1
|
Zhang W, Shao ZQ, Wang ZX, Ye YF, Li SF, Wang YJ. Advances in aldo-keto reductases immobilization for biocatalytic synthesis of chiral alcohols. Int J Biol Macromol 2024; 274:133264. [PMID: 38901517 DOI: 10.1016/j.ijbiomac.2024.133264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 06/13/2024] [Accepted: 06/17/2024] [Indexed: 06/22/2024]
Abstract
Chiral alcohols are essential building blocks of numerous pharmaceuticals and fine chemicals. Aldo-keto reductases (AKRs) constitute a superfamily of oxidoreductases that catalyze the reduction of aldehydes and ketones to their corresponding alcohols using NAD(P)H as a coenzyme. Knowledge about the crucial roles of AKRs immobilization in the biocatalytic synthesis of chiral alcohols is expanding. Herein, we reviewed the characteristics of various AKRs immobilization approaches, the applications of different immobilization materials, and the prospects of continuous flow bioreactor construction by employing these immobilized biocatalysts for synthesizing chiral alcohols. Finally, the opportunities and ongoing challenges for AKR immobilization are discussed and the outlook for this emerging area is analyzed.
Collapse
Affiliation(s)
- Wen Zhang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, PR China; Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, PR China; The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Zi-Qing Shao
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, PR China; Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, PR China; The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Zhi-Xiu Wang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, PR China; Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, PR China; The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Yuan-Fan Ye
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, PR China; Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, PR China; The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Shu-Fang Li
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, PR China; Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, PR China; The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Ya-Jun Wang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, PR China; Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, PR China; The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, PR China.
| |
Collapse
|
2
|
Suri D, Aeshala LM, Palai T. Microbial electrosynthesis of valuable chemicals from the reduction of CO 2: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:36591-36614. [PMID: 38772994 DOI: 10.1007/s11356-024-33678-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 05/10/2024] [Indexed: 05/23/2024]
Abstract
The present energy demand of the world is increasing but the fossil fuels are gradually depleting. As a result, the need for alternative fuels and energy sources is growing. Fuel cells could be one alternative to address the challenge. The fuel cell can convert CO2 to value-added chemicals. The potential of bio-fuel cells, specifically enzymatic fuel cells and microbial fuel cells, and the importance of immobilization technology in bio-fuel cells are highlighted. The review paper also includes a detailed explanation of the microbial electrosynthesis system to reduce CO2 and the value-added products during microbial electrosynthesis. Future research in bio-electrochemical synthesis for CO2 conversion is expected to prioritize enhancing biocatalyst efficiency, refining reactor design, exploring novel electrode materials, understanding microbial interactions, integrating renewable energy sources, and investigating electrochemical processes for carbon capture and selective CO2 reduction. The challenges and perspectives of bio-electrochemical systems in the application of CO2 conversion are also discussed. Overall, this review paper provides valuable insights into the latest developments and criteria for effective research and implementation in bio-fuel cells, immobilization technology, and microbial electro-synthesis systems.
Collapse
Affiliation(s)
- Diksha Suri
- Department of Chemical Engineering, National Institute of Technology Hamirpur, Hamirpur, Himachal Pradesh, 177005, India
| | - Leela Manohar Aeshala
- Department of Chemical Engineering, National Institute of Technology Srinagar, Hazratbal, Srinagar, Jammu & Kashmir, 190006, India
- Department of Chemical Engineering, National Institute of Technology Warangal, Warangal, Telangana, 506004, India
| | - Tapas Palai
- Department of Chemical Engineering, National Institute of Technology Hamirpur, Hamirpur, Himachal Pradesh, 177005, India.
| |
Collapse
|
3
|
Zhou H, Fang Y, Zhang J, Xiong T, Peng F. Site-directed immobilization of enzymes on nanoparticles using self-assembly systems. BIORESOURCE TECHNOLOGY 2024; 397:130505. [PMID: 38423485 DOI: 10.1016/j.biortech.2024.130505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 02/26/2024] [Accepted: 02/26/2024] [Indexed: 03/02/2024]
Abstract
Enzyme immobilization is an effective method for improving the stability and reusability. However, linking at random sites on the enzyme results in low catalytic efficiency due to blockage of the active site or conformational changes. Therefore, controlling the orientation of enzymes on the carrier has been developed. Here, the site-specific mutation and the SpyTag/SpyCatcher systems were used to prepare a site-directed immobilized enzyme. The thermal stability of the immobilized enzyme was better than that of the free enzyme, and ≥80 % of the catalytic activity was retained after 30 days of storage. Furthermore, the Michaelis constant (Km) and the turnover number (kcat) of the immobilized enzyme were 5.23-fold lower and 6.11-fold higher than those of the free enzyme, respectively, which appeared to be related to changes in secondary structure after immobilization. These findings provide a new and effective option for enzyme-directed immobilization.
Collapse
Affiliation(s)
- Haili Zhou
- School of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi 330047, China
| | - Yuling Fang
- School of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi 330047, China
| | - Jing Zhang
- School of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi 330047, China
| | - Tao Xiong
- School of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi 330047, China; State Key Laboratory of Food Science and Resources, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi 330047, China
| | - Fei Peng
- School of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi 330047, China; State Key Laboratory of Food Science and Resources, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi 330047, China.
| |
Collapse
|
4
|
Kumar N, He J, Rusling JF. Electrochemical transformations catalyzed by cytochrome P450s and peroxidases. Chem Soc Rev 2023; 52:5135-5171. [PMID: 37458261 DOI: 10.1039/d3cs00461a] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Abstract
Cytochrome P450s (Cyt P450s) and peroxidases are enzymes featuring iron heme cofactors that have wide applicability as biocatalysts in chemical syntheses. Cyt P450s are a family of monooxygenases that oxidize fatty acids, steroids, and xenobiotics, synthesize hormones, and convert drugs and other chemicals to metabolites. Peroxidases are involved in breaking down hydrogen peroxide and can oxidize organic compounds during this process. Both heme-containing enzymes utilize active FeIVO intermediates to oxidize reactants. By incorporating these enzymes in stable thin films on electrodes, Cyt P450s and peroxidases can accept electrons from an electrode, albeit by different mechanisms, and catalyze organic transformations in a feasible and cost-effective way. This is an advantageous approach, often called bioelectrocatalysis, compared to their biological pathways in solution that require expensive biochemical reductants such as NADPH or additional enzymes to recycle NADPH for Cyt P450s. Bioelectrocatalysis also serves as an ex situ platform to investigate metabolism of drugs and bio-relevant chemicals. In this paper we review biocatalytic electrochemical reactions using Cyt P450s including C-H activation, S-oxidation, epoxidation, N-hydroxylation, and oxidative N-, and O-dealkylation; as well as reactions catalyzed by peroxidases including synthetically important oxidations of organic compounds. Design aspects of these bioelectrocatalytic reactions are presented and discussed, including enzyme film formation on electrodes, temperature, pH, solvents, and activation of the enzymes. Finally, we discuss challenges and future perspective of these two important bioelectrocatalytic systems.
Collapse
Affiliation(s)
- Neeraj Kumar
- Department of Chemistry, University of Connecticut, Storrs, CT 06269-3136, USA.
| | - Jie He
- Department of Chemistry, University of Connecticut, Storrs, CT 06269-3136, USA.
- Institute of Materials Science, University of Connecticut, Storrs, CT 06269-3136, USA
| | - James F Rusling
- Department of Chemistry, University of Connecticut, Storrs, CT 06269-3136, USA.
- Institute of Materials Science, University of Connecticut, Storrs, CT 06269-3136, USA
- Department of Surgery and Neag Cancer Center, Uconn Health, Farmington, CT 06030, USA
- School of Chemistry, National University of Ireland at Galway, Galway, Ireland
| |
Collapse
|
5
|
Aldinio-Colbachini A, Fasano A, Guendon C, Jacq-Bailly A, Wozniak J, Baffert C, Kpebe A, Léger C, Brugna M, Fourmond V. Transport limited adsorption experiments give a new lower estimate of the turnover frequency of Escherichia coli hydrogenase 1. BBA ADVANCES 2023; 3:100090. [PMID: 37168047 PMCID: PMC10165420 DOI: 10.1016/j.bbadva.2023.100090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 04/07/2023] [Accepted: 04/18/2023] [Indexed: 05/13/2023] Open
Abstract
Protein Film Electrochemistry is a technique in which a redox enzyme is directly wired to an electrode, which substitutes for the natural redox partner. In this technique, the electrical current flowing through the electrode is proportional to the catalytic activity of the enzyme. However, in most cases, the amount of enzyme molecules contributing to the current is unknown and the absolute turnover frequency cannot be determined. Here, we observe the formation of electrocatalytically active films of E. coli hydrogenase 1 by rotating an electrode in a sub-nanomolar solution of enzyme. This process is slow, and we show that it is mass-transport limited. Measuring the rate of the immobilization allows the determination of an estimation of the turnover rate of the enzyme, which appears to be much greater than that deduced from solution assays under the same conditions.
