1
|
Lee J, Hunter B, Shim H. A pangenome analysis of ESKAPE bacteriophages: the underrepresentation may impact machine learning models. Front Mol Biosci 2024; 11:1395450. [PMID: 38974320 PMCID: PMC11224154 DOI: 10.3389/fmolb.2024.1395450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 05/31/2024] [Indexed: 07/09/2024] Open
Abstract
Bacteriophages are the most prevalent biological entities in the biosphere. However, limitations in both medical relevance and sequencing technologies have led to a systematic underestimation of the genetic diversity within phages. This underrepresentation not only creates a significant gap in our understanding of phage roles across diverse biosystems but also introduces biases in computational models reliant on these data for training and testing. In this study, we focused on publicly available genomes of bacteriophages infecting high-priority ESKAPE pathogens to show the extent and impact of this underrepresentation. First, we demonstrate a stark underrepresentation of ESKAPE phage genomes within the public genome and protein databases. Next, a pangenome analysis of these ESKAPE phages reveals extensive sharing of core genes among phages infecting the same host. Furthermore, genome analyses and clustering highlight close nucleotide-level relationships among the ESKAPE phages, raising concerns about the limited diversity within current public databases. Lastly, we uncover a scarcity of unique lytic phages and phage proteins with antimicrobial activities against ESKAPE pathogens. This comprehensive analysis of the ESKAPE phages underscores the severity of underrepresentation and its potential implications. This lack of diversity in phage genomes may restrict the resurgence of phage therapy and cause biased outcomes in data-driven computational models due to incomplete and unbalanced biological datasets.
Collapse
Affiliation(s)
- Jeesu Lee
- Center for Biosystems and Biotech Data Science, Ghent University Global Campus, Incheon, Republic of Korea
| | - Branden Hunter
- Department of Biology, California State University, Fresno, CA, United States
| | - Hyunjin Shim
- Center for Biosystems and Biotech Data Science, Ghent University Global Campus, Incheon, Republic of Korea
- Department of Biology, California State University, Fresno, CA, United States
| |
Collapse
|
2
|
de Souza J, Vieira AZ, Dos Santos HG, Faoro H. Potential involvement of beta-lactamase homologous proteins in resistance to beta-lactam antibiotics in gram-negative bacteria of the ESKAPEE group. BMC Genomics 2024; 25:508. [PMID: 38778284 PMCID: PMC11112869 DOI: 10.1186/s12864-024-10410-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 05/14/2024] [Indexed: 05/25/2024] Open
Abstract
BACKGROUND Enzymatic degradation mediated by beta-lactamases constitutes one of the primary mechanisms of resistance to beta-lactam antibiotics in gram-negative bacteria. This enzyme family comprises four molecular classes, categorized into serine beta-lactamases (Classes A, C, and D) and zinc-dependent metallo-beta-lactamases (Class B). Gram-negative bacteria producing beta-lactamase are of significant concern, particularly due to their prevalence in nosocomial infections. A comprehensive understanding of the evolution and dissemination of this enzyme family is essential for effective control of these pathogens. In this study, we conducted the prospecting, phylogenetic analysis, and in silico analysis of beta-lactamases and homologous proteins identified in 1827 bacterial genomes with phenotypic data on beta-lactam resistance. These genomes were distributed among Klebsiella pneumoniae (45%), Acinetobacter baumannii (31%), Pseudomonas aeruginosa (14%), Escherichia coli (6%), and Enterobacter spp. (4%). Using an HMM profile and searching for conserved domains, we mined 2514, 8733, 5424, and 2957 proteins for molecular classes A, B, C, and D, respectively. This set of proteins encompasses canonical subfamilies of beta-lactamases as well as hypothetical proteins and other functional groups. Canonical beta-lactamases were found to be phylogenetically distant from hypothetical proteins, which, in turn, are closer to other representatives of the penicillin-binding-protein (PBP-like) and metallo-beta-lactamase (MBL) families. The catalytic amino acid residues characteristic of beta-lactamases were identified from the sequence alignment and revealed that motifs are less conserved in homologous groups than in beta-lactamases. After comparing the frequency of protein groups in genomes of resistant strains with those of sensitive ones applying Fisher's exact test and relative risk, it was observed that some groups of homologous proteins to classes B and C are more common in the genomes of resistant strains, particularly to carbapenems. We identified the beta-lactamase-like domain widely distributed in gram-negative species of the ESKAPEE group, which highlights its importance in the context of beta-lactam resistance. Some hypothetical homologous proteins have been shown to potentially possess promiscuous activity against beta-lactam antibiotics, however, they do not appear to expressly determine the resistance phenotype. The selective pressure due to the widespread use of antibiotics may favor the optimization of these functions for specialized resistance enzymes.
Collapse
Affiliation(s)
- Joyce de Souza
- Laboratory for Applied Science and Technology in Health, Carlos Chagas Institute, FIOCRUZ, Paraná, 81350-010, Brazil
| | - Alexandre Zanatta Vieira
- Laboratory for Applied Science and Technology in Health, Carlos Chagas Institute, FIOCRUZ, Paraná, 81350-010, Brazil
| | | | - Helisson Faoro
- Laboratory for Applied Science and Technology in Health, Carlos Chagas Institute, FIOCRUZ, Paraná, 81350-010, Brazil.
- Department of Microbiology, Infectious Disease and Immunology, CHU de Quebec Research Center, University Laval, Quebec, QC, G1V 0A6, Canada.
| |
Collapse
|
3
|
Ang’ang’o LM, Herren JK, Tastan Bishop Ö. Structural and Functional Annotation of Hypothetical Proteins from the Microsporidia Species Vittaforma corneae ATCC 50505 Using in silico Approaches. Int J Mol Sci 2023; 24:3507. [PMID: 36834914 PMCID: PMC9960886 DOI: 10.3390/ijms24043507] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 01/25/2023] [Accepted: 02/06/2023] [Indexed: 02/12/2023] Open
Abstract
Microsporidia are spore-forming eukaryotes that are related to fungi but have unique traits that set them apart. They have compact genomes as a result of evolutionary gene loss associated with their complete dependency on hosts for survival. Despite having a relatively small number of genes, a disproportionately high percentage of the genes in microsporidia genomes code for proteins whose functions remain unknown (hypothetical proteins-HPs). Computational annotation of HPs has become a more efficient and cost-effective alternative to experimental investigation. This research developed a robust bioinformatics annotation pipeline of HPs from Vittaforma corneae, a clinically important microsporidian that causes ocular infections in immunocompromised individuals. Here, we describe various steps to retrieve sequences and homologs and to carry out physicochemical characterization, protein family classification, identification of motifs and domains, protein-protein interaction network analysis, and homology modelling using a variety of online resources. Classification of protein families produced consistent findings across platforms, demonstrating the accuracy of annotation utilizing in silico methods. A total of 162 out of 2034 HPs were fully annotated, with the bulk of them categorized as binding proteins, enzymes, or regulatory proteins. The protein functions of several HPs from Vittaforma corneae were accurately inferred. This improved our understanding of microsporidian HPs despite challenges related to the obligate nature of microsporidia, the absence of fully characterized genes, and the lack of homologous genes in other systems.
Collapse
Affiliation(s)
- Lilian Mbaisi Ang’ang’o
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry and Microbiology, Rhodes University, Makhanda 6140, South Africa
| | - Jeremy Keith Herren
- International Centre of Insect Physiology and Ecology (icipe), Nairobi P.O. Box 30772-00100, Kenya
| | - Özlem Tastan Bishop
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry and Microbiology, Rhodes University, Makhanda 6140, South Africa
| |
Collapse
|
4
|
Valadi J, Sundararajan VS, Bandapalli OR, Benso A, Suravajhala P. Editorial: Integrated systems genomic approaches for characterizing uncharacterized proteins. Front Genet 2022; 13:1000825. [PMID: 36176288 PMCID: PMC9513579 DOI: 10.3389/fgene.2022.1000825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 08/22/2022] [Indexed: 12/02/2022] Open
Affiliation(s)
- Jayaraman Valadi
- Department of Computer Science, Vidyashilp University, Maharastra, India
- Bioclues.org, Hyderabad, India
- Department of Computer Science, FLAME University, Pune, India
- *Correspondence: Jayaraman Valadi, ; Prashanth Suravajhala,
| | | | | | - Alfredo Benso
- PolitoBIOMed Lab—Biomedical Engineering Lab, Turin, Italy
| | - Prashanth Suravajhala
- Bioclues.org, Hyderabad, India
- Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham University, Kollam, Kerala, India
- *Correspondence: Jayaraman Valadi, ; Prashanth Suravajhala,
| |
Collapse
|
5
|
Ranjitkar S, Duan JE, Srirattana K, Alqahtani F, Tulman ER, Mandoiu I, Venkitanarayanan K, Tian X. Transcriptomic Responses of Mycoplasma bovis Upon Treatments of trans-Cinnamaldehyde, Carvacrol, and Eugenol. Front Microbiol 2022; 13:888433. [PMID: 35733968 PMCID: PMC9207385 DOI: 10.3389/fmicb.2022.888433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 04/11/2022] [Indexed: 11/13/2022] Open
Abstract
Mycoplasma bovis (M. bovis) is an insidious, wall-less primary bacterial pathogen that causes bovine pneumonia, mid-ear infection, mastitis, and arthritis. The economic losses caused by M. bovis due to culling, diminished milk production, and feed conversion are underestimated because of poor diagnosis/recognition. Treatment with common antibiotics targeting the cell wall is ineffective. Plant-derived antimicrobials (PDAs) such as food-grade trans-cinnamaldehyde (TC), eugenol (EU), and carvacrol (CAR) are inexpensive and generally regarded as safe for humans and animals yet possess strong anti-bacterial properties. In preliminary studies, we found that all three PDAs inhibited the growth of M. bovis in vitro. Through RNA sequencing, we report here that CAR affected the expression of 153 genes which included the downregulation of energy generation-related proteins, pentose phosphate pathway, and upregulation of ribosomes and translation-related proteins. Few differentially expressed genes were found when M. bovis was treated with TC, EU, or when the three PDAs were double or triple combined. Our results suggest that, as opposed to the effect of CAR, the growth-inhibitory effects of TC and EU at levels tested may be exerted through mechanisms other than gene expression regulations.
