crucial for the realization of sustainable, good quality chemical reactionware.
Collapse
Affiliation(s)
| | | | - Paul Watts
- Nelson Mandela University, University Way, Port Elizabeth 6031, South Africa,Corresponding author
| |
Collapse
|
30
|
Bogdan E, Michorczyk P. 3D Printing in Heterogeneous Catalysis-The State of the Art. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E4534. [PMID: 33066083 PMCID: PMC7601972 DOI: 10.3390/ma13204534] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 10/05/2020] [Accepted: 10/08/2020] [Indexed: 12/17/2022]
Abstract
This paper describes the process of additive manufacturing and a selection of three-dimensional (3D) printing methods which have applications in chemical synthesis, specifically for the production of monolithic catalysts. A review was conducted on reference literature for 3D printing applications in the field of catalysis. It was proven that 3D printing is a promising production method for catalysts.
Collapse
Affiliation(s)
- Elżbieta Bogdan
- Institute of Organic Chemistry and Technology, Faculty of Chemical Engineering and Technology, Cracow University of Technology, Warszawska 24, 31-155 Kraków, Poland;
| | | |
Collapse
|
31
|
Li X, Xu X, Song L, Bi A, Wu C, Ma Y, Du M, Zhu B. High Internal Phase Emulsion for Food-Grade 3D Printing Materials. ACS APPLIED MATERIALS & INTERFACES 2020; 12:45493-45503. [PMID: 32871079 DOI: 10.1021/acsami.0c11434] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Three-dimensional printing (3DP) has attracted significant attention for its use in additive manufacturing techniques because it provides customizability and flexibility for fabricating structures with arbitrary shapes. Certain applications in the food and medicine industries require 3D printable materials that are both biocompatible and biodegradable. Consequently, this study reports 3D printable materials constructed from food-grade high internal phase emulsions (HIPEs). The studied HIPEs (phase ratio 85%) were stabilized by the efficient adsorption behavior of cod proteins (concentration range, 10-50 mg mL-1) at the oil-water interface. The stability of the oil-in-water HIPEs was improved by the formation of a concentration-dependent percentage of adsorbed proteins and cross-linking networks, and homogeneous and self-supporting structures were generated after 7 days of storage at 4 °C. The gel-like shear thinning rheological behavior induced by the cross-linking networks in the studied HIPEs can be tuned to obtain the desired printability and extrudability during 3DP. In the present study, the HIPEs stabilized with 50 mg mL-1 of cod proteins exhibited the highest printing resolution, gel strength, hardness, adhesiveness, and chewiness during 3DP. These food-grade HIPE inks have the potential to diversify the applications of 3DP in foods, cosmetics, drug delivery systems, and packaging materials.
Collapse
Affiliation(s)
- Xiang Li
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Provincial and Ministerial Co-Construction for Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, People's Republic of China
| | - Xianbing Xu
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Provincial and Ministerial Co-Construction for Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, People's Republic of China
| | - Liang Song
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Provincial and Ministerial Co-Construction for Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, People's Republic of China
| | - Anqi Bi
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Provincial and Ministerial Co-Construction for Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, People's Republic of China
| | - Chao Wu
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Provincial and Ministerial Co-Construction for Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, People's Republic of China
| | - Yunjiao Ma
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Provincial and Ministerial Co-Construction for Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, People's Republic of China
| | - Ming Du
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Provincial and Ministerial Co-Construction for Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, People's Republic of China
| | - Beiwei Zhu
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Provincial and Ministerial Co-Construction for Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, People's Republic of China
| |
Collapse
|
32
|
Jaxel J, Guggenberger M, Rosenau T, Böhmdorfer S. Unbreakable and customizable dipping chambers for TLC and HPTLC manufactured by fused deposition modelling. Talanta 2020; 217:121072. [DOI: 10.1016/j.talanta.2020.121072] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 04/16/2020] [Accepted: 04/20/2020] [Indexed: 12/28/2022]
|
33
|
Abstract
Abstract
The rapid development of additive technologies in recent years is accompanied by their intensive introduction into various fields of science and related technologies, including analytical chemistry. The use of 3D printing in analytical instrumentation, in particular, for making prototypes of new equipment and manufacturing parts having complex internal spatial configuration, has been proved as exceptionally effective. Additional opportunities for the widespread introduction of 3D printing technologies are associated with the development of new optically transparent, current- and thermo-conductive materials, various composite materials with desired properties, as well as possibilities for printing with the simultaneous combination of several materials in one product. This review will focus on the application of 3D printing for production of new advanced analytical devices, such as compact chromatographic columns for high performance liquid chromatography, flow reactors and flow cells for detectors, devices for passive concentration of toxic compounds and various integrated devices that allow significant improvements in chemical analysis. A special attention is paid to the complexity and functionality of 3D-printed devices.
