1
|
Shahzadi S, Akhtar M, Arshad M, Ijaz MH, Janjua MRSA. A review on synthesis of MOF-derived carbon composites: innovations in electrochemical, environmental and electrocatalytic technologies. RSC Adv 2024; 14:27575-27607. [PMID: 39228752 PMCID: PMC11369977 DOI: 10.1039/d4ra05183a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 08/20/2024] [Indexed: 09/05/2024] Open
Abstract
Carbon composites derived from Metal-Organic Frameworks (MOFs) have shown great promise as multipurpose materials for a range of electrochemical and environmental applications. Since carbon-based nanomaterials exhibit intriguing features, they have been widely exploited as catalysts or catalysts supports in the chemical industry or for energy or environmental applications. To improve the catalytic performance of carbon-based materials, high surface areas, variable porosity, and functionalization are thought to be essential. This study offers a thorough summary of the most recent developments in MOF-derived carbon composite synthesis techniques, emphasizing innovative approaches that improve the structural and functional characteristics of the materials. Their uses in electrochemical technologies, such as energy conversion and storage, and their function in environmental electrocatalysis for water splitting and pollutant degradation are also included in the debate. This review seeks to clarify the revolutionary effect of carbon composites formed from MOFs on sustainable technology solutions by analyzing current research trends and innovations, opening the door for further advancements in this rapidly evolving sector.
Collapse
Affiliation(s)
- Sehar Shahzadi
- Department of Chemistry, Government College University Faisalabad Faisalabad 38000 Pakistan +92 300 660 4948
| | - Mariam Akhtar
- School of Chemistry, University of the Punjab, Quaid-i-Azam Campus Lahore 54590 Pakistan
| | - Muhammad Arshad
- Department of Chemistry, Government College University Faisalabad Faisalabad 38000 Pakistan +92 300 660 4948
| | - Muhammad Hammad Ijaz
- Department of Chemistry, University of Agriculture Faisalabad Faisalabad 38000 Pakistan
| | | |
Collapse
|
2
|
Dey S, Panja D, Sau A, Thakur SD, Kundu S. Reusable Cobalt-Catalyzed Selective Transfer Hydrogenation of Azoarenes and Nitroarenes. J Org Chem 2023. [PMID: 37390049 DOI: 10.1021/acs.joc.3c00875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2023]
Abstract
Herein, control transfer hydrogenation (TH) of azoarenes to hydrazo compounds is established employing easy-to-synthesize reusable cobalt catalyst using lower amounts of N2H4·H2O under mild conditions. With this effective methodology, a library of symmetrical and unsymmetrical azoarene derivatives was successfully converted to their corresponding hydrazo derivatives. Further, this protocol was extended to the TH of nitroarenes to amines with good-to-excellent yields. Several kinetic studies along with Hammett studies were carried out to understand the plausible mechanism and the electronic effects in this transformation. This inexpensive catalyst can be recycled up to five times without considerable loss of catalytic activity.
