1
|
Ranne M, Ourabi M, Lessard BH, Adronov A. CO 2 Responsive Thin-Film Transistors Using Conjugated Polymer Complexes with Single-Walled Carbon Nanotubes. ACS APPLIED MATERIALS & INTERFACES 2024; 16:46600-46608. [PMID: 39185575 DOI: 10.1021/acsami.4c08528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Introduction of amidine groups within the side chains of a conjugated polyfluorene was carried out using copper-catalyzed azide-alkyne cycloaddition. The resulting polymer was shown to form strong supramolecular interactions with the sidewalls of single-walled carbon nanotubes (SWNTs), forming polymer-nanotube complexes that exhibited solubility in various organic solvents. It was shown that the polymer-SWNT complexes were responsive to CO2, where the amidine groups formed amidinium bicarbonate salts upon CO2 exposure, causing the polymer-SWNT complexes to precipitate. This reaction could be reversed by bubbling N2 through the solution, which caused the polymer-SWNT complexes to redissolve. Incorporation of the polymer-SWNT complexes within thin-film transistor (TFT) devices as the active layer resulted in a CO2-responsive TFT sensor. It was found that the sensory device underwent a reversible shift in its threshold voltage from 5 to -1 V as well as a 1 order of magnitude decrease in its on-current upon exposure to CO2. This work shows that conjugated polymer-wrapped SWNTs having sensory elements within the polymer side chain can be used as the active layer within functional SWNT-based TFT sensors.
Collapse
Affiliation(s)
- Mokhamed Ranne
- Department of Chemistry and Chemical Biology and the Brockhouse Institute for Materials Research, McMaster University, Hamilton, Ontario L8S 4M1, Canada
| | - May Ourabi
- Department of Chemical and Biological Engineering, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Benoît H Lessard
- Department of Chemical and Biological Engineering, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Alex Adronov
- Department of Chemistry and Chemical Biology and the Brockhouse Institute for Materials Research, McMaster University, Hamilton, Ontario L8S 4M1, Canada
| |
Collapse
|
2
|
Ritaine D, Adronov A. Decoration of Polyfluorene-Wrapped Carbon Nanotubes with Photocleavable Side-Chains. Molecules 2023; 28:1471. [PMID: 36771137 PMCID: PMC9920975 DOI: 10.3390/molecules28031471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 01/29/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Functionalizing polyfluorene-wrapped carbon nanotubes without damaging their properties is effective via Copper-Catalyzed Azide-Alkyne Cycloaddition (CuAAC). However, the length and nature of polymer side-chains can impact the conductivity of polyfluorene-SWNT films by preventing close contact between the nanotubes. Here, we investigate the functionalization of a polyfluorene-SWNT complex using photocleavable side-chains that can be removed post-processing. The cleavage of the side-chains containing an ortho-nitrobenzyl ether derivative is efficient when exposed to a UV lamp at 365 nm. The photoisomerization of the o-nitrobenzyl ether linker into the corresponding o-nitrosobenzaldehyde was first monitored via UV-Vis absorption spectroscopy and 1H-NMR spectroscopy on the polymer, which showed efficient cleavage after 2 h. We next investigated the cleavage on the polyfluorene-SWNT complex via UV-Vis-NIR absorption spectroscopy. The precipitation of the nanotube dispersion and the broad absorption peaks after overnight irradiation also indicated effective cleavage. In addition, Raman spectroscopy post-irradiation showed that the nanotubes were not damaged upon irradiation. This paper reports a proof of concept that may find applications for SWNT-based materials in which side-chain removal could lead to higher device performance.
Collapse
Affiliation(s)
| | - Alex Adronov
- Department of Chemistry and Chemical Biology, Brockhouse Institute for Materials Research, McMaster University, 1280 Main Street W, Hamilton, ON L8S 4M1, Canada
| |
Collapse
|
3
|
Ritaine D, Adronov A. Functionalization of polyfluorene‐wrapped carbon nanotubes using thermally cleavable side‐chains. JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1002/pol.20220362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
4
|
Wei X, Li S, Wang W, Zhang X, Zhou W, Xie S, Liu H. Recent Advances in Structure Separation of Single-Wall Carbon Nanotubes and Their Application in Optics, Electronics, and Optoelectronics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2200054. [PMID: 35293698 PMCID: PMC9108629 DOI: 10.1002/advs.202200054] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/10/2022] [Indexed: 05/04/2023]
Abstract
Structural control of single-wall carbon nanotubes (SWCNTs) with uniform properties is critical not only for their property modulation and functional design but also for applications in electronics, optics, and optoelectronics. To achieve this goal, various separation techniques have been developed in the past 20 years through which separation of high-purity semiconducting/metallic SWCNTs, single-chirality species, and even their enantiomers have been achieved. This progress has promoted the property modulation of SWCNTs and the development of SWCNT-based optoelectronic devices. Here, the recent advances in the structure separation of SWCNTs are reviewed, from metallic/semiconducting SWCNTs, to single-chirality species, and to enantiomers by several typical separation techniques and the application of the corresponding sorted SWCNTs. Based on the separation procedure, efficiency, and scalability, as well as, the separable SWCNT species, purity, and quantity, the advantages and disadvantages of various separation techniques are compared. Combined with the requirements of SWCNT application, the challenges, prospects, and development direction of structure separation are further discussed.
Collapse
Affiliation(s)
- Xiaojun Wei
- Beijing National Laboratory for Condensed Matter PhysicsInstitute of PhysicsChinese Academy of SciencesBeijing100190China
- Center of Materials Science and Optoelectronics Engineeringand School of Physical SciencesUniversity of Chinese Academy of SciencesBeijing100049China
- Beijing Key Laboratory for Advanced Functional Materials and Structure ResearchBeijing100190China
- Songshan Lake Materials LaboratoryDongguanGuangdong523808China
| | - Shilong Li
- Beijing National Laboratory for Condensed Matter PhysicsInstitute of PhysicsChinese Academy of SciencesBeijing100190China
- Beijing Key Laboratory for Advanced Functional Materials and Structure ResearchBeijing100190China
| | - Wenke Wang
- Beijing National Laboratory for Condensed Matter PhysicsInstitute of PhysicsChinese Academy of SciencesBeijing100190China
- Center of Materials Science and Optoelectronics Engineeringand School of Physical SciencesUniversity of Chinese Academy of SciencesBeijing100049China
- Beijing Key Laboratory for Advanced Functional Materials and Structure ResearchBeijing100190China
| | - Xiao Zhang
- Beijing National Laboratory for Condensed Matter PhysicsInstitute of PhysicsChinese Academy of SciencesBeijing100190China
- Center of Materials Science and Optoelectronics Engineeringand School of Physical SciencesUniversity of Chinese Academy of SciencesBeijing100049China
- Beijing Key Laboratory for Advanced Functional Materials and Structure ResearchBeijing100190China
- Songshan Lake Materials LaboratoryDongguanGuangdong523808China
| | - Weiya Zhou
- Beijing National Laboratory for Condensed Matter PhysicsInstitute of PhysicsChinese Academy of SciencesBeijing100190China
- Center of Materials Science and Optoelectronics Engineeringand School of Physical SciencesUniversity of Chinese Academy of SciencesBeijing100049China
- Beijing Key Laboratory for Advanced Functional Materials and Structure ResearchBeijing100190China
- Songshan Lake Materials LaboratoryDongguanGuangdong523808China
| | - Sishen Xie
- Beijing National Laboratory for Condensed Matter PhysicsInstitute of PhysicsChinese Academy of SciencesBeijing100190China
- Center of Materials Science and Optoelectronics Engineeringand School of Physical SciencesUniversity of Chinese Academy of SciencesBeijing100049China
- Beijing Key Laboratory for Advanced Functional Materials and Structure ResearchBeijing100190China
- Songshan Lake Materials LaboratoryDongguanGuangdong523808China
| | - Huaping Liu
- Beijing National Laboratory for Condensed Matter PhysicsInstitute of PhysicsChinese Academy of SciencesBeijing100190China
- Center of Materials Science and Optoelectronics Engineeringand School of Physical SciencesUniversity of Chinese Academy of SciencesBeijing100049China
- Beijing Key Laboratory for Advanced Functional Materials and Structure ResearchBeijing100190China
- Songshan Lake Materials LaboratoryDongguanGuangdong523808China
| |
Collapse
|
5
|
Ackermann J, Metternich JT, Herbertz S, Kruss S. Biosensing with Fluorescent Carbon Nanotubes. Angew Chem Int Ed Engl 2022; 61:e202112372. [PMID: 34978752 PMCID: PMC9313876 DOI: 10.1002/anie.202112372] [Citation(s) in RCA: 76] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 12/28/2021] [Indexed: 12/23/2022]
Abstract
Biosensors are powerful tools for modern basic research and biomedical diagnostics. Their development requires substantial input from the chemical sciences. Sensors or probes with an optical readout, such as fluorescence, offer rapid, minimally invasive sensing of analytes with high spatial and temporal resolution. The near-infrared (NIR) region is beneficial because of the reduced background and scattering of biological samples (tissue transparency window) in this range. In this context, single-walled carbon nanotubes (SWCNTs) have emerged as versatile NIR fluorescent building blocks for biosensors. Here, we provide an overview of advances in SWCNT-based NIR fluorescent molecular sensors. We focus on chemical design strategies for diverse analytes and summarize insights into the photophysics and molecular recognition. Furthermore, different application areas are discussed-from chemical imaging of cellular systems and diagnostics to in vivo applications and perspectives for the future.