Collapse
Affiliation(s)
- Anna Aldinio-Colbachini
- CNRS, Aix Marseille Université, BIP, IMM, IM2B 31 Chemin J. Aiguier, 13009 Marseille, France
| | - Andrea Fasano
- CNRS, Aix Marseille Université, BIP, IMM, IM2B 31 Chemin J. Aiguier, 13009 Marseille, France
| | - Chloé Guendon
- CNRS, Aix Marseille Université, BIP, IMM, IM2B 31 Chemin J. Aiguier, 13009 Marseille, France
| | - Aurore Jacq-Bailly
- CNRS, Aix Marseille Université, BIP, IMM, IM2B 31 Chemin J. Aiguier, 13009 Marseille, France
| | - Jérémy Wozniak
- CNRS, Aix Marseille Université, BIP, IMM, IM2B 31 Chemin J. Aiguier, 13009 Marseille, France
| | - Carole Baffert
- CNRS, Aix Marseille Université, BIP, IMM, IM2B 31 Chemin J. Aiguier, 13009 Marseille, France
| | - Arlette Kpebe
- CNRS, Aix Marseille Université, BIP, IMM, IM2B 31 Chemin J. Aiguier, 13009 Marseille, France
| | - Christophe Léger
- CNRS, Aix Marseille Université, BIP, IMM, IM2B 31 Chemin J. Aiguier, 13009 Marseille, France
| | - Myriam Brugna
- CNRS, Aix Marseille Université, BIP, IMM, IM2B 31 Chemin J. Aiguier, 13009 Marseille, France
| | - Vincent Fourmond
- CNRS, Aix Marseille Université, BIP, IMM, IM2B 31 Chemin J. Aiguier, 13009 Marseille, France
| |
Collapse
|
6
|
Nishida S, Sumi H, Noji H, Itoh A, Kataoka K, Yamashita S, Kano K, Sowa K, Kitazumi Y, Shirai O. Influence of distal glycan mimics on direct electron transfer performance for bilirubin oxidase bioelectrocatalysts. Bioelectrochemistry 2023; 152:108413. [PMID: 37028137 DOI: 10.1016/j.bioelechem.2023.108413] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 03/06/2023] [Accepted: 03/08/2023] [Indexed: 04/03/2023]
Abstract
Bilirubin oxidase (BOD) is a bioelectrocatalyst that reduces dioxygen (O2) to water and is capable of direct electron transfer (DET)-type bioelectrocatalysis via its electrode-active site (T1 Cu). BOD from Myrothecium verrucaria (mBOD) has been widely studied and has strong DET activity. mBOD contains two N-linked glycans (N-glycans) with N472 and N482 binding sites distal to T1 Cu. We previously reported that different N-glycan compositions affect the enzymatic orientation on the electrode by using recombinant BOD expressed in Pichia pastoris and the deglycosylation method. However, the individual function of the two N-glycans and the effects of N-glycan composition (size, structure, and non-reducing termini) on DET-type reactions are still unclear. In this study, we utilize maleimide-functionalized polyethylene glycol (MAL-PEG) as an N-glycan mimic to evaluate the aforementioned effects. Site-specific enzyme-PEG crosslinking was carried out by specific binding of maleimide to Cys residues. Recombinant BOD expressed in Escherichia coli (eBOD), which does not have a glycosylation system, was used as a benchmark to evaluate the effect. Site-directed mutagenesis of Asn residue (N472 or N482) into Cys residue is utilized to realize site-specific glycan mimic modification to the original binding site.
Collapse
|
7
|
Zakaria ND, Hamzah HH, Salih IL, Balakrishnan V, Abdul Razak K. A Review of Detection Methods for Vancomycin-Resistant Enterococci (VRE) Genes: From Conventional Approaches to Potentially Electrochemical DNA Biosensors. BIOSENSORS 2023; 13:294. [PMID: 36832060 PMCID: PMC9954664 DOI: 10.3390/bios13020294] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 01/24/2023] [Accepted: 01/29/2023] [Indexed: 06/18/2023]
Abstract
Vancomycin-resistant Enterococci (VRE) genes are bacteria strains generated from Gram-positive bacteria and resistant to one of the glycopeptides antibiotics, commonly, vancomycin. VRE genes have been identified worldwide and exhibit considerable phenotypic and genotypic variations. There are six identified phenotypes of vancomycin-resistant genes: VanA, VanB, VanC, VanD, VanE, and VanG. The VanA and VanB strains are often found in the clinical laboratory because they are very resistant to vancomycin. VanA bacteria can pose significant issues for hospitalized patients due to their ability to spread to other Gram-positive infections, which changes their genetic material to increase their resistance to the antibiotics used during treatment. This review summarizes the established methods for detecting VRE strains utilizing traditional, immunoassay, and molecular approaches and then focuses on potential electrochemical DNA biosensors to be developed. However, from the literature search, no information was reported on developing electrochemical biosensors for detecting VRE genes; only the electrochemical detection of vancomycin-susceptible bacteria was reported. Thus, strategies to create robust, selective, and miniaturized electrochemical DNA biosensor platforms to detect VRE genes are also discussed.
Collapse
Affiliation(s)
- Nor Dyana Zakaria
- Nanobiotechnology Research and Innovation (NanoBRI), Institute for Research in Molecular Medicine, Universiti Sains Malaysia, Gelugor 11800, Penang, Malaysia
| | - Hairul Hisham Hamzah
- School of Chemical Sciences, Universiti Sains Malaysia, Gelugor 11800, Penang, Malaysia
| | - Ibrahim Luqman Salih
- School of Chemical Sciences, Universiti Sains Malaysia, Gelugor 11800, Penang, Malaysia
| | - Venugopal Balakrishnan
- Nanobiotechnology Research and Innovation (NanoBRI), Institute for Research in Molecular Medicine, Universiti Sains Malaysia, Gelugor 11800, Penang, Malaysia
| | - Khairunisak Abdul Razak
- Nanobiotechnology Research and Innovation (NanoBRI), Institute for Research in Molecular Medicine, Universiti Sains Malaysia, Gelugor 11800, Penang, Malaysia
- School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, Nibong Tebal 14300, Penang, Malaysia
| |
Collapse
|
8
|
Bedendi G, De Moura Torquato LD, Webb S, Cadoux C, Kulkarni A, Sahin S, Maroni P, Milton RD, Grattieri M. Enzymatic and Microbial Electrochemistry: Approaches and Methods. ACS MEASUREMENT SCIENCE AU 2022; 2:517-541. [PMID: 36573075 PMCID: PMC9783092 DOI: 10.1021/acsmeasuresciau.2c00042] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/12/2022] [Accepted: 08/15/2022] [Indexed: 06/17/2023]
Abstract
The coupling of enzymes and/or intact bacteria with electrodes has been vastly investigated due to the wide range of existing applications. These span from biomedical and biosensing to energy production purposes and bioelectrosynthesis, whether for theoretical research or pure applied industrial processes. Both enzymes and bacteria offer a potential biotechnological alternative to noble/rare metal-dependent catalytic processes. However, when developing these biohybrid electrochemical systems, it is of the utmost importance to investigate how the approaches utilized to couple biocatalysts and electrodes influence the resulting bioelectrocatalytic response. Accordingly, this tutorial review starts by recalling some basic principles and applications of bioelectrochemistry, presenting the electrode and/or biocatalyst modifications that facilitate the interaction between the biotic and abiotic components of bioelectrochemical systems. Focus is then directed toward the methods used to evaluate the effectiveness of enzyme/bacteria-electrode interaction and the insights that they provide. The basic concepts of electrochemical methods widely employed in enzymatic and microbial electrochemistry, such as amperometry and voltammetry, are initially presented to later focus on various complementary methods such as spectroelectrochemistry, fluorescence spectroscopy and microscopy, and surface analytical/characterization techniques such as quartz crystal microbalance and atomic force microscopy. The tutorial review is thus aimed at students and graduate students approaching the field of enzymatic and microbial electrochemistry, while also providing a critical and up-to-date reference for senior researchers working in the field.