Collapse
Affiliation(s)
- Sadhan Dey
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| | - Dibyajyoti Panja
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| | - Anirban Sau
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| | - Seema D Thakur
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| | - Sabuj Kundu
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| |
Collapse
|
3
|
A Review on Chemoselective Reduction of Nitroarenes for Wastewater Remediation Using Biochar Supported Metal Catalysts: Kinetic and Mechanistic Studies. CHEMISTRY AFRICA 2022. [DOI: 10.1007/s42250-022-00534-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
4
|
Tavakol H, Abedi B. Phosphorous‐modified Porous Carbon Supported Nickel Nanoparticles as a Catalyst for the Reduction of Nitroaromatics in Water. ChemistrySelect 2022. [DOI: 10.1002/slct.202200391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Hossein Tavakol
- Department of Chemistry Isfahan University of Technology Isfahan 84156-83111 Iran
| | - Behnam Abedi
- Department of Chemistry Isfahan University of Technology Isfahan 84156-83111 Iran
| |
Collapse
|
5
|
Ghosh T, Kedarnath G, Mobin SM. A Highly Active Nitrogen‐Doped Mixed‐Phase Mixed‐Valence Cobalt Nanocatalyst for Olefins and Nitroarenes Hydrogenation. ChemistrySelect 2022. [DOI: 10.1002/slct.202200204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Topi Ghosh
- Discipline of Chemistry Indian Institute of Technology Indore, Simrol Khandwa Road Indore 453552 India
| | - Gotluru Kedarnath
- Chemistry Division Bhabha Atomic Research Centre Mumbai 400 085 India
- Homi Bhabha National Institute, Anushaktinagar Mumbai 400 094 India
| | - Shaikh M. Mobin
- Discipline of Chemistry Indian Institute of Technology Indore, Simrol Khandwa Road Indore 453552 India
- Discipline of Metallurgy Engineering and Materials Science Indian Institute of Technology Indore, Simrol Khandwa Road Indore 453552 India
- Discipline of Biosciences and Bio-Medical Engineering Indian Institute of Technology Indore, Simrol Khandwa Road Indore 453552 India
| |
Collapse
|
6
|
Ziarani GM, Khademi M, Mohajer F, Badiei A. The Application of Modified SBA-15 as a Chemosensor. CURRENT NANOMATERIALS 2022; 7:4-24. [DOI: 10.2174/2405461506666210420132630] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/13/2021] [Accepted: 03/04/2021] [Indexed: 06/17/2023]
Abstract
:
The Santa Barbara Amorphous (SBA-15), with a large surface area covered with abundant
Si-OH active groups on the walls of its pores, can be modified with various organic compounds
to build organic-inorganic hybrid materials, which can be used as a catalyst in organic reactions,
drug delivery systems, nano sorbent due to its high capacity for removing heavy metals in
waste water and as chemosensors for ions. Tunable and straight channels of SBA-15 facilitate the
entrance and diffusion of ions through the channels. This paper presents a review of the past five
years of literature covering the application of SBA-15 as an ions chemosensor in the liquid and
gaseous media.
Collapse
Affiliation(s)
- Ghodsi Mohammadi Ziarani
- Department of Chemistry, Faculty of Physics and Chemistry, Alzahra University, Tehran, Tehran, Iran
| | - Mahdieh Khademi
- Department of Chemistry, Faculty of Physics and Chemistry, Alzahra University, Tehran, Tehran, Iran
| | - Fatemeh Mohajer
- Department of Chemistry, Faculty of Physics and Chemistry, Alzahra University, Tehran, Tehran, Iran
| | - Alireza Badiei
- School of
Chemistry, Collage of Science, University of Tehran, Tehran, Iran
| |
Collapse
|
7
|
Ramalingam A, Samaraj E, Venkateshwaran S, Senthilkumar SM, Senadi GC. 1T-MoS 2 catalysed reduction of nitroarenes and a one-pot synthesis of imines. NEW J CHEM 2022. [DOI: 10.1039/d2nj00732k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An expedient synthesis of aromatic amines and imines via the reduction of nitroaromatics using 1T-MoS2 as a heterogeneous catalyst.
Collapse
Affiliation(s)
- Ariprasanth Ramalingam
- Department of Chemistry, SRM Institute of science and technology, Kattankulathur, Chennai, 603203, India
| | - Elavarasan Samaraj
- Department of Chemistry, SRM Institute of science and technology, Kattankulathur, Chennai, 603203, India
| | - Selvaraj Venkateshwaran
- Electro Organic and Materials Electrochemistry Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi 630003, Tamil Nadu, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sakkarapalayam Murugesan Senthilkumar
- Electro Organic and Materials Electrochemistry Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi 630003, Tamil Nadu, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Gopal Chandru Senadi
- Department of Chemistry, SRM Institute of science and technology, Kattankulathur, Chennai, 603203, India
| |
Collapse
|
8
|
Wang K, Zong Z, Yan Y, Xia Z, Wang D, Wu S. Facile and template-free synthesis of porous carbon modified with FeOx for transfer hydrogenation of nitroarenes. NEW J CHEM 2022. [DOI: 10.1039/d2nj00064d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Porous carbon modified with FeOx was developed using an in situ activation method for transfer hydrogenation of nitroarenes.
