1
|
Traverssi MG, Manzano VE, Varela O, Colomer JP. Synthesis of N-glycosyl amides: conformational analysis and evaluation as inhibitors of β-galactosidase from E. coli. RSC Adv 2024; 14:2659-2672. [PMID: 38229710 PMCID: PMC10790283 DOI: 10.1039/d3ra07763b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 01/08/2024] [Indexed: 01/18/2024] Open
Abstract
The synthesis of N-glycosyl amides typically involves the use of glycosyl amines as direct precursors, resulting in low yields due to hydrolysis and the loss of stereocontrol through anomerization processes. In this study, a sequential synthesis of N-glycosyl amides is proposed, employing glycosyl amines as intermediates obtained from glycosyl azides. Derivatives with gluco, galacto, or xylo configurations were synthesized. Hexose derivatives were obtained under stereocontrol to give only the β anomer, while the xylo derivatives provided a mixture of α and β anomers. Conformational analysis revealed that all β anomers adopted the 4C1 conformation, while α anomers were found in the 1C4 chair as the major conformer. After de-O-acetylation, the derivatives containing a galactose unit were evaluated as inhibitors of β-galactosidase from E. coli and were found to be moderate inhibitors.
Collapse
Affiliation(s)
- Miqueas G Traverssi
- Departamento de Química Orgánica, Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Ciudad Universitaria Edificio de Ciencias II Córdoba Argentina
- Instituto de Investigaciones en Fisico-Química de Córdoba (INFIQC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) UNC Argentina
| | - Verónica E Manzano
- Departamento de Química Orgánica, Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Ciudad Universitaria Pab. 2 C1428EHA Buenos Aires Argentina
- Centro de Investigación en Hidratos de Carbono (CIHIDECAR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) UBA Argentina
| | - Oscar Varela
- Departamento de Química Orgánica, Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Ciudad Universitaria Pab. 2 C1428EHA Buenos Aires Argentina
- Centro de Investigación en Hidratos de Carbono (CIHIDECAR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) UBA Argentina
| | - Juan P Colomer
- Departamento de Química Orgánica, Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Ciudad Universitaria Edificio de Ciencias II Córdoba Argentina
- Instituto de Investigaciones en Fisico-Química de Córdoba (INFIQC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) UNC Argentina
| |
Collapse
|
2
|
Ding Y, Cui W, Vara Prasad CVNS, Wang B. Design and Synthesis of Lactose, Galactose and Cholic Acid Related Dual Conjugated Chitosan Derivatives as Potential Anti Liver Cancer Drug Carriers. Polymers (Basel) 2021; 13:polym13172939. [PMID: 34502978 PMCID: PMC8433812 DOI: 10.3390/polym13172939] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/25/2021] [Accepted: 08/25/2021] [Indexed: 12/30/2022] Open
Abstract
Cholic acid and galactose or lactose dual conjugated chitosan derivatives were designed and synthesized as potential anti liver cancer drug carriers, their structures were characterized through proton NMR spectra, elemental analysis, size distribution, zeta potential, and scanning electron microscope image studies. The ability of the dual conjugates to enhance the aqueous solubility of the cancer drug sorafenib was evaluated. The entrapment efficiency (EE%) and drug content (DC%) of sorafenib in the inclusion complexes were measured. The chitosan dual conjugate with cholic acid and galactose was found to be best in enhancing the aqueous solubility of sorafenib. The solubility of sorafenib in water has increased from 1.7 µg/mL to 1900 µg/mL which is equal to 1117-fold increase in its solubility due to the inclusion complex with chitosan conjugate.
Collapse
Affiliation(s)
- Yili Ding
- Life Science Department, Foshan University, Foshan 528000, China; (W.C.); (B.W.)
- Correspondence: ; Tel.: +86-140-8549-6168
| | - Wutong Cui
- Life Science Department, Foshan University, Foshan 528000, China; (W.C.); (B.W.)
| | | | - Bingyun Wang
- Life Science Department, Foshan University, Foshan 528000, China; (W.C.); (B.W.)
| |
Collapse
|
3
|
Hoyos P, Perona A, Juanes O, Rumbero Á, Hernáiz MJ. Synthesis of Glycodendrimers with Antiviral and Antibacterial Activity. Chemistry 2021; 27:7593-7624. [PMID: 33533096 DOI: 10.1002/chem.202005065] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Indexed: 12/27/2022]
Abstract
Glycodendrimers are an important class of synthetic macromolecules that can be used to mimic many structural and functional features of cell-surface glycoconjugates. Their carbohydrate moieties perform key important functions in bacterial and viral infections, often regulated by carbohydrate-protein interactions. Several studies have shown that the molecular structure, valency and spatial organisation of carbohydrate epitopes in glycoconjugates are key factors in the specificity and avidity of carbohydrate-protein interactions. Choosing the right glycodendrimers almost always helps to interfere with such interactions and blocks bacterial or viral adhesion and entry into host cells as an effective strategy to inhibit bacterial or viral infections. Herein, the state of the art in the design and synthesis of glycodendrimers employed for the development of anti-adhesion therapy against bacterial and viral infections is described.