Collapse
Affiliation(s)
- Giada Bedendi
- Department
of Inorganic and Analytical Chemistry, Faculty of Sciences, University of Geneva, Quai Ernest-Ansermet 30, 1211 Geneva 4, Switzerland
| | | | - Sophie Webb
- Department
of Inorganic and Analytical Chemistry, Faculty of Sciences, University of Geneva, Quai Ernest-Ansermet 30, 1211 Geneva 4, Switzerland
- National
Centre of Competence in Research (NCCR) Catalysis, University of Geneva, Quai Ernest-Ansermet 30, 1211 Geneva 4, Switzerland
| | - Cécile Cadoux
- Department
of Inorganic and Analytical Chemistry, Faculty of Sciences, University of Geneva, Quai Ernest-Ansermet 30, 1211 Geneva 4, Switzerland
- National
Centre of Competence in Research (NCCR) Catalysis, University of Geneva, Quai Ernest-Ansermet 30, 1211 Geneva 4, Switzerland
| | - Amogh Kulkarni
- Department
of Inorganic and Analytical Chemistry, Faculty of Sciences, University of Geneva, Quai Ernest-Ansermet 30, 1211 Geneva 4, Switzerland
| | - Selmihan Sahin
- Department
of Inorganic and Analytical Chemistry, Faculty of Sciences, University of Geneva, Quai Ernest-Ansermet 30, 1211 Geneva 4, Switzerland
| | - Plinio Maroni
- Department
of Inorganic and Analytical Chemistry, Faculty of Sciences, University of Geneva, Quai Ernest-Ansermet 30, 1211 Geneva 4, Switzerland
| | - Ross D. Milton
- Department
of Inorganic and Analytical Chemistry, Faculty of Sciences, University of Geneva, Quai Ernest-Ansermet 30, 1211 Geneva 4, Switzerland
- National
Centre of Competence in Research (NCCR) Catalysis, University of Geneva, Quai Ernest-Ansermet 30, 1211 Geneva 4, Switzerland
| | - Matteo Grattieri
- Dipartimento
di Chimica, Università degli Studi
di Bari “Aldo Moro”, via E. Orabona 4, Bari 70125, Italy
- IPCF-CNR
Istituto per i Processi Chimico Fisici, Consiglio Nazionale delle Ricerche, via E. Orabona 4, Bari 70125, Italy
| |
Collapse
|
9
|
Pietricola G, Chamorro L, Castellino M, Maureira D, Tommasi T, Hernández S, Wilson L, Fino D, Ottone C. Covalent Immobilization of Dehydrogenases on Carbon Felt for Reusable Anodes with Effective Electrochemical Cofactor Regeneration. Chemistry 2022; 11:e202200102. [PMID: 35856864 PMCID: PMC9630042 DOI: 10.1002/open.202200102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/17/2022] [Indexed: 01/31/2023]
Abstract
This study presents the immobilization with aldehyde groups (glyoxyl carbon felt) of alcohol dehydrogenase (ADH) and formate dehydrogenase (FDH) on carbon-felt-based electrodes. The compatibility of the immobilization method with the electrochemical application was studied with the ADH bioelectrode. The electrochemical regeneration process of nicotinamide adenine dinucleotide in its oxidized form (NAD+ ), on a carbon felt surface, has been deeply studied with tests performed at different electrical potentials. By applying a potential of 0.4 V versus Ag/AgCl electrode, a good compromise between NAD+ regeneration and energy consumption was observed. The effectiveness of the regeneration of NAD+ was confirmed by electrochemical oxidation of ethanol catalyzed by ADH in the presence of NADH, which is the no active form of the cofactor for this reaction. Good reusability was observed by using ADH immobilized on glyoxyl functionalized carbon felt with a residual activity higher than 60 % after 3 batches.
Collapse
Affiliation(s)
- Giuseppe Pietricola
- Department of Applied Science and TechnologyPolitecnico di TorinoCorso Duca degli Abruzzi 2410129TurinItaly
| | - Lesly Chamorro
- Escuela de Ingeniería BioquímicaPontificia Universidad Católica de ValparaísoAvenida Brasil 2085ValparaísoChile
| | - Micaela Castellino
- Department of Applied Science and TechnologyPolitecnico di TorinoCorso Duca degli Abruzzi 2410129TurinItaly
| | - Diego Maureira
- Escuela de Ingeniería BioquímicaPontificia Universidad Católica de ValparaísoAvenida Brasil 2085ValparaísoChile
| | - Tonia Tommasi
- Department of Applied Science and TechnologyPolitecnico di TorinoCorso Duca degli Abruzzi 2410129TurinItaly
| | - Simelys Hernández
- Department of Applied Science and TechnologyPolitecnico di TorinoCorso Duca degli Abruzzi 2410129TurinItaly
| | - Lorena Wilson
- Escuela de Ingeniería BioquímicaPontificia Universidad Católica de ValparaísoAvenida Brasil 2085ValparaísoChile
| | - Debora Fino
- Department of Applied Science and TechnologyPolitecnico di TorinoCorso Duca degli Abruzzi 2410129TurinItaly
| | - Carminna Ottone
- Escuela de Ingeniería BioquímicaPontificia Universidad Católica de ValparaísoAvenida Brasil 2085ValparaísoChile
| |
Collapse
|
10
|
Reginald SS, Lee H, Fazil N, Sharif B, Lee M, Kim MJ, Beyenal H, Chang IS. Control of carbon monoxide dehydrogenase orientation by site-specific immobilization enables direct electrical contact between enzyme cofactor and solid surface. Commun Biol 2022; 5:390. [PMID: 35474238 PMCID: PMC9042819 DOI: 10.1038/s42003-022-03335-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 03/30/2022] [Indexed: 12/24/2022] Open
Abstract
Controlling the orientation of redox enzymes on electrode surfaces is essential in the development of direct electron transfer (DET)-based bioelectrocatalytic systems. The electron transfer (ET) distance varies according to the enzyme orientation when immobilized on an electrode surface, which influences the interfacial ET rate. We report control of the orientation of carbon monoxide dehydrogenase (CODH) as a model enzyme through the fusion of gold-binding peptide (gbp) at either the N- or the C-terminus, and at both termini to strengthen the binding interactions between the fusion enzyme and the gold surface. Key factors influenced by the gbp fusion site are described. Collectively, our data show that control of the CODH orientation on an electrode surface is achieved through the presence of dual tethering sites, which maintains the enzyme cofactor within a DET-available distance (<14 Å), thereby promoting DET at the enzyme-electrode interface.
Collapse
Affiliation(s)
- Stacy Simai Reginald
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology, 123 Cheomdan-gwagiro, Buk-gu, Gwangju, 61005, Republic of Korea
| | - Hyeryeong Lee
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology, 123 Cheomdan-gwagiro, Buk-gu, Gwangju, 61005, Republic of Korea
| | - Nabilah Fazil
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology, 123 Cheomdan-gwagiro, Buk-gu, Gwangju, 61005, Republic of Korea
| | - Basit Sharif
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology, 123 Cheomdan-gwagiro, Buk-gu, Gwangju, 61005, Republic of Korea
| | - Mungyu Lee
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology, 123 Cheomdan-gwagiro, Buk-gu, Gwangju, 61005, Republic of Korea
| | - Min Ji Kim
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology, 123 Cheomdan-gwagiro, Buk-gu, Gwangju, 61005, Republic of Korea
| | - Haluk Beyenal
- The Gene and Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA, 99164, United States of America
| | - In Seop Chang
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology, 123 Cheomdan-gwagiro, Buk-gu, Gwangju, 61005, Republic of Korea.