Collapse
Affiliation(s)
- Kunyu Wang
- School of Pharmaceutical and Materials Engineering, Taizhou University, Taizhou 318000, Zhejiang, China
| | - Zhipeng Zong
- School of Pharmaceutical and Materials Engineering, Taizhou University, Taizhou 318000, Zhejiang, China
| | - Yao Yan
- Fujian Key Laboratory of Electrochemcial Energy Storage Materials, Fuzhou University, 2 Xueyuan Road, Fuzhou, 350116, China
| | - Zhijun Xia
- School of Pharmaceutical and Materials Engineering, Taizhou University, Taizhou 318000, Zhejiang, China
| | - Dehua Wang
- School of Pharmaceutical and Materials Engineering, Taizhou University, Taizhou 318000, Zhejiang, China
| | - Shuchang Wu
- School of Pharmaceutical and Materials Engineering, Taizhou University, Taizhou 318000, Zhejiang, China
- Fujian Key Laboratory of Electrochemcial Energy Storage Materials, Fuzhou University, 2 Xueyuan Road, Fuzhou, 350116, China
| |
Collapse
|
9
|
Rangraz Y, Heravi MM, Elhampour A. Recent Advances on Heteroatom-Doped Porous Carbon/Metal Materials: Fascinating Heterogeneous Catalysts for Organic Transformations. CHEM REC 2021; 21:1985-2073. [PMID: 34396670 DOI: 10.1002/tcr.202100124] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 06/05/2021] [Indexed: 12/15/2022]
Abstract
Design and preparation of low-cost, effective, and novel catalysts are important topics in the field of heterogeneous catalysis from academic and industrial perspectives. Recently, heteroatom-doped porous carbon/metal materials have received significant attention as promising catalysts in divergent organic reactions. Incorporation of heteroatom into the carbon framework can tailor the properties of carbon, providing suitable interaction between support and metal, resulting in superior catalytic performance compared with those of traditional pure carbon/metal catalytic systems. In this review, we try to underscore the recent advances in the design, preparation, and application of heteroatom-doped porous carbon/metal catalysts towards various organic transformations.
Collapse
Affiliation(s)
- Yalda Rangraz
- Department of Chemistry, School of Physics and Chemistry, Alzahra University, PO Box 19938-93973, Vanak, Tehran, Iran
| | - Majid M Heravi
- Department of Chemistry, School of Physics and Chemistry, Alzahra University, PO Box 19938-93973, Vanak, Tehran, Iran
| | - Ali Elhampour
- Department of Chemistry, Semnan University, PO Box 35131-19111, Semnan, Iran
| |
Collapse
|
10
|
|
11
|
Hao M, Qiu M, Yang H, Hu B, Wang X. Recent advances on preparation and environmental applications of MOF-derived carbons in catalysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 760:143333. [PMID: 33190884 DOI: 10.1016/j.scitotenv.2020.143333] [Citation(s) in RCA: 183] [Impact Index Per Article: 45.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 10/03/2020] [Accepted: 10/19/2020] [Indexed: 05/07/2023]
Abstract
Carbon materials derived from metal organic frameworks (MOFs) have excellent properties of high surface area, high porosity, adjustable pore size, high conductivity and stability, and their applications in catalysis have become a rapidly expanding research field. In this review, we have summarized the synthesis strategies of MOF-derived carbons with different physical and chemical properties, obtained through direct carbonization, co-pyrolysis and post-treatment. The potential applications of derived carbons, especially monometal-, bimetal-, nonmetal-doped and metal-free carbons in organo-catalysis, photocatalysis and electrocatalysis are analyzed in detail from the environmental perspective. In addition, the improvement of catalytic efficiency is also considered from the aspects of increasing active sites, enhancing the activity of reactants and promoting free electron transfer. The function and synergy of various species of the composites in the catalytic reaction are summarized. The reaction paths and mechanisms are analyzed, and research ideas or trends are proposed for further development.