Collapse
Affiliation(s)
- Julia Ackermann
- Biomedical NanosensorsFraunhofer Institute for Microelectronic Circuits and SystemsFinkenstrasse 6147057DuisburgGermany
- Department EBSUniversity Duisburg-EssenBismarckstrasse 8147057DuisburgGermany
| | - Justus T. Metternich
- Physical ChemistryRuhr-University BochumUniversitätsstrasse 15044801BochumGermany
- Biomedical NanosensorsFraunhofer Institute for Microelectronic Circuits and SystemsFinkenstrasse 6147057DuisburgGermany
| | - Svenja Herbertz
- Biomedical NanosensorsFraunhofer Institute for Microelectronic Circuits and SystemsFinkenstrasse 6147057DuisburgGermany
| | - Sebastian Kruss
- Physical ChemistryRuhr-University BochumUniversitätsstrasse 15044801BochumGermany
- Biomedical NanosensorsFraunhofer Institute for Microelectronic Circuits and SystemsFinkenstrasse 6147057DuisburgGermany
| |
Collapse
|
6
|
Ackermann J, Metternich JT, Herbertz S, Kruss S. Biosensing with Fluorescent Carbon Nanotubes. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202112372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Julia Ackermann
- Biomedical Nanosensors Fraunhofer Institute for Microelectronic Circuits and Systems Finkenstrasse 61 47057 Duisburg Germany
- Department EBS University Duisburg-Essen Bismarckstrasse 81 47057 Duisburg Germany
| | - Justus T. Metternich
- Physical Chemistry Ruhr-University Bochum Universitätsstrasse 150 44801 Bochum Germany
- Biomedical Nanosensors Fraunhofer Institute for Microelectronic Circuits and Systems Finkenstrasse 61 47057 Duisburg Germany
| | - Svenja Herbertz
- Biomedical Nanosensors Fraunhofer Institute for Microelectronic Circuits and Systems Finkenstrasse 61 47057 Duisburg Germany
| | - Sebastian Kruss
- Physical Chemistry Ruhr-University Bochum Universitätsstrasse 150 44801 Bochum Germany
- Biomedical Nanosensors Fraunhofer Institute for Microelectronic Circuits and Systems Finkenstrasse 61 47057 Duisburg Germany
| |
Collapse
|
7
|
Zhang Q, Li S, Wang C, Chang HC, Guo R. Carbon nanotube-based mixed-matrix membranes with supramolecularly engineered interface for enhanced gas separation performance. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2019.117794] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
8
|
Yang F, Wang M, Zhang D, Yang J, Zheng M, Li Y. Chirality Pure Carbon Nanotubes: Growth, Sorting, and Characterization. Chem Rev 2020; 120:2693-2758. [PMID: 32039585 DOI: 10.1021/acs.chemrev.9b00835] [Citation(s) in RCA: 154] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Single-walled carbon nanotubes (SWCNTs) have been attracting tremendous attention owing to their structure (chirality) dependent outstanding properties, which endow them with great potential in a wide range of applications. The preparation of chirality-pure SWCNTs is not only a great scientific challenge but also a crucial requirement for many high-end applications. As such, research activities in this area over the last two decades have been very extensive. In this review, we summarize recent achievements and accumulated knowledge thus far and discuss future developments and remaining challenges from three aspects: controlled growth, postsynthesis sorting, and characterization techniques. In the growth part, we focus on the mechanism of chirality-controlled growth and catalyst design. In the sorting part, we organize and analyze existing literature based on sorting targets rather than methods. Since chirality assignment and quantification is essential in the study of selective preparation, we also include in the last part a comprehensive description and discussion of characterization techniques for SWCNTs. It is our view that even though progress made in this area is impressive, more efforts are still needed to develop both methodologies for preparing ultrapure (e.g., >99.99%) SWCNTs in large quantity and nondestructive fast characterization techniques with high spatial resolution for various nanotube samples.
Collapse
Affiliation(s)
- Feng Yang
- Beijing National Laboratory for Molecular Science, Key Laboratory for the Physics and Chemistry of Nanodevices, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Meng Wang
- Beijing National Laboratory for Molecular Science, Key Laboratory for the Physics and Chemistry of Nanodevices, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Daqi Zhang
- Beijing National Laboratory for Molecular Science, Key Laboratory for the Physics and Chemistry of Nanodevices, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Juan Yang
- Beijing National Laboratory for Molecular Science, Key Laboratory for the Physics and Chemistry of Nanodevices, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Ming Zheng
- Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Yan Li
- Beijing National Laboratory for Molecular Science, Key Laboratory for the Physics and Chemistry of Nanodevices, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
9
|
Preuß A, Notz S, Kovalski E, Korb M, Blaudeck T, Hu X, Schuster J, Miesel D, Rüffer T, Hildebrandt A, Schreiter K, Spange S, Schulz SE, Lang H. Ferrocenyl-Pyrenes, Ferrocenyl-9,10-Phenanthrenediones, and Ferrocenyl-9,10-Dimethoxyphenanthrenes: Charge-Transfer Studies and SWCNT Functionalization. Chemistry 2020; 26:2635-2652. [PMID: 31650632 PMCID: PMC7064959 DOI: 10.1002/chem.201904450] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Indexed: 11/06/2022]
Abstract
The synthesis of 1-Fc- (3), 1-Br-6-Fc- (5 a), 2-Br-7-Fc- (7 a), 1,6-Fc2 - (5 b), 2,7-Fc2 -pyrene (7 b), 3,6-Fc2 -9,10-phenanthrenedione (10), and 3,6-Fc2 -9,10-dimethoxyphenanthrene (12; Fc=Fe(η5 -C5 H4 )(η5 -C5 H5 )) is discussed. Of these compounds, 10 and 12 form 1D or 2D coordination polymers in the solid state. (Spectro)Electrochemical studies confirmed reversible Fc/Fc+ redox events between -130 and 160 mV. 1,6- and 2,7-Substitution in 5 a (E°'=-130 mV) and 7 a (E°'=50 mV) influences the redox potentials, whereas the ones of 5 b and 7 b (E°'=20 mV) are independent. Compounds 5 b, 7 b, 10, and 12 show single Fc oxidation processes with redox splittings between 70 and 100 mV. UV/Vis/NIR spectroelectrochemistry confirmed a weak electron transfer between FeII /FeIII in mixed-valent [5 b]+ and [12]+ . DFT calculations showed that 5 b non-covalently interacts with the single-walled carbon nanotube (SWCNT) sidewalls as proven by, for example, disentangling experiments. In addition, CV studies of the as-obtained dispersions confirmed exohedral attachment of 5 b at the SWCNTs.
