1
|
In silico modelling of the function of disease-related CAZymes. Essays Biochem 2023; 67:355-372. [PMID: 36912236 PMCID: PMC10154626 DOI: 10.1042/ebc20220218] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/23/2023] [Accepted: 01/24/2023] [Indexed: 03/14/2023]
Abstract
In silico modelling of proteins comprises a diversity of computational tools aimed to obtain structural, electronic, and/or dynamic information about these biomolecules, capturing mechanistic details that are challenging to experimental approaches, such as elusive enzyme-substrate complexes, short-lived intermediates, and reaction transition states (TS). The present article gives the reader insight on the use of in silico modelling techniques to understand complex catalytic reaction mechanisms of carbohydrate-active enzymes (CAZymes), along with the underlying theory and concepts that are important in this field. We start by introducing the significance of carbohydrates in nature and the enzymes that process them, CAZymes, highlighting the conformational flexibility of their carbohydrate substrates. Three commonly used in silico methods (classical molecular dynamics (MD), hybrid quantum mechanics/molecular mechanics (QM/MM), and enhanced sampling techniques) are described for nonexpert readers. Finally, we provide three examples of the application of these methods to unravel the catalytic mechanisms of three disease-related CAZymes: β-galactocerebrosidase (GALC), responsible for Krabbe disease; α-mannoside β-1,6-N-acetylglucosaminyltransferase V (MGAT5), involved in cancer; and O-fucosyltransferase 1 (POFUT1), involved in several human diseases such as leukemia and the Dowling-Degos disease.
Collapse
|
2
|
Vibhute AM, Tanaka HN, Mishra SK, Osuka RF, Nagae M, Yonekawa C, Korekane H, Doerksen RJ, Ando H, Kizuka Y. Structure-based design of UDP-GlcNAc analogs as candidate GnT-V inhibitors. Biochim Biophys Acta Gen Subj 2022; 1866:130118. [PMID: 35248671 PMCID: PMC9947920 DOI: 10.1016/j.bbagen.2022.130118] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 02/21/2022] [Accepted: 03/01/2022] [Indexed: 02/02/2023]
Abstract
BACKGROUND N-Glycan branching regulates various functions of glycoproteins. N-Acetylglucosaminyltransferase V (GnT-V) is a GlcNAc transferase that acts on N-glycans and the GnT-V-producing branch is highly related to cancer progression. This indicates that specific GnT-V inhibitors may be drug candidates for cancer treatment. To design novel GnT-V inhibitors, we focused on the unique and weak recognition of the donor substrate UDP-GlcNAc by GnT-V. On the basis of the catalytic pocket structure, we hypothesized that UDP-GlcNAc analogs with increasing hydrophobicity may be GnT-V inhibitors. METHODS We chemically synthesized 10 UDP-GlcNAc analogs in which one or two phosphate groups were replaced with hydrophobic groups. To test these compounds, we set up an HPLC-based enzyme assay system for all N-glycan-branching GlcNAc transferases in which GnT-I-V activity was measured using purified truncated enzymes. Using this system, we assessed the inhibitory effects of the synthesized compounds on GnT-V and their specificity. RESULTS Several UDP-GlcNAc analogs inhibited GnT-V activity, although the inhibition potency was modest. Compared with other GnTs, these compounds showed a preference for GnT-V, which suggested that GnT-V was relatively tolerant of hydrophobicity in the donor substrate. Docking models of the inhibitory compounds with GnT-V suggested the mechanisms of how these compounds interacted with GnT-V and inhibited its action. CONCLUSIONS Chemical modification of the donor substrate may be a promising strategy to develop selective inhibitors of GnT-V. GENERAL SIGNIFICANCE Our findings provide new insights into the design of GnT inhibitors and how GnTs recognize the donor substrate.
Collapse
Affiliation(s)
- Amol M Vibhute
- Institute for Glyco-core Research (iGCORE), Gifu University, Gifu 501-1193, Japan
| | - Hide-Nori Tanaka
- Institute for Glyco-core Research (iGCORE), Gifu University, Gifu 501-1193, Japan.
| | - Sushil K Mishra
- Glycoscience Center of Research Excellence, Department of BioMolecular Sciences, University of Mississippi, MS 38677, USA
| | - Reina F Osuka
- Graduate School of Natural Science and Technology, Gifu University, Gifu 501-1193, Japan
| | - Masamichi Nagae
- Department of Molecular Immunology, Research Institute for Microbial Diseases, Osaka University, Suita 565-0871, Japan; Laboratory of Molecular Immunology, Immunology Frontier Research Center (IFReC), Osaka University, Suita 565-0871, Japan
| | - Chizuko Yonekawa
- Institute for Glyco-core Research (iGCORE), Gifu University, Gifu 501-1193, Japan
| | - Hiroaki Korekane
- Disease Glycomics Team, RIKEN-Max Planck Joint Research Center, Global Research Cluster, RIKEN, Wako 351-0198, Japan
| | - Robert J Doerksen
- Glycoscience Center of Research Excellence, Department of BioMolecular Sciences, University of Mississippi, MS 38677, USA
| | - Hiromune Ando
- Institute for Glyco-core Research (iGCORE), Gifu University, Gifu 501-1193, Japan
| | - Yasuhiko Kizuka
- Institute for Glyco-core Research (iGCORE), Gifu University, Gifu 501-1193, Japan.