Collapse
Affiliation(s)
- Mengjie Hao
- School of Life Science, Shaoxing University, Huancheng West Road 508, Shaoxing 312000, PR China; Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding 071003, PR China
| | - Muqing Qiu
- School of Life Science, Shaoxing University, Huancheng West Road 508, Shaoxing 312000, PR China.
| | - Hui Yang
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding 071003, PR China
| | - Baowei Hu
- School of Life Science, Shaoxing University, Huancheng West Road 508, Shaoxing 312000, PR China
| | - Xiangxue Wang
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding 071003, PR China.
| |
Collapse
|
12
|
Hao M, Qiu M, Yang H, Hu B, Wang X. Recent advances on preparation and environmental applications of MOF-derived carbons in catalysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 760:143333. [DOI: doi.org/10.1016/j.scitotenv.2020.143333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/25/2023]
|
13
|
Ioannou DI, Gioftsidou DK, Tsina VE, Kallitsakis MG, Hatzidimitriou AG, Terzidis MA, Angaridis PA, Lykakis IN. Selective Reduction of Nitroarenes to Arylamines by the Cooperative Action of Methylhydrazine and a Tris( N-heterocyclic thioamidate) Cobalt(III) Complex. J Org Chem 2021; 86:2895-2906. [PMID: 33497222 DOI: 10.1021/acs.joc.0c02814] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We report an efficient catalytic protocol that chemoselectively reduces nitroarenes to arylamines, by using methylhydrazine as a reducing agent in combination with the easily synthesized and robust catalyst tris(N-heterocyclic thioamidate) Co(III) complex [Co(κS,N-tfmp2S)3], tfmp2S = 4-(trifluoromethyl)-pyrimidine-2-thiolate. A series of arylamines and heterocyclic amines were formed in excellent yields and chemoselectivity. High conversion yields of nitroarenes into the corresponding amines were observed by using polar protic solvents, such as MeOH and iPrOH. Among several hydrogen donors that were examined, methylhydrazine demonstrated the best performance. Preliminary mechanistic investigations, supported by UV-vis and NMR spectroscopy, cyclic voltammetry, and high-resolution mass spectrometry, suggest a cooperative action of methylhydrazine and [Co(κS,N-tfmp2S)3] via a coordination activation pathway that leads to the formation of a reduced cobalt species, responsible for the catalytic transformation. In general, the corresponding N-arylhydroxylamines were identified as the sole intermediates. Nevertheless, the corresponding nitrosoarenes can also be formed as intermediates, which, however, are rapidly transformed into the desired arylamines in the presence of methylhydrazine through a noncatalytic path. On the basis of the observed high chemoselectivity and yields, and the fast and clean reaction processes, the present catalytic system [Co(κS,N-tfmp2S)3]/MeNHNH2 shows promise for the efficient synthesis of aromatic amines that could find various industrial applications.
Collapse
Affiliation(s)
- Dimitris I Ioannou
- Department of Chemistry, Aristotle University of Thessaloniki, University Campus, Thessaloniki 54124, Greece
| | - Dimitra K Gioftsidou
- Department of Chemistry, Aristotle University of Thessaloniki, University Campus, Thessaloniki 54124, Greece
| | - Vasiliki E Tsina
- Department of Chemistry, Aristotle University of Thessaloniki, University Campus, Thessaloniki 54124, Greece
| | - Michael G Kallitsakis
- Department of Chemistry, Aristotle University of Thessaloniki, University Campus, Thessaloniki 54124, Greece
| | - Antonios G Hatzidimitriou
- Department of Chemistry, Aristotle University of Thessaloniki, University Campus, Thessaloniki 54124, Greece
| | - Michael A Terzidis
- Department of Nutritional Sciences and Dietetics, International Hellenic University, Sindos, Thessaloniki 57400, Greece
| | - Panagiotis A Angaridis
- Department of Chemistry, Aristotle University of Thessaloniki, University Campus, Thessaloniki 54124, Greece
| | - Ioannis N Lykakis