Collapse
Affiliation(s)
- Pilar Hoyos
- Chemistry in Pharmaceutical Sciences Department, Complutense University of Madrid, Plaza Ramón y Cajal s/n, 28040, Madrid, Spain
| | - Almudena Perona
- Chemistry in Pharmaceutical Sciences Department, Complutense University of Madrid, Plaza Ramón y Cajal s/n, 28040, Madrid, Spain
| | - Olga Juanes
- Organic Chemistry Department, Autónoma University of Madrid, Francisco Tomás y Valiente 7, 28049, Madrid, Spain
| | - Ángel Rumbero
- Organic Chemistry Department, Autónoma University of Madrid, Francisco Tomás y Valiente 7, 28049, Madrid, Spain
| | - María J Hernáiz
- Chemistry in Pharmaceutical Sciences Department, Complutense University of Madrid, Plaza Ramón y Cajal s/n, 28040, Madrid, Spain
| |
Collapse
|
4
|
Affiliation(s)
- Yoshiko Miura
- Department of Chemical Engineering, Graduate
School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Yu Hoshino
- Department of Chemical Engineering, Graduate
School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Hirokazu Seto
- Department of Chemical Engineering, Graduate
School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
5
|
Wu F, Jin J, Wang L, Sun P, Yuan H, Yang Z, Chen G, Fan QH, Liu D. Functionalization of DNA-dendron supramolecular fibers and application in regulation of Escherichia coli association. ACS APPLIED MATERIALS & INTERFACES 2015; 7:7351-7356. [PMID: 25782730 DOI: 10.1021/acsami.5b00702] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Specific carbohydrate recognition in biology is a dynamic process. Thus, supramolecular multivalent scaffolds with dynamic features have been applied to mimic this process. Herein, we prepared DNA-dendron supramolecular fibers and synthesized carbohydrate-oligonucleotide conjugates (C18-mannose). Via DNA hybridization, the C18-mannose could be guided onto the fiber platform and form multiple mannose-functionalized fibers, which can be utilized to agglutinate E. coli because of high affinity among multivalent mannose ligands and receptors on E. coli. In addition, via chain exchange reaction of DNAs, the E. coli could be dissociated by replacing multivalent mannose ligands with competitive unmodified DNA sequences. The association and dissociation processes of E. coli are confirmed by fluorescent microscope and transmission electron microscope (TEM). These results not only demonstrate the ability of DNA-dendron fibers in reversibly associating E. coli but also illustrate their potential to be an easily modified multivalent supramolecular platform.
Collapse
Affiliation(s)
- Fen Wu
- †Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, China
| | | | - Liying Wang
- †Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, China
| | - Pengfei Sun
- §The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Huanxiang Yuan
- ∥Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, China
| | | | - Guosong Chen
- §The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Qing-Hua Fan
- †Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, China
| | | |
Collapse
|
6
|
Teruya K, Wakao M, Sato M, Hamanaka T, Nishizawa K, Funayama Y, Sakasegawa Y, Suda Y, Doh-ura K. Heparinase I-specific disaccharide unit of heparin is a key structure but insufficient for exerting anti-prion activity in prion-infected cells. Biochem Biophys Res Commun 2015; 460:989-95. [PMID: 25839661 DOI: 10.1016/j.bbrc.2015.03.139] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 03/24/2015] [Indexed: 10/23/2022]
Abstract
Glycosaminoglycans reportedly play important roles in prion formation, but because of their structural complexity, the chemical structures affecting prion formation have not been fully evaluated. Here, we compared two types of low molecular weight heparins and found that heparinase I-sensitive structures influenced anti-prion activity in prion-infected cells. Surface plasmon resonance analyses showed significant binding of a representative heparinase I substrate disaccharide unit, GlcNS6S-IdoA2S, to recombinant prion protein (PrP) fragments, such as full-length PrP23-231 and N-terminal domain PrP23-89, but not to PrP89-230. This binding was competitively inhibited by heparin or pentosan polysulfate, but not by Cu(2+). These PrP binding profiles of the disaccharide unit are consistent with those previously reported for heparin. However, synthetic compounds comprising disaccharide unit alone or its multimers exhibited no anti-prion activity in prion-infected cells. Consequently, the findings suggest that the heparin disaccharide unit that binds to the N-terminal region of PrP is a key structure, but it is insufficient for exerting anti-prion activity.
Collapse
Affiliation(s)
- Kenta Teruya
- Department of Neurochemistry, Tohoku University Graduate School of Medicine, 2-1 Seiryocho, Aoba-ku, Sendai 980-8575, Japan
| | - Masahiro Wakao
- Department of Nanostructure and Advanced Materials, Graduate School of Science and Engineering, Kagoshima University, 1-21-40 Kohrimoto, Kagoshima 890-0065, Japan
| | - Masaki Sato
- Department of Nanostructure and Advanced Materials, Graduate School of Science and Engineering, Kagoshima University, 1-21-40 Kohrimoto, Kagoshima 890-0065, Japan
| | - Taichi Hamanaka
- Department of Neurochemistry, Tohoku University Graduate School of Medicine, 2-1 Seiryocho, Aoba-ku, Sendai 980-8575, Japan
| | - Keiko Nishizawa
- Department of Neurochemistry, Tohoku University Graduate School of Medicine, 2-1 Seiryocho, Aoba-ku, Sendai 980-8575, Japan
| | - Yukino Funayama
- Department of Neurochemistry, Tohoku University Graduate School of Medicine, 2-1 Seiryocho, Aoba-ku, Sendai 980-8575, Japan
| | - Yuji Sakasegawa
- Department of Neurochemistry, Tohoku University Graduate School of Medicine, 2-1 Seiryocho, Aoba-ku, Sendai 980-8575, Japan
| | - Yasuo Suda
- Department of Nanostructure and Advanced Materials, Graduate School of Science and Engineering, Kagoshima University, 1-21-40 Kohrimoto, Kagoshima 890-0065, Japan
| | - Katsumi Doh-ura
- Department of Neurochemistry, Tohoku University Graduate School of Medicine, 2-1 Seiryocho, Aoba-ku, Sendai 980-8575, Japan.