| |
Collapse
|
11
|
Haque SU, Duteanu N, Ciocan S, Nasar A. A review: Evolution of enzymatic biofuel cells. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 298:113483. [PMID: 34391107 DOI: 10.1016/j.jenvman.2021.113483] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 07/04/2021] [Accepted: 08/03/2021] [Indexed: 06/13/2023]
Abstract
Ever-growing demands for energy, the unsustainability of fossil fuel due to its scarcity and massive impact on global economies and the environment, have encouraged the research on alternative power sources to work upon for the governments, companies, and scientists across the world. Enzymatic biofuel cells (eBFCs) is one category of fuel cell that can harvest energy from biological moieties and has the future to be used as an alternative source of energy. The aim of this review is to summarize the background and state-of-the-art in the field of eBFCs. This review article will be very beneficial for a wide audience including students and new researchers in the field. A part of the paper summarized the challenges in the preparation of anode and cathode and the involvement of nanomaterials and conducting polymers to construct the effective bioelectrodes. It will provide an insight for the researchers working in this challenging field. Furthermore, various applications of eBFCs in implantable power devices, tiny electronic gadgets, and self powered biosensors are reported. This review article explains the development in the area of eBFCs for several years from its origin to growth systematically. It reveals the strategies that have been taken for the improvements required for the better electrochemical performance and operational stability of eBFCs. It also mentions the challenges in this field that will require proper attention so that the eBFCs can be utilized commercially in the future. The review article is written and structurized in a way so that it can provide a decent background of eBFCs to its reader. It will definitely help in enhancing the interest of reader in eBFCs.
Collapse
Affiliation(s)
- Sufia Ul Haque
- Advanced Functional Materials Laboratory, Department of Applied Chemistry, Faculty of Engineering and Technology, Aligarh Muslim University, Aligarh, 202002, India.
| | - Narcis Duteanu
- Faculty of Industrial Chemistry and Environmental Engineering, University of Politehnica, Timisoara, Romania.
| | - Stefania Ciocan
- Faculty of Industrial Chemistry and Environmental Engineering, University of Politehnica, Timisoara, Romania.
| | - Abu Nasar
- Advanced Functional Materials Laboratory, Department of Applied Chemistry, Faculty of Engineering and Technology, Aligarh Muslim University, Aligarh, 202002, India.
| |
Collapse
|
12
|
Wu T, Fitchett CM, Downard AJ. Para-Fluoro-Thiol Reaction on Anchor Layers Grafted from an Aryldiazonium Salt: A Tool for Surface Functionalization with Thiols. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:11397-11405. [PMID: 34520216 DOI: 10.1021/acs.langmuir.1c02012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
A new coupling reaction, the para-fluoro-thiol (PFT) reaction, activated by base at room temperature, is reported for carbon surface functionalization. 4-Nitrothiophenol (4-NTP) and (3-nitrobenzyl)mercaptan (3-NBM) were coupled to pentafluorophenyl (F5-Ph) anchor layers grafted from the aryldiazonium ion formed in situ. The relative yields of the PFT reactions, estimated from the electrochemical responses of coupled nitrophenyl (NP) and nitrobenzyl (NB) groups, depended on the nucleophilicity of the thiolate and the strength of the base. The highest surface concentration (4.6 × 10-10 mol cm-2) was obtained using 3-NBM in the presence of [Bu4N]OH; this concentration corresponds to the maximum that is typically achieved for other high-yielding coupling reactions at aryldiazonium ion anchor layers. The PFT reaction is expected to be applicable to the numerous thiol derivatives commonly restricted to self-assembled monolayer (SAM) formation at gold and other noble metals, thereby opening a simple new approach for interface design on carbon substrates. The strategy may also have advantages for modification of gold surfaces: the layer prepared by coupling 3-NBM to F5-Ph films on gold was found to be more stable to storage under ambient conditions than self-assembled monolayers of 3-NBM.
Collapse
Affiliation(s)
- Ting Wu
- School of Physical and Chemical Sciences, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand
| | - Christopher M Fitchett
- School of Physical and Chemical Sciences, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand
| | - Alison J Downard
- School of Physical and Chemical Sciences, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand
| |
Collapse
|
13
|
Quintero-Jaime AF, Conzuelo F, Schuhmann W, Cazorla-Amorós D, Morallón E. Multi‐wall carbon nanotubes electrochemically modified with phosphorus and nitrogen functionalities as a basis for bioelectrodes with improved performance. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138530] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
14
|
Ciogli L, Zumpano R, Poloznikov AA, Hushpulian DM, Tishkov VI, Andreu R, Gorton L, Mazzei F, Favero G, Bollella P. Highly Sensitive Hydrogen Peroxide Biosensor Based on Tobacco Peroxidase Immobilized on
p
‐Phenylenediamine Diazonium Cation Grafted Carbon Nanotubes: Preventing Fenton‐like Inactivation at Negative Potential. ChemElectroChem 2021. [DOI: 10.1002/celc.202100341] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Leonardo Ciogli
- Department of Chemistry and Drug Technologies Sapienza University of Rome P.le Aldo Moro 5 00185 Rome Italy
| | - Rosaceleste Zumpano
- Department of Chemistry and Drug Technologies Sapienza University of Rome P.le Aldo Moro 5 00185 Rome Italy
| | - Andrey A. Poloznikov
- Faculty of Biology and Biotechnology National Research University Higher School of Economics 13/4 Myasnitskaya str. Moscow 117997 Russia
| | - Dmitry M. Hushpulian
- Faculty of Biology and Biotechnology National Research University Higher School of Economics 13/4 Myasnitskaya str. Moscow 117997 Russia
| | - Vladimir I. Tishkov
- Bach Institute of Biochemistry Research Center of Biotechnology of the Russian Academy of Sciences Leninsky Prospect 33, bld. 2 Moscow 119071 Russia
- Department of Chemical Enzymology School of Chemistry M.V. Lomonosov Moscow State University Moscow 119991 Russia
| | - Rafael Andreu
- Department of Physical Chemistry University of Sevilla Profesor García González 1 41012 Sevilla Spain
| | - Lo Gorton
- Department of Analytical Chemistry/Biochemistry and Structural Biology Lund University P.O. Box 124 SE-221 00 Lund Sweden
| | - Franco Mazzei
- Department of Chemistry and Drug Technologies Sapienza University of Rome P.le Aldo Moro 5 00185 Rome Italy
| | - Gabriele Favero
- Department of Chemistry and Drug Technologies Sapienza University of Rome P.le Aldo Moro 5 00185 Rome Italy
| | - Paolo Bollella
- Department of Chemistry and Biomolecular Science Clarkson University Potsdam NY 13699-5810 United States
- Department of Chemistry University of Bari A. Moro Via E. Orabona 4 70125 Bari Italy
| |
Collapse
|
15
|
Abstract
Bioelectrocatalysis using redox enzymes appears as a sustainable way for biosensing, electricity production, or biosynthesis of fine products. Despite advances in the knowledge of parameters that drive the efficiency of enzymatic electrocatalysis, the weak stability of bioelectrodes prevents large scale development of bioelectrocatalysis. In this review, starting from the understanding of the parameters that drive protein instability, we will discuss the main strategies available to improve all enzyme stability, including use of chemicals, protein engineering and immobilization. Considering in a second step the additional requirements for use of redox enzymes, we will evaluate how far these general strategies can be applied to bioelectrocatalysis.