Collapse
Affiliation(s)
- Andrea Preuß
- Faculty of Natural Sciences, Institute of Chemistry, Inorganic Chemistry, Technische Universität Chemnitz, 09107, Chemnitz, Germany
| | - Sebastian Notz
- Faculty of Natural Sciences, Institute of Chemistry, Inorganic Chemistry, Technische Universität Chemnitz, 09107, Chemnitz, Germany
| | - Eduard Kovalski
- Faculty of Natural Sciences, Institute of Chemistry, Inorganic Chemistry, Technische Universität Chemnitz, 09107, Chemnitz, Germany
| | - Marcus Korb
- Faculty of Natural Sciences, Institute of Chemistry, Inorganic Chemistry, Technische Universität Chemnitz, 09107, Chemnitz, Germany.,Current address: Faculty of Science, School of Molecular Sciences, The University of Western Australia, Crawley, Perth, WA, 6009, Australia
| | - Thomas Blaudeck
- Center for Microtechnologies (ZfM), Technische Universität Chemnitz, 09107, Chemnitz, Germany.,Fraunhofer Institute for Electronic Nano Systems (ENAS), Technologie-Campus 3, 09126, Chemnitz, Germany
| | - Xiao Hu
- Center for Microtechnologies (ZfM), Technische Universität Chemnitz, 09107, Chemnitz, Germany.,Fraunhofer Institute for Electronic Nano Systems (ENAS), Technologie-Campus 3, 09126, Chemnitz, Germany
| | - Jörg Schuster
- Center for Microtechnologies (ZfM), Technische Universität Chemnitz, 09107, Chemnitz, Germany.,Fraunhofer Institute for Electronic Nano Systems (ENAS), Technologie-Campus 3, 09126, Chemnitz, Germany.,Center for Advancing Electronics Dresden (cfaed), 09107, Chemnitz, Germany
| | - Dominique Miesel
- Faculty of Natural Sciences, Institute of Chemistry, Inorganic Chemistry, Technische Universität Chemnitz, 09107, Chemnitz, Germany
| | - Tobias Rüffer
- Faculty of Natural Sciences, Institute of Chemistry, Inorganic Chemistry, Technische Universität Chemnitz, 09107, Chemnitz, Germany
| | - Alexander Hildebrandt
- Faculty of Natural Sciences, Institute of Chemistry, Inorganic Chemistry, Technische Universität Chemnitz, 09107, Chemnitz, Germany
| | - Katja Schreiter
- Faculty of Natural Sciences, Institute of Chemistry, Polymer Chemistry, Technische Universität Chemnitz, 09107, Chemnitz, Germany
| | - Stefan Spange
- Faculty of Natural Sciences, Institute of Chemistry, Polymer Chemistry, Technische Universität Chemnitz, 09107, Chemnitz, Germany
| | - Stefan E Schulz
- Center for Microtechnologies (ZfM), Technische Universität Chemnitz, 09107, Chemnitz, Germany.,Fraunhofer Institute for Electronic Nano Systems (ENAS), Technologie-Campus 3, 09126, Chemnitz, Germany.,Center for Advancing Electronics Dresden (cfaed), 09107, Chemnitz, Germany
| | - Heinrich Lang
- Faculty of Natural Sciences, Institute of Chemistry, Inorganic Chemistry, Technische Universität Chemnitz, 09107, Chemnitz, Germany.,Center for Advancing Electronics Dresden (cfaed), 09107, Chemnitz, Germany
| |
Collapse
|
10
|
Merli D, Speltini A, Dondi D, Longhi D, Milanese C, Profumo A. Intermolecular interactions of substituted benzenes on multi-walled carbon nanotubes grafted on HPLC silica microspheres and interaction study through artificial neural networks. ARAB J CHEM 2019. [DOI: 10.1016/j.arabjc.2015.02.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
11
|
Bhagavathi Kandy S, Simon GP, Cheng W, Zank J, Saito K, Bhattacharyya AR. Effect of Organic Modification on Multiwalled Carbon Nanotube Dispersions in Highly Concentrated Emulsions. ACS OMEGA 2019; 4:6647-6659. [PMID: 31459790 PMCID: PMC6648309 DOI: 10.1021/acsomega.8b03179] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 02/20/2019] [Indexed: 06/10/2023]
Abstract
Highly concentrated water-in-oil emulsions incorporating multiwalled carbon nanotubes (MWCNTs) are prepared. Homogeneous and selective dispersions of MWCNTs throughout the oil phase of the emulsions are investigated. The practical insolubility of carbon nanotubes (CNTs) in aqueous and organic media necessitates the disentanglement of CNT "agglomerates" through the utilization of functionalized CNTs. The design and synthesis of two tetra-alkylated pyrene derivatives, namely, 1,3,6,8-tetra(oct-1-yn-1-yl)pyrene (TOPy) and 1,3,6,8-tetra(dodec-1-yn-1-yl)pyrene (TDPy), for the noncovalent organic modification of MWCNTs are reported. The modifier molecules are designed in such a manner that they facilitate an improved dispersion of individualized MWCNTs in the continuous-oil phase of the highly concentrated emulsion (HCE). Transmission electron microscopic analyses suggest that the alkylated pyrene molecules are adsorbed on the MWCNT surface, and their adsorption eventually results in the debundling of MWCNT agglomerates. Fourier transform infrared, Raman, and fluorescence spectroscopic analyses confirm the π-π interaction between the alkylated pyrene molecules and MWCNTs. The noncovalent modification significantly improves the effective debundling and selective dispersion of MWCNTs in HCEs.
Collapse
Affiliation(s)
- Sharu Bhagavathi Kandy
- IITB-Monash
Research Academy and Department of Metallurgical Engineering and
Materials Science, Indian Institute of Technology
Bombay, Powai, Mumbai 400076, India
- Department
of Thermal and Energy Engineering, School of Mechanical Engineering, Vellore Institute of Technology, Vellore, Tamilnadu 632014, India
| | - George P. Simon
- Department of Materials Science and Engineering, Department of Chemical
Engineering, and School of Chemistry, Monash University, Clayton, Victoria 3800, Australia
| | - Wenlong Cheng
- Department of Materials Science and Engineering, Department of Chemical
Engineering, and School of Chemistry, Monash University, Clayton, Victoria 3800, Australia
| | - Johann Zank
- Orica Mining
Services, George Booth
Drive, Kurri Kurri, New South
Wales 2327, Australia
| | - Kei Saito
- Department of Materials Science and Engineering, Department of Chemical
Engineering, and School of Chemistry, Monash University, Clayton, Victoria 3800, Australia
| | - Arup R. Bhattacharyya
- IITB-Monash
Research Academy and Department of Metallurgical Engineering and
Materials Science, Indian Institute of Technology
Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
12
|
Eserci H, Şenkuytu E, Okutan E. New cyclotriphosphazene based nanotweezers bearing perylene and glycol units and their non-covalent interactions with single walled carbon nanotubes. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2019.01.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
13
|
Guttmann R, Hoja J, Lechner C, Maurer RJ, Sax AF. Adhesion, forces and the stability of interfaces. Beilstein J Org Chem 2019; 15:106-129. [PMID: 30680045 PMCID: PMC6334800 DOI: 10.3762/bjoc.15.12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 12/12/2018] [Indexed: 11/23/2022] Open
Abstract
Weak molecular interactions (WMI) are responsible for processes such as physisorption; they are essential for the structure and stability of interfaces, and for bulk properties of liquids and molecular crystals. The dispersion interaction is one of the four basic interactions types – electrostatics, induction, dispersion and exchange repulsion – of which all WMIs are composed. The fact that each class of basic interactions covers a wide range explains the large variety of WMIs. To some of them, special names are assigned, such as hydrogen bonding or hydrophobic interactions. In chemistry, these WMIs are frequently used as if they were basic interaction types. For a long time, dispersion was largely ignored in chemistry, attractive intermolecular interactions were nearly exclusively attributed to electrostatic interactions. We discuss the importance of dispersion interactions for the stabilization in systems that are traditionally explained in terms of the “special interactions” mentioned above. System stabilization can be explained by using interaction energies, or by attractive forces between the interacting subsystems; in the case of stabilizing WMIs, one frequently speaks of adhesion energies and adhesive forces. We show that the description of system stability using maximum adhesive forces and the description using adhesion energies are not equivalent. The systems discussed are polyaromatic molecules adsorbed to graphene and carbon nanotubes; dimers of alcohols and amines; cellulose crystals; and alcohols adsorbed onto cellulose surfaces.