Collapse
Affiliation(s)
- Saurav Ranjitkar
- Department of Animal Science, University of Connecticut, Storrs, CT, United States
| | - Jingyue Ellie Duan
- Department of Animal Science, University of Connecticut, Storrs, CT, United States
| | - Kanokwan Srirattana
- Department of Animal Science, University of Connecticut, Storrs, CT, United States
| | - Fahad Alqahtani
- National Center for Bioinformatics, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | - Edan R. Tulman
- Department of Pathobiology and Veterinary Science, University of Connecticut, Storrs, CT, United States
| | - Ion Mandoiu
- Department of Computer Science and Engineering, University of Connecticut, Storrs, CT, United States
| | | | - Xiuchun Tian
- Department of Animal Science, University of Connecticut, Storrs, CT, United States
- *Correspondence: Xiuchun Tian,
| |
Collapse
|
6
|
Shahrear S, Afroj Zinnia M, Sany MRU, Islam ABMMK. Functional Analysis of Hypothetical Proteins of Vibrio parahaemolyticus Reveals the Presence of Virulence Factors and Growth-Related Enzymes With Therapeutic Potential. Bioinform Biol Insights 2022; 16:11779322221136002. [PMID: 36386863 PMCID: PMC9661560 DOI: 10.1177/11779322221136002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 09/30/2022] [Indexed: 11/11/2022] Open
Abstract
Vibrio parahaemolyticus, an aquatic pathogen, is a major concern in the shrimp aquaculture industry. Several strains of this pathogen are responsible for causing acute hepatopancreatic necrosis disease as well as other serious illness, both of which result in severe economic losses. The genome sequence of two pathogenic strains of V. parahaemolyticus, MSR16 and MSR17, isolated from Bangladesh, have been reported to gain a better understanding of their diversity and virulence. However, the prevalence of hypothetical proteins (HPs) makes it challenging to obtain a comprehensive understanding of the pathogenesis of V. parahaemolyticus. The aim of the present study is to provide a functional annotation of the HPs to elucidate their role in pathogenesis employing several in silico tools. The exploration of protein domains and families, similarity searches against proteins with known function, gene ontology enrichment, along with protein-protein interaction analysis of the HPs led to the functional assignment with a high level of confidence for 656 proteins out of a pool of 2631 proteins. The in silico approach used in this study was important for accurately assigning function to HPs and inferring interactions with proteins with previously described functions. The HPs with function predicted were categorized into various groups such as enzymes involved in small-compound biosynthesis pathway, iron binding proteins, antibiotics resistance proteins, and other proteins. Several proteins with potential druggability were identified among them. In addition, the HPs were investigated in search of virulent factors, which led to the identification of proteins that have the potential to be exploited as vaccine candidate. The findings of the study will be effective in gaining a better understanding of the molecular mechanisms of bacterial pathogenesis. They may also provide an insight into the process of evaluating promising targets for the development of drugs and vaccines against V. parahaemolyticus.
Collapse
Affiliation(s)
- Sazzad Shahrear
- Department of Genetic Engineering and Biotechnology, University of Dhaka, Dhaka, Bangladesh
| | | | - Md. Rabi Us Sany
- Department of Genetic Engineering and Biotechnology, University of Dhaka, Dhaka, Bangladesh
| | | |
Collapse
|
7
|
Zhang X, Hu Y, Smith DR. Protocol for using NoBadWordsCombiner to merge and minimize "bad words" from BLAST hits against multiple eukaryotic gene annotation databases. STAR Protoc 2021; 2:100888. [PMID: 34704076 PMCID: PMC8521201 DOI: 10.1016/j.xpro.2021.100888] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Annotating protein-coding genes can be challenging, especially when searching for the best hits against multiple functional databases. This is partly because of "bad words" appearing as top hits, such as hypothetical or uncharacterized proteins. To help alleviate some of these issues, we designed a bioinformatics tool called NoBadWordsCombiner, which efficiently merges the hits from various databases, strengthening gene definitions by minimizing functional descriptions containing "bad words." Unlike other available tools, NoBadWordsCombiner is user friendly, but it does require users to have some general bioinformatics skills, including a basic understanding of the BLAST package and dash shell in Linux/Unix environments. For complete details on the use and execution of this protocol, please refer to Zhang et al. (2021a).
Collapse
Affiliation(s)
- Xi Zhang
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS B3H 4R2, Canada
- Institute for Comparative Genomics, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Yining Hu
- Department of Computer Science, Western University, London, ON N6A 5B7, Canada
| | - David Roy Smith
- Department of Biology, Western University, London, ON N6A 5B7, Canada
| |
Collapse
|
8
|
Lobb B, Tremblay BJM, Moreno-Hagelsieb G, Doxey AC. An assessment of genome annotation coverage across the bacterial tree of life. Microb Genom 2020; 6. [PMID: 32124724 PMCID: PMC7200070 DOI: 10.1099/mgen.0.000341] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Although gene-finding in bacterial genomes is relatively straightforward, the automated assignment of gene function is still challenging, resulting in a vast quantity of hypothetical sequences of unknown function. But how prevalent are hypothetical sequences across bacteria, what proportion of genes in different bacterial genomes remain unannotated, and what factors affect annotation completeness? To address these questions, we surveyed over 27 000 bacterial genomes from the Genome Taxonomy Database, and measured genome annotation completeness as a function of annotation method, taxonomy, genome size, 'research bias' and publication date. Our analysis revealed that 52 and 79 % of the average bacterial proteome could be functionally annotated based on protein and domain-based homology searches, respectively. Annotation coverage using protein homology search varied significantly from as low as 14 % in some species to as high as 98 % in others. We found that taxonomy is a major factor influencing annotation completeness, with distinct trends observed across the microbial tree (e.g. the lowest level of completeness was found in the Patescibacteria lineage). Most lineages showed a significant association between genome size and annotation incompleteness, likely reflecting a greater degree of uncharacterized sequences in 'accessory' proteomes than in 'core' proteomes. Finally, research bias, as measured by publication volume, was also an important factor influencing genome annotation completeness, with early model organisms showing high completeness levels relative to other genomes in their own taxonomic lineages. Our work highlights the disparity in annotation coverage across the bacterial tree of life and emphasizes a need for more experimental characterization of accessory proteomes as well as understudied lineages.
Collapse
Affiliation(s)
- Briallen Lobb
- Department of Biology, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada
| | | | - Gabriel Moreno-Hagelsieb
- Department of Biology, Wilfrid Laurier University, 75 University Avenue West, Waterloo, ON, Canada
| | - Andrew C Doxey
- Department of Biology, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada
| |
Collapse
|
9
|
Kim YJ, Park JY, Balusamy SR, Huo Y, Nong LK, Thi Le H, Yang DC, Kim D. Comprehensive Genome Analysis on the Novel Species Sphingomonas panacis DCY99 T Reveals Insights into Iron Tolerance of Ginseng. Int J Mol Sci 2020; 21:E2019. [PMID: 32188055 PMCID: PMC7139845 DOI: 10.3390/ijms21062019] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 03/11/2020] [Accepted: 03/13/2020] [Indexed: 11/18/2022] Open
Abstract
Plant growth-promoting rhizobacteria play vital roles not only in plant growth, but also in reducing biotic/abiotic stress. Sphingomonas panacis DCY99T is isolated from soil and root of Panax ginseng with rusty root disease, characterized by raised reddish-brown root and this is seriously affects ginseng cultivation. To investigate the relationship between 159 sequenced Sphingomonas strains, pan-genome analysis was carried out, which suggested genomic diversity of the Sphingomonas genus. Comparative analysis of S. panacis DCY99T with Sphingomonas sp. LK11 revealed plant growth-promoting potential of S. panacis DCY99T through indole acetic acid production, phosphate solubilizing, and antifungal abilities. Detailed genomic analysis has shown that S. panacis DCY99T contain various heavy metals resistance genes in its genome and the plasmid. Functional analysis with Sphingomonas paucimobilis EPA505 predicted that S. panacis DCY99T possess genes for degradation of polyaromatic hydrocarbon and phenolic compounds in rusty-ginseng root. Interestingly, when primed ginseng with S. panacis DCY99T during high concentration of iron exposure, iron stress of ginseng was suppressed. In order to detect S. panacis DCY99T in soil, biomarker was designed using spt gene. This study brings new insights into the role of S. panacis DCY99T as a microbial inoculant to protect ginseng plants against rusty root disease.
Collapse
Affiliation(s)
- Yeon-Ju Kim
- College of Life Science, Kyung Hee University, Yongin 16710, Korea; (Y.H.); (D.C.Y.)
| | - Joon Young Park
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea; (J.Y.P.); (L.K.N.); (H.T.L.)
| | | | - Yue Huo
- College of Life Science, Kyung Hee University, Yongin 16710, Korea; (Y.H.); (D.C.Y.)
| | - Linh Khanh Nong
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea; (J.Y.P.); (L.K.N.); (H.T.L.)
| | - Hoa Thi Le
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea; (J.Y.P.); (L.K.N.); (H.T.L.)
| | - Deok Chun Yang
- College of Life Science, Kyung Hee University, Yongin 16710, Korea; (Y.H.); (D.C.Y.)
| | - Donghyuk Kim
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea; (J.Y.P.); (L.K.N.); (H.T.L.)
- School of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea
- Korean Genomics Industrialization and Commercialization Center, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea
| |
Collapse
|
10
|
Kröber E, Schäfer H. Identification of Proteins and Genes Expressed by Methylophaga thiooxydans During Growth on Dimethylsulfide and Their Presence in Other Members of the Genus. Front Microbiol 2019; 10:1132. [PMID: 31191477 PMCID: PMC6548844 DOI: 10.3389/fmicb.2019.01132] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 05/03/2019] [Indexed: 12/19/2022] Open
Abstract
Dimethylsulfide is a volatile organic sulfur compound that provides the largest input of biogenic sulfur from the oceans to the atmosphere, and thence back to land, constituting an important link in the global sulfur cycle. Microorganisms degrading DMS affect fluxes of DMS in the environment, but the underlying metabolic pathways are still poorly understood. Methylophaga thiooxydans is a marine methylotrophic bacterium capable of growth on DMS as sole source of carbon and energy. Using proteomics and transcriptomics we identified genes expressed during growth on dimethylsulfide and methanol to refine our knowledge of the metabolic pathways that are involved in DMS and methanol degradation in this strain. Amongst the most highly expressed genes on DMS were the two methanethiol oxidases driving the oxidation of this reactive and toxic intermediate of DMS metabolism. Growth on DMS also increased expression of the enzymes of the tetrahydrofolate linked pathway of formaldehyde oxidation, in addition to the tetrahydromethanopterin linked pathway. Key enzymes of the inorganic sulfur oxidation pathway included flavocytochrome c sulfide dehydrogenase, sulfide quinone oxidoreductase, and persulfide dioxygenases. A sulP permease was also expressed during growth on DMS. Proteomics and transcriptomics also identified a number of highly expressed proteins and gene products whose function is currently not understood. As the identity of some enzymes of organic and inorganic sulfur metabolism previously detected in Methylophaga has not been characterized at the genetic level yet, highly expressed uncharacterized genes provide new targets for further biochemical and genetic analysis. A pan-genome analysis of six available Methylophaga genomes showed that only two of the six investigated strains, M. thiooxydans and M. sulfidovorans have the gene encoding methanethiol oxidase, suggesting that growth on methylated sulfur compounds of M. aminisulfidivorans is likely to involve different enzymes and metabolic intermediates. Hence, the pathways of DMS-utilization and subsequent C1 and sulfur oxidation are not conserved across Methylophaga isolates that degrade methylated sulfur compounds.
Collapse
Affiliation(s)
| | - Hendrik Schäfer
- School of Life Sciences, Gibbet Hill Campus, University of Warwick, Coventry, United Kingdom
| |
Collapse
|
11
|
Zheng Y, Saitou A, Wang CM, Toyoda A, Minakuchi Y, Sekiguchi Y, Ueda K, Takano H, Sakai Y, Abe K, Yokota A, Yabe S. Genome Features and Secondary Metabolites Biosynthetic Potential of the Class Ktedonobacteria. Front Microbiol 2019; 10:893. [PMID: 31080444 PMCID: PMC6497799 DOI: 10.3389/fmicb.2019.00893] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 04/08/2019] [Indexed: 12/30/2022] Open
Abstract
The prevalence of antibiotic resistance and the decrease in novel antibiotic discovery in recent years necessitates the identification of potentially novel microbial resources to produce natural products. Ktedonobacteria, a class of deeply branched bacterial lineage in the ancient phylum Chloroflexi, are ubiquitous in terrestrial environments and characterized by their large genome size and complex life cycle. These characteristics indicate Ktedonobacteria as a potential active producer of bioactive compounds. In this study, we observed the existence of a putative "megaplasmid," multiple copies of ribosomal RNA operons, and high ratio of hypothetical proteins with unknown functions in the class Ktedonobacteria. Furthermore, a total of 104 antiSMASH-predicted putative biosynthetic gene clusters (BGCs) for secondary metabolites with high novelty and diversity were identified in nine Ktedonobacteria genomes. Our investigation of domain composition and organization of the non-ribosomal peptide synthetase and polyketide synthase BGCs further supports the concept that class Ktedonobacteria may produce compounds structurally different from known natural products. Furthermore, screening of bioactive compounds from representative Ktedonobacteria strains resulted in the identification of broad antimicrobial activities against both Gram-positive and Gram-negative tested bacterial strains. Based on these findings, we propose the ancient, ubiquitous, and spore-forming Ktedonobacteria as a versatile and promising microbial resource for natural product discovery.