Collapse
|
16
|
Harris TGAA, Heidary N, Frielingsdorf S, Rauwerdink S, Tahraoui A, Lenz O, Zebger I, Fischer A. Electrografted Interfaces on Metal Oxide Electrodes for Enzyme Immobilization and Bioelectrocatalysis. ChemElectroChem 2021. [DOI: 10.1002/celc.202100020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Tomos G. A. A. Harris
- Albert-Ludwigs-Universität Freiburg Institut für Anorganische und Analytische Chemie Albertstr. 21 79104 Freiburg Germany
- Technische Universität Berlin Institut für Chemie, PC 14 Str. des 17. Juni 135 10623 Berlin Germany
| | - Nina Heidary
- Albert-Ludwigs-Universität Freiburg Institut für Anorganische und Analytische Chemie Albertstr. 21 79104 Freiburg Germany
- Technische Universität Berlin Institut für Chemie, PC 14 Str. des 17. Juni 135 10623 Berlin Germany
- Department of Chemistry Université de Montréal Roger-Gaudry Building Montreal, Quebec H3C 3J7 Canada
| | - Stefan Frielingsdorf
- Technische Universität Berlin Institut für Chemie, PC 14 Str. des 17. Juni 135 10623 Berlin Germany
| | - Sander Rauwerdink
- Paul-Drude-Institut für Festkörperelektronik Hausvogteiplatz 5–7 10117 Berlin Germany
| | - Abbes Tahraoui
- Paul-Drude-Institut für Festkörperelektronik Hausvogteiplatz 5–7 10117 Berlin Germany
| | - Oliver Lenz
- Technische Universität Berlin Institut für Chemie, PC 14 Str. des 17. Juni 135 10623 Berlin Germany
| | - Ingo Zebger
- Technische Universität Berlin Institut für Chemie, PC 14 Str. des 17. Juni 135 10623 Berlin Germany
| | - Anna Fischer
- Albert-Ludwigs-Universität Freiburg Institut für Anorganische und Analytische Chemie Albertstr. 21 79104 Freiburg Germany
- Technische Universität Berlin Institut für Chemie, PC 14 Str. des 17. Juni 135 10623 Berlin Germany
- Freiburger Materialforschungszentrum (FMF) Albert-Ludwigs-Universität Freiburg Stefan-Meier-Straße 21 79104 Freiburg Germany
- FIT Freiburger Zentrum für interaktive Werkstoffe und bioinspirierte Technologien Georges-Köhler-Allee 105 79110 Freiburg Germany
| |
Collapse
|
17
|
Direct Electrochemical Enzyme Electron Transfer on Electrodes Modified by Self-Assembled Molecular Monolayers. Catalysts 2020. [DOI: 10.3390/catal10121458] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Self-assembled molecular monolayers (SAMs) have long been recognized as crucial “bridges” between redox enzymes and solid electrode surfaces, on which the enzymes undergo direct electron transfer (DET)—for example, in enzymatic biofuel cells (EBFCs) and biosensors. SAMs possess a wide range of terminal groups that enable productive enzyme adsorption and fine-tuning in favorable orientations on the electrode. The tunneling distance and SAM chain length, and the contacting terminal SAM groups, are the most significant controlling factors in DET-type bioelectrocatalysis. In particular, SAM-modified nanostructured electrode materials have recently been extensively explored to improve the catalytic activity and stability of redox proteins immobilized on electrochemical surfaces. In this report, we present an overview of recent investigations of electrochemical enzyme DET processes on SAMs with a focus on single-crystal and nanoporous gold electrodes. Specifically, we consider the preparation and characterization methods of SAMs, as well as SAM applications in promoting interfacial electrochemical electron transfer of redox proteins and enzymes. The strategic selection of SAMs to accord with the properties of the core redox protein/enzymes is also highlighted.
Collapse
|
18
|
Buaki-Sogó M, García-Carmona L, Gil-Agustí M, Zubizarreta L, García-Pellicer M, Quijano-López A. Enzymatic Glucose-Based Bio-batteries: Bioenergy to Fuel Next-Generation Devices. Top Curr Chem (Cham) 2020; 378:49. [PMID: 33125588 DOI: 10.1007/s41061-020-00312-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 10/05/2020] [Indexed: 11/26/2022]
Abstract
This article consists of a review of the main concepts and paradigms established in the field of biological fuel cells or biofuel cells. The aim is to provide an overview of the current panorama, basic concepts, and methodologies used in the field of enzymatic biofuel cells, as well as the applications of these bio-systems in flexible electronics and implantable or portable devices. Finally, the challenges needing to be addressed in the development of biofuel cells capable of supplying power to small size devices with applications in areas related to health and well-being or next-generation portable devices are analyzed. The aim of this study is to contribute to biofuel cell technology development; this is a multidisciplinary topic about which review articles related to different scientific areas, from Materials Science to technology applications, can be found. With this article, the authors intend to reach a wide readership in order to spread biofuel cell technology for different scientific profiles and boost new contributions and developments to overcome future challenges.
Collapse
Affiliation(s)
- Mireia Buaki-Sogó
- Instituto Tecnológico de la Energía (ITE), Avenida Juan de la Cierva, 24, 46980, Paterna, Valencia, Spain.
| | - Laura García-Carmona
- Instituto Tecnológico de la Energía (ITE), Avenida Juan de la Cierva, 24, 46980, Paterna, Valencia, Spain
| | - Mayte Gil-Agustí
- Instituto Tecnológico de la Energía (ITE), Avenida Juan de la Cierva, 24, 46980, Paterna, Valencia, Spain
| | - Leire Zubizarreta
- Instituto Tecnológico de la Energía (ITE), Avenida Juan de la Cierva, 24, 46980, Paterna, Valencia, Spain
| | - Marta García-Pellicer
- Instituto Tecnológico de la Energía (ITE), Avenida Juan de la Cierva, 24, 46980, Paterna, Valencia, Spain
| | - Alfredo Quijano-López
- ITE Universitat Politécnica de València, Camino de Vera s/n edificio 6C, 46022, Valencia, Spain
| |
Collapse
|
19
|
Chen H, Simoska O, Lim K, Grattieri M, Yuan M, Dong F, Lee YS, Beaver K, Weliwatte S, Gaffney EM, Minteer SD. Fundamentals, Applications, and Future Directions of Bioelectrocatalysis. Chem Rev 2020; 120:12903-12993. [DOI: 10.1021/acs.chemrev.0c00472] [Citation(s) in RCA: 118] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Hui Chen
- Department of Chemistry, University of Utah, 315 South 1400 East, RM 2020, Salt Lake City, Utah 84112, United States
| | - Olja Simoska
- Department of Chemistry, University of Utah, 315 South 1400 East, RM 2020, Salt Lake City, Utah 84112, United States
| | - Koun Lim
- Department of Chemistry, University of Utah, 315 South 1400 East, RM 2020, Salt Lake City, Utah 84112, United States
| | - Matteo Grattieri
- Department of Chemistry, University of Utah, 315 South 1400 East, RM 2020, Salt Lake City, Utah 84112, United States
| | - Mengwei Yuan
- Department of Chemistry, University of Utah, 315 South 1400 East, RM 2020, Salt Lake City, Utah 84112, United States
| | - Fangyuan Dong
- Department of Chemistry, University of Utah, 315 South 1400 East, RM 2020, Salt Lake City, Utah 84112, United States
| | - Yoo Seok Lee
- Department of Chemistry, University of Utah, 315 South 1400 East, RM 2020, Salt Lake City, Utah 84112, United States
| | - Kevin Beaver
- Department of Chemistry, University of Utah, 315 South 1400 East, RM 2020, Salt Lake City, Utah 84112, United States
| | - Samali Weliwatte
- Department of Chemistry, University of Utah, 315 South 1400 East, RM 2020, Salt Lake City, Utah 84112, United States
| | - Erin M. Gaffney
- Department of Chemistry, University of Utah, 315 South 1400 East, RM 2020, Salt Lake City, Utah 84112, United States
| | - Shelley D. Minteer
- Department of Chemistry, University of Utah, 315 South 1400 East, RM 2020, Salt Lake City, Utah 84112, United States
| |
Collapse
|
20
|
Olloqui-Sariego JL, Zakharova GS, Poloznikov AA, Calvente JJ, Hushpulian DM, Gorton L, Andreu R. Influence of tryptophan mutation on the direct electron transfer of immobilized tobacco peroxidase. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.136465] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
21
|
Caparco AA, Bommarius BR, Bommarius AS, Champion JA. Protein-inorganic calcium-phosphate supraparticles as a robust platform for enzyme co-immobilization. Biotechnol Bioeng 2020; 117:1979-1989. [PMID: 32255509 DOI: 10.1002/bit.27348] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 03/30/2020] [Accepted: 04/05/2020] [Indexed: 01/16/2023]
Abstract
Immobilization of enzymes provides many benefits, including facile separation and recovery of enzymes from reaction mixtures, enhanced stability, and co-localization of multiple enzymes. Calcium-phosphate-protein supraparticles imbued with a leucine zipper binding domain (ZR ) serve as a modular immobilization platform for enzymes fused to the complementary leucine zipper domain (ZE ). The zippers provide high-affinity, specific binding, separating enzymatic activity from the binding event. Using fluorescent model proteins (mCherryZE and eGFPZE ), an amine dehydrogenase (AmDHZE ), and a formate dehydrogenase (FDHZE ), the efficacy of supraparticles as a biocatalytic solid support was assessed. Supraparticles demonstrated several benefits as an immobilization support, including predictable loading of multiple proteins, structural integrity in a panel of solvents, and the ability to elute and reload proteins without damaging the support. The dual-enzyme reaction successfully converted ketone to amine on supraparticles, highlighting the efficacy of this system.