| |
Collapse
|
7
|
Labieniec-Watala M, Watala C. PAMAM Dendrimers: Destined for Success or Doomed to Fail? Plain and Modified PAMAM Dendrimers in the Context of Biomedical Applications. J Pharm Sci 2015; 104:2-14. [DOI: 10.1002/jps.24222] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2014] [Revised: 10/02/2014] [Accepted: 10/03/2014] [Indexed: 01/17/2023]
|
8
|
Zelli R, Longevial JF, Dumy P, Marra A. Synthesis and biological properties of multivalent iminosugars. NEW J CHEM 2015. [DOI: 10.1039/c5nj00462d] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Clustering 1-deoxynojirimycin (DNJ), first isolated from white mulberry, and other iminosugars around various scaffolds gave strong glycosidase inhibitors.
Collapse
Affiliation(s)
- Renaud Zelli
- Institut des Biomolécules Max Mousseron (IBMM)
- UMR 5247
- Université de Montpellier
- Ecole Nationale Supérieure de Chimie de Montpellier
- 34296 Montpellier cedex 5
| | - Jean-François Longevial
- Institut des Biomolécules Max Mousseron (IBMM)
- UMR 5247
- Université de Montpellier
- Ecole Nationale Supérieure de Chimie de Montpellier
- 34296 Montpellier cedex 5
| | - Pascal Dumy
- Institut des Biomolécules Max Mousseron (IBMM)
- UMR 5247
- Université de Montpellier
- Ecole Nationale Supérieure de Chimie de Montpellier
- 34296 Montpellier cedex 5
| | - Alberto Marra
- Institut des Biomolécules Max Mousseron (IBMM)
- UMR 5247
- Université de Montpellier
- Ecole Nationale Supérieure de Chimie de Montpellier
- 34296 Montpellier cedex 5
| |
Collapse
|
9
|
van Dongen M, Dougherty CA, Banaszak Holl MM. Multivalent polymers for drug delivery and imaging: the challenges of conjugation. Biomacromolecules 2014; 15:3215-34. [PMID: 25120091 PMCID: PMC4157765 DOI: 10.1021/bm500921q] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 08/06/2014] [Indexed: 12/11/2022]
Abstract
Multivalent polymers offer a powerful opportunity to develop theranostic materials on the size scale of proteins that can provide targeting, imaging, and therapeutic functionality. Achieving this goal requires the presence of multiple targeting molecules, dyes, and/or drugs on the polymer scaffold. This critical review examines the synthetic, analytical, and functional challenges associated with the heterogeneity introduced by conjugation reactions as well as polymer scaffold design. First, approaches to making multivalent polymer conjugations are discussed followed by an analysis of materials that have shown particular promise biologically. Challenges in characterizing the mixed ligand distributions and the impact of these distributions on biological applications are then discussed. Where possible, molecular-level interpretations are provided for the structures that give rise to the functional ligand and molecular weight distributions present in the polymer scaffolds. Lastly, recent strategies employed for overcoming or minimizing the presence of ligand distributions are discussed. This review focuses on multivalent polymer scaffolds where average stoichiometry and/or the distribution of products have been characterized by at least one experimental technique. Key illustrative examples are provided for scaffolds that have been carried forward to in vitro and in vivo testing with significant biological results.
Collapse
Affiliation(s)
- Mallory
A. van Dongen
- Chemistry Department, University of Michigan, Ann Arbor, Michigan 48103, United States
| | - Casey A. Dougherty
- Chemistry Department, University of Michigan, Ann Arbor, Michigan 48103, United States
| | - Mark M. Banaszak Holl
- Chemistry Department, University of Michigan, Ann Arbor, Michigan 48103, United States
| |
Collapse
|
10
|
Nazemi A, Gillies ER. Dendrimer Bioconjugates: Synthesis and Applications. CHEMISTRY OF BIOCONJUGATES 2014:146-183. [DOI: 10.1002/9781118775882.ch5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
|
11
|
Ramos-Soriano J, Niss U, Angulo J, Angulo M, Moreno-Vargas AJ, Carmona AT, Ohlson S, Robina I. Synthesis, Biological Evaluation, WAC and NMR Studies ofS-Galactosides and Non-Carbohydrate Ligands of Cholera Toxin Based on Polyhydroxyalkylfuroate Moieties. Chemistry 2013; 19:17989-8003. [DOI: 10.1002/chem.201302786] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Revised: 08/22/2013] [Indexed: 01/25/2023]
|
12
|
Gingras M, Chabre YM, Roy M, Roy R. How do multivalent glycodendrimers benefit from sulfur chemistry? Chem Soc Rev 2013; 42:4823-41. [DOI: 10.1039/c3cs60090d] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
13
|
Mishra V, Gupta U, Jain NK. Surface-Engineered Dendrimers: a Solution for Toxicity Issues. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2012; 20:141-66. [DOI: 10.1163/156856208x386246] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Vijay Mishra
- a Pharmaceutics Research Laboratory, Department of Pharmaceutical Sciences, Dr. H. S. Gour University, Sagar (M.P.) 470003, India
| | - Umesh Gupta
- b Pharmaceutics Research Laboratory, Department of Pharmaceutical Sciences, Dr. H. S. Gour University, Sagar (M.P.) 470003, India
| | - N. K. Jain
- c Pharmaceutics Research Laboratory, Department of Pharmaceutical Sciences, Dr. H. S. Gour University, Sagar (M.P.) 470003, India
| |
Collapse
|
14
|
Yang H, Kao WJ. Dendrimers for pharmaceutical and biomedical applications. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2012; 17:3-19. [PMID: 16411595 DOI: 10.1163/156856206774879171] [Citation(s) in RCA: 136] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Dendrimers are a unique class of synthetic macromolecules having a highly branched, three-dimensional, nanoscale architecture with very low polydispersity and high functionality. Structural advantages allow dendrimers to play an important role in the fields of nanotechnology, pharmaceutical and medicinal chemistry. This review discusses several aspects of dendrimers, including preparation, dendrimer-drug coupling chemistry, structural models of dendrimer-based drug delivery systems, and physicochemical and toxicological properties.