Collapse
Affiliation(s)
- Pavel N. Nesterenko
- Department of Chemistry , Lomonosov Moscow State University , 1–3 Leninskie Gory , GSP-3 , Moscow , Russian Federation
| |
Collapse
|
34
|
Direct Ink Writing Technology (3D Printing) of Graphene-Based Ceramic Nanocomposites: A Review. NANOMATERIALS 2020; 10:nano10071300. [PMID: 32630782 PMCID: PMC7407564 DOI: 10.3390/nano10071300] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 06/27/2020] [Indexed: 12/19/2022]
Abstract
In the present work, the state of the art of the most common additive manufacturing (AM) technologies used for the manufacturing of complex shape structures of graphene-based ceramic nanocomposites, ceramic and graphene-based parts is explained. A brief overview of the AM processes for ceramic, which are grouped by the type of feedstock used in each technology, is presented. The main technical factors that affect the quality of the final product were reviewed. The AM processes used for 3D printing of graphene-based materials are described in more detail; moreover, some studies in a wide range of applications related to these AM techniques are cited. Furthermore, different feedstock formulations and their corresponding rheological behavior were explained. Additionally, the most important works about the fabrication of composites using graphene-based ceramic pastes by Direct Ink Writing (DIW) are disclosed in detail and illustrated with representative examples. Various examples of the most relevant approaches for the manufacturing of graphene-based ceramic nanocomposites by DIW are provided.
Collapse
|
35
|
Alimi OA, Ncongwane TB, Meijboom R. Design and fabrication of a monolith catalyst for continuous flow epoxidation of styrene in polypropylene printed flow reactor. Chem Eng Res Des 2020. [DOI: 10.1016/j.cherd.2020.04.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
36
|
Low-cost and simple FDM-based 3D-printed microfluidic device for the synthesis of metallic core–shell nanoparticles. SN APPLIED SCIENCES 2020. [DOI: 10.1007/s42452-020-2768-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
37
|
Díaz‐Marta AS, Yañez S, Lasorsa E, Pacheco P, Tubío CR, Rivas J, Piñeiro Y, Gómez MAG, Amorín M, Guitián F, Coelho A. Integrating Reactors and Catalysts through Three‐Dimensional Printing: Efficiency and Reusability of an Impregnated Palladium on Silica Monolith in Sonogashira and Suzuki Reactions. ChemCatChem 2020. [DOI: 10.1002/cctc.201902143] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Antonio S. Díaz‐Marta
- Instituto de CerámicaUniversidade de Santiago de Compostela Santiago de Compostela 15782 Spain
| | - Susana Yañez
- Instituto NANOMAG Departamento de Física Aplicada Laboratorio de Nanomagnetismo y NanotecnologíaUniversidade de Santiago de Compostela Santiago de Compostela 15782 Spain
| | - Eliana Lasorsa
- Instituto de CerámicaUniversidade de Santiago de Compostela Santiago de Compostela 15782 Spain
| | - Patricia Pacheco
- Instituto de CerámicaUniversidade de Santiago de Compostela Santiago de Compostela 15782 Spain
| | - Carmen R. Tubío
- BCMaterials Basque Center for Materials Applications and NanostructuresUPV/EHU Leioa 48940 Spain
| | - José Rivas
- Instituto NANOMAG Departamento de Física Aplicada Laboratorio de Nanomagnetismo y NanotecnologíaUniversidade de Santiago de Compostela Santiago de Compostela 15782 Spain
| | - Yolanda Piñeiro
- Instituto NANOMAG Departamento de Física Aplicada Laboratorio de Nanomagnetismo y NanotecnologíaUniversidade de Santiago de Compostela Santiago de Compostela 15782 Spain
| | - Manuel A. Gonzalez Gómez