Collapse
Affiliation(s)
- Yu Zheng
- Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Ayana Saitou
- Faculty of Agriculture, Tohoku University, Sendai, Japan
| | - Chiung-Mei Wang
- Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Atsushi Toyoda
- Comparative Genomics Laboratory, National Institute of Genetics, Mishima, Japan
| | - Yohei Minakuchi
- Comparative Genomics Laboratory, National Institute of Genetics, Mishima, Japan
| | - Yuji Sekiguchi
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan
| | - Kenji Ueda
- Life Science Research Center, College of Bioresource Sciences, Nihon University, Fujisawa, Japan
| | - Hideaki Takano
- Life Science Research Center, College of Bioresource Sciences, Nihon University, Fujisawa, Japan
| | - Yasuteru Sakai
- Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Keietsu Abe
- Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Akira Yokota
- Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Shuhei Yabe
- Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
- Hazaka Plant Research Center, Kennan Eisei Kogyo Co., Ltd., Miyagi, Japan
| |
Collapse
|
12
|
Park HS, Back YW, Shin KW, Bae HS, Lee KI, Choi HG, Choi S, Lee HH, Choi CH, Park JK, Kim HJ. Mycobacterium tuberculosis Rv3463 induces mycobactericidal activity in macrophages by enhancing phagolysosomal fusion and exhibits therapeutic potential. Sci Rep 2019; 9:4246. [PMID: 30862819 PMCID: PMC6414722 DOI: 10.1038/s41598-019-38982-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 01/04/2019] [Indexed: 12/21/2022] Open
Abstract
Macrophages are responsible for innate and adaptive immune response activation necessary for eliminating infections. Optimal activation of macrophages to phagocytize Mycobacterium tuberculosis is critical in anti-mycobacterial defense. Here, we identified a novel Rv3463 hypothetical protein that induces macrophage activation in Mtb culture filtrate. Recombinant Rv3463 activated mouse bone marrow-derived macrophages to induce the expression of surface molecules and secrete pro-inflammatory cytokines via the TLR2 and TLR4 pathways. Mitogen activated protein kinase, phospatidylinositol-4,5-bisphosphate 3-kinases, and the NF-κB signaling pathways are involved in Rv3463-mediated macrophage activation. Furthermore, Rv3463 induced bactericidal effects in Mtb-infected macrophages through phagosome maturation and phagolysosomal fusion enhanced by phospatidylinositol-4,5-bisphosphate 3-kinases and Ca2+ signaling pathways and exhibited therapeutic effects in a short-term Mtb-infection mouse model. Overexpression of Rv3463 in M. smegmatis caused rapid clearance of bacteria in macrophages and mice. Our study suggests that Rv3463 is a promising target for the development of post-exposure tuberculosis vaccines or adjunct immune-therapy.
Collapse
Affiliation(s)
- Hye-Soo Park
- Department of Microbiology and Department of Medical Science, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Yong Woo Back
- Department of Microbiology and Department of Medical Science, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Ki-Won Shin
- Department of Microbiology and Department of Medical Science, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Hyun Shik Bae
- Department of Microbiology and Department of Medical Science, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Kang-In Lee
- Department of Microbiology and Department of Medical Science, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Han-Gyu Choi
- Department of Microbiology and Department of Medical Science, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Seunga Choi
- Department of Microbiology and Department of Medical Science, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Hwang-Ho Lee
- Department of Microbiology and Immunology, Chonbuk National University Medical School, Jeonju, Republic of Korea
| | - Chul Hee Choi
- Department of Microbiology and Department of Medical Science, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Jeong-Kyu Park
- Department of Microbiology and Department of Medical Science, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Hwa-Jung Kim
- Department of Microbiology and Department of Medical Science, College of Medicine, Chungnam National University, Daejeon, Republic of Korea.
| |
Collapse
|
13
|
Spindlin docking protein (SPIN.DOC) interaction with SPIN1 (a histone code reader) regulates Wnt signaling. Biochem Biophys Res Commun 2019; 511:498-503. [PMID: 30803761 DOI: 10.1016/j.bbrc.2019.02.096] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Accepted: 02/18/2019] [Indexed: 12/15/2022]
Abstract
Indepth studies of protein-protein interactions are essential for discovering the molecular mechanisms and the biological context of protein functions. Even though previous study on the purification of SPIN1 interacting protein complex has shown Spindlin docking protein (SPIN.DOC) as the most abundant interacting protein partner; the study on the molecular function of SPIN.DOC is limited. Since the role of SPIN1 has been previously documented as a histone code reader and transcriptional coactivator of Wnt signaling, SPIN.DOC may probably involve in epigenetic regulation and Wnt signaling. This study aims to purify SPIN.DOC interacting protein complex and characterize the molecular function of SPIN.DOC. The finding of this study revealed that the suppression of SPIN.DOC expression in HEK293 cells by shRNA, slightly destabilized SPIN1 without any change in its chromatin localization. However, knockdown of SPIN1 decreased the expression and chromatin localization of SPIN.DOC. Nevertheless, overexpression of SPIN.DOC increased the expression and chromatin localization of SPIN1 but no change in the SPIN.DOC protein expression and chromatin localization when SPIN1 is overexpressed. TOPflash reporter assays revealed that SPIN.DOC regulates gene expression in Wnt signaling pathway and act as transcriptional repressor. Further, we show that C-terminal deleted mutant of SPIN.DOC is unable to interact with SPIN1. Unlike the wild type SPIN.DOC which acts as transcriptional repressor, overexpression of C-terminal deletion mutant activates Wnt signaling suggesting that SPIN.DOC-SPIN1 complex may act as transcriptional repressor. Overall, our data revealed new molecular functions of SPIN.DOC.
Collapse
|
14
|
Ijaq J, Malik G, Kumar A, Das PS, Meena N, Bethi N, Sundararajan VS, Suravajhala P. A model to predict the function of hypothetical proteins through a nine-point classification scoring schema. BMC Bioinformatics 2019; 20:14. [PMID: 30621574 PMCID: PMC6325861 DOI: 10.1186/s12859-018-2554-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 11/30/2018] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Hypothetical proteins [HP] are those that are predicted to be expressed in an organism, but no evidence of their existence is known. In the recent past, annotation and curation efforts have helped overcome the challenge in understanding their diverse functions. Techniques to decipher sequence-structure-function relationship, especially in terms of functional modelling of the HPs have been developed by researchers, but using the features as classifiers for HPs has not been attempted. With the rise in number of annotation strategies, next-generation sequencing methods have provided further understanding the functions of HPs. RESULTS In our previous work, we developed a six-point classification scoring schema with annotation pertaining to protein family scores, orthology, protein interaction/association studies, bidirectional best BLAST hits, sorting signals, known databases and visualizers which were used to validate protein interactions. In this study, we introduced three more classifiers to our annotation system, viz. pseudogenes linked to HPs, homology modelling and non-coding RNAs associated to HPs. We discuss the challenges and performance of these classifiers using machine learning heuristics with an improved accuracy from Perceptron (81.08 to 97.67), Naive Bayes (54.05 to 96.67), Decision tree J48 (67.57 to 97.00), and SMO_npolyk (59.46 to 96.67). CONCLUSION With the introduction of three new classification features, the performance of the nine-point classification scoring schema has an improved accuracy to functionally annotate the HPs.
Collapse
Affiliation(s)
- Johny Ijaq
- Department of Biotechnology, Osmania University, Hyderabad, 500007 India
- Bioclues.org, Kukatpally, Hyderabad, 500072 India
| | - Girik Malik
- Department of Pediatrics, The Battelle Center for Mathematical Medicine, The Research Institute at Nationwide Children’s Hospital, The Ohio State University, Columbus, OH USA
- Bioclues.org, Kukatpally, Hyderabad, 500072 India
- Labrynthe, New Delhi, India
| | - Anuj Kumar
- Bioclues.org, Kukatpally, Hyderabad, 500072 India
- Advanced Center for Computational and Applied Biotechnology, Uttarakhand Council for Biotechnology, Dehradun, 248007 India
| | - Partha Sarathi Das
- Bioclues.org, Kukatpally, Hyderabad, 500072 India
- Department of Microbiology, Bioinformatics Infrastructure Facility, Vidyasagar University, Midnapore, India
| | - Narendra Meena
- Department of Biotechnology and Bioinformatics, Birla Institute of Scientific Research, Statue Circle, RJ 302001 India
| | - Neeraja Bethi
- Department of Biotechnology, Osmania University, Hyderabad, 500007 India
| | | | - Prashanth Suravajhala
- Bioclues.org, Kukatpally, Hyderabad, 500072 India
- Department of Biotechnology and Bioinformatics, Birla Institute of Scientific Research, Statue Circle, RJ 302001 India
| |
Collapse
|
15
|
Abstract
The nearly ubiquitous bacterial second messenger cyclic di-GMP is involved in a multitude of fundamental physiological processes such as sessility/motility transition and the switch between the acute and chronic infection status, combined with cell cycle control. The discovery of cyclic di-GMP, though, has been an example par excellence of scientific serendipity. We recapitulate here its years-long discovery process as an activator of the cellulose synthase of the environmental bacterium Komagataeibacter xylinus and its consequences for follow-up research. Indeed, the discovery of cyclic di-GMP as a ubiquitous second messenger contributed to the change in perception of bacteria as simple unicellular organisms just randomly building-up multicellular communities. Subsequently, cyclic di-GMP also paved the way to the identification of other pro- and eukaryotic cyclic dinucleotide second messengers.
Collapse
Affiliation(s)
- Ute Römling
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Box 280, SE-17177, Stockholm, Sweden.
| | - Michael Y Galperin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, 20894, USA
| |
Collapse
|
16
|
Mazumdar R, Endler L, Monoyios A, Hess M, Bilic I. Establishment of a de novo Reference Transcriptome of Histomonas meleagridis Reveals Basic Insights About Biological Functions and Potential Pathogenic Mechanisms of the Parasite. Protist 2017; 168:663-685. [DOI: 10.1016/j.protis.2017.09.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 08/21/2017] [Accepted: 09/23/2017] [Indexed: 12/28/2022]
|
17
|
Sévin DC, Fuhrer T, Zamboni N, Sauer U. Nontargeted in vitro metabolomics for high-throughput identification of novel enzymes in Escherichia coli. Nat Methods 2016; 14:187-194. [DOI: 10.1038/nmeth.4103] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 10/19/2016] [Indexed: 12/14/2022]
|
18
|
Wong TY, Kuo J. A new drug design strategy: Killing drug resistant bacteria by deactivating their hypothetical genes. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART C, ENVIRONMENTAL CARCINOGENESIS & ECOTOXICOLOGY REVIEWS 2016; 34:276-292. [PMID: 27901648 DOI: 10.1080/10590501.2016.1236605] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Despite that a bacterial genome is complicated by large numbers of horizontally transferred (HT) genes and function unknown hypothetical (FUN) genes, the Genic-Transcriptional-Stop-Signals-Ratio (TSSR) of a genome shows that HT and FUN genes are complementary to all other genes in the genome. When HT or certain FUN genes are omitted from the Escherichia coli K-12 genome, its Genomic-TSSR value becomes totally incomparable to other E. coli strains. The Genic-TSSR correlation tree of a pathogen shows that some FUN genes would form a unique cluster. Removing these genes by site-specific mutation or gene-knockout should lead to the demise of this pathogen.