Collapse
Affiliation(s)
- Hu Yang
- School of Pharmacy, University of Wisconsin-Madison, WI 53705, USA
| | | |
Collapse
|
15
|
Galante E, Geraci C, Sciuto S, Campo VL, Carvalho I, Sesti-Costa R, Guedes PM, Silva JS, Hill L, Nepogodiev SA, Field RA. Glycoclusters presenting lactose on calix[4]arene cores display trypanocidal activity. Tetrahedron 2011. [DOI: 10.1016/j.tet.2011.06.065] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
16
|
Barata TS, Teo I, Brocchini S, Zloh M, Shaunak S. Partially glycosylated dendrimers block MD-2 and prevent TLR4-MD-2-LPS complex mediated cytokine responses. PLoS Comput Biol 2011; 7:e1002095. [PMID: 21738462 PMCID: PMC3127813 DOI: 10.1371/journal.pcbi.1002095] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Accepted: 05/04/2011] [Indexed: 01/04/2023] Open
Abstract
The crystal structure of the TLR4-MD-2-LPS complex responsible for triggering powerful pro-inflammatory cytokine responses has recently become available. Central to cell surface complex formation is binding of lipopolysaccharide (LPS) to soluble MD-2. We have previously shown, in biologically based experiments, that a generation 3.5 PAMAM dendrimer with 64 peripheral carboxylic acid groups acts as an antagonist of pro-inflammatory cytokine production after surface modification with 8 glucosamine molecules. We have also shown using molecular modelling approaches that this partially glycosylated dendrimer has the flexibility, cluster density, surface electrostatic charge, and hydrophilicity to make it a therapeutically useful antagonist of complex formation. These studies enabled the computational study of the interactions of the unmodified dendrimer, glucosamine, and of the partially glycosylated dendrimer with TLR4 and MD-2 using molecular docking and molecular dynamics techniques. They demonstrate that dendrimer glucosamine forms co-operative electrostatic interactions with residues lining the entrance to MD-2's hydrophobic pocket. Crucially, dendrimer glucosamine interferes with the electrostatic binding of: (i) the 4'phosphate on the di-glucosamine of LPS to Ser118 on MD-2; (ii) LPS to Lys91 on MD-2; (iii) the subsequent binding of TLR4 to Tyr102 on MD-2. This is followed by additional co-operative interactions between several of the dendrimer glucosamine's carboxylic acid branches and MD-2. Collectively, these interactions block the entry of the lipid chains of LPS into MD-2's hydrophobic pocket, and also prevent TLR4-MD-2-LPS complex formation. Our studies have therefore defined the first nonlipid-based synthetic MD-2 antagonist using both animal model-based studies of pro-inflammatory cytokine responses and molecular modelling studies of a whole dendrimer with its target protein. Using this approach, it should now be possible to computationally design additional macromolecular dendrimer based antagonists for other Toll Like Receptors. They could be useful for treating a spectrum of infectious, inflammatory and malignant diseases.