- Instituto NANOMAG Departamento de Física Aplicada Laboratorio de Nanomagnetismo y NanotecnologíaUniversidade de Santiago de Compostela Santiago de Compostela 15782 Spain
| | - Manuel Amorín
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS) and Departamento de Química OrgánicaUniversidade de Santiago de Compostela Santiago de Compostela 15782 Spain
| | - Francisco Guitián
- Instituto de CerámicaUniversidade de Santiago de Compostela Santiago de Compostela 15782 Spain
| | - Alberto Coelho
- Instituto de CerámicaUniversidade de Santiago de Compostela Santiago de Compostela 15782 Spain
- Departamento de Química Orgánica Facultad de FarmaciaUniversidade de Santiago de Compostela Santiago de Compostela 15782 Spain
| |
Collapse
|
38
|
Abstract
This article describes the synthesis of stereolithography (SLA) 3D-printed catalyst-impregnated devices and their evaluation in the organocatalyzed Friedel–Crafts alkylation of N–Me–indole with trans-β-nitrostyrene. Using a low-cost SLA 3D printer and freeware design software, different devices were designed and 3D-printed using a photopolymerizable resin containing a thiourea-based organocatalyst. The architectural control offered by the 3D-printing process allows a straightforward production of devices endowed with different shapes and surface areas, with high reproducibility. The 3D-printed organocatalytic materials promoted the formation of the desired product up to a 79% yield, although with longer reaction times compared to reactions under homogeneous conditions.
Collapse
|
39
|
Baumann M, Moody TS, Smyth M, Wharry S. A Perspective on Continuous Flow Chemistry in the Pharmaceutical Industry. Org Process Res Dev 2020. [DOI: 10.1021/acs.oprd.9b00524] [Citation(s) in RCA: 167] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Marcus Baumann
- University College Dublin, School of Chemistry, Science Centre, South Belfield, Dublin 4, Ireland
| | - Thomas S. Moody
- Almac Group Ltd., 20 Seagoe Industrial Estate, Craigavon BT63 5QD, United Kingdom
- Arran Chemical Company, Unit 1 Monksland Industrial Estate, Athlone, Co. Roscommon N37 DN24, Ireland
| | - Megan Smyth
- Almac Group Ltd., 20 Seagoe Industrial Estate, Craigavon BT63 5QD, United Kingdom
| | - Scott Wharry
- Almac Group Ltd., 20 Seagoe Industrial Estate, Craigavon BT63 5QD, United Kingdom
| |
Collapse
|
40
|
De Risi C, Bortolini O, Brandolese A, Di Carmine G, Ragno D, Massi A. Recent advances in continuous-flow organocatalysis for process intensification. REACT CHEM ENG 2020. [DOI: 10.1039/d0re00076k] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The progresses on continuous-flow organocatalysis from 2016 to early 2020 are reviewed with focus on transition from batch to flow.
Collapse
Affiliation(s)
- Carmela De Risi
- Dipartimento di Scienze Chimiche e Farmaceutiche
- I-44121 Ferrara
- Italy
| | - Olga Bortolini
- Dipartimento di Scienze Chimiche e Farmaceutiche
- I-44121 Ferrara
- Italy
| | | | | | - Daniele Ragno
- Dipartimento di Scienze Chimiche e Farmaceutiche
- I-44121 Ferrara
- Italy
| | - Alessandro Massi
- Dipartimento di Scienze Chimiche e Farmaceutiche
- I-44121 Ferrara
- Italy
| |
Collapse
|
41
|
Menzel F, Klein T, Ziegler T, Neumaier JM. 3D-printed PEEK reactors and development of a complete continuous flow system for chemical synthesis. REACT CHEM ENG 2020. [DOI: 10.1039/d0re00206b] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This paper presents the development of milli- and microfluidic reactors made of polyether ether ketone (PEEK) and 3D-printed equipment for a complete continuous flow system.