Collapse
Affiliation(s)
- Robin Guttmann
- Department of Chemistry, University of Graz, Heinrichstrasse 28, 8010 Graz, Austria
| | - Johannes Hoja
- Department of Chemistry, University of Graz, Heinrichstrasse 28, 8010 Graz, Austria.,Present address: Physics and Materials Science Research Unit, University of Luxembourg, 1511 Luxembourg, Luxembourg
| | - Christoph Lechner
- Department of Chemistry, University of Graz, Heinrichstrasse 28, 8010 Graz, Austria
| | - Reinhard J Maurer
- Department of Chemistry and Centre for Scientific Computing, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, United Kingdom
| | - Alexander F Sax
- Department of Chemistry, University of Graz, Heinrichstrasse 28, 8010 Graz, Austria
| |
Collapse
|
14
|
Shamshoom C, Fong D, Li K, Kardelis V, Adronov A. Pillar[5]arene-Decorated Single-Walled Carbon Nanotubes. ACS OMEGA 2018; 3:13935-13943. [PMID: 31458090 PMCID: PMC6645158 DOI: 10.1021/acsomega.8b02091] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Accepted: 10/09/2018] [Indexed: 06/10/2023]
Abstract
Control of single-walled carbon nanotube dispersion properties is of substantial interest to the scientific community. In this work, we sought to investigate the effect of a macrocycle, pillar[5]arene, on the dispersion properties of a polymer-nanotube complex. Pillar[5]arenes are a class of electron-rich macrocyclic hosts capable of forming inclusion complexes with electron-poor guests, such as alkyl nitriles. A hydroxyl-functionalized pillar[5]arene derivative was coupled to the alkyl bromide side chains of a polyfluorene, which was then used to coat the surface of single-walled carbon nanotubes. Noncovalent functionalization of carbon nanotubes with the macrocycle-containing conjugated polymer significantly enhanced nanotube solubility, resulting in dark and concentrated nanotube dispersions (600 μg mL-1), as evidenced by UV-vis-NIR spectroscopy and thermogravimetric analysis. Differentiation of semiconducting and metallic single-walled carbon nanotube species was analyzed by a combination of UV-vis-NIR, Raman, and fluorescence spectroscopy. Raman spectroscopy confirmed that the concentrated nanotube dispersion produced by the macrocycle-containing polymer was due to well-exfoliated nanotubes, rather than bundle formation. The polymer-nanotube dispersion was investigated using 1H NMR spectroscopy, and it was found that host-guest chemistry between pillar[5]arene and 1,6-dicyanohexane occurred in the presence of the polymer-nanotube complex. Utilizing the host-guest capability of pillar[5]arene, the polymer-nanotube complex was incorporated into a supramolecular organogel.
Collapse
Affiliation(s)
- Christina Shamshoom
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario L8S
4L8, Canada
| | - Darryl Fong
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario L8S
4L8, Canada
| | - Kelvin Li
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario L8S
4L8, Canada
| | - Vladimir Kardelis
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario L8S
4L8, Canada
| | - Alex Adronov
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario L8S
4L8, Canada
| |
Collapse
|
15
|
Fong D, Yeung J, McNelles SA, Adronov A. Decoration of Polyfluorene-Wrapped Carbon Nanotubes via Strain-Promoted Azide–Alkyne Cycloaddition. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b00049] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Darryl Fong
- Department of Chemistry, McMaster University, Hamilton, Ontario L8S
4M1, Canada
| | - Jason Yeung
- Department of Chemistry, McMaster University, Hamilton, Ontario L8S
4M1, Canada
| | - Stuart A. McNelles
- Department of Chemistry, McMaster University, Hamilton, Ontario L8S
4M1, Canada
| | - Alex Adronov
- Department of Chemistry, McMaster University, Hamilton, Ontario L8S
4M1, Canada
| |
Collapse
|
16
|
Fong D, Andrews GM, Adronov A. Functionalization of polyfluorene-wrapped carbon nanotubes via copper-mediated azide–alkyne cycloaddition. Polym Chem 2018. [DOI: 10.1039/c8py00377g] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Copper-mediated azide–alkyne cycloaddition enables quantitative functionalization of polymer-nanotube complexes containing azide moieties in the polymer side chains.
Collapse
Affiliation(s)
- Darryl Fong
- Department of Chemistry
- McMaster University
- Hamilton
- Canada
| | | | - Alex Adronov
- Department of Chemistry
- McMaster University
- Hamilton
- Canada
| |
Collapse
|
17
|
Fong D, Andrews GM, McNelles SA, Adronov A. Decoration of polyfluorene-wrapped carbon nanotube thin films via strain-promoted azide–alkyne cycloaddition. Polym Chem 2018. [DOI: 10.1039/c8py01003j] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Latently reactive polymer–SWNT complexes were prepared by coating SWNTs with polyfluorene containing azide moieties in the side chain, allowing spatially resolved decoration of nanotube thin films with various functionalities.
Collapse
Affiliation(s)
- Darryl Fong
- Department of Chemistry and Chemical Biology
- McMaster University
- Hamilton
- Canada
| | - Grace M. Andrews
- Department of Chemistry and Chemical Biology
- McMaster University
- Hamilton
- Canada
| | - Stuart A. McNelles
- Department of Chemistry and Chemical Biology
- McMaster University
- Hamilton
- Canada
| | - Alex Adronov
- Department of Chemistry and Chemical Biology
- McMaster University
- Hamilton
- Canada
| |
Collapse
|
18
|
Fong D, Adronov A. Investigation of Hybrid Conjugated/Nonconjugated Polymers for Sorting of Single-Walled Carbon Nanotubes. Macromolecules 2017. [DOI: 10.1021/acs.macromol.7b01834] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Darryl Fong
- Department of Chemistry, McMaster University, Hamilton, ON L8S 4M1, Canada
| | - Alex Adronov
- Department of Chemistry, McMaster University, Hamilton, ON L8S 4M1, Canada
| |
Collapse
|
19
|
Fong D, Hua Z, Wilks TR, O'Reilly RK, Adronov A. Dispersion of single-walled carbon nanotubes using nucleobase-containing poly(acrylamide) polymers. ACTA ACUST UNITED AC 2017. [DOI: 10.1002/pola.28652] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Darryl Fong
- Department of Chemistry; McMaster University; Hamilton Ontario Canada
| | - Zan Hua
- Department of Chemistry; University of Warwick; Coventry United Kingdom
| | - Thomas R. Wilks
- Department of Chemistry; University of Warwick; Coventry United Kingdom
| | | | - Alex Adronov
- Department of Chemistry; McMaster University; Hamilton Ontario Canada
| |
Collapse
|
20
|
Hybrid nano-composites made of ss-DNA/wrapped carbon nanotubes and titania. Colloids Surf B Biointerfaces 2017; 152:12-17. [DOI: 10.1016/j.colsurfb.2016.12.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 11/25/2016] [Accepted: 12/08/2016] [Indexed: 11/18/2022]
|
21
|
Li Z, de Barros ALB, Soares DCF, Moss SN, Alisaraie L. Functionalized single-walled carbon nanotubes: cellular uptake, biodistribution and applications in drug delivery. Int J Pharm 2017; 524:41-54. [PMID: 28300630 DOI: 10.1016/j.ijpharm.2017.03.017] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 02/21/2017] [Accepted: 03/09/2017] [Indexed: 12/15/2022]
Abstract
The unique properties of single-walled carbon nanotubes (SWNTs) enable them to play important roles in many fields. One of their functional roles is to transport cargo into cell. SWNTs are able to traverse amphipathic cell membranes due to their large surface area, flexible interactions with cargo, customizable dimensions, and surface chemistry. The cargoes delivered by SWNTs include peptides, proteins, nucleic acids, as well as drug molecules for therapeutic purpose. The drug delivery functions of SWNTs have been explored over the past decade. Many breakthrough studies have shown the high specificity and potency of functionalized SWNT-based drug delivery systems for the treatment of cancers and other diseases. In this review, we discuss different aspects of drug delivery by functionalized SWNT carriers, diving into the cellular uptake mechanisms, biodistribution of the delivery system, and safety concerns on degradation of the carriers. We emphasize the delivery of several common drugs to highlight the recent achievements of SWNT-based drug delivery.