Collapse
Affiliation(s)
- Tit-Yee Wong
- a Department of Biological Sciences , Bioinformatics Program, University of Memphis , Memphis , Tennessee , USA
| | - Jimmy Kuo
- b Department of Planning and Research , National Museum of Marine Biology and Aquarium , Pingtung , Taiwan, Republic of China
| |
Collapse
|
19
|
Integrated transcriptomic and proteomic analysis of the bile stress response in probiotic Lactobacillus salivarius LI01. J Proteomics 2016; 150:216-229. [PMID: 27585996 DOI: 10.1016/j.jprot.2016.08.021] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 06/24/2016] [Accepted: 08/25/2016] [Indexed: 12/11/2022]
Abstract
Lactobacillus salivarius LI01, isolated from healthy humans, has demonstrated probiotic properties in the prevention and treatment of liver failure. Tolerance to bile stress is crucial to allow lactobacilli to survive in the gastrointestinal tract and exert their benefits. In this work, we used a Digital Gene Expression transcriptomic and iTRAQ LC-MS/MS proteomic approach to examine the characteristics of LI01 in response to bile stress. Using culture medium with or without 0.15% ox bile, 591 differentially transcribed genes and 347 differentially expressed proteins were detected in LI01. Overall, we found the bile resistance of LI01 to be based on a highly remodeled cell envelope and a reinforced bile efflux system rather than on the activity of bile salt hydrolases. Additionally, some differentially expressed genes related to regulatory systems, the general stress response and central metabolism processes, also play roles in stress sensing, bile-induced damage prevention and energy efficiency. Moreover, bile salts appear to enhance proteolysis and amino acid uptake (especially aromatic amino acids) by LI01, which may support the liver protection properties of this strain. Altogether, this study establishes a model of global response mechanism to bile stress in L. salivarius LI01. BIOLOGICAL SIGNIFICANCE L. salivarius strain LI01 exhibits not only antibacterial and antifungal properties but also exerts a good health-promoting effect in acute liver failure. As a potential probiotic strain, the bile-tolerance trait of strain LI01 is important, though this has not yet been explored. In this study, an analysis based on DGE and iTRAQ was performed to investigate the gene expression in strain LI01 under bile stress at the mRNA and protein levels, respectively. To our knowledge, this work also represents the first combined transcriptomic and proteomic analysis of the bile stress response mechanism in L. salivarius.
Collapse
|
20
|
Assignment of function to a domain of unknown function: DUF1537 is a new kinase family in catabolic pathways for acid sugars. Proc Natl Acad Sci U S A 2016; 113:E4161-9. [PMID: 27402745 DOI: 10.1073/pnas.1605546113] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Using a large-scale "genomic enzymology" approach, we (i) assigned novel ATP-dependent four-carbon acid sugar kinase functions to members of the DUF1537 protein family (domain of unknown function; Pfam families PF07005 and PF17042) and (ii) discovered novel catabolic pathways for d-threonate, l-threonate, and d-erythronate. The experimentally determined ligand specificities of several solute binding proteins (SBPs) for TRAP (tripartite ATP-independent permease) transporters for four-carbon acids, including d-erythronate and l-erythronate, were used to constrain the substrates for the catabolic pathways that degrade the SBP ligands to intermediates in central carbon metabolism. Sequence similarity networks and genome neighborhood networks were used to identify the enzyme components of the pathways. Conserved genome neighborhoods encoded SBPs as well as permease components of the TRAP transporters, members of the DUF1537 family, and a member of the 4-hydroxy-l-threonine 4-phosphate dehydrogenase (PdxA) oxidative decarboxylase, class II aldolase, or ribulose 1,5-bisphosphate carboxylase/oxygenase, large subunit (RuBisCO) superfamily. Because the characterized substrates of members of the PdxA, class II aldolase, and RuBisCO superfamilies are phosphorylated, we postulated that the members of the DUF1537 family are novel ATP-dependent kinases that participate in catabolic pathways for four-carbon acid sugars. We determined that (i) the DUF1537/PdxA pair participates in a pathway for the conversion of d-threonate to dihydroxyacetone phosphate and CO2 and (ii) the DUF1537/class II aldolase pair participates in pathways for the conversion of d-erythronate and l-threonate (epimers at carbon-3) to dihydroxyacetone phosphate and CO2 The physiological importance of these pathways was demonstrated in vivo by phenotypic and genetic analyses.
Collapse
|
21
|
Gupta RS. Impact of genomics on the understanding of microbial evolution and classification: the importance of Darwin's views on classification. FEMS Microbiol Rev 2016; 40:520-53. [PMID: 27279642 DOI: 10.1093/femsre/fuw011] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/14/2016] [Indexed: 12/24/2022] Open
Abstract
Analyses of genome sequences, by some approaches, suggest that the widespread occurrence of horizontal gene transfers (HGTs) in prokaryotes disguises their evolutionary relationships and have led to questioning of the Darwinian model of evolution for prokaryotes. These inferences are critically examined in the light of comparative genome analysis, characteristic synapomorphies, phylogenetic trees and Darwin's views on examining evolutionary relationships. Genome sequences are enabling discovery of numerous molecular markers (synapomorphies) such as conserved signature indels (CSIs) and conserved signature proteins (CSPs), which are distinctive characteristics of different prokaryotic taxa. Based on these molecular markers, exhibiting high degree of specificity and predictive ability, numerous prokaryotic taxa of different ranks, currently identified based on the 16S rRNA gene trees, can now be reliably demarcated in molecular terms. Within all studied groups, multiple CSIs and CSPs have been identified for successive nested clades providing reliable information regarding their hierarchical relationships and these inferences are not affected by HGTs. These results strongly support Darwin's views on evolution and classification and supplement the current phylogenetic framework based on 16S rRNA in important respects. The identified molecular markers provide important means for developing novel diagnostics, therapeutics and for functional studies providing important insights regarding prokaryotic taxa.
Collapse
Affiliation(s)
- Radhey S Gupta
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
22
|
Structure-based function analysis of putative conserved proteins with isomerase activity from Haemophilus influenzae. 3 Biotech 2015; 5:741-763. [PMID: 28324524 PMCID: PMC4569619 DOI: 10.1007/s13205-014-0274-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 12/18/2014] [Indexed: 01/09/2023] Open
Abstract
Haemophilus influenzae, a Gram-negative bacterium and a member of the family Pasteurellaceae, causes chronic bronchitis, bacteremia, meningitis, etc. The H. influenzae is the first organism whose genome was completely sequenced and annotated. Here, we have extensively analyzed the genome of H. influenzae using available proteins structure and function analysis tools. The objective of this analysis is to assign a precise function to hypothetical proteins (HPs) whose functions are not determined so far. Function prediction of these proteins is helpful in precise understanding of mechanisms of pathogenesis and biochemical pathways important for selecting novel therapeutic target. After an extensive analysis of H. Influenzae genome we have found 13 HPs showing high level of sequence and structural similarity to the enzyme isomerase. Consequently, the structures of HPs have been modeled and analyzed to determine their precise functions. We found these HPs are alanine racemase, lysine 2, 3-aminomutase, topoisomerase DNA-binding C4 zinc finger, pseudouridine synthase B, C and E (Rlu B, C and E), hydroxypyruvate isomerase, nucleoside-diphosphate-sugar epimerase, amidophosphoribosyltransferase, aldose-1-epimerase, tautomerase/MIF, Xylose isomerase-like, have TIM barrel domain and sedoheptulose-7-phosphate isomerase like activity, signifying their corresponding functions in the H. influenzae. This work provides a better understanding of the role HPs with isomerase activities in the survival and pathogenesis of H. influenzae.
Collapse
|
23
|
Shahbaaz M, Ahmad F, Imtaiyaz Hassan M. Structure-based functional annotation of putative conserved proteins having lyase activity from Haemophilus influenzae. 3 Biotech 2015; 5:317-336. [PMID: 28324295 PMCID: PMC4434415 DOI: 10.1007/s13205-014-0231-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2014] [Accepted: 05/28/2014] [Indexed: 12/20/2022] Open
Abstract
Haemophilus influenzae is a small pleomorphic Gram-negative bacteria which causes several chronic diseases, including bacteremia, meningitis, cellulitis, epiglottitis, septic arthritis, pneumonia, and empyema. Here we extensively analyzed the sequenced genome of H. influenzae strain Rd KW20 using protein family databases, protein structure prediction, pathways and genome context methods to assign a precise function to proteins whose functions are unknown. These proteins are termed as hypothetical proteins (HPs), for which no experimental information is available. Function prediction of these proteins would surely be supportive to precisely understand the biochemical pathways and mechanism of pathogenesis of Haemophilus influenzae. During the extensive analysis of H. influenzae genome, we found the presence of eight HPs showing lyase activity. Subsequently, we modeled and analyzed three-dimensional structure of all these HPs to determine their functions more precisely. We found these HPs possess cystathionine-β-synthase, cyclase, carboxymuconolactone decarboxylase, pseudouridine synthase A and C, D-tagatose-1,6-bisphosphate aldolase and aminodeoxychorismate lyase-like features, indicating their corresponding functions in the H. influenzae. Lyases are actively involved in the regulation of biosynthesis of various hormones, metabolic pathways, signal transduction, and DNA repair. Lyases are also considered as a key player for various biological processes. These enzymes are critically essential for the survival and pathogenesis of H. influenzae and, therefore, these enzymes may be considered as a potential target for structure-based rational drug design. Our structure–function relationship analysis will be useful to search and design potential lead molecules based on the structure of these lyases, for drug design and discovery.
Collapse
Affiliation(s)
- Mohd Shahbaaz
- Department of Computer Science, Jamia Millia Islamia, New Delhi, 110025, India
| | - Faizan Ahmad
- Center for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Md Imtaiyaz Hassan
- Center for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India.
| |
Collapse
|
24
|
Prediction of substrate specificity and preliminary kinetic characterization of the hypothetical protein PVX_123945 from Plasmodium vivax. Exp Parasitol 2015; 151-152:56-63. [PMID: 25655405 DOI: 10.1016/j.exppara.2015.01.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2014] [Revised: 01/12/2015] [Accepted: 01/27/2015] [Indexed: 11/22/2022]
Abstract
Members of the haloacid dehalogenase (HAD) superfamily are emerging as an important group of enzymes by virtue of their role in diverse chemical reactions. In different Plasmodium species their number varies from 16 to 21. One of the HAD superfamily members, PVX_123945, a hypothetical protein from Plasmodium vivax, was selected for examining its substrate specificity. Based on distant homology searches and structure comparisons, it was predicted to be a phosphatase. Thirty-eight metabolites were screened to identify potential substrates. Further, to validate the prediction, biochemical and kinetic studies were carried out that showed that the protein was a monomer with high catalytic efficiency for β-glycerophosphate followed by pyridoxal 5'-phosphate. The enzyme also exhibited moderate catalytic efficiencies for α-glycerophosphate, xanthosine 5'-monophosphate and adenosine 5'-monophosphate. It also hydrolyzed the artificial substrate p-nitrophenyl phosphate (pNPP). Mg(2+) was the most preferred divalent cation and phosphate inhibited the enzyme activity. The study is the first attempt at understanding the substrate specificity of a hypothetical protein belonging to HAD superfamily from the malarial parasite P. vivax.