Collapse
Affiliation(s)
- Teresa S. Barata
- Center for Structural Chemistry, School of Pharmacy, University of London, London, United Kingdom
- Departments of Medicine, Infection & Immunity, Imperial College London, London, United Kingdom
| | - Ian Teo
- Departments of Medicine, Infection & Immunity, Imperial College London, London, United Kingdom
| | - Steve Brocchini
- Center for Structural Chemistry, School of Pharmacy, University of London, London, United Kingdom
| | - Mire Zloh
- Center for Structural Chemistry, School of Pharmacy, University of London, London, United Kingdom
| | - Sunil Shaunak
- Departments of Medicine, Infection & Immunity, Imperial College London, London, United Kingdom
- * E-mail:
| |
Collapse
|
17
|
Gaertner HF, Cerini F, Kamath A, Rochat AF, Siegrist CA, Menin L, Hartley O. Efficient Orthogonal Bioconjugation of Dendrimers for Synthesis of Bioactive Nanoparticles. Bioconjug Chem 2011; 22:1103-14. [DOI: 10.1021/bc1005653] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Hubert F. Gaertner
- Department of Structural Biology and Bioinformatics, Faculty of Medicine
| | - Fabrice Cerini
- Department of Structural Biology and Bioinformatics, Faculty of Medicine
| | - Arun Kamath
- Departments of Pathology-Immunology and Pediatrics
| | | | | | - Laure Menin
- Service de Spectrométrie de Masse de l'ISIC (SSMI), EPFL, Bât. Chimie (BCH 1524), CH-1015 Lausanne, Switzerland
| | - Oliver Hartley
- Department of Structural Biology and Bioinformatics, Faculty of Medicine
| |
Collapse
|
18
|
Xiang L, Shen LJ, Long F, Yang K, Fan JB, Li YJ, Xiang J, Zhu MQ. A Convenient Method for the Synthesis of the Amphiphilic Triblock Copolymer Poly(L
-lactic acid)-block-
Poly(L
-lysine)-block-
Poly(ethylene glycol) Monomethyl Ether. MACROMOL CHEM PHYS 2011. [DOI: 10.1002/macp.201000717] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
19
|
Fast and Convenient Synthesis of Amine-Terminated Polylactide as a Macroinitiator forω-Benzyloxycarbonyl-L-Lysine-N-Carboxyanhydrides. INT J POLYM SCI 2011. [DOI: 10.1155/2011/381076] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Amine-terminated poly (L-lactide) (NH2-PLLA) with various chain lengths were successfully synthesized by sequential tert-butyl-N-(3-hydroxypropyl) carbamate initiated bulk ring-opening polymerization (ROP) of L-lactide (L-LA) in the presence of Stannous(II) 2-ethylhexanoate (Sn(Oct)2) and deprotection of theN-tert-butoxycarbonyl (Boc) group at the end of the polymer chain. The polymers obtained were characterized by FT-IR,1H NMR, and GPC method. NH2-PLLA thus prepared was used to initiate the polymerization of ω-benzyloxycarbonyl-L-lysine-N-carboxyanhydride (Lys (Z)-NCA), and the result confirmed the high nucleophilicity of the terminal amine group. This method was not only suitable for the preparation of low molecular weight NH2-PLLA, but also quite efficient in the synthesis of high molecular weight samples.
Collapse
|
20
|
Stöhr T, Blaudszun AR, Steinfeld U, Wenz G. Synthesis of glycosylated peptides by NCA polymerization for recognition of human T-cells. Polym Chem 2011. [DOI: 10.1039/c1py00187f] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
21
|
Sánchez-Navarro M, Muñoz A, Illescas BM, Rojo J, Martín N. [60]Fullerene as multivalent scaffold: efficient molecular recognition of globular glycofullerenes by concanavalin A. Chemistry 2010; 17:766-9. [PMID: 21226088 DOI: 10.1002/chem.201002816] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Indexed: 11/07/2022]
Affiliation(s)
- Macarena Sánchez-Navarro
- Departamento de Química Orgánica, Facultad de Química, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | | | | | | | | |
Collapse
|
22
|
Takasu A, Kojima H. Synthesis and ring-opening polymerizations of novel S-glycooxazolines. ACTA ACUST UNITED AC 2010. [DOI: 10.1002/pola.24411] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
23
|
Synthesis and characterisation of novel glycoclusters based on cell penetrating heptakis(6-aminoethylamino-6-deoxy)-β-cyclodextrin. J INCL PHENOM MACRO 2010. [DOI: 10.1007/s10847-010-9840-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
24
|
Affiliation(s)
- George R. Newkome
- Departments of Polymer Science and Chemistry, University of Akron, Akron, Ohio 44325-4717, and Department of Chemistry, Hiram College, Hiram, Ohio 44234
| | - Carol Shreiner
- Departments of Polymer Science and Chemistry, University of Akron, Akron, Ohio 44325-4717, and Department of Chemistry, Hiram College, Hiram, Ohio 44234
| |
Collapse
|
25
|
Kikkeri R, Grünstein D, Seeberger PH. Lectin Biosensing Using Digital Analysis of Ru(II)-Glycodendrimers. J Am Chem Soc 2010; 132:10230-2. [DOI: 10.1021/ja103688s] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Raghavendra Kikkeri
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany, and Institute of Chemistry and Biochemistry, Free University Berlin, Arnimallee 22, 14195 Berlin, Germany
| | - Dan Grünstein
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany, and Institute of Chemistry and Biochemistry, Free University Berlin, Arnimallee 22, 14195 Berlin, Germany
| | - Peter H. Seeberger
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany, and Institute of Chemistry and Biochemistry, Free University Berlin, Arnimallee 22, 14195 Berlin, Germany
| |
Collapse
|
26
|
Dubey V, Nahar M, Mishra D, Mishra P, Jain NK. Surface structured liposomes for site specific delivery of an antiviral agent-indinavir. J Drug Target 2010; 19:258-69. [PMID: 20604740 DOI: 10.3109/1061186x.2010.499460] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
27
|
Affiliation(s)
- Zhenhui Qi
- a Institut für Chemie und Biochemie, Freie Universität Berlin , Takustraße 3, 14195 , Berlin , Germany
| | - Christoph A. Schalley
- a Institut für Chemie und Biochemie, Freie Universität Berlin , Takustraße 3, 14195 , Berlin , Germany
| |
Collapse
|
28
|
Fulton DA, Pease AR, Stoddart JF. Cyclodextrin-based carbohydrate clusters by amide bond formation. Isr J Chem 2010. [DOI: 10.1560/26tf-06hg-eqjj-w85j] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
29
|
Kikkeri R, Liu X, Adibekian A, Tsai YH, Seeberger PH. Facile synthesis of size dependent Ru(II)-carbohydrate dendrimers via click chemistry. Chem Commun (Camb) 2010; 46:2197-9. [PMID: 20234904 DOI: 10.1039/b925113h] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A facile and flexible approach for the preparation of Ru(II) complexes containing different carbohydrates based on the Cu(II)-catalyzed Huisgen-[3+2] cycloaddition is described.