Collapse
Affiliation(s)
- Adam A Caparco
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia
| | - Bettina R Bommarius
- Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia
| | - Andreas S Bommarius
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia
- Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia
| | - Julie A Champion
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia
- Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia
| |
Collapse
|
22
|
Bollella P, Katz E. Enzyme-Based Biosensors: Tackling Electron Transfer Issues. SENSORS (BASEL, SWITZERLAND) 2020; 20:E3517. [PMID: 32575916 PMCID: PMC7349488 DOI: 10.3390/s20123517] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 06/18/2020] [Accepted: 06/19/2020] [Indexed: 12/25/2022]
Abstract
This review summarizes the fundamentals of the phenomenon of electron transfer (ET) reactions occurring in redox enzymes that were widely employed for the development of electroanalytical devices, like biosensors, and enzymatic fuel cells (EFCs). A brief introduction on the ET observed in proteins/enzymes and its paradigms (e.g., classification of ET mechanisms, maximal distance at which is observed direct electron transfer, etc.) are given. Moreover, the theoretical aspects related to direct electron transfer (DET) are resumed as a guideline for newcomers to the field. Snapshots on the ET theory formulated by Rudolph A. Marcus and on the mathematical model used to calculate the ET rate constant formulated by Laviron are provided. Particular attention is devoted to the case of glucose oxidase (GOx) that has been erroneously classified as an enzyme able to transfer electrons directly. Thereafter, all tools available to investigate ET issues are reported addressing the discussions toward the development of new methodology to tackle ET issues. In conclusion, the trends toward upcoming practical applications are suggested as well as some directions in fundamental studies of bioelectrochemistry.
Collapse
Affiliation(s)
- Paolo Bollella
- Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, New York, NY 13699-5810, USA;
| | | |
Collapse
|
23
|
Tang J, Yan X, Engelbrekt C, Ulstrup J, Magner E, Xiao X, Zhang J. Development of graphene-based enzymatic biofuel cells: A minireview. Bioelectrochemistry 2020; 134:107537. [PMID: 32361268 DOI: 10.1016/j.bioelechem.2020.107537] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 04/15/2020] [Accepted: 04/15/2020] [Indexed: 12/24/2022]
Abstract
Enzymatic biofuel cells (EBFCs) have attracted increasing attention due to their potential to harvest energy from a wide range of fuels under mild conditions. Fabrication of effective bioelectrodes is essential for the practical application of EBFCs. Graphene possesses unique physiochemical properties making it an attractive material for the construction of EBFCs. Despite these promising properties, graphene has not been used for EBFCs as frequently as carbon nanotubes, another nanoscale carbon allotrope. This review focuses on current research progress in graphene-based electrodes, including electrodes modified with graphene derivatives and graphene composites, as well as free-standing graphene electrodes. Particular features of graphene-based electrodes such as high conductivity, mechanical flexibility and high porosity for bioelectrochemical applications are highlighted. Reports on graphene-based EBFCs from the last five years are summarized, and perspectives for graphene-based EBFCs are offered.
Collapse
Affiliation(s)
- Jing Tang
- Department of Chemistry, Technical University of Denmark, Kongens Lyngby 2800, Denmark
| | - Xiaomei Yan
- Department of Chemistry, Technical University of Denmark, Kongens Lyngby 2800, Denmark
| | - Christian Engelbrekt
- Department of Chemistry, Technical University of Denmark, Kongens Lyngby 2800, Denmark
| | - Jens Ulstrup
- Department of Chemistry, Technical University of Denmark, Kongens Lyngby 2800, Denmark; Kazan National Research Technological University, K. Marx Str., 68, 420015 Kazan, Republic of Tatarstan, Russian Federation
| | - Edmond Magner
- Department of Chemical Sciences and Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland
| | - Xinxin Xiao
- Department of Chemistry, Technical University of Denmark, Kongens Lyngby 2800, Denmark.
| | - Jingdong Zhang
- Department of Chemistry, Technical University of Denmark, Kongens Lyngby 2800, Denmark.
| |
Collapse
|
24
|
Cellobiose dehydrogenase. FLAVIN-DEPENDENT ENZYMES: MECHANISMS, STRUCTURES AND APPLICATIONS 2020; 47:457-489. [DOI: 10.1016/bs.enz.2020.06.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
25
|
|
26
|
Affiliation(s)
- Kenji KANO
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University
| |
Collapse
|
27
|
Scheiblbrandner S, Ludwig R. Cellobiose dehydrogenase: Bioelectrochemical insights and applications. Bioelectrochemistry 2019; 131:107345. [PMID: 31494387 DOI: 10.1016/j.bioelechem.2019.107345] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 08/01/2019] [Accepted: 08/01/2019] [Indexed: 12/17/2022]
Abstract
Cellobiose dehydrogenase (CDH) is a flavocytochrome with a history of bioelectrochemical research dating back to 1992. During the years, it has been shown to be capable of mediated electron transfer (MET) and direct electron transfer (DET) to a variety of electrodes. This versatility of CDH originates from the separation of the catalytic flavodehydrogenase domain and the electron transferring cytochrome domain. This uncoupling of the catalytic reaction from the electron transfer process allows the application of CDH on many different electrode materials and surfaces, where it shows robust DET. Recent X-ray diffraction and small angle scattering studies provided insights into the structure of CDH and its domain mobility, which can change between a closed-state and an open-state conformation. This structural information verifies the electron transfer mechanism of CDH that was initially established by bioelectrochemical methods. A combination of DET and MET experiments has been used to investigate the catalytic mechanism and the electron transfer process of CDH and to deduce a protein structure comprising of mobile domains. Even more, electrochemical methods have been used to study the redox potentials of the FAD and the haem b cofactors of CDH or the electron transfer rates. These electrochemical experiments, their results and the application of the characterised CDHs in biosensors, biofuel cells and biosupercapacitors are combined with biochemical and structural data to provide a thorough overview on CDH as versatile bioelectrocatalyst.
Collapse
Affiliation(s)
- Stefan Scheiblbrandner
- Biocatalysis and Biosensing Laboratory, Department of Food Science and Technology, BOKU - University of Natural Resources and Life Sciences, Vienna, Muthgasse 11, 1190 Vienna, Austria.
| | - Roland Ludwig
- Biocatalysis and Biosensing Laboratory, Department of Food Science and Technology, BOKU - University of Natural Resources and Life Sciences, Vienna, Muthgasse 11, 1190 Vienna, Austria.
| |
Collapse
|
28
|
Rational Design of Enzyme‐Modified Electrodes for Optimized Bioelectrocatalytic Activity. ChemElectroChem 2019. [DOI: 10.1002/celc.201901022] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
29
|
Ma S, Laurent CVFP, Meneghello M, Tuoriniemi J, Oostenbrink C, Gorton L, Bartlett PN, Ludwig R. Direct Electron-Transfer Anisotropy of a Site-Specifically Immobilized Cellobiose Dehydrogenase. ACS Catal 2019. [DOI: 10.1021/acscatal.9b02014] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
| | | | - Marta Meneghello
- School of Chemistry, Faculty of Engineering and Physical Sciences, University of Southampton, Southampton SO17 1BJ, U.K
| | - Jani Tuoriniemi
- Department of Analytical Chemistry/Biochemistry and Structural Biology, Lund University, P.O. Box 124, Lund SE-221 00, Sweden
| | | | - Lo Gorton
- Department of Analytical Chemistry/Biochemistry and Structural Biology, Lund University, P.O. Box 124, Lund SE-221 00, Sweden
| | - Philip N. Bartlett
- School of Chemistry, Faculty of Engineering and Physical Sciences, University of Southampton, Southampton SO17 1BJ, U.K
| | | |
Collapse
|
30
|
Xiao X, Xia HQ, Wu R, Bai L, Yan L, Magner E, Cosnier S, Lojou E, Zhu Z, Liu A. Tackling the Challenges of Enzymatic (Bio)Fuel Cells. Chem Rev 2019; 119:9509-9558. [PMID: 31243999 DOI: 10.1021/acs.chemrev.9b00115] [Citation(s) in RCA: 185] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The ever-increasing demands for clean and sustainable energy sources combined with rapid advances in biointegrated portable or implantable electronic devices have stimulated intensive research activities in enzymatic (bio)fuel cells (EFCs). The use of renewable biocatalysts, the utilization of abundant green, safe, and high energy density fuels, together with the capability of working at modest and biocompatible conditions make EFCs promising as next generation alternative power sources. However, the main challenges (low energy density, relatively low power density, poor operational stability, and limited voltage output) hinder future applications of EFCs. This review aims at exploring the underlying mechanism of EFCs and providing possible practical strategies, methodologies and insights to tackle these issues. First, this review summarizes approaches in achieving high energy densities in EFCs, particularly, employing enzyme cascades for the deep/complete oxidation of fuels. Second, strategies for increasing power densities in EFCs, including increasing enzyme activities, facilitating electron transfers, employing nanomaterials, and designing more efficient enzyme-electrode interfaces, are described. The potential of EFCs/(super)capacitor combination is discussed. Third, the review evaluates a range of strategies for improving the stability of EFCs, including the use of different enzyme immobilization approaches, tuning enzyme properties, designing protective matrixes, and using microbial surface displaying enzymes. Fourth, approaches for the improvement of the cell voltage of EFCs are highlighted. Finally, future developments and a prospective on EFCs are envisioned.