Collapse
|
25
|
Noncanonical SMC protein in Mycobacterium smegmatis restricts maintenance of Mycobacterium fortuitum plasmids. Proc Natl Acad Sci U S A 2014; 111:13264-71. [PMID: 25197070 DOI: 10.1073/pnas.1414207111] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Research on tuberculosis and leprosy was revolutionized by the development of a plasmid transformation system in the fast-growing surrogate, Mycobacterium smegmatis. This transformation system was made possible by the successful isolation of a M. smegmatis mutant strain mc(2)155, whose efficient plasmid transformation (ept) phenotype supported the replication of Mycobacterium fortuitum pAL5000 plasmids. In this report, we identified the EptC gene, the loss of which confers the ept phenotype. EptC shares significant amino acid sequence homology and domain structure with the MukB protein of Escherichia coli, a structural maintenance of chromosomes (SMC) protein. Surprisingly, M. smegmatis has three paralogs of SMC proteins: EptC and MSMEG_0370 both share homology with Gram-negative bacterial MukB; and MSMEG_2423 shares homology with Gram-positive bacterial SMCs, including the single SMC protein predicted for Mycobacterium tuberculosis and Mycobacterium leprae. Purified EptC was shown to bind ssDNA and stabilize negative supercoils in plasmid DNA. Moreover, an EptC-mCherry fusion protein was constructed and shown to bind to DNA in live mycobacteria, and to prevent segregation of plasmid DNA to daughter cells. To our knowledge, this is the first report of impaired plasmid maintenance caused by a SMC homolog, which has been canonically known to assist the segregation of genetic materials.
Collapse
|
26
|
Enany S. Structural and functional analysis of hypothetical and conserved proteins of Clostridium tetani. J Infect Public Health 2014; 7:296-307. [PMID: 24802661 DOI: 10.1016/j.jiph.2014.02.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Revised: 02/01/2014] [Accepted: 02/14/2014] [Indexed: 12/27/2022] Open
Abstract
The progress in biological technologies has led to rapid accumulation of microbial genomic sequences with a vast number of uncharacterized genes. Proteins encoded by these genes are usually uncharacterized, hypothetical, and/or conserved. In Clostridium tetani (C. tetani), these proteins constitute up to 50% of the expressed proteins. In this regard, understanding the functions and the structures of these proteins is crucially important, particularly in C. tetani, which is a medically important pathogen. Here, we used a variety of bioinformatics tools and databases to analyze 10 hypothetical and conserved proteins in C. tetani. We were able to provide a detailed overview of the functional contributions of some of these proteins in several cellular functions, including (1) evolving antibiotic resistance, (2) interaction with enzymes pathways, and (3) involvement in drug transportation. Among these candidates, we postulated the involvement of one of these hypothetical proteins in the pathogenic activity of tetanus. The structural and functional prediction of these proteins should serve in uncovering and better understanding the function of C. tetani cells to ultimately discover new possible drug targets.
Collapse
Affiliation(s)
- Shymaa Enany
- Department of Microbiology and Immunology, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt.
| |
Collapse
|
27
|
Sathyanarayanan N, Nagendra HG. Genome wide survey and molecular modeling of hypothetical proteins containing 2Fe-2S and FMN binding domains suggests Rieske Dioxygenase Activity highlighting their potential roles in bioremediation. Bioinformation 2014; 10:68-75. [PMID: 24616557 PMCID: PMC3937578 DOI: 10.6026/97320630010068] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Accepted: 01/26/2014] [Indexed: 12/02/2022] Open
Abstract
‘Conserved hypothetical’ proteins pose a challenge not just for functional genomics, but also to biology in general. As long as there
are hundreds of conserved proteins with unknown function in model organisms such as Escherichia coli, Bacillus subtilis or
Saccharomyces cerevisiae, any discussion towards a ‘complete’ understanding of these biological systems will remain a wishful
thinking. Insilico approaches exhibit great promise towards attempts that enable appreciating the plausible roles of these
hypothetical proteins. Among the majority of genomic proteins, two-thirds in unicellular organisms and more than 80% in
metazoa, are multi-domain proteins, created as a result of gene duplication events. Aromatic ring-hydroxylating dioxygenases, also
called Rieske dioxygenases (RDOs), are class of multi-domain proteins that catalyze the initial step in microbial aerobic
degradation of many aromatic compounds. Investigations here address the computational characterization of hypothetical proteins
containing Ferredoxin and Flavodoxin signatures. Consensus sequence of each class of oxidoreductase was obtained by a
phylogenetic analysis, involving clustering methods based on evolutionary relationship. A synthetic sequence was developed by
combining the consensus, which was used as the basis to search for their homologs via BLAST. The exercise yielded 129 multidomain
hypothetical proteins containing both 2Fe-2S (Ferredoxin) and FNR (Flavodoxin) domains. In the current study, 17 proteins
with N-terminus FNR domain and C-terminus 2Fe-2S domain are characterized, through homology modelling and docking
exercises which suggest dioxygenase activity indicate their plausible roles in degradation of aromatic moieties.
Collapse
Affiliation(s)
- Nitish Sathyanarayanan
- Department of Biotechnology, Sir M. Visvesvaraya Institute of Technology, Krishnadevarayanagar, Hunasamaranahalli, Bangalore 562 157 ; (Present Address) National Center for Biological Sciences, Tata Institute for Fundamental Research, GKVK Campus, Bellary Road, Bangalore 560065
| | - Holenarsipur Gundurao Nagendra
- Department of Biotechnology, Sir M. Visvesvaraya Institute of Technology, Krishnadevarayanagar, Hunasamaranahalli, Bangalore 562 157
| |
Collapse
|
28
|
Teh BA, Choi SB, Musa N, Ling FL, Cun STW, Salleh AB, Najimudin N, Wahab HA, Normi YM. Structure to function prediction of hypothetical protein KPN_00953 (Ycbk) from Klebsiella pneumoniae MGH 78578 highlights possible role in cell wall metabolism. BMC STRUCTURAL BIOLOGY 2014; 14:7. [PMID: 24499172 PMCID: PMC3927764 DOI: 10.1186/1472-6807-14-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Accepted: 02/01/2014] [Indexed: 11/10/2022]
Abstract
Background Klebsiella pneumoniae plays a major role in causing nosocomial infection in immunocompromised patients. Medical inflictions by the pathogen can range from respiratory and urinary tract infections, septicemia and primarily, pneumonia. As more K. pneumoniae strains are becoming highly resistant to various antibiotics, treatment of this bacterium has been rendered more difficult. This situation, as a consequence, poses a threat to public health. Hence, identification of possible novel drug targets against this opportunistic pathogen need to be undertaken. In the complete genome sequence of K. pneumoniae MGH 78578, approximately one-fourth of the genome encodes for hypothetical proteins (HPs). Due to their low homology and relatedness to other known proteins, HPs may serve as potential, new drug targets. Results Sequence analysis on the HPs of K. pneumoniae MGH 78578 revealed that a particular HP termed KPN_00953 (YcbK) contains a M15_3 peptidases superfamily conserved domain. Some members of this superfamily are metalloproteases which are involved in cell wall metabolism. BLASTP similarity search on KPN_00953 (YcbK) revealed that majority of the hits were hypothetical proteins although two of the hits suggested that it may be a lipoprotein or related to twin-arginine translocation (Tat) pathway important for transport of proteins to the cell membrane and periplasmic space. As lipoproteins and other components of the cell wall are important pathogenic factors, homology modeling of KPN_00953 was attempted to predict the structure and function of this protein. Three-dimensional model of the protein showed that its secondary structure topology and active site are similar with those found among metalloproteases where two His residues, namely His169 and His209 and an Asp residue, Asp176 in KPN_00953 were found to be Zn-chelating residues. Interestingly, induced expression of the cloned KPN_00953 gene in lipoprotein-deficient E. coli JE5505 resulted in smoother cells with flattened edges. Some cells showed deposits of film-like material under scanning electron microscope. Conclusions We postulate that KPN_00953 is a Zn metalloprotease and may play a role in bacterial cell wall metabolism. Structural biology studies to understand its structure, function and mechanism of action pose the possibility of utilizing this protein as a new drug target against K. pneumoniae in the future.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Habibah A Wahab
- Enzyme and Microbial Technology Research Center (EMTECH), Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia.
| | | |
Collapse
|
29
|
Identification of genes involved in salt tolerance and symbiotic nitrogen fixation in chickpea rhizobium Mesorhizobium ciceri Ca181. Symbiosis 2013. [DOI: 10.1007/s13199-013-0264-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
30
|
Cyclic di-GMP: the first 25 years of a universal bacterial second messenger. Microbiol Mol Biol Rev 2013; 77:1-52. [PMID: 23471616 DOI: 10.1128/mmbr.00043-12] [Citation(s) in RCA: 1228] [Impact Index Per Article: 111.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Twenty-five years have passed since the discovery of cyclic dimeric (3'→5') GMP (cyclic di-GMP or c-di-GMP). From the relative obscurity of an allosteric activator of a bacterial cellulose synthase, c-di-GMP has emerged as one of the most common and important bacterial second messengers. Cyclic di-GMP has been shown to regulate biofilm formation, motility, virulence, the cell cycle, differentiation, and other processes. Most c-di-GMP-dependent signaling pathways control the ability of bacteria to interact with abiotic surfaces or with other bacterial and eukaryotic cells. Cyclic di-GMP plays key roles in lifestyle changes of many bacteria, including transition from the motile to the sessile state, which aids in the establishment of multicellular biofilm communities, and from the virulent state in acute infections to the less virulent but more resilient state characteristic of chronic infectious diseases. From a practical standpoint, modulating c-di-GMP signaling pathways in bacteria could represent a new way of controlling formation and dispersal of biofilms in medical and industrial settings. Cyclic di-GMP participates in interkingdom signaling. It is recognized by mammalian immune systems as a uniquely bacterial molecule and therefore is considered a promising vaccine adjuvant. The purpose of this review is not to overview the whole body of data in the burgeoning field of c-di-GMP-dependent signaling. Instead, we provide a historic perspective on the development of the field, emphasize common trends, and illustrate them with the best available examples. We also identify unresolved questions and highlight new directions in c-di-GMP research that will give us a deeper understanding of this truly universal bacterial second messenger.
Collapse
|
31
|
Sathyanarayanan N, Nagendra HG. Analysis of multi-domain hypothetical proteins containing iron-sulphur clusters and fad ligands reveal rieske dioxygenase activity suggesting their plausible roles in bioremediation. Bioinformation 2012; 8:1154-61. [PMID: 23275712 PMCID: PMC3530884 DOI: 10.6026/97320630081154] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2012] [Accepted: 11/05/2012] [Indexed: 11/23/2022] Open
Abstract
'Conserved hypothetical' proteins pose a challenge not just for functional genomics, but also to biology in general. As long as there are hundreds of conserved proteins with unknown function in model organisms such as Escherichia coli, Bacillus subtilis or Saccharomyces cerevisiae, any discussion towards a 'complete' understanding of these biological systems will remain a wishful thinking. Insilico approaches exhibit great promise towards attempts that enable appreciating the plausible roles of these hypothetical proteins. Among the majority of genomic proteins, two-thirds in unicellular organisms and more than 80% in metazoa, are multi-domain proteins, created as a result of gene duplication events. Aromatic ring-hydroxylating dioxygenases, also called Rieske dioxygenases (RDOs), are class of multi-domain proteins that catalyze the initial step in microbial aerobic degradation of many aromatic compounds. Investigations here address the computational characterization of hypothetical proteins containing Ferredoxin and Flavodoxin signatures. Consensus sequence of each class of oxidoreductase was obtained by a phylogenetic analysis, involving clustering methods based on evolutionary relationship. A synthetic sequence was developed by combining the consensus, which was used as the basis to search for their homologs via BLAST. The exercise yielded 129 multidomain hypothetical proteins containing both 2Fe-2S (Ferredoxin) and FNR (Flavodoxin) domains. In the current study, 40 proteins with N-terminus 2Fe-2S domain and C-terminus FNR domain are characterized, through homology modelling and docking exercises which suggest dioxygenase activity indicating their plausible roles in degradation of aromatic moieties.