Collapse
Affiliation(s)
- Zixian Li
- School of Pharmacy, Memorial University of Newfoundland, 300 Prince Philip Dr, A1B 3V6 St. John's, Newfoundland, Canada
| | - Andre Luis Branco de Barros
- Department of Clinical and Toxicological Analyses, Faculty of Pharmacy, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Daniel Cristian Ferreira Soares
- Department of Chemistry and Mathematics, Institute of Science, Laboratory of Bioengineering, Federal University of Itajubá, Itabira, Minas Gerais, Brazil
| | - Sara Nicole Moss
- School of Pharmacy, Memorial University of Newfoundland, 300 Prince Philip Dr, A1B 3V6 St. John's, Newfoundland, Canada
| | - Laleh Alisaraie
- School of Pharmacy, Memorial University of Newfoundland, 300 Prince Philip Dr, A1B 3V6 St. John's, Newfoundland, Canada; Department of Chemistry, Memorial University of Newfoundland, A1B 3X7 St. John's, Newfoundland, Canada.
| |
Collapse
|
22
|
Koelewijn JM, Lutz M, Detz RJ, Reek JNH. Anode Preparation Strategies for the Electrocatalytic Oxidation of Water Based on Strong Interactions between Multiwalled Carbon Nanotubes and Cationic Acetylammonium Pyrene Moieties in Aqueous Solutions. Chempluschem 2016; 81:1098-1106. [DOI: 10.1002/cplu.201600235] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Indexed: 01/21/2023]
Affiliation(s)
- Jacobus M. Koelewijn
- Van ‘t Hoff Institute for Molecular Sciences; University of Amsterdam; Science Park 904 1098 XH Amsterdam The Netherlands
| | - Martin Lutz
- Crystal and Structural Chemistry Bijvoet Center for Biomolecular Research; Utrecht University; Padualaan 8 3584 CH Utrecht The Netherlands
| | - Remko J. Detz
- Van ‘t Hoff Institute for Molecular Sciences; University of Amsterdam; Science Park 904 1098 XH Amsterdam The Netherlands
| | - Joost N. H. Reek
- Van ‘t Hoff Institute for Molecular Sciences; University of Amsterdam; Science Park 904 1098 XH Amsterdam The Netherlands
| |
Collapse
|
23
|
Ozawa H, Kosaka K, Kita T, Yoshikawa K, Haga MA. Controlling the Direction of the Molecular Axis of Rod-Shaped Binuclear Ruthenium Complexes on Single-Walled Carbon Nanotubes. Chemistry 2016; 22:6575-82. [PMID: 27010865 DOI: 10.1002/chem.201504678] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Indexed: 11/06/2022]
Abstract
We report the synthesis of a mixed-valence ruthenium complex, bearing pyrene moieties on one side of the ligands as anchor groups. Composites consisting of mixed-valence ruthenium complexes and SWNTs were prepared by noncovalent π-π interactions between the SWNT surface and the pyrene anchors of the Ru complex. In these composites, the long axis of the Ru complexes was aligned in parallel to the principal direction of the SWNT. The optimized conformation of these complexes on the SWNT surface was calculated by molecular mechanics. The composites were examined by UV/Vis absorption and FT-IR spectroscopy, XPS, and SEM analysis. Furthermore, their electrochemical properties were evaluated. Cyclic voltammograms of the composites showed reversible oxidation waves at peak oxidation potentials (Epox ) = 0.86 and 1.08 V versus Fc(+) /Fc, which were assigned to the Ru(II) -Ru(II) /Ru(II) -Ru(III) and the Ru(II) -Ru(III) /Ru(III) -Ru(III) oxidation events of the dinuclear ruthenium complex, respectively. Based on these observations, we concluded that the electrochemical properties and mixed-valence state of the dinuclear ruthenium complexes were preserved upon attachment to the SWNT surface.
Collapse
Affiliation(s)
- Hiroaki Ozawa
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga Bunkyo-ku, Tokyo, 112-8551, Japan
| | - Kazuma Kosaka
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga Bunkyo-ku, Tokyo, 112-8551, Japan
| | - Tomomi Kita
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga Bunkyo-ku, Tokyo, 112-8551, Japan
| | - Kai Yoshikawa
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga Bunkyo-ku, Tokyo, 112-8551, Japan
| | - Masa-aki Haga
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga Bunkyo-ku, Tokyo, 112-8551, Japan.
| |
Collapse
|
24
|
Adachi N, Okada M, Sugeno M, Norioka T. Fluorescence turn-on chemical sensor based on water-soluble conjugated polymer/single-walled carbon nanotube composite. J Appl Polym Sci 2016. [DOI: 10.1002/app.43301] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Naoya Adachi
- Division of Science, School of Science and Engineering; Tokyo Denki University; Hatoyama Hiki-Gun Saitama 350-0394 Japan
| | - Mari Okada
- Division of Science, School of Science and Engineering; Tokyo Denki University; Hatoyama Hiki-Gun Saitama 350-0394 Japan
| | - Masafumi Sugeno
- Division of Science, School of Science and Engineering; Tokyo Denki University; Hatoyama Hiki-Gun Saitama 350-0394 Japan
| | - Takayuki Norioka
- Division of Science, School of Science and Engineering; Tokyo Denki University; Hatoyama Hiki-Gun Saitama 350-0394 Japan
| |
Collapse
|
25
|
Salvo AMP, La Parola V, Liotta LF, Giacalone F, Gruttadauria M. Highly Loaded Multi-Walled Carbon Nanotubes Non-Covalently Modified with a Bis-Imidazolium Salt and their Use as Catalyst Supports. Chempluschem 2016; 81:471-476. [DOI: 10.1002/cplu.201600023] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 03/04/2016] [Indexed: 12/26/2022]
Affiliation(s)
- Anna Maria Pia Salvo
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche; e Farmaceutiche (STEBICEF); Sezione di Chimica; Università di Palermo; Viale delle Scienze s/n, Ed. 17 90128 Palermo Italy
| | - Valeria La Parola
- Istituto per lo Studio dei Materiali Nanostrutturati ISMN-CNR; Via Ugo La Malfa 153 90146 Palermo Italy
| | - Leonarda F. Liotta
- Istituto per lo Studio dei Materiali Nanostrutturati ISMN-CNR; Via Ugo La Malfa 153 90146 Palermo Italy
| | - Francesco Giacalone
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche; e Farmaceutiche (STEBICEF); Sezione di Chimica; Università di Palermo; Viale delle Scienze s/n, Ed. 17 90128 Palermo Italy
| | - Michelangelo Gruttadauria
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche; e Farmaceutiche (STEBICEF); Sezione di Chimica; Università di Palermo; Viale delle Scienze s/n, Ed. 17 90128 Palermo Italy
| |
Collapse
|
26
|
|
27
|
Guo Z, Yin H, Feng Y, He S. Functionalization of single-walled carbon nanotubes with thermo-responsive poly(N-isopropylacrylamide): effect of the polymer architecture. RSC Adv 2016. [DOI: 10.1039/c6ra00998k] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Star-shaped and linear thermo-responsive PNIPAM polymers were compared for the functionalization of SWNTs. The star-shaped polymer gave the SWNTs a higher solubility and more thermo-responsive properties than its linear counterpart.
Collapse
Affiliation(s)
- Zanru Guo
- Chengdu Institute of Organic Chemistry
- Chinese Academy of Sciences
- Chengdu 610041
- People's Republic of China
| | - Hongyao Yin
- State Key Laboratory of Polymer Materials Engineering
- Polymer Research Institute
- Sichuan University
- Chengdu 610065
- People's Republic of China
| | - Yujun Feng
- State Key Laboratory of Polymer Materials Engineering
- Polymer Research Institute
- Sichuan University
- Chengdu 610065
- People's Republic of China
| | - Shuai He
- Chengdu Institute of Organic Chemistry
- Chinese Academy of Sciences
- Chengdu 610041
- People's Republic of China
| |
Collapse
|
28
|
Shiraki T, Onitsuka H, Shiraishi T, Nakashima N. Near infrared photoluminescence modulation of single-walled carbon nanotubes based on a molecular recognition approach. Chem Commun (Camb) 2016; 52:12972-12975. [DOI: 10.1039/c6cc07287a] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The molecular recognition approach has achieved near infrared photoluminescence modulation on locally-functionalized single-walled carbon nanotubes.