- Department of Chemistry, Aristotle University of Thessaloniki, University Campus, Thessaloniki 54124, Greece
| |
Collapse
|
14
|
Nie R, Tao Y, Nie Y, Lu T, Wang J, Zhang Y, Lu X, Xu CC. Recent Advances in Catalytic Transfer Hydrogenation with Formic Acid over Heterogeneous Transition Metal Catalysts. ACS Catal 2021. [DOI: 10.1021/acscatal.0c04939] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Renfeng Nie
- College of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
- College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| | - Yuewen Tao
- College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| | - Yunqing Nie
- College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| | - Tianliang Lu
- College of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Jianshe Wang
- College of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Yongsheng Zhang
- College of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Xiuyang Lu
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Chunbao Charles Xu
- Chemical and Biochemical Engineering, Western University, London, Ontario N6A 3K7 Canada
| |
Collapse
|
15
|
Li S, Zhai Y, Wei X, Zhang Z, Kong X, Tang F. Catalytic Performance of MIL‐88B(V) and MIL‐101(V) MOFs for the Selective Catalytic Reduction of NO with NH
3. ChemCatChem 2020. [DOI: 10.1002/cctc.202001622] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Shengchen Li
- College of Chemistry and Bioengineering Guilin University of Technology 12 Jiangan Road 541004 Guilin Guangxi Province P. R. China
| | - Ying Zhai
- College of Chemistry and Bioengineering Guilin University of Technology 12 Jiangan Road 541004 Guilin Guangxi Province P. R. China
| | - Xiaxia Wei
- College of Chemistry and Bioengineering Guilin University of Technology 12 Jiangan Road 541004 Guilin Guangxi Province P. R. China
| | - Zhe Zhang
- College of Chemistry and Bioengineering Guilin University of Technology 12 Jiangan Road 541004 Guilin Guangxi Province P. R. China
| | - Xiangfei Kong
- College of Chemistry and Bioengineering Guilin University of Technology 12 Jiangan Road 541004 Guilin Guangxi Province P. R. China
| | - Fushun Tang
- College of Chemistry and Bioengineering Guilin University of Technology 12 Jiangan Road 541004 Guilin Guangxi Province P. R. China
| |
Collapse
|
16
|
Thennila M, Muthumanickam S, Sivabharathy M, Yuvaraj P, Selvakumar K. Heterogeneous Cu(I)‐SBA‐15 Mediated Catalytic Reduction of Substituted Nitroarenes. ChemistrySelect 2020. [DOI: 10.1002/slct.202003472] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Muthukumar Thennila
- Research Department of Chemistry Thiagarajar College Madurai Tamilnadu 625009 India
- Department of Physics Sethu Institute of Technology Kariapatti Virudhunagar, Tamil Nadu 626 115 India
| | | | - Madasamy Sivabharathy
- Department of Physics Sethu Institute of Technology Kariapatti Virudhunagar, Tamil Nadu 626 115 India
| | - Paneerselvam Yuvaraj
- CSIR-North East Institute of Science & Technology Branch Laboratory, Lamphelpat Imphal Manipur 795004 India
| | - Kodirajan Selvakumar
- Research Department of Chemistry Thiagarajar College Madurai Tamilnadu 625009 India
| |
Collapse
|
17
|
Cai J, Zhuang Y, Chen Y, Xiao L, Zhao Y, Jiang X, Hou L, Li Z. Co−MOF‐74@Cu−MOF‐74 Derived Bifunctional Co−C@Cu−C for One‐Pot Production of 1, 4‐Diphenyl‐1, 3‐Butadiene from Phenylacetylene. ChemCatChem 2020. [DOI: 10.1002/cctc.202001140] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Jingyu Cai
- Research Institute of Photocatalysis State Key Laboratory of Photocatalysis on Energy and Environment College of Chemistry Fuzhou University Fuzhou 350116 P. R. China
- College of Chemical Engineering Fuzhou University Fuzhou 350116 P. R. China
| | - Yuzheng Zhuang
- College of Chemical Engineering Fuzhou University Fuzhou 350116 P. R. China
| | - Yi Chen
- Research Institute of Photocatalysis State Key Laboratory of Photocatalysis on Energy and Environment College of Chemistry Fuzhou University Fuzhou 350116 P. R. China
| | - Longqiang Xiao