Collapse
Affiliation(s)
- Xinxin Xiao
- Institute for Biosensing, and College of Life Sciences , Qingdao University , 308 Ningxia Road , Qingdao 266071 , China.,Department of Chemical Sciences and Bernal Institute , University of Limerick , Limerick V94 T9PX , Ireland
| | - Hong-Qi Xia
- Institute for Biosensing, and College of Life Sciences , Qingdao University , 308 Ningxia Road , Qingdao 266071 , China
| | - Ranran Wu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences , 32 West seventh Road, Tianjin Airport Economic Area , Tianjin 300308 , China
| | - Lu Bai
- Institute for Biosensing, and College of Life Sciences , Qingdao University , 308 Ningxia Road , Qingdao 266071 , China
| | - Lu Yan
- Institute for Biosensing, and College of Life Sciences , Qingdao University , 308 Ningxia Road , Qingdao 266071 , China
| | - Edmond Magner
- Department of Chemical Sciences and Bernal Institute , University of Limerick , Limerick V94 T9PX , Ireland
| | - Serge Cosnier
- Université Grenoble-Alpes , DCM UMR 5250, F-38000 Grenoble , France.,Département de Chimie Moléculaire , UMR CNRS, DCM UMR 5250, F-38000 Grenoble , France
| | - Elisabeth Lojou
- Aix Marseille Univ, CNRS, BIP, Bioénergétique et Ingénierie des Protéines UMR7281 , Institut de Microbiologie de la Méditerranée, IMM , FR 3479, 31, chemin Joseph Aiguier 13402 Marseille , Cedex 20 , France
| | - Zhiguang Zhu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences , 32 West seventh Road, Tianjin Airport Economic Area , Tianjin 300308 , China
| | - Aihua Liu
- Institute for Biosensing, and College of Life Sciences , Qingdao University , 308 Ningxia Road , Qingdao 266071 , China.,College of Chemistry & Chemical Engineering , Qingdao University , 308 Ningxia Road , Qingdao 266071 , China.,School of Pharmacy, Medical College , Qingdao University , Qingdao 266021 , China
| |
Collapse
|
31
|
Ma S, Ludwig R. Direct Electron Transfer of Enzymes Facilitated by Cytochromes. ChemElectroChem 2019; 6:958-975. [PMID: 31008015 PMCID: PMC6472588 DOI: 10.1002/celc.201801256] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 11/12/2018] [Indexed: 01/03/2023]
Abstract
The direct electron transfer (DET) of enzymes has been utilized to develop biosensors and enzymatic biofuel cells on micro- and nanostructured electrodes. Whereas some enzymes exhibit direct electron transfer between their active-site cofactor and an electrode, other oxidoreductases depend on acquired cytochrome domains or cytochrome subunits as built-in redox mediators. The physiological function of these cytochromes is to transfer electrons between the active-site cofactor and a redox partner protein. The exchange of the natural electron acceptor/donor by an electrode has been demonstrated for several cytochrome carrying oxidoreductases. These multi-cofactor enzymes have been applied in third generation biosensors to detect glucose, lactate, and other analytes. This review investigates and classifies oxidoreductases with a cytochrome domain, enzyme complexes with a cytochrome subunit, and covers designed cytochrome fusion enzymes. The structurally and electrochemically best characterized proponents from each enzyme class carrying a cytochrome, that is, flavoenzymes, quinoenzymes, molybdenum-cofactor enzymes, iron-sulfur cluster enzymes, and multi-haem enzymes, are featured, and their biochemical, kinetic, and electrochemical properties are compared. The cytochromes molecular and functional properties as well as their contribution to the interdomain electron transfer (IET, between active-site and cytochrome) and DET (between cytochrome and electrode) with regard to the achieved current density is discussed. Protein design strategies for cytochrome-fused enzymes are reviewed and the limiting factors as well as strategies to overcome them are outlined.
Collapse
Affiliation(s)
- Su Ma
- Biocatalysis and Biosensing Laboratory Department of Food Science and TechnologyBOKU – University of Natural Resources and Life SciencesMuthgasse 181190ViennaAustria
| | - Roland Ludwig
- Biocatalysis and Biosensing Laboratory Department of Food Science and TechnologyBOKU – University of Natural Resources and Life SciencesMuthgasse 181190ViennaAustria
| |
Collapse
|
32
|
Grippo V, Ma S, Ludwig R, Gorton L, Bilewicz R. Cellobiose dehydrogenase hosted in lipidic cubic phase to improve catalytic activity and stability. Bioelectrochemistry 2019; 125:134-141. [DOI: 10.1016/j.bioelechem.2017.10.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Revised: 09/15/2017] [Accepted: 10/03/2017] [Indexed: 11/16/2022]
|
33
|
Meneghello M, Al-Lolage FA, Ma S, Ludwig R, Bartlett PN. Studying direct electron transfer by site-directed immobilization of cellobiose dehydrogenase. ChemElectroChem 2019; 6:700-713. [PMID: 31700765 PMCID: PMC6837870 DOI: 10.1002/celc.201801503] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Indexed: 11/10/2022]
Abstract
Covalent coupling between a surface exposed cysteine residue and maleimide groups was used to immobilize variants of Myriococcum thermophilum cellobiose dehydrogenase (MtCDH) at multiwall carbon nanotube electrodes. By introducing individual cysteine residues at particular places on the surface of the flavodehydrogenase domain of the flavocytochrome we are able to immobilize the different variants in different orientations. Our results show that direct electron transfer (DET) occurs exclusively through the haem b cofactor and that the redox potential of the haem is unaffected by the orientation of the enzyme. Electron transfer between the haem and the electrode is fast in all cases and at high glucose concentrations the catalytic currents are limited by the rate of inter-domain electron transfer (IET) between the FAD and the haem. Using ferrocene carboxylic acid as a mediator we find that the total amount of immobilized enzyme is 4 to 5 times greater than the amount of enzyme that participates in DET. The role of IET in the overall DET catalysed oxidation was also demonstrated by the effects of changing Ca2+ concentration and by proteolytic cleavage of the cytochrome domain on the DET and MET currents.