Collapse
Affiliation(s)
- Raghavendra Kikkeri
- Max-Planck-Institute of Colloids and Interfaces, Department of Biomolecular Systems, Am Mühlenberg 1, 14476 Potsdam, Germany
| | | | | | | | | |
Collapse
|
30
|
Agashe HB, Dutta T, Garg M, Jain NK. Investigations on the toxicological profile of functionalized fifth-generation poly(propylene imine) dendrimer. J Pharm Pharmacol 2010; 58:1491-8. [PMID: 17132212 DOI: 10.1211/jpp.58.11.0010] [Citation(s) in RCA: 129] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Abstract
Dendrimers have generated tremendous interest in the field of drug delivery. Despite indications of their utility as drug carriers, the inherent cytotoxicity associated with polycationic dendrimers acts as a limiting factor to their clinical applications. Many functionalization strategies have been adopted to mask peripheral amines in order to overcome this limitation. The object of the present investigation was to evaluate the effect of functionalization on the toxicological profile of fifth-generation poly(propylene imine) dendrimer (PPI-5.0G). Four forms of functionalized dendrimers, including protected glycine and phenylalanine, and mannose and lactose functionalized poly(propylene imine) (PPI) dendrimer, were synthesized as prospective drug carriers. These dendrimeric systems were evaluated for haemolytic toxicity, cytotoxicity, immunogenicity and haematological parameters. PPI-5.0G demonstrated a positive charge-based time- and concentration-dependent toxicity profile. Functionalization greatly improved the toxicity profile of the parent dendrimer. Hence it is proposed that these functionalized forms of PPI dendrimer have great potential as bio-compatible drug vehicles.
Collapse
Affiliation(s)
- Hrushikesh B Agashe
- Pharmaceutics Research Laboratory, Department of Pharmaceutical Sciences, Dr Hari Singh Gour University, Sagar, India
| | | | | | | |
Collapse
|
31
|
Abstract
From the authors' opinion, this chapter constitutes a modest extension of the seminal and inspiring contribution of Stowell and Lee on neoglycoconjugates published in this series [C. P. Stowell and Y. C. Lee, Adv. Carbohydr. Chem. Biochem., 37 (1980) 225-281]. The outstanding progresses achieved since then in the field of the "glycoside cluster effect" has witnessed considerable creativity in the design and synthetic strategies toward a vast array of novel carbohydrate structures and reflects the dynamic activity in the field even since the recent chapter by the Nicotra group in this series [F. Nicotra, L. Cipolla, F. Peri, B. La Ferla, and C. Radaelli, Adv. Carbohydr. Chem. Biochem., 61 (2007) 353-398]. Beyond the more classical neoglycoproteins and glycopolymers (not covered in this work) a wide range of unprecedented and often artistically beautiful multivalent and monodisperse nanostructures, termed glycodendrimers for the first time in 1993, has been created. This chapter briefly surveys the concept of multivalency involved in carbohydrate-protein interactions. The topic is also discussed in regard to recent steps undertaken in glycobiology toward identification of lead candidates using microarrays and modern analytical tools. A systematic description of glycocluster and glycodendrimer synthesis follows, starting from the simplest architectures and ending in the most complex ones. Presentation of multivalent glycostructures of intermediate size and comprising, calix[n]arene, porphyrin, cyclodextrin, peptide, and carbohydrate scaffolds, has also been intercalated to better appreciate the growing synthetic complexity involved. A subsection describing novel all-carbon-based glycoconjugates such as fullerenes and carbon nanotubes is inserted, followed by a promising strategy involving dendrons self-assembling around metal chelates. The chapter then ends with those glycodendrimers that have been prepared using commercially available dendrimers possessing varied functionalities, or systematically synthesized using either divergent or convergent strategies.
Collapse
|
32
|
Leasure JG, Brinkman CE, Tillman ES, Monk IW, Cohen NA. Effect of temperature, solvent, Lewis acid and additives on the polymerization of tert
-butyl vinyl ether using Lewis acid-induced N
-methyleneamines as cationic initiators. POLYM INT 2009. [DOI: 10.1002/pi.2742] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
33
|
Rosen BM, Wilson CJ, Wilson DA, Peterca M, Imam MR, Percec V. Dendron-Mediated Self-Assembly, Disassembly, and Self-Organization of Complex Systems. Chem Rev 2009; 109:6275-540. [DOI: 10.1021/cr900157q] [Citation(s) in RCA: 1066] [Impact Index Per Article: 66.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Brad M. Rosen
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323
| | - Christopher J. Wilson
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323
| | - Daniela A. Wilson
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323
| | - Mihai Peterca
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323
| | - Mohammad R. Imam
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323
| | - Virgil Percec
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323
| |
Collapse
|
34
|
Medina SH, El-Sayed MEH. Dendrimers as carriers for delivery of chemotherapeutic agents. Chem Rev 2009; 109:3141-57. [PMID: 19534493 DOI: 10.1021/cr900174j] [Citation(s) in RCA: 565] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Scott H Medina
- University of Michigan, Department of Biomedical Engineering, 1101 Beal Avenue, Lurie Biomedical Engineering Building, Room 2150, Ann Arbor, Michigan 48109-2110, USA
| | | |
Collapse
|
35
|
Vassilev K, Turmanova S, Dimitrova M, Boneva S. Poly(propylene imine) dendrimer complexes as catalysts for oxidation of alkenes. Eur Polym J 2009. [DOI: 10.1016/j.eurpolymj.2009.05.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
36
|
Matsumoto E, Yamauchi T, Fukuda T, Miura Y. Sugar microarray via click chemistry: molecular recognition with lectins and amyloid β (1-42). SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2009; 10:034605. [PMID: 27877300 PMCID: PMC5090427 DOI: 10.1088/1468-6996/10/3/034605] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2009] [Revised: 07/14/2009] [Accepted: 06/10/2009] [Indexed: 05/31/2023]
Abstract
Sugar microarrays were fabricated on various substrates via click chemistry. Acetylene-terminated substrates were prepared by forming self-assembled monolayers (SAMs) on a gold substrate with alkyl-disulfide and on silicon, quartz and glass substrates with a silane-coupling reagent. The gold substrates were subjected to surface plasmon resonance measurements, and the quartz and glass substrates were subjected to spectroscopy measurements and optical microscopy observation. The saccharide-immobilized substrate on the gold substrate showed specific interaction with the corresponding lectin, and the saccharides showed inert surface properties to other proteins with a high signal-to-noise ratio. We also focused on the saccharide-protein interaction on protein amyloidosis of Alzheimer amyloid β. Amyloid β peptide showed conformation transition on the saccharide-immobilization substrate into a β-sheet, and fibril formation and amyloid aggregates were found on the specific saccharides.