Collapse
Affiliation(s)
- Nitish Sathyanarayanan
- Department of Biotechnology, Sir M. Visvesvaraya Institute of Technology, Krishnadevarayanagar, Hunasamaranahalli, Bangalore 562 157
| | - Holenarasipur Gundurao Nagendra
- Department of Biotechnology, Sir M. Visvesvaraya Institute of Technology, Krishnadevarayanagar, Hunasamaranahalli, Bangalore 562 157
| |
Collapse
|
32
|
Mohan R, Venugopal S. Computational structural and functional analysis of hypothetical proteins of Staphylococcus aureus. Bioinformation 2012; 8:722-8. [PMID: 23055618 PMCID: PMC3449381 DOI: 10.6026/97320630008722] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Accepted: 07/23/2012] [Indexed: 12/04/2022] Open
Abstract
Genome sequencing projects has led to an explosion of large amount of gene products in which many are of hypothetical proteins with unknown function. Analyzing and annotating the functions of hypothetical proteins is important in Staphylococcus aureus which is a pathogenic bacterium that cause multiple types of diseases by infecting various sites in humans and animals. In this study, ten hypothetical proteins of Staphylococcus aureus were retrieved from NCBI and analyzed for their structural and functional characteristics by using various bioinformatics tools and databases. The analysis revealed that some of them possessed functionally important domains and families and protein-protein interacting partners which were ABC transporter ATP-binding protein, Multiple Antibiotic Resistance (MAR) family, export proteins, Helix-Turn-helix domains, arsenate reductase, elongation factor, ribosomal proteins, Cysteine protease precursor, Type-I restriction endonuclease enzyme and plasmid recombination enzyme which might have the same functions in hypothetical proteins. The structural prediction of those proteins and binding sites prediction have been done which would be useful in docking studies for aiding in the drug discovery.
Collapse
Affiliation(s)
- Ramadevi Mohan
- Division of Biomolecules and Genetics, School of Biosciences and Technology, VIT University, Vellore-632014, Tamil Nadu, India
| | - Subhashree Venugopal
- Division of Biomolecules and Genetics, School of Biosciences and Technology, VIT University, Vellore-632014, Tamil Nadu, India
| |
Collapse
|
33
|
Choi SB, Normi YM, Wahab HA. Revealing the functionality of hypothetical protein KPN00728 from Klebsiella pneumoniae MGH78578: molecular dynamics simulation approaches. BMC Bioinformatics 2011; 12 Suppl 13:S11. [PMID: 22372825 PMCID: PMC3278827 DOI: 10.1186/1471-2105-12-s13-s11] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Background Previously, the hypothetical protein, KPN00728 from Klebsiella pneumoniae MGH78578 was the Succinate dehydrogenase (SDH) chain C subunit via structural prediction and molecular docking simulation studies. However, due to limitation in docking simulation, an in-depth understanding of how SDH interaction occurs across the transmembrane of mitochondria could not be provided. Results In this present study, molecular dynamics (MD) simulation of KPN00728 and SDH chain D in a membrane was performed in order to gain a deeper insight into its molecular role as SDH. Structural stability was successfully obtained in the calculation for area per lipid, tail order parameter, thickness of lipid and secondary structural properties. Interestingly, water molecules were found to be highly possible in mediating the interaction between Ubiquinone (UQ) and SDH chain C via interaction with Ser27 and Arg31 residues as compared with earlier docking study. Polar residues such as Asp95 and Glu101 (KPN00728), Asp15 and Glu78 (SDH chain D) might have contributed in the creation of a polar environment which is essential for electron transport chain in Krebs cycle. Conclusions As a conclusion, a part from the structural stability comparability, the dynamic of the interacting residues and hydrogen bonding analysis had further proved that the interaction of KPN00728 as SDH is preserved and well agreed with our postulation earlier.
Collapse
Affiliation(s)
- Sy Bing Choi
- Pharmaceutical Design and Simulation Laboratory, School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800 Minden, Pulau Pinang, Malaysia
| | | | | |
Collapse
|
34
|
Wang D, Calla B, Vimolmangkang S, Wu X, Korban SS, Huber SC, Clough SJ, Zhao Y. The orphan gene ybjN conveys pleiotropic effects on multicellular behavior and survival of Escherichia coli. PLoS One 2011; 6:e25293. [PMID: 21980417 PMCID: PMC3181261 DOI: 10.1371/journal.pone.0025293] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Accepted: 08/31/2011] [Indexed: 11/19/2022] Open
Abstract
YbjN, encoding an enterobacteria-specific protein, is a multicopy suppressor of temperature sensitivity in the ts9 mutant strain of Escherichia coli. In this study, we further explored the role(s) of ybjN. First, we demonstrated that the ybjN transcript was about 10-fold lower in the ts9 strain compared to that of E. coli strain BW25113 (BW). Introduction of multiple copies of ybjN in the ts9 strain resulted in over-expression of ybjN by about 10-fold as compared to that of BW. These results suggested that temperature sensitivity of the ts9 mutant of E. coli may be related to expression levels of ybjN. Characterization of E. coli ybjN mutant revealed that ybjN mutation resulted in pleiotropic phenotypes, including increased motility, fimbriation (auto-aggregation), exopolysaccharide production, and biofilm formation. In contrast, over-expression of ybjN (in terms of multiple copies) resulted in reduced motility, fimbriation, exopolysaccharide production, biofilm formation and acid resistance. In addition, our results indicate that a ybjN-homolog gene from Erwinia amylovora, a plant enterobacterial pathogen, is functionally conserved with that of E. coli, suggesting similar evolution of the YbjN family proteins in enterobacteria. A microarray study revealed that the expression level of ybjN was inversely correlated with the expression of flagellar, fimbrial and acid resistance genes. Over-expression of ybjN significantly down-regulated genes involved in citric acid cycle, glycolysis, the glyoxylate shunt, oxidative phosphorylation, amino acid and nucleotide metabolism. Furthermore, over-expression of ybjN up-regulated toxin-antitoxin modules, the SOS response pathway, cold shock and starvation induced transporter genes. Collectively, these results suggest that YbjN may play important roles in regulating bacterial multicellular behavior, metabolism, and survival under stress conditions in E. coli. These results also suggest that ybjN over-expression-related temperature rescue of the ts9 mutant may be due to down-regulation of metabolic activity and activation of stress response genes in the ts9 mutant.
Collapse
Affiliation(s)
- Dongping Wang
- Department of Crop Sciences, University of Illinois, Urbana, Illinois, United States of America
| | - Bernarda Calla
- Department of Crop Sciences, University of Illinois, Urbana, Illinois, United States of America
| | - Sornkanok Vimolmangkang
- Department of Natural Resources and Environmental Sciences, University of Illinois, Urbana, Illinois, United States of America
| | - Xia Wu
- Program in Physiological and Molecular Plant Biology, University of Illinois, Urbana, Illinois, United States of America
| | - Schuyler S. Korban
- Department of Natural Resources and Environmental Sciences, University of Illinois, Urbana, Illinois, United States of America
| | - Steven C. Huber
- Program in Physiological and Molecular Plant Biology, University of Illinois, Urbana, Illinois, United States of America
- Agricultural Research Service, United States Department of Agriculture (USDA), Urbana, Illinois, United States of America
| | - Steven J. Clough
- Department of Crop Sciences, University of Illinois, Urbana, Illinois, United States of America
- Agricultural Research Service, United States Department of Agriculture (USDA), Urbana, Illinois, United States of America
| | - Youfu Zhao
- Department of Crop Sciences, University of Illinois, Urbana, Illinois, United States of America
- Program in Physiological and Molecular Plant Biology, University of Illinois, Urbana, Illinois, United States of America
- * E-mail:
| |
Collapse
|
35
|
Rathankar N, Nirmala KA, Khanduja V, Nagendra HG. Identification of potential drug targets implicated in Parkinson's disease from human genome: insights of using fused domains in hypothetical proteins as probes. ISRN NEUROLOGY 2011; 2011:265253. [PMID: 22389811 PMCID: PMC3263550 DOI: 10.5402/2011/265253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2011] [Accepted: 05/21/2011] [Indexed: 12/31/2022]
Abstract
High-throughput genome sequencing has led to data explosion in sequence databanks, with an imbalance of sequence-structure-function relationships, resulting in a substantial fraction of proteins known as hypothetical proteins. Functions of such proteins can be assigned based on the analysis and characterization of the domains that they are made up of. Domains are basic evolutionary units of proteins and most proteins contain multiple domains. A subset of multidomain proteins is fused domains (overlapping domains), wherein sequence overlaps between two or more domains occur. These fused domains are a result of gene fusion events and their implication in diseases is well established. Hence, an attempt has been made in this paper to identify the fused domain containing hypothetical proteins from human genome homologous to parkinsonian targets present in KEGG database. The results of this research identified 18 hypothetical proteins, with domains fused with ubiquitin domains and having homology with targets present in parkinsonian pathway.
Collapse
Affiliation(s)
- N Rathankar
- Department of Bioinformatics, School of Bioengineering, SRM University, Kattankulathur, Tamil Nadu 603 203, India
| | | | | | | |
Collapse
|
36
|
Bennuru S, Meng Z, Ribeiro JMC, Semnani RT, Ghedin E, Chan K, Lucas DA, Veenstra TD, Nutman TB. Stage-specific proteomic expression patterns of the human filarial parasite Brugia malayi and its endosymbiont Wolbachia. Proc Natl Acad Sci U S A 2011; 108:9649-54. [PMID: 21606368 PMCID: PMC3111283 DOI: 10.1073/pnas.1011481108] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Global proteomic analyses of pathogens have thus far been limited to unicellular organisms (e.g., protozoa and bacteria). Proteomic analyses of most eukaryotic pathogens (e.g., helminths) have been restricted to specific organs, specific stages, or secretomes. We report here a large-scale proteomic characterization of almost all the major mammalian stages of Brugia malayi, a causative agent of lymphatic filariasis, resulting in the identification of more than 62% of the products predicted from the Bm draft genome. The analysis also yielded much of the proteome of Wolbachia, the obligate endosymbiont of Bm that also expressed proteins in a stage-specific manner. Of the 11,610 predicted Bm gene products, 7,103 were definitively identified from adult male, adult female, blood-borne and uterine microfilariae, and infective L3 larvae. Among the 4,956 gene products (42.5%) inferred from the genome as "hypothetical," the present study was able to confirm 2,336 (47.1%) as bona fide proteins. Analysis of protein families and domains coupled with stage-specific expression highlight the important pathways that benefit the parasite during its development in the host. Gene set enrichment analysis identified extracellular matrix proteins and those with immunologic effects as enriched in the microfilarial and L3 stages. Parasite sex- and stage-specific protein expression identified those pathways related to parasite differentiation and demonstrates stage-specific expression by the Bm endosymbiont Wolbachia as well.