Collapse
Affiliation(s)
- Tomohiro Shiraki
- Department of Applied Chemistry
- Graduate School of Engineering
- Kyushu University
- Fukuoka 819-0395
- Japan
| | - Hisashi Onitsuka
- Department of Applied Chemistry
- Graduate School of Engineering
- Kyushu University
- Fukuoka 819-0395
- Japan
| | - Tomonari Shiraishi
- Department of Applied Chemistry
- Graduate School of Engineering
- Kyushu University
- Fukuoka 819-0395
- Japan
| | - Naotoshi Nakashima
- Department of Applied Chemistry
- Graduate School of Engineering
- Kyushu University
- Fukuoka 819-0395
- Japan
| |
Collapse
|
29
|
Rauch V, Kikkawa Y, Koepf M, Hijazi I, Wytko JA, Campidelli S, Goujon A, Kanesato M, Weiss J. Trapping Nanostructures on Surfaces through Weak Interactions. Chemistry 2015; 21:13437-44. [DOI: 10.1002/chem.201501767] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Indexed: 11/07/2022]
|
30
|
Tsarfati Y, Strauss V, Kuhri S, Krieg E, Weissman H, Shimoni E, Baram J, Guldi DM, Rybtchinski B. Dispersing Perylene Diimide/SWCNT Hybrids: Structural Insights at the Molecular Level and Fabricating Advanced Materials. J Am Chem Soc 2015; 137:7429-40. [DOI: 10.1021/jacs.5b03167] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | - Volker Strauss
- Department of Chemistry and Pharmacy & Interdisciplinary Center for Molecular Materials (ICMM), Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstrasse 3, 91058 Erlangen, Germany
| | - Susanne Kuhri
- Department of Chemistry and Pharmacy & Interdisciplinary Center for Molecular Materials (ICMM), Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstrasse 3, 91058 Erlangen, Germany
| | | | | | | | | | - Dirk M. Guldi
- Department of Chemistry and Pharmacy & Interdisciplinary Center for Molecular Materials (ICMM), Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstrasse 3, 91058 Erlangen, Germany
| | | |
Collapse
|
31
|
Fujigaya T, Nakashima N. Non-covalent polymer wrapping of carbon nanotubes and the role of wrapped polymers as functional dispersants. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2015; 16:024802. [PMID: 27877763 PMCID: PMC5036478 DOI: 10.1088/1468-6996/16/2/024802] [Citation(s) in RCA: 161] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 01/22/2015] [Accepted: 01/23/2015] [Indexed: 05/20/2023]
Abstract
Carbon nanotubes (CNTs) have been recognized as a promising material in a wide range of applications from biotechnology to energy-related devices. However, the poor solubility in aqueous and organic solvents hindered the applications of CNTs. As studies have progressed, the methodology for CNT dispersion was established. In this methodology, the key issue is to covalently or non-covalently functionalize the surfaces of the CNTs with a dispersant. Among the various types of dispersions, polymer wrapping through non-covalent interactions is attractive in terms of the stability and homogeneity of the functionalization. Recently, by taking advantage of their stability, the wrapped-polymers have been utilized to support and/or reinforce the unique functionality of the CNTs, leading to the development of high-performance devices. In this review, various polymer wrapping approaches, together with the applications of the polymer-wrapped CNTs, are summarized.
Collapse
|
32
|
Fei X, Luo J, Liu R, Liu J, Liu X, Chen M. Multiwalled carbon nanotubes noncovalently functionalized by electro-active amphiphilic copolymer micelles for selective dopamine detection. RSC Adv 2015. [DOI: 10.1039/c4ra16923a] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We have synthesized an electro-active amphiphilic copolymer with carbazole side chains via free radical polymerization using 7-(4-vinylbenzyloxy)-4-methyl coumarin and 9-(4-vinylbenzyl)-9H-carbazole as the monomers.
Collapse
Affiliation(s)
- Xiaoma Fei
- Key Laboratory of Food Colloids and Biotechnology
- Ministry of Education
- School of Chemical and Material Engineering
- Jiangnan University
- Wuxi
| | - Jing Luo
- Key Laboratory of Food Colloids and Biotechnology
- Ministry of Education
- School of Chemical and Material Engineering
- Jiangnan University
- Wuxi
| | - Ren Liu
- Key Laboratory of Food Colloids and Biotechnology
- Ministry of Education
- School of Chemical and Material Engineering
- Jiangnan University
- Wuxi
| | - Jingcheng Liu
- Key Laboratory of Food Colloids and Biotechnology
- Ministry of Education
- School of Chemical and Material Engineering
- Jiangnan University
- Wuxi
| | - Xiaoya Liu
- Key Laboratory of Food Colloids and Biotechnology
- Ministry of Education
- School of Chemical and Material Engineering
- Jiangnan University
- Wuxi
| | - Mingqing Chen
- Key Laboratory of Food Colloids and Biotechnology
- Ministry of Education
- School of Chemical and Material Engineering
- Jiangnan University
- Wuxi
| |
Collapse
|
33
|
Abstract
Pyrene serves as a recognition motif to template the synthesis of mechanically interlocked derivatives of SWNTs.
Collapse
Affiliation(s)
| | - Emilio M. Pérez
- IMDEA Nanociencia
- Ciudad Universitaria de Cantoblanco
- Madrid
- Spain
| |
Collapse
|
34
|
Ager D, Vasantha VA, Crombez R, Texter J. Aqueous graphene dispersions-optical properties and stimuli-responsive phase transfer. ACS NANO 2014; 8:11191-11205. [PMID: 25337632 DOI: 10.1021/nn502946f] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
We demonstrate essentially complete exfoliation of graphene aggregates in water at concentrations up to 5% by weight (166-fold greater than previous high concentration report) using recently developed triblock copolymers and copolymeric nanolatexes based on a reactive ionic liquid acrylate surfactant. We demonstrate that the visible absorption coefficient in aqueous dispersion, 48.9 ± 1.3 cm(2)/mg at 500 nm, is about twice that currently accepted, and we show that this value is a greatest lower bound to extant macroscopic single sheet optical studies of graphene when one considers both fine structure constant and excitonic mechanisms of visible absorption. We also show that dilute and concentrated graphene dispersions are rheo-optical fluids that exhibit an isotropic to nematic transition upon application of a shear field, and we demonstrate stimuli-responsive phase transfer.
Collapse
Affiliation(s)
- David Ager
- Coating Research Institute and School of Engineering Technology, College of Technology, Eastern Michigan University , Ypsilanti, Michigan 48197, United States
| | | | | | | |
Collapse
|
35
|
Bailey S, Visontai D, Lambert CJ, Bryce MR, Frampton H, Chappell D. A study of planar anchor groups for graphene-based single-molecule electronics. J Chem Phys 2014; 140:054708. [PMID: 24511969 DOI: 10.1063/1.4861941] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
To identify families of stable planar anchor groups for use in single molecule electronics, we report detailed results for the binding energies of two families of anthracene and pyrene derivatives adsorbed onto graphene. We find that all the selected derivatives functionalized with either electron donating or electron accepting substituents bind more strongly to graphene than the parent non-functionalized anthracene or pyrene. The binding energy is sensitive to the detailed atomic alignment of substituent groups over the graphene substrate leading to larger than expected binding energies for -OH and -CN derivatives. Furthermore, the ordering of the binding energies within the anthracene and pyrene series does not simply follow the electron affinities of the substituents. Energy barriers to rotation or displacement on the graphene surface are much lower than binding energies for adsorption and therefore at room temperature, although the molecules are bound to the graphene, they are almost free to move along the graphene surface. Binding energies can be increased by incorporating electrically inert side chains and are sensitive to the conformation of such chains.