Collapse
Affiliation(s)
- Erino Matsumoto
- School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan
| | - Takahiro Yamauchi
- Department of Molecular Design and Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Tomohiro Fukuda
- School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan
| | - Yoshiko Miura
- School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan
- Department of Molecular Design and Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| |
Collapse
|
37
|
Affiliation(s)
- Rakesh Kumar Tekade
- Pharmaceutics Research Laboratory, Department of Pharmaceutical Sciences, Dr. Hari Singh Gour University, Sagar-470 003, India
| | | | | |
Collapse
|
38
|
Kikkeri R, García-Rubio I, Seeberger PH. Ru(ii)–carbohydrate dendrimers as photoinduced electron transfer lectinbiosensors. Chem Commun (Camb) 2009:235-7. [DOI: 10.1039/b814146k] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
39
|
Takasu A, Makino T, Hirabayashi T. Synthesis of newS-glycodendrimer toward activation of lac operon transcription for protein biosynthesis. ACTA ACUST UNITED AC 2008. [DOI: 10.1002/pola.23148] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
40
|
Dutta T, Agashe HB, Garg M, Balakrishnan P, Balasubramanium P, Kabra M, Jain NK. Poly (propyleneimine) dendrimer based nanocontainers for targeting of efavirenz to human monocytes/macrophagesin vitro. J Drug Target 2008; 15:89-98. [PMID: 17365278 DOI: 10.1080/10611860600965914] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Cells of the mononuclear phagocytic system, in particular monocytes/macrophages (Mo/Mac) serve as a reservoir for human immunodeficiency virus (HIV) and are believed to be responsible for its dissemination throughout the body and especially into the brain. Treatment of HIV infection, therefore, must reach these cells in addition to the lymphocytes. The purpose of the present study is to develop poly(propyleneimine) (PPI) dendrimer-based nanocontainers for targeting of efavirenz (EFV) to Mo/Mac. Fifth generation PPI dendrimer, t-Boc-glycine conjugated PPI dendrimer (TPPI) and mannose conjugated dendrimers were synthesized and characterized. While the haemolytic activity and cytotoxicity of PPI dendrimer was found to be very high, the toxicity of t-Boc-glycine conjugated dendrimer and mannose conjugated dendrimers were found to be negligible. The entrapment efficiency of mannose conjugated dendrimer was found to be 47.4%, followed by that of PPI dendrimer (32.15%) and t-Boc-glycine conjugated dendrimer (23.1%). The in vitro drug release profile shows that while PPI dendrimer releases the drug by 24 h, the dendrimer-based nanocontainers prolong the release rate up to 144 h (83 +/- 0.4% in case of t-Boc-glycine conjugated dendrimer and 91 +/- 0.3% in mannose conjugated dendrimer). The cellular uptake of EFV was found to be both concentration and time dependent. Significant increase in cellular uptake of EFV by Mo/Mac cells were observed in case of mannose conjugated dendrimer which is 12 times higher than that of free drug and 5.5 times higher than that of t-Boc-glycine conjugated dendrimer. While mannose conjugated dendrimer was taken up by the lectin receptors of the cells, phagocytosis of t-Boc-glycine conjugated dendrimer might be responsible for its enhanced uptake. Results suggest that the proposed carriers hold potential to increase the efficacy and reduce the toxicity of antiretroviral therapy.