Collapse
Affiliation(s)
- Sasisekhar Bennuru
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Galperin MY, Higdon R, Kolker E. Interplay of heritage and habitat in the distribution of bacterial signal transduction systems. MOLECULAR BIOSYSTEMS 2010; 6:721-8. [PMID: 20237650 DOI: 10.1039/b908047c] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Comparative analysis of the complete genome sequences from a variety of poorly studied organisms aims at predicting ecological and behavioral properties of these organisms and helping in characterizing their habitats. This task requires finding appropriate descriptors that could be correlated with the core traits of each system and would allow meaningful comparisons. Using the relatively simple bacterial models, first attempts have been made to introduce suitable metrics to describe the complexity of organism's signaling machinery, which included introducing the "bacterial IQ" score. Here, we use an updated census of prokaryotic signal transduction systems to improve this parameter and evaluate its consistency within selected bacterial phyla. We also introduce a more elaborate descriptor, a set of profiles of relative abundance of members of each family of signal transduction proteins encoded in each genome. We show that these family profiles are well conserved within each genus and are often consistent within families of bacteria. Thus, they reflect evolutionary relationships between organisms as well as individual adaptations of each organism to its specific ecological niche.
Collapse
Affiliation(s)
- Michael Y Galperin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 8600 Rockville Pike, Bethesda, Maryland 20894, USA.
| | | | | |
Collapse
|
38
|
Jaroszewski L, Li Z, Krishna SS, Bakolitsa C, Wooley J, Deacon AM, Wilson IA, Godzik A. Exploration of uncharted regions of the protein universe. PLoS Biol 2009; 7:e1000205. [PMID: 19787035 PMCID: PMC2744874 DOI: 10.1371/journal.pbio.1000205] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2009] [Accepted: 08/19/2009] [Indexed: 12/02/2022] Open
Abstract
Determination of first protein structures, from hundreds of families of unknown function, have shown that divergence, rather than novelty, is the dominant force that shapes the evolution of the protein universe. The genome projects have unearthed an enormous diversity of genes of unknown function that are still awaiting biological and biochemical characterization. These genes, as most others, can be grouped into families based on sequence similarity. The PFAM database currently contains over 2,200 such families, referred to as domains of unknown function (DUF). In a coordinated effort, the four large-scale centers of the NIH Protein Structure Initiative have determined the first three-dimensional structures for more than 250 of these DUF families. Analysis of the first 248 reveals that about two thirds of the DUF families likely represent very divergent branches of already known and well-characterized families, which allows hypotheses to be formulated about their biological function. The remainder can be formally categorized as new folds, although about one third of these show significant substructure similarity to previously characterized folds. These results infer that, despite the enormous increase in the number and the diversity of new genes being uncovered, the fold space of the proteins they encode is gradually becoming saturated. The previously unexplored sectors of the protein universe appear to be primarily shaped by extreme diversification of known protein families, which then enables organisms to evolve new functions and adapt to particular niches and habitats. Notwithstanding, these DUF families still constitute the richest source for discovery of the remaining protein folds and topologies. More than 40% of known proteins lack any annotation within public databases and are usually referred to as hypothetical proteins despite most of them being real and many being evolutionarily conserved and thus expected to play important biological roles. Determination of the three-dimensional structures of representatives of more than 240 families of protein domains of unknown function by the Protein Structure Initiative has provided a unique sample of regions of the protein universe that, until this systematic effort, were completely uncharacterized. Analysis of these structures reveals that most of the 240 families can be considered as remote homologs of already known protein families. Such distant evolutionary links can sometimes be predicted by current state-of-the-art sequence comparison tools, but structural analysis has led to the first hypotheses about biological functions for many of these uncharacterized proteins, and serves as a starting point for experimental studies. The rapid pace of discovery of such relationships appears to suggest that the protein universe is made up of a relatively small and stable number of ‘extended neighborhoods’ that bring together distantly related protein families. Thus, the vast uncharacterized part of protein universe, called by some “the dark matter of protein space”, may consist mainly of highly divergent homologs. Continued structural characterization of these previously under-investigated regions of the protein universe should further help unravel the patterns and rules that led to such divergence in the evolution of protein structure and function.
Collapse
Affiliation(s)
- Lukasz Jaroszewski
- Joint Center for Structural Genomics, Bioinformatics Core, Burnham Institute for Medical Research, La Jolla, California, United States of America
| | - Zhanwen Li
- Joint Center for Molecular Modeling, Burnham Institute for Medical Research, La Jolla, California, United States of America
| | - S. Sri Krishna
- Joint Center for Structural Genomics, Bioinformatics Core, Burnham Institute for Medical Research, La Jolla, California, United States of America
| | - Constantina Bakolitsa
- Joint Center for Structural Genomics, Bioinformatics Core, Burnham Institute for Medical Research, La Jolla, California, United States of America
| | - John Wooley
- Joint Center for Structural Genomics, Bioinformatics Core, Center for Research in Biological Systems, University of California San Diego, La Jolla, California, United States of America
| | - Ashley M. Deacon
- Joint Center for Structural Genomics, Structure Determination Core, Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California, United States of America
| | - Ian A. Wilson
- Joint Center for Structural Genomics, The Scripps Research Institute, La Jolla, California, United States of America
| | - Adam Godzik
- Joint Center for Structural Genomics, Bioinformatics Core, Burnham Institute for Medical Research, La Jolla, California, United States of America
- Joint Center for Molecular Modeling, Burnham Institute for Medical Research, La Jolla, California, United States of America
- Joint Center for Structural Genomics, Bioinformatics Core, Center for Research in Biological Systems, University of California San Diego, La Jolla, California, United States of America
- * E-mail:
| |
Collapse
|
39
|
Gaowa S, Zhang S. Identification, expression, function and localization of a DUF985 domain-containing hypothetical gene from amphioxus Branchiostoma belcheri. Comp Biochem Physiol B Biochem Mol Biol 2009; 152:28-37. [DOI: 10.1016/j.cbpb.2008.09.085] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2008] [Revised: 09/07/2008] [Accepted: 09/08/2008] [Indexed: 11/28/2022]
|
40
|
|
41
|
Bahti P, Chen S, Li Y, Shaw N, Zhang X, Zhang M, Cheng C, Song G, Yin J, Zhang H, Che D, Abbas A, Xu H, Wang BC, Liu ZJ. Purification, crystallization and preliminary crystallographic analysis of the non-Pfam protein AF1514 from Archeoglobus fulgidus DSM 4304. Acta Crystallogr Sect F Struct Biol Cryst Commun 2008; 64:91-3. [PMID: 18259057 PMCID: PMC2374175 DOI: 10.1107/s1744309107068649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2007] [Accepted: 12/28/2007] [Indexed: 11/11/2022]
Abstract
A 10.5 kDa non-Pfam hypothetical protein, AF1514, from the hyperthermophilic archaeon Archeoglobus fulgidus has been overexpressed in Escherichia coli, purified and crystallized using the hanging-drop vapour-diffusion method. The crystals diffracted X-rays to 2.09 A resolution and a data set was collected at 100 K using Cu K alpha radiation from a rotating-anode X-ray source. The crystals belong to space group P4(1)2(1)2 or P4(3)2(1)2, with unit-cell parameters a = b = 49.27, c = 106.61 A. The calculated Matthews coefficient was 3.16 A(3) Da(-1), suggesting the presence of one molecule in the asymmetric unit.
Collapse
Affiliation(s)
- Pazilat Bahti
- College of Life Science and Technology, Xinjiang University, Urumqi 830046, People’s Republic of China
- National Laboratory of Biomacromolecules, Institution of Biophysics, Chinese Academy of Sciences, Beijing 100101, People’s Republic of China
| | - Shunmei Chen
- National Laboratory of Biomacromolecules, Institution of Biophysics, Chinese Academy of Sciences, Beijing 100101, People’s Republic of China
| | - Yang Li
- National Laboratory of Biomacromolecules, Institution of Biophysics, Chinese Academy of Sciences, Beijing 100101, People’s Republic of China
| | - Neil Shaw
- National Laboratory of Biomacromolecules, Institution of Biophysics, Chinese Academy of Sciences, Beijing 100101, People’s Republic of China
| | - Xuejun Zhang
- Department of Immunology, Tianjin Medical University, Tianjin 300070, People’s Republic of China
| | - Min Zhang
- Life Sciences College, Anhui University, Hefei 230039, People’s Republic of China
| | - Chongyun Cheng
- National Laboratory of Biomacromolecules, Institution of Biophysics, Chinese Academy of Sciences, Beijing 100101, People’s Republic of China
| | - Gaojie Song
- National Laboratory of Biomacromolecules, Institution of Biophysics, Chinese Academy of Sciences, Beijing 100101, People’s Republic of China
| | - Jie Yin
- National Laboratory of Biomacromolecules, Institution of Biophysics, Chinese Academy of Sciences, Beijing 100101, People’s Republic of China
| | - Hua Zhang
- SECSG, Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30605, USA
| | - Dongsheng Che
- SECSG, Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30605, USA
| | - Abdulla Abbas
- College of Life Science and Technology, Xinjiang University, Urumqi 830046, People’s Republic of China
| | - Hao Xu
- SECSG, Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30605, USA
| | - Bi-Cheng Wang
- SECSG, Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30605, USA
| | - Zhi-Jie Liu
- National Laboratory of Biomacromolecules, Institution of Biophysics, Chinese Academy of Sciences, Beijing 100101, People’s Republic of China
| |
Collapse
|
42
|
Abba' S, Ghignone S, Bonfante P. A dehydration-inducible gene in the truffle Tuber borchii identifies a novel group of dehydrins. BMC Genomics 2006; 7:39. [PMID: 16512918 PMCID: PMC1550403 DOI: 10.1186/1471-2164-7-39] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2005] [Accepted: 03/02/2006] [Indexed: 12/02/2022] Open
Abstract
Background The expressed sequence tag M6G10 was originally isolated from a screening for differentially expressed transcripts during the reproductive stage of the white truffle Tuber borchii. mRNA levels for M6G10 increased dramatically during fruiting body maturation compared to the vegetative mycelial stage. Results Bioinformatics tools, phylogenetic analysis and expression studies were used to support the hypothesis that this sequence, named TbDHN1, is the first dehydrin (DHN)-like coding gene isolated in fungi. Homologs of this gene, all defined as "coding for hypothetical proteins" in public databases, were exclusively found in ascomycetous fungi and in plants. Although complete (or almost complete) fungal genomes and EST collections of some Basidiomycota and Glomeromycota are already available, DHN-like proteins appear to be represented only in Ascomycota. A new and previously uncharacterized conserved signature pattern was identified and proposed to Uniprot database as the main distinguishing feature of this new group of DHNs. Expression studies provide experimental evidence of a transcript induction of TbDHN1 during cellular dehydration. Conclusion Expression pattern and sequence similarities to known plant DHNs indicate that TbDHN1 is the first characterized DHN-like protein in fungi. The high similarity of TbDHN1 with homolog coding sequences implies the existence of a novel fungal/plant group of LEA Class II proteins characterized by a previously undescribed signature pattern.