Collapse
Affiliation(s)
- Steven Bailey
- Department of Physics, Lancaster University, Lancaster LA1 4YB, United Kingdom
| | - David Visontai
- Department of Physics, Lancaster University, Lancaster LA1 4YB, United Kingdom
| | - Colin J Lambert
- Department of Physics, Lancaster University, Lancaster LA1 4YB, United Kingdom
| | - Martin R Bryce
- Department of Chemistry, Durham University, Durham DH1 3LE, United Kingdom
| | - Harry Frampton
- BP Exploration Operating Company Limited, Chertsey Road, Sunbury on Thames, Middlesex TW16 7BP, United Kingdom
| | - David Chappell
- BP Exploration Operating Company Limited, Chertsey Road, Sunbury on Thames, Middlesex TW16 7BP, United Kingdom
| |
Collapse
|
36
|
Di Crescenzo A, Ettorre V, Fontana A. Non-covalent and reversible functionalization of carbon nanotubes. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2014; 5:1675-90. [PMID: 25383279 PMCID: PMC4222398 DOI: 10.3762/bjnano.5.178] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2014] [Accepted: 08/29/2014] [Indexed: 05/18/2023]
Abstract
Carbon nanotubes (CNTs) have been proposed and actively explored as multipurpose innovative nanoscaffolds for applications in fields such as material science, drug delivery and diagnostic applications. Their versatile physicochemical features are nonetheless limited by their scarce solubilization in both aqueous and organic solvents. In order to overcome this drawback CNTs can be easily non-covalently functionalized with different dispersants. In the present review we focus on the peculiar hydrophobic character of pristine CNTs that prevent them to easily disperse in organic solvents. We report some interesting examples of CNTs dispersants with the aim to highlight the essential features a molecule should possess in order to act as a good carbon nanotube dispersant both in water and in organic solvents. The review pinpoints also a few examples of dispersant design. The last section is devoted to the exploitation of the major quality of non-covalent functionalization that is its reversibility and the possibility to obtain stimuli-responsive precipitation or dispersion of CNTs.
Collapse
Affiliation(s)
- Antonello Di Crescenzo
- Dipartimento di Farmacia, Università “G. d’Annunzio”, Via dei Vestini, 66100 Chieti, Italy
| | - Valeria Ettorre
- Dipartimento di Farmacia, Università “G. d’Annunzio”, Via dei Vestini, 66100 Chieti, Italy
| | - Antonella Fontana
- Dipartimento di Farmacia, Università “G. d’Annunzio”, Via dei Vestini, 66100 Chieti, Italy
| |
Collapse
|
37
|
Sun Y, Fu W, Li Z, Wang Z. Tailorable aqueous dispersion of single-walled carbon nanotubes using tetrachloroperylene-based bolaamphiphiles via noncovalent modification. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:8615-8620. [PMID: 24984932 DOI: 10.1021/la502222d] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The enhanced dispersing capability of these bolaamphiphiles can be attributed to the large aromatic perylene core. The aqueous dispersion efficiency of single-walled carbon nanotubes (SWCNTs) is investigated by UV-vis absorption, fluorescence emission and Raman spectra, scanning electron microscopy, transmission electron microscopy, and atomic force microscopy. It is found that the tetrachloroperylene backbone moieties could interact with SWCNT via synergistic π-π and hydrophobic interactions, and the dispersing properties are closely related to the hydrophilic part of bolaamphiles. This study not only demonstrates tetrachloroperylene derivatives are able to stabilize SWCNTs, but also provides the possibility to understand the structure-property relationship between SWCNTs and tetrachloroperylene-based surfactants.
Collapse
Affiliation(s)
- Yan Sun
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190, China
| | | | | | | |
Collapse
|
38
|
Montenegro J, Vázquez-Vázquez C, Kalinin A, Geckeler KE, Granja JR. Coupling of Carbon and Peptide Nanotubes. J Am Chem Soc 2014; 136:2484-91. [DOI: 10.1021/ja410901r] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Javier Montenegro
- Singular
Research Centre in Chemical Biology and Molecular Materials (CIQUS),
Organic Chemistry Department, University of Santiago de Compostela (USC), Santiago de Compostela 15782, Spain
| | - Carlos Vázquez-Vázquez
- Technological
Research Institute (IIT), Physical Chemistry Department, University of Santiago de Compostela (USC), Santiago de Compostela 15782, Spain
| | - Arseny Kalinin
- NT-MDT and Moscow Institute of Physics and Technology (MIPT), Moscow 117810, Russia
| | - Kurt E. Geckeler
- Department of Materials Science and Engineering Gwangju Institute of Science & Technology, Oryong-dong, Buk-gu, Gwangju 500-712, South Korea
| | - Juan R. Granja
- Singular
Research Centre in Chemical Biology and Molecular Materials (CIQUS),
Organic Chemistry Department, University of Santiago de Compostela (USC), Santiago de Compostela 15782, Spain
| |
Collapse
|
39
|
Liu Y, Hao X, Waddington LJ, Qiu J, Hughes TC. Surface Modification of Multiwalled Carbon Nanotubes with Engineered Self-Assembled RAFT Diblock Coatings. Aust J Chem 2014. [DOI: 10.1071/ch13401] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
A facile method to modify the surface of multiwalled carbon nanotubes (MWCNTs) via electrostatic interactions between polyelectrolytes and oxidized MWCNTs was developed. Diblock copolymers containing poly[2-(methacryloyloxy)ethyltrimethylammonium chloride] (PMETAC), a positively charged block, and poly(ethylene glycol) methacrylate (PEGMA), a neutral block, with tailored molecular weights and low polydispersities were synthesized by reversible addition–fragmentation chain transfer (RAFT) polymerization. Acid treated-MWCNTs were coated with the RAFT diblock copolymers to improve their dispersibility in aqueous phosphate buffered saline (PBS) solution. The short positively charged PMETAC block was designed to attach the block copolymers to the surface of MWCNTs via electrostatic interactions, whereas the PEGMA block improved dispersibility of the MWCNTs in aqueous solutions. Extensive screening of the diblock copolymers with different degrees of polymerization (DP) showed that the dispersion stability of the polymer-coated MWCNTs in PBS was greatly improved with increasing chain length of the PEGMA block. In particular, the MWCNTs coated with a diblock copolymer containing PEGMA (DP = 118, the longest block investigated) showed superior dispersion stability in both water and PBS solution.
Collapse
|
40
|
Zhang C, Zhao Q, Wan L, Wang T, Sun J, Gao Y, Jiang T, Wang S. Poly dimethyl diallyl ammonium coated CMK-5 for sustained oral drug release. Int J Pharm 2013; 461:171-80. [PMID: 24300214 DOI: 10.1016/j.ijpharm.2013.11.050] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2013] [Revised: 11/23/2013] [Accepted: 11/25/2013] [Indexed: 11/24/2022]
Abstract
A new oral sustained drug delivery system (DDS) involving a combination of inorganic mesoporous material (CMK-5) and organic polymer poly dimethyl diallyl ammonium (PDDA) was established to determine its general suitability for use with poorly water soluble drugs. Nimodipine, carvedilol and fenofibrate, three different drugs with acidic or alkaline properties, were selected as model drugs and loaded into carriers. The physicochemical properties of the drug carriers were systematically studied using scanning electron microscopy (SEM), transmission electron microscopy (TEM), and nitrogen adsorption. The structural body changes of the composites in release medium, with or without additional salts, were also studied using particle sizing systems, nitrogen adsorption and zeta potential measurement in order to investigate the sustained release mechanism of the drugs. The results obtained showed that sustained release of drug from the designed DDS was mainly due to the blockage effect arising from the strong swelling of the coated polymers when in contact with release medium. Additional salts, when they reached a certain level, allowed a dramatic burst release. We believe that our designed sustained DDS provide a new option for water insoluble drugs and can be considered as fundamental for those more sophisticated DDS increasingly required in modern medical treatments.
Collapse
Affiliation(s)
- Chen Zhang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang 110016, PR China
| | - Qinfu Zhao
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang 110016, PR China
| | - Long Wan
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang 110016, PR China
| | - Tianyi Wang
- Department of Life Science and Health, Northeastern University, Wenhuadong Road 89, Shenyang 110016, PR China
| | - Jin Sun
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang 110016, PR China
| | - Yikun Gao
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang 110016, PR China
| | - Tongying Jiang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang 110016, PR China
| | - Siling Wang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang 110016, PR China.
| |
Collapse
|
41
|
Yoo J, Fujigaya T, Nakashima N. Molecular recognition at the nanoscale interface within carbon nanotube bundles. NANOSCALE 2013; 5:7419-7424. [PMID: 23831841 DOI: 10.1039/c3nr01828h] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Molecular adsorption onto carbon nanotube surfaces is one of the important topics in the science and technology of carbon nanotubes due to their specific 1D structures with very high aspect ratios. In order to reveal the effect of bundles of single-walled carbon nanotubes (SWNTs) on molecular adsorption at the molecular level, we introduce an HPLC system; namely, we fabricated HPLC columns coated with bundled-SWNTs, isolated-SWNTs or graphene as the stationary HPLC phase, and discovered that polycyclic aromatic hydrocarbons having a one-dimensional shape, such as p-terphenyl and anthracene, exhibit an unusually high affinity to the bundled SWNTs compared to that of the isolated SWNTs. In contrast, no such notable specificity was obtained on a graphene-coated HPLC column. These results indicated that grooves with one-dimensional structures formed by the SWNT-bundles provide a favorable spatial geometry for the specific molecular recognition of aromatic hydrocarbons.