Collapse
Affiliation(s)
- Tathagata Dutta
- Department of Pharmaceutical Sciences, Dr H.S. Gour University, Sagar, MP 470 003, India.
| | | | | | | | | | | | | |
Collapse
|
41
|
|
42
|
Dutta T, Garg M, Jain NK. Targeting of efavirenz loaded tuftsin conjugated poly(propyleneimine) dendrimers to HIV infected macrophages in vitro. Eur J Pharm Sci 2008; 34:181-9. [DOI: 10.1016/j.ejps.2008.04.002] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2008] [Revised: 03/10/2008] [Accepted: 04/10/2008] [Indexed: 11/30/2022]
|
43
|
|
44
|
Garg M, Garg BR, Jain S, Mishra P, Sharma RK, Mishra AK, Dutta T, Jain NK. Radiolabeling, pharmacoscintigraphic evaluation and antiretroviral efficacy of stavudine loaded 99mTc labeled galactosylated liposomes. Eur J Pharm Sci 2008; 33:271-81. [DOI: 10.1016/j.ejps.2007.12.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2007] [Revised: 11/05/2007] [Accepted: 12/13/2007] [Indexed: 10/22/2022]
|
45
|
Kolhatkar R, Sweet D, Ghandehari H. Functionalized Dendrimers as Nanoscale Drug Carriers. MULTIFUNCTIONAL PHARMACEUTICAL NANOCARRIERS 2008. [DOI: 10.1007/978-0-387-76554-9_7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
46
|
Kikkeri R, Hossain LH, Seeberger PH. Supramolecular one-pot approach to fluorescent glycodendrimers. Chem Commun (Camb) 2008:2127-9. [DOI: 10.1039/b802177e] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
47
|
Newkome GR, Shreiner CD. Poly(amidoamine), polypropylenimine, and related dendrimers and dendrons possessing different 1→2 branching motifs: An overview of the divergent procedures. POLYMER 2008. [DOI: 10.1016/j.polymer.2007.10.021] [Citation(s) in RCA: 313] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
48
|
Abstract
The design of well-defined particulate carrier systems with controlled size, shapes and physicochemical characteristics is becoming a focal point in the field of biomedicine and drug delivery. Dendrimers are one of the emerging technologies of recent times and have served as a unique platform to achieve the development as novel drug delivery scaffolds. Dendrimers may be engineered to meet the specific needs of biologically active agents, which can either be encapsulated within dendrimers or chemically attached to these units. The large number of active functional groups on the surface of dendrimers allows them to be meticulously tailored and to act as nano-scaffolds or nano-containers of various categories of drugs. The architecture of modified dendrimers has posed a challenge to drug delivery, in particular with respect to their in vivo metabolic fate. The drug delivery applications of dendrimers presented in this article provide an insight of their potential and substantiate the major roles for the future of these nanoconstructs.
Collapse
Affiliation(s)
- Narendra K Jain
- Dr Hari Singh Gour University, Pharmaceutics Research Laboratory, Department of Pharmaceutical Sciences, Sagar 4700 03, India.
| | | |
Collapse
|
49
|
Agashe HB, Babbar AK, Jain S, Sharma RK, Mishra AK, Asthana A, Garg M, Dutta T, Jain NK. Investigations on biodistribution of technetium-99m-labeled carbohydrate-coated poly(propylene imine) dendrimers. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2007; 3:120-7. [DOI: 10.1016/j.nano.2007.02.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2006] [Revised: 01/18/2007] [Accepted: 02/05/2007] [Indexed: 10/23/2022]
|
50
|
Dutta T, Jain NK. Targeting potential and anti-HIV activity of lamivudine loaded mannosylated poly (propyleneimine) dendrimer. Biochim Biophys Acta Gen Subj 2007; 1770:681-6. [PMID: 17276009 DOI: 10.1016/j.bbagen.2006.12.007] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2006] [Revised: 12/11/2006] [Accepted: 12/14/2006] [Indexed: 10/23/2022]
Abstract
T-lymphocytes, dendritic cells and macrophages are the target cells for HIV. The infected macrophages are considered as reservoirs for spreading the virus. Treatment of HIV infection therefore must reach these cells in addition to the organs like brain, liver and bone marrow. Lectin receptors, which act as molecular targets for sugar molecules, are found on the surface of these cells of the phagocytic system. The purpose of the present study is to investigate the targeting potential and anti HIV activity of lamivudine (3TC) loaded mannosylated fifth generation Poly (propyleneimine) dendrimers (MPPI). The entrapment efficiency of 3TC loaded MPPI and 5th generation poly(propyleneimine) dendrimer (PPI) were found to be 43.27+/-0.13% and 35.69+/-0.2% respectively. The in vitro drug release profile shows that while PPI releases the drug by 24 h, the MPPI slows down and hence prolongs the release up to 144 h (96.89+/-1.8% in case of MPPI). The results of in vitro ligand agglutination assay indicated that even after conjugation with PPI, mannose displayed binding specificity towards Con A. The subtoxic concentrations of free 3TC, blank PPI, blank MPPI, drug loaded PPI and drug loaded MPPI, determined on MT2 cells, were found to be 0.625, 0.039, 0.156, 0.039 and 0.156 nM/ml respectively. Significant increase in cellular uptake of 3TC was observed when MPPI was used, which was 21 and 8.3 times higher than that of free drug (p<0.001) and PPI (p<0.001) at 48 h respectively. Antiretroviral activity was determined using MT2 cell lines by estimating p24 antigen by ELISA. 3TC loaded PPI and MPPI formulations were found to possess higher anti-HIV activity at a concentration as low as 0.019 nM/ml, as compared to that of free drug, which was found to be extremely significant (p<0.001). The significantly higher anti-HIV activity of PPI and MPPI is due to the enhanced cellular uptake of 3TC in formulation as compared to that of free drug Results suggest that the proposed carrier hold potential to increase the efficacy and reduce the toxicity of antiretroviral therapy.
Collapse
Affiliation(s)
- Tathagata Dutta
- Department of Pharmaceutical Sciences, Dr. Hari Singh Gour University, Sagar (M.P.) 470 003, India.
| | | |
Collapse
|