- College of Chemical Engineering Fuzhou University Fuzhou 350116 P. R. China
| | - Yulai Zhao
- College of Chemical Engineering Fuzhou University Fuzhou 350116 P. R. China
| | - Xiancai Jiang
- College of Chemical Engineering Fuzhou University Fuzhou 350116 P. R. China
| | - Linxi Hou
- College of Chemical Engineering Fuzhou University Fuzhou 350116 P. R. China
| | - Zhaohui Li
- Research Institute of Photocatalysis State Key Laboratory of Photocatalysis on Energy and Environment College of Chemistry Fuzhou University Fuzhou 350116 P. R. China
| |
Collapse
|
18
|
Monet G, Paineau E, Chai Z, Amara MS, Orecchini A, Jimenéz-Ruiz M, Ruiz-Caridad A, Fine L, Rouzière S, Liu LM, Teobaldi G, Rols S, Launois P. Solid wetting-layers in inorganic nano-reactors: the water in imogolite nanotube case. NANOSCALE ADVANCES 2020; 2:1869-1877. [PMID: 36132525 PMCID: PMC9419085 DOI: 10.1039/d0na00128g] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 04/09/2020] [Indexed: 05/24/2023]
Abstract
By combined use of wide-angle X-ray scattering, thermo-gravimetric analysis, inelastic neutron scattering, density functional theory and density functional theory molecular dynamics simulations, we investigate the structure, dynamics and stability of the water wetting-layer in single-walled aluminogermanate imogolite nanotubes (SW Ge-INTs): an archetypal system for synthetically controllable and monodisperse nano-reactors. We demonstrate that the water wetting-layer is strongly bound and solid-like up to 300 K under atmospheric pressure, with dynamics markedly different from that of bulk water. Atomic-scale characterisation of the wetting-layer reveals organisation of the H2O molecules in a curved triangular sublattice stabilised by the formation of three H-bonds to the nanotube's inner surface, with covalent interactions sufficiently strong to promote energetically favourable decoupling of the H2O molecules in the adlayer. The evidenced changes in the local composition, structure, electrostatics and dynamics of the Ge-INT's inner surface upon the formation of the solid wetting-layer demonstrate solvent-mediated functionalisation of the nanotube's cavity at room temperature and pressure, suggesting new strategies for the design of nano-rectors towards potential control of chemical reactivity in nano-confined volumes.
Collapse
Affiliation(s)
- Geoffrey Monet
- Laboratoire de Physique des Solides, CNRS, Université Paris-Sud, Université Paris-Saclay 91405 Orsay Cedex France
| | - Erwan Paineau
- Laboratoire de Physique des Solides, CNRS, Université Paris-Sud, Université Paris-Saclay 91405 Orsay Cedex France
| | - Ziwei Chai
- Beijing Computational Science Research Centre 100193 Beijing China
| | - Mohamed S Amara
- Laboratoire de Physique des Solides, CNRS, Université Paris-Sud, Université Paris-Saclay 91405 Orsay Cedex France
| | - Andrea Orecchini
- Dipartimento di Fisica e Geologia, CNR-IOM, Università di Perugia Via Pascoli s.n.c I-06123 Perugia Italy
| | | | - Alicia Ruiz-Caridad
- Laboratoire de Physique des Solides, CNRS, Université Paris-Sud, Université Paris-Saclay 91405 Orsay Cedex France
- Institut Laue-Langevin BP 156 38042 Grenoble France
| | - Lucas Fine
- Institut Laue-Langevin BP 156 38042 Grenoble France
| | - Stéphan Rouzière
- Laboratoire de Physique des Solides, CNRS, Université Paris-Sud, Université Paris-Saclay 91405 Orsay Cedex France
| | - Li-Min Liu
- Beijing Computational Science Research Centre 100193 Beijing China
- School of Physics, Beihang University 100191 Beijing China
| | - Gilberto Teobaldi
- Beijing Computational Science Research Centre 100193 Beijing China
- Scientific Computing Department, STFC Harwell Campus OX11 0QX Didcot UK
- School of Chemistry, University of Southampton SO17 1BJ Southampton UK
- Stephenson Institute for Renewable Energy, Department of Chemistry, University of Liverpool L69 3BX Liverpool UK
| | | | - Pascale Launois
- Laboratoire de Physique des Solides, CNRS, Université Paris-Sud, Université Paris-Saclay 91405 Orsay Cedex France
| |
Collapse
|