Collapse
Affiliation(s)
- JongTae Yoo
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | | | | |
Collapse
|
42
|
Zhong Q, Diev VV, Roberts ST, Antunez PD, Brutchey RL, Bradforth SE, Thompson ME. Fused porphyrin-single-walled carbon nanotube hybrids: efficient formation and photophysical characterization. ACS NANO 2013; 7:3466-3475. [PMID: 23477287 DOI: 10.1021/nn400362e] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
A systematic study of the interaction between π-extended porphyrins and single-walled carbon nanotubes (SWNTs) is reported here. Zinc porphyrins with 1-pyrenyl groups in the 5,15-meso positions, 1, as well as compounds where one or both of the pyrene groups have been fused at the meso and β positions of the porphyrin core, 2 and 3, respectively, have been examined. The strongest binding to SWNTs is observed for porphyrin 3, leading to debundling of the nanotubes and formation of stable suspensions of 3-SWNT hybrids in a range of common organic solvents. Absorption spectra of 3-SWNT suspensions are broad and continuous (λ=400-1400 nm), and the Q-band of 3 displays a significant bathochromic shift of 33 nm. The surface coverage of the SWNTs in the nanohybrids was estimated by spectroscopic and analytical methods and found to reach 64% for (7,6) nanotubes. The size and shape of π-conjugated porphyrins were found to be important factors in determining the strength of the π-π interactions, as the linear anti-3 isomer displays more than 90% binding selectivity compared to the bent syn-3 isomer. Steady-state photoluminescence measurements show quenching of porphyrin emission from the nanohybrids. Femtosecond transient absorption spectroscopy reveals that this quenching results from ultrafast electron transfer from the photoexcited porphyrin to the SWNT (1/kCT=260 fs) followed by rapid charge recombination on a picosecond time scale. Overall, our data demonstrate that direct π-π interaction between fused porphyrins and SWNTs leads to electronically coupled stable nanohybrids.
Collapse
Affiliation(s)
- Qiwen Zhong
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | | | | | | | | | | | | |
Collapse
|
43
|
Fujigaya T, Nakashima N. Fuel cell electrocatalyst using polybenzimidazole-modified carbon nanotubes as support materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2013; 25:1666-81. [PMID: 23423836 DOI: 10.1002/adma.201204461] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Revised: 11/26/2012] [Indexed: 05/11/2023]
Abstract
Toward the next generation fuel cell systems, the development of a novel electrocatalyst for the polymer electrolyte fuel cell (PEFC) is crucial to overcome the drawbacks of the present electrocatalyst. As a conductive supporting material for the catalyst, carbon nanotubes (CNTs) have emerged as a promising candidate, and many attempts have been carried out to introduce CNT, in place of carbon black. On the other hand, as a polymer electrolyte, polybenzimidazoles (PBIs) have been recognized as a powerful candidate due to the high proton conductivity above 100 °C under non-humid conditions. In 2008, we found that these two materials have a strong physical interaction and form a stable hybrid material, in which the PBIs uniformly wrap the surfaces of the CNTs. Furthermore, PBIs serve as effective binding sites for the formation of platinum (Pt) nanoparticles to fabricate a ternary composite (CNT/PBIs/Pt). In this review article, we summarize the fundamental properties of the CNT/PBIs/Pt and discuss their potential as a new electrocatalyst for the PEFC in comparison with the conventional ones. Furthermore, potential applications of CNT/PBIs including use of the materials for oxygen reduction catalysts and reinforcement of PBI films are summarized.
Collapse
Affiliation(s)
- Tsuyohiko Fujigaya
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, Nishi-ku, Fukuoka 819-0395 Japan.
| | | |
Collapse
|
44
|
Guo Z, Feng Y, He S, Qu M, Chen H, Liu H, Wu Y, Wang Y. CO(2) -responsive "smart" single-walled carbon nanotubes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2013; 25:584-90. [PMID: 23132767 DOI: 10.1002/adma.201202991] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Revised: 09/30/2012] [Indexed: 05/02/2023]
Abstract
A new type of "smart" single-walled carbon nanotubes is created by wrapping a pyrene-labeled CO(2) -responsive polymer via π-π stacking. The polymer/SWNT hybrids not only undergo a hydrophobic-hydrophilic transition upon CO(2) stimulus of CO(2) in a mixed solvent, but also exhibit switchable dispersion/aggregation states upon the alternate bubbling of CO(2) and N(2) in pure water.
Collapse
Affiliation(s)
- Zanru Guo
- Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, P. R. China; Graduate School of the Chinese Academy of Sciences, Beijing 100049, P. R. China
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Abstract
Carbon nanotubes (CNTs) are allotropes of carbon with a nanostructure that can have a length-to-diameter ratio greater than 1,000,000. Techniques have been developed to produce nanotubes in sizeable quantities, including arc discharge, laser ablation, and chemical vapor deposition. Developments in the past few years have illustrated the potentially revolutionizing impact of nanomaterials, especially in biomedical imaging, drug delivery, biosensing, and the design of functional nanocomposites. Methods to effectively interface proteins with nanomaterials for realizing these applications continue to evolve. The high surface-to-volume ratio offered by nanoparticles resulted in the concentration of the immobilized entity being considerably higher than that afforded by other materials. There has also been an increasing interest in understanding the influence of nanomaterials on the structure and function of proteins. Various immobilization methods have been developed, and in particular, specific attachment of enzymes on carbon nanotubes has been an important focus of attention. With the growing attention paid to cascade enzymatic reaction, it is possible that multienzyme coimmobilization would be one of the next goals in the future. In this paper, we focus on advances in methodology for enzyme immobilization on carbon nanotubes.
Collapse
|
46
|
Gavrel G, Jousselme B, Filoramo A, Campidelli S. Supramolecular Chemistry of Carbon Nanotubes. MAKING AND EXPLOITING FULLERENES, GRAPHENE, AND CARBON NANOTUBES 2013; 348:95-126. [DOI: 10.1007/128_2013_450] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
47
|
Parra EJ, Rius FX, Blondeau P. A potassium sensor based on non-covalent functionalization of multi-walled carbon nanotubes. Analyst 2013; 138:2698-703. [DOI: 10.1039/c3an00313b] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
48
|
Frueh J, Nakashima N, He Q, Möhwald H. Effect of Linear Elongation on Carbon Nanotube and Polyelectrolyte Structures in PDMS-Supported Nanocomposite LbL Films. J Phys Chem B 2012; 116:12257-62. [DOI: 10.1021/jp3071458] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Johannes Frueh
- Key Laboratory of
Microsystems
and Microstructures Manufacturing, Ministry of Education, Micro/Nano
Technology Research Centre, Harbin Institute of Technology, Yikuang Street 2, Harbin 150080, China
| | - Naotoshi Nakashima
- Department of Applied Chemistry,
Graduate School of Engineering, Kyushu University, Fukuoka 819-0395, Japan
| | - Qiang He
- Key Laboratory of
Microsystems
and Microstructures Manufacturing, Ministry of Education, Micro/Nano
Technology Research Centre, Harbin Institute of Technology, Yikuang Street 2, Harbin 150080, China
| | - Helmuth Möhwald
- Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1,
14424 Golm/Potsdam, Germany
| |
Collapse
|
49
|
|
50
|
Hammershøj P, Bomans PHH, Lakshminarayanan R, Fock J, Jensen SH, Jespersen TS, Brock-Nannestad T, Hassenkam T, Nygård J, Sommerdijk NAJM, Kilså K, Bjørnholm T, Christensen JB. A Triptycene-Based Approach to Solubilising Carbon Nanotubes and C60. Chemistry 2012; 18:8716-23. [DOI: 10.1002/chem.201101189] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Revised: 03/21/2012] [Indexed: 11/08/2022]
|