Collapse
Affiliation(s)
- Simona Abba'
- Dipartimento di Biologia Vegetale dell'Università degli Studi di Torino and IPP-CNR-Sezione di Torino, Viale Mattioli 25, 10125 Torino, Italy
| | - Stefano Ghignone
- Dipartimento di Biologia Vegetale dell'Università degli Studi di Torino and IPP-CNR-Sezione di Torino, Viale Mattioli 25, 10125 Torino, Italy
| | - Paola Bonfante
- Dipartimento di Biologia Vegetale dell'Università degli Studi di Torino and IPP-CNR-Sezione di Torino, Viale Mattioli 25, 10125 Torino, Italy
| |
Collapse
|
43
|
Lubec G, Afjehi-Sadat L, Yang JW, John JPP. Searching for hypothetical proteins: theory and practice based upon original data and literature. Prog Neurobiol 2005; 77:90-127. [PMID: 16271823 DOI: 10.1016/j.pneurobio.2005.10.001] [Citation(s) in RCA: 133] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2005] [Revised: 09/18/2005] [Accepted: 10/02/2005] [Indexed: 12/29/2022]
Abstract
A large part of mammalian proteomes is represented by hypothetical proteins (HP), i.e. proteins predicted from nucleic acid sequences only and protein sequences with unknown function. Databases are far from being complete and errors are expected. The legion of HP is awaiting experiments to show their existence at the protein level and subsequent bioinformatic handling in order to assign proteins a tentative function is mandatory. Two-dimensional gel-electrophoresis with subsequent mass spectrometrical identification of protein spots is an appropriate tool to search for HP in the high-throughput mode. Spots are identified by MS or by MS/MS measurements (MALDI-TOF, MALDI-TOF-TOF) and subsequent software as e.g. Mascot or ProFound. In many cases proteins can thus be unambiguously identified and characterised; if this is not the case, de novo sequencing or Q-TOF analysis is warranted. If the protein is not identified, the sequence is being sent to databases for BLAST searches to determine identities/similarities or homologies to known proteins. If no significant identity to known structures is observed, the protein sequence is examined for the presence of functional domains (databases PROSITE, PRINTS, InterPro, ProDom, Pfam and SMART), subjected to searches for motifs (ELM) and finally protein-protein interaction databases (InterWeaver, STRING) are consulted or predictions from conformations are performed. We here provide information about hypothetical proteins in terms of protein chemical analysis, independent of antibody availability and specificity and bioinformatic handling to contribute to the extension/completion of protein databases and include original work on HP in the brain to illustrate the processes of HP identification and functional assignment.
Collapse
Affiliation(s)
- Gert Lubec
- Department of Pediatrics, Division of Basic Sciences, Medical University of Vienna, Waehringer Guertel 18-20, A-1090, Vienna, Austria.
| | | | | | | |
Collapse
|
44
|
Galperin MY, Koonin EV. 'Conserved hypothetical' proteins: prioritization of targets for experimental study. Nucleic Acids Res 2004; 32:5452-63. [PMID: 15479782 PMCID: PMC524295 DOI: 10.1093/nar/gkh885] [Citation(s) in RCA: 298] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Comparative genomics shows that a substantial fraction of the genes in sequenced genomes encodes 'conserved hypothetical' proteins, i.e. those that are found in organisms from several phylogenetic lineages but have not been functionally characterized. Here, we briefly discuss recent progress in functional characterization of prokaryotic 'conserved hypothetical' proteins and the possible criteria for prioritizing targets for experimental study. Based on these criteria, the chief one being wide phyletic spread, we offer two 'top 10' lists of highly attractive targets. The first list consists of proteins for which biochemical activity could be predicted with reasonable confidence but the biological function was predicted only in general terms, if at all ('known unknowns'). The second list includes proteins for which there is no prediction of biochemical activity, even if, for some, general biological clues exist ('unknown unknowns'). The experimental characterization of these and other 'conserved hypothetical' proteins is expected to reveal new, crucial aspects of microbial biology and could also lead to better functional prediction for medically relevant human homologs.
Collapse
Affiliation(s)
- Michael Y Galperin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | | |
Collapse
|
45
|
Abstract
Bacterial signalling network includes an array of numerous interacting components that monitor environmental and intracellular parameters and effect cellular response to changes in these parameters. The complexity of bacterial signalling systems makes comparative genome analysis a particularly valuable tool for their studies. Comparative studies revealed certain general trends in the organization of diverse signalling systems. These include (i) modular structure of signalling proteins; (ii) common organization of signalling components with the flow of information from N-terminal sensory domains to the C-terminal transmitter or signal output domains (N-to-C flow); (iii) use of common conserved sensory domains by different membrane receptors; (iv) ability of some organisms to respond to one environmental signal by activating several regulatory circuits; (v) abundance of intracellular signalling proteins, typically consisting of a PAS or GAF sensor domains and various output domains; (vi) importance of secondary messengers, cAMP and cyclic diguanylate; and (vii) crosstalk between components of different signalling pathways. Experimental characterization of the novel domains and domain combinations would be needed for achieving a better understanding of the mechanisms of signalling response and the intracellular hierarchy of different signalling pathways.
Collapse
Affiliation(s)
- Michael Y Galperin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894, USA.
| |
Collapse
|
46
|
Kolker E, Makarova KS, Shabalina S, Picone AF, Purvine S, Holzman T, Cherny T, Armbruster D, Munson RS, Kolesov G, Frishman D, Galperin MY. Identification and functional analysis of 'hypothetical' genes expressed in Haemophilus influenzae. Nucleic Acids Res 2004; 32:2353-61. [PMID: 15121896 PMCID: PMC419445 DOI: 10.1093/nar/gkh555] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The progress in genome sequencing has led to a rapid accumulation in GenBank submissions of uncharacterized 'hypothetical' genes. These genes, which have not been experimentally characterized and whose functions cannot be deduced from simple sequence comparisons alone, now comprise a significant fraction of the public databases. Expression analyses of Haemophilus influenzae cells using a combination of transcriptomic and proteomic approaches resulted in confident identification of 54 'hypothetical' genes that were expressed in cells under normal growth conditions. In an attempt to understand the functions of these proteins, we used a variety of publicly available analysis tools. Close homologs in other species were detected for each of the 54 'hypothetical' genes. For 16 of them, exact functional assignments could be found in one or more public databases. Additionally, we were able to suggest general functional characterization for 27 more genes (comprising approximately 80% total). Findings from this analysis include the identification of a pyruvate-formate lyase-like operon, likely to be expressed not only in H.influenzae but also in several other bacteria. Further, we also observed three genes that are likely to participate in the transport and/or metabolism of sialic acid, an important component of the H.influenzae lipo-oligosaccharide. Accurate functional annotation of uncharacterized genes calls for an integrative approach, combining expression studies with extensive computational analysis and curation, followed by eventual experimental verification of the computational predictions.
Collapse
Affiliation(s)
- Eugene Kolker
- BIATECH, 19310 North Creek Parkway, Suite 115, Bothell, WA 98011, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Charlebois RL, Clarke GDP, Beiko RG, St Jean A. Characterization of species-specific genes using a flexible, web-based querying system. FEMS Microbiol Lett 2003; 225:213-20. [PMID: 12951244 DOI: 10.1016/s0378-1097(03)00512-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
We describe a query-based web-accessible system (www.neurogadgets.com/bws.php) for facilitating comparative microbial genomics. A variety of query pages are available, each with numerous options, that allow a biologist to pose relevant questions of genomic data. We illustrate with a characterization of species-specific protein-coding genes (so-called "ORFans"), finding that they are on average smaller, faster evolving, and less G+C-rich, and that they encode proteins more basic in their predicted isoelectric point, compared with non-species-specific genes. Using a dual-threshold approach, we conclude that these are characteristics of true species-specific genes, rather than artifacts of mis-annotation.
Collapse
|
48
|
Kolker E, Purvine S, Galperin MY, Stolyar S, Goodlett DR, Nesvizhskii AI, Keller A, Xie T, Eng JK, Yi E, Hood L, Picone AF, Cherny T, Tjaden BC, Siegel AF, Reilly TJ, Makarova KS, Palsson BO, Smith AL. Initial proteome analysis of model microorganism Haemophilus influenzae strain Rd KW20. J Bacteriol 2003; 185:4593-602. [PMID: 12867470 PMCID: PMC165749 DOI: 10.1128/jb.185.15.4593-4602.2003] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2003] [Accepted: 04/25/2003] [Indexed: 11/20/2022] Open
Abstract
The proteome of Haemophilus influenzae strain Rd KW20 was analyzed by liquid chromatography (LC) coupled with ion trap tandem mass spectrometry (MS/MS). This approach does not require a gel electrophoresis step and provides a rapidly developed snapshot of the proteome. In order to gain insight into the central metabolism of H. influenzae, cells were grown microaerobically and anaerobically in a rich medium and soluble and membrane proteins of strain Rd KW20 were proteolyzed with trypsin and directly examined by LC-MS/MS. Several different experimental and computational approaches were utilized to optimize the proteome coverage and to ensure statistically valid protein identification. Approximately 25% of all predicted proteins (open reading frames) of H. influenzae strain Rd KW20 were identified with high confidence, as their component peptides were unambiguously assigned to tandem mass spectra. Approximately 80% of the predicted ribosomal proteins were identified with high confidence, compared to the 33% of the predicted ribosomal proteins detected by previous two-dimensional gel electrophoresis studies. The results obtained in this study are generally consistent with those obtained from computational genome analysis, two-dimensional gel electrophoresis, and whole-genome transposon mutagenesis studies. At least 15 genes originally annotated as conserved hypothetical were found to encode expressed proteins. Two more proteins, previously annotated as predicted coding regions, were detected with high confidence; these proteins also have close homologs in related bacteria. The direct proteomics approach to studying protein expression in vivo reported here is a powerful method that is applicable to proteome analysis of any (micro)organism.
Collapse
|
49
|
Zhulin IB, Nikolskaya AN, Galperin MY. Common extracellular sensory domains in transmembrane receptors for diverse signal transduction pathways in bacteria and archaea. J Bacteriol 2003; 185:285-94. [PMID: 12486065 PMCID: PMC141854 DOI: 10.1128/jb.185.1.285-294.2003] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Transmembrane receptors in microorganisms, such as sensory histidine kinases and methyl-accepting chemotaxis proteins, are molecular devices for monitoring environmental changes. We report here that sensory domain sharing is widespread among different classes of transmembrane receptors. We have identified two novel conserved extracellular sensory domains, named CHASE2 and CHASE3, that are found in at least four classes of transmembrane receptors: histidine kinases, adenylate cyclases, predicted diguanylate cyclases, and either serine/threonine protein kinases (CHASE2) or methyl-accepting chemotaxis proteins (CHASE3). Three other extracellular sensory domains were shared by at least two different classes of transmembrane receptors: histidine kinases and either diguanylate cyclases, adenylate cyclases, or phosphodiesterases. These observations suggest that microorganisms use similar conserved domains to sense similar environmental signals and transmit this information via different signal transduction pathways to different regulatory circuits: transcriptional regulation (histidine kinases), chemotaxis (methyl-accepting proteins), catabolite repression (adenylate cyclases), and modulation of enzyme activity (diguanylate cyclases and phosphodiesterases). The variety of signaling pathways using the CHASE-type domains indicates that these domains sense some critically important extracellular signals.
Collapse
Affiliation(s)
- Igor B Zhulin
- School of Biology, Georgia Institute of Technology, Atlanta, GA 30332-0230, USA.
| | | | | |
Collapse
|
50
|
Rodríguez-Navarro S, Llorente B, Rodríguez-Manzaneque MT, Ramne A, Uber G, Marchesan D, Dujon B, Herrero E, Sunnerhagen P, Pérez-Ortín JE. Functional analysis of yeast gene families involved in metabolism of vitamins B1and B6. Yeast 2002; 19:1261-76. [PMID: 12271461 DOI: 10.1002/yea.916] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In order to clarify their physiological functions, we have undertaken a characterization of the three-membered gene families SNZ1-3 and SNO1-3. In media lacking vitamin B(6), SNZ1 and SNO1 were both required for growth in certain conditions, but neither SNZ2, SNZ3, SNO2 nor SNO3 were required. Copies 2 and 3 of the gene products have, in spite of their extremely close sequence similarity, slightly different functions in the cell. We have also found that copies 2 and 3 are activated by the lack of thiamine and that the Snz proteins physically interact with the thiamine biosynthesis Thi5 protein family. Whereas copy 1 is required for conditions in which B(6) is essential for growth, copies 2 and 3 seem more related with B(1) biosynthesis during the exponential phase.
Collapse
Affiliation(s)
- Susana Rodríguez-Navarro
- Departamento de Bioquímica y Biología Molecular, Universitat de València, C/Dr Moliner 50, E-46100, Burjassot, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|