Collapse
Affiliation(s)
- Florian Menzel
- Institute of Organic Chemistry
- University of Tübingen
- 72076 Tübingen
- Germany
| | - Thomas Klein
- Institute of Organic Chemistry
- University of Tübingen
- 72076 Tübingen
- Germany
| | - Thomas Ziegler
- Institute of Organic Chemistry
- University of Tübingen
- 72076 Tübingen
- Germany
| | - Jochen M. Neumaier
- Institute of Organic Chemistry
- University of Tübingen
- 72076 Tübingen
- Germany
| |
Collapse
|
42
|
McDonough JR, Armett J, Law R, Harvey AP. Coil-in-Coil Reactor: Augmenting Plug Flow Performance by Combining Different Geometric Features Using 3D Printing. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b04239] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Jonathan R. McDonough
- School of Engineering, Merz Court, Newcastle University, Newcastle upon Tyne NE1 7RU, U.K
| | - Jessica Armett
- School of Engineering, Merz Court, Newcastle University, Newcastle upon Tyne NE1 7RU, U.K
| | - Richard Law
- School of Engineering, Merz Court, Newcastle University, Newcastle upon Tyne NE1 7RU, U.K
| | - Adam P. Harvey
- School of Engineering, Merz Court, Newcastle University, Newcastle upon Tyne NE1 7RU, U.K
| |
Collapse
|
43
|
Penny MR, Rao ZX, Peniche BF, Hilton ST. Modular 3D Printed Compressed Air Driven Continuous-Flow Systems for Chemical Synthesis. European J Org Chem 2019. [DOI: 10.1002/ejoc.201900423] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Matthew R. Penny
- Department of Pharmaceutical and Biological Chemistry; UCL School of Pharmacy; 29-39 Brunswick Square WC1N 1AX London United Kingdom
| | - Zenobia X. Rao
- Department of Pharmaceutical and Biological Chemistry; UCL School of Pharmacy; 29-39 Brunswick Square WC1N 1AX London United Kingdom
| | - Bruno Felício Peniche
- Faculdade de Farmácia da Universidade de Lisboa; Av. Prof. Gama Pinto 1649-003 Lisboa Portugal
| | - Stephen T. Hilton
- Department of Pharmaceutical and Biological Chemistry; UCL School of Pharmacy; 29-39 Brunswick Square WC1N 1AX London United Kingdom
| |
Collapse
|
44
|
Kotz F, Risch P, Helmer D, Rapp BE. High-Performance Materials for 3D Printing in Chemical Synthesis Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1805982. [PMID: 30773705 DOI: 10.1002/adma.201805982] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 11/21/2018] [Indexed: 05/13/2023]
Abstract
3D printing has emerged as an enabling technology for miniaturization. High-precision printing techniques such as stereolithography are capable of printing microreactors and lab-on-a-chip devices for efficient parallelization of biological and biochemical reactions under reduced uptake of reactants. In the world of chemistry, however, up until now, miniaturization has played a minor role. The chemical and thermal stability of regular 3D printing resins is insufficient for sustaining the harsh conditions of chemical reactions. Novel material formulations that produce highly stable 3D-printed chips are highly sought for bringing chemistry up-to-date on the development of miniaturization. In this work, a brief review of recent developments in highly stable materials for 3D printing is given. This work focuses on three highly stable 3D-printable material systems: transparent silicate glasses, ceramics, and fluorinated polymers. It is further demonstrated that 3D printing is also a versatile technique for surface structuring of polymers to enhance their wetting performance. Such micro/nanostructuring is key to selectively wetting surface patterns that are versatile for chemical arrays and droplet synthesis.