Collapse
Affiliation(s)
- Marta Meneghello
- School of Chemistry, University of Southampton, Southampton, SO17 1BJ UK
| | - Firas A. Al-Lolage
- School of Chemistry, University of Southampton, Southampton, SO17 1BJ UK
- Department of Chemistry, College of Science, University of Mosul, Mosul, Iraq
| | - Su Ma
- Department of Food Science and Technology, BOKU − University of Natural Resources and Life Sciences, Muthgasse 18, Vienna A-1190, Austria
| | - Roland Ludwig
- Department of Food Science and Technology, BOKU − University of Natural Resources and Life Sciences, Muthgasse 18, Vienna A-1190, Austria
| | - Philip N. Bartlett
- School of Chemistry, University of Southampton, Southampton, SO17 1BJ UK
| |
Collapse
|
34
|
Al-Lolage FA, Bartlett PN, Gounel S, Staigre P, Mano N. Site-Directed Immobilization of Bilirubin Oxidase for Electrocatalytic Oxygen Reduction. ACS Catal 2019. [DOI: 10.1021/acscatal.8b04340] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Firas A. Al-Lolage
- School of Chemistry, University of Southampton, Southampton SO17 1BJ, U.K
- Department of Chemistry, College of Science, University of Mosul, Mosul 41002, Iraq
| | - Philip N. Bartlett
- School of Chemistry, University of Southampton, Southampton SO17 1BJ, U.K
| | - Sébastien Gounel
- CNRS, Université Bordeaux, Centre de Recherche Paul Pascal (CRPP), UMR 5031, 33600 Pessac, France
| | - Priscilla Staigre
- CNRS, Université Bordeaux, Centre de Recherche Paul Pascal (CRPP), UMR 5031, 33600 Pessac, France
| | - Nicolas Mano
- CNRS, Université Bordeaux, Centre de Recherche Paul Pascal (CRPP), UMR 5031, 33600 Pessac, France
| |
Collapse
|
35
|
Hitaishi VP, Mazurenko I, Harb M, Clément R, Taris M, Castano S, Duché D, Lecomte S, Ilbert M, de Poulpiquet A, Lojou E. Electrostatic-Driven Activity, Loading, Dynamics, and Stability of a Redox Enzyme on Functionalized-Gold Electrodes for Bioelectrocatalysis. ACS Catal 2018. [DOI: 10.1021/acscatal.8b03443] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | - Ievgen Mazurenko
- School of Biomedical Sciences, University of Leeds, LS2 9JT Leeds, United Kingdom
| | - Malek Harb
- Aix-Marseille Univ, CNRS, BIP, UMR 7281, 31 Chemin Aiguier, 13009 Marseille, France
| | - Romain Clément
- Aix-Marseille Univ, CNRS, BIP, UMR 7281, 31 Chemin Aiguier, 13009 Marseille, France
| | - Marion Taris
- Institute for Chemistry and Biology of Membrane and Nano-objects, Allée Geoffroy St. Hilaire, 33600 Pessac, France
| | - Sabine Castano
- Institute for Chemistry and Biology of Membrane and Nano-objects, Allée Geoffroy St. Hilaire, 33600 Pessac, France
| | - David Duché
- Aix Marseille Univ, CNRS, University of Toulon, IM2NP UMR 7334, 13397 Marseille, France
| | - Sophie Lecomte
- Institute for Chemistry and Biology of Membrane and Nano-objects, Allée Geoffroy St. Hilaire, 33600 Pessac, France
| | - Marianne Ilbert
- Aix-Marseille Univ, CNRS, BIP, UMR 7281, 31 Chemin Aiguier, 13009 Marseille, France
| | - Anne de Poulpiquet
- Aix-Marseille Univ, CNRS, BIP, UMR 7281, 31 Chemin Aiguier, 13009 Marseille, France
| | - Elisabeth Lojou
- Aix-Marseille Univ, CNRS, BIP, UMR 7281, 31 Chemin Aiguier, 13009 Marseille, France
| |
Collapse
|
36
|
Yates NDJ, Fascione MA, Parkin A. Methodologies for "Wiring" Redox Proteins/Enzymes to Electrode Surfaces. Chemistry 2018; 24:12164-12182. [PMID: 29637638 PMCID: PMC6120495 DOI: 10.1002/chem.201800750] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Indexed: 12/22/2022]
Abstract
The immobilization of redox proteins or enzymes onto conductive surfaces has application in the analysis of biological processes, the fabrication of biosensors, and in the development of green technologies and biochemical synthetic approaches. This review evaluates the methods through which redox proteins can be attached to electrode surfaces in a "wired" configuration, that is, one that facilitates direct electron transfer. The feasibility of simple electroactive adsorption onto a range of electrode surfaces is illustrated, with a highlight on the recent advances that have been achieved in biotechnological device construction using carbon materials and metal oxides. The covalent crosslinking strategies commonly used for the modification and biofunctionalization of electrode surfaces are also evaluated. Recent innovations in harnessing chemical biology methods for electrically wiring redox biology to surfaces are emphasized.
Collapse
Affiliation(s)
| | | | - Alison Parkin
- Department of ChemistryUniversity of YorkHeslington RoadYorkYO10 5DDUK
| |
Collapse
|
37
|
Abstract
Redox enzymes, which catalyze reactions involving electron transfers in living organisms, are very promising components of biotechnological devices, and can be envisioned for sensing applications as well as for energy conversion. In this context, one of the most significant challenges is to achieve efficient direct electron transfer by tunneling between enzymes and conductive surfaces. Based on various examples of bioelectrochemical studies described in the recent literature, this review discusses the issue of enzyme immobilization at planar electrode interfaces. The fundamental importance of controlling enzyme orientation, how to obtain such orientation, and how it can be verified experimentally or by modeling are the three main directions explored. Since redox enzymes are sizable proteins with anisotropic properties, achieving their functional immobilization requires a specific and controlled orientation on the electrode surface. All the factors influenced by this orientation are described, ranging from electronic conductivity to efficiency of substrate supply. The specificities of the enzymatic molecule, surface properties, and dipole moment, which in turn influence the orientation, are introduced. Various ways of ensuring functional immobilization through tuning of both the enzyme and the electrode surface are then described. Finally, the review deals with analytical techniques that have enabled characterization and quantification of successful achievement of the desired orientation. The rich contributions of electrochemistry, spectroscopy (especially infrared spectroscopy), modeling, and microscopy are featured, along with their limitations.
Collapse
|
38
|
Gonzalez-Solino C, Lorenzo MD. Enzymatic Fuel Cells: Towards Self-Powered Implantable and Wearable Diagnostics. BIOSENSORS 2018; 8:E11. [PMID: 29382147 PMCID: PMC5872059 DOI: 10.3390/bios8010011] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Revised: 01/17/2018] [Accepted: 01/22/2018] [Indexed: 12/18/2022]
Abstract
With the rapid progress in nanotechnology and microengineering, point-of-care and personalised healthcare, based on wearable and implantable diagnostics, is becoming a reality. Enzymatic fuel cells (EFCs) hold great potential as a sustainable means to power such devices by using physiological fluids as the fuel. This review summarises the fundamental operation of EFCs and discusses the most recent advances for their use as implantable and wearable self-powered sensors.
Collapse
Affiliation(s)
| | - Mirella Di Lorenzo
- Department of Chemical Engineering, University of Bath, Bath BA2 7AY, UK.
| |
Collapse
|
39
|
Synthesis, Characterization, and Applications of Nanographene-Armored Enzymes. Methods Enzymol 2018; 609:83-142. [DOI: 10.1016/bs.mie.2018.05.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
40
|
Lockhart JN, Hmelo AB, Harth E. Electron beam lithography of poly(glycidol) nanogels for immobilization of a three-enzyme cascade. Polym Chem 2018. [DOI: 10.1039/c7py01904a] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Nanogels devices with spatial confinement of multiple enzymes resulted in retention of bioactivity after 30 days with a 5 fold higher chromogenic output compared to free enzyme cascade devices.
Collapse
Affiliation(s)
- Jacob N. Lockhart
- Department of Chemistry
- Vanderbilt Institute of Nanoscale Science and Engineering
- Vanderbilt University
- 7665 Stevenson Center
- Nashville
| | - Anthony B. Hmelo
- Department of Chemistry
- Vanderbilt Institute of Nanoscale Science and Engineering
- Vanderbilt University
- 7665 Stevenson Center
- Nashville
| | - Eva Harth
- Department of Chemistry
- Center of Excellence in Polymer Research
- 406 STL Building
- University of Houston
- Houston
| |
Collapse
|
41
|
Burrows-Medaille: S. Brooker / Breyer-Medaille: P. N. Bartlett / R.-H.-Stokes-Medaille: H. Zhao / A.-M.-Bond-Medaille: S. Ciampi. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201709209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
42
|
Burrows Medal: S. Brooker / Breyer Medal: P. N. Bartlett / R. H. Stokes Medal: H. Zhao / A. M. Bond Medal: S. Ciampi. Angew Chem Int Ed Engl 2017; 56:13181. [DOI: 10.1002/anie.201709209] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|