Collapse
Affiliation(s)
- Frederik Kotz
- Institute of Microstructure Technology (IMT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Patrick Risch
- Institute of Microstructure Technology (IMT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Dorothea Helmer
- Institute of Microstructure Technology (IMT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Bastian E Rapp
- Institute of Microstructure Technology (IMT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
45
|
|
46
|
Neumaier JM, Madani A, Klein T, Ziegler T. Low-budget 3D-printed equipment for continuous flow reactions. Beilstein J Org Chem 2019; 15:558-566. [PMID: 30873240 PMCID: PMC6404462 DOI: 10.3762/bjoc.15.50] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 02/13/2019] [Indexed: 12/22/2022] Open
Abstract
This article describes the development and manufacturing of lab equipment, which is needed for the use in flow chemistry. We developed a rack of four syringe pumps controlled by one Arduino computer, which can be manufactured with a commonly available 3D printer and readily available parts. Also, we printed various flow reactor cells, which are fully customizable for each individual reaction. With this equipment we performed some multistep glycosylation reactions, where multiple 3D-printed flow reactors were used in series.
Collapse
Affiliation(s)
- Jochen M Neumaier
- Institute of Organic Chemistry, University of Tübingen, Auf der Morgenstelle 18, 72076 Tübingen, Germany
| | - Amiera Madani
- Institute of Organic Chemistry, University of Tübingen, Auf der Morgenstelle 18, 72076 Tübingen, Germany
| | - Thomas Klein
- Institute of Organic Chemistry, University of Tübingen, Auf der Morgenstelle 18, 72076 Tübingen, Germany
| | - Thomas Ziegler
- Institute of Organic Chemistry, University of Tübingen, Auf der Morgenstelle 18, 72076 Tübingen, Germany
| |
Collapse
|
47
|
Stark AK. Manufactured chemistry: Rethinking unit operation design in the age of additive manufacturing. AIChE J 2018. [DOI: 10.1002/aic.16118] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
48
|
Hur D, Say MG, Diltemiz SE, Duman F, Ersöz A, Say R. 3D Micropatterned All-Flexible Microfluidic Platform for Microwave-Assisted Flow Organic Synthesis. Chempluschem 2018; 83:42-46. [PMID: 31957319 DOI: 10.1002/cplu.201700440] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 12/27/2017] [Indexed: 12/15/2022]
Abstract
A large-area, all-flexible, microwaveable polydimethoxysilane microfluidic reactor was fabricated by using a 3D printing system. The sacrificial microchannels were printed on polydimethoxysilane substrates by a direct ink writing method using water-soluble Pluronic F-127 ink and then encapsulated between polydimethoxysilane layers. The structure of micron-sized channels was analyzed by optical and electron microscopy techniques. The fabricated flexible microfluidic reactors were utilized for the acetylation of different amines under microwave irradiation to obtain acetamides in shorter reaction times and good yields by flow organic synthesis.
Collapse
Affiliation(s)
- Deniz Hur
- Science Faculty, Chemistry Department, Anadolu University, Yunus Emre Campus, 26470, Eskişehir, Turkey.,Bionkit Co. Ltd., Anadolu University Teknopark, 26470, Eskisehir, Turkey
| | - Mehmet G Say
- Bionkit Co. Ltd., Anadolu University Teknopark, 26470, Eskisehir, Turkey.,Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, 60174, Norrköping, Sweden
| | - Sibel E Diltemiz
- Science Faculty, Chemistry Department, Anadolu University, Yunus Emre Campus, 26470, Eskişehir, Turkey.,Bionkit Co. Ltd., Anadolu University Teknopark, 26470, Eskisehir, Turkey
| | - Fatma Duman
- Science Faculty, Chemistry Department, Anadolu University, Yunus Emre Campus, 26470, Eskişehir, Turkey
| | - Arzu Ersöz
- Science Faculty, Chemistry Department, Anadolu University, Yunus Emre Campus, 26470, Eskişehir, Turkey.,Bionkit Co. Ltd., Anadolu University Teknopark, 26470, Eskisehir, Turkey
| | - Rıdvan Say
- Science Faculty, Chemistry Department, Anadolu University, Yunus Emre Campus, 26470, Eskişehir, Turkey.,Bionkit Co. Ltd., Anadolu University Teknopark, 26470, Eskisehir, Turkey
| |
Collapse
|