| |
Collapse
|
3
|
Taniguchi N, Ohkawa Y, Maeda K, Harada Y, Nagae M, Kizuka Y, Ihara H, Ikeda Y. True significance of N-acetylglucosaminyltransferases GnT-III, V and α1,6 fucosyltransferase in epithelial-mesenchymal transition and cancer. Mol Aspects Med 2020; 79:100905. [PMID: 33010941 DOI: 10.1016/j.mam.2020.100905] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 09/02/2020] [Indexed: 12/13/2022]
Abstract
It is well known that numerous cancer-related changes occur in glycans that are attached to glycoproteins, glycolipids and proteoglycans on the cell surface and these changes in structure and the expression of the glycans are largely regulated by glycosyl-transferases, glycosidases, nucleotide sugars and their related genes. Such structural changes in glycans on cell surface proteins may accelerate the progression, invasion and metastasis of cancer cells. Among the over 200 known glycosyltransferases and related genes, β 1,6 N-acetylglucosaminyltransferase V (GnT-V) (the MGAT5 gene) and α 1,6 fucosyltransferase (FUT8) (the FUT8 gene) are representative enzymes in this respect because changes in glycans caused by these genes appear to be related to cancer metastasis and invasion in vitro as well as in vivo, and a number of reports on these genes in related to epithelial-mesenchymal transition (EMT) have also appeared. Another enzyme, one of the N-glycan branching enzymes, β1,4 N-acetylglucosaminyltransferase III (GnT-III) (the MGAT3 gene) has been reported to suppress EMT. However, there are intermediate states between EMT and mesenchymal-epithelial transition (MET) and some of these genes have been implicated in both EMT and MET and are also probably in an intermediate state. Therefore, it would be difficult to clearly define which specific glycosyltransferase is involved in EMT or MET or an intermediate state. The significance of EMT and N-glycan branching glycosyltransferases needs to be reconsidered and the inhibition of their corresponding genes would also be desirable in therapeutics. This review mainly focuses on GnT-III, GnT-V and FUT8, major players as N-glycan branching enzymes in cancer in relation to EMT programs, and also discusses the catalytic mechanisms of GnT-V and FUT8 whose crystal structures have now been obtained.
Collapse
Affiliation(s)
- Naoyuki Taniguchi
- Department of Glyco-Oncology and Medical Biochemistry, Osaka International Cancer Institute, Osaka, Japan.
| | - Yuki Ohkawa
- Department of Glyco-Oncology and Medical Biochemistry, Osaka International Cancer Institute, Osaka, Japan.
| | - Kento Maeda
- Department of Glyco-Oncology and Medical Biochemistry, Osaka International Cancer Institute, Osaka, Japan.
| | - Yoichiro Harada
- Department of Glyco-Oncology and Medical Biochemistry, Osaka International Cancer Institute, Osaka, Japan.
| | - Masamichi Nagae
- Department of Molecular Immunology, RIMD, Osaka University, Osaka, Japan.
| | - Yasuhiko Kizuka
- Glyco-biochemistry Laboratory, G-Chain, Gifu University, Gifu, Japan.
| | - Hideyuki Ihara
- Division of Molecular Cell Biology, Department of Biomolecular Sciences, Saga University Faculty of Medicine, Saga, Japan.
| | - Yoshitaka Ikeda
- Division of Molecular Cell Biology, Department of Biomolecular Sciences, Saga University Faculty of Medicine, Saga, Japan.
| |
Collapse
|
4
|
Recognition of glycan and protein substrates by N-acetylglucosaminyltransferase-V. Biochim Biophys Acta Gen Subj 2020; 1864:129726. [PMID: 32890705 DOI: 10.1016/j.bbagen.2020.129726] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 08/11/2020] [Accepted: 08/30/2020] [Indexed: 01/07/2023]
Abstract
BACKGROUND N-Glycosylation is crucial for protein folding, trafficking, and functions. N-Glycans have a different number of N-acetylglucosamine (GlcNAc) branches in a protein-selective manner, and the β1,6-linked GlcNAc branch on specific proteins produced by N-acetylglucosaminyltransferase-V (GnT-V or MGAT5) promotes cancer malignancy. However, little is known about how GnT-V acts on specific target proteins. METHODS Based on our structural model, we hypothesized that GnT-V interacts with the N-glycan core or polypeptide moiety as well as the accepter site of N-glycan. To explore this possibility, we selected four candidate residues involved in the interaction with the glycan core or surrounding amino acids, created point mutants of these residues, and examined the in vitro and in vivo activities of the mutants. RESULTS Our in vitro enzyme assays using various types of substrates including oligosaccharides and glycoproteins revealed that the V354N mutant had dramatically reduced activity for all tested substrates with an altered substrate preference and that K361A had reduced activity for an oligosaccharide with asparagine (Asn), but not a shorter oligosaccharide without the reducing end of GlcNAc and Asn. These results suggest that V354 and K361 are involved in the recognition of N-glycan core and surrounding amino acids. We further performed rescue experiments using GnT-V knockout HeLa cells and confirmed the importance of these residues for modifications of glycoproteins in cells. CONCLUSIONS We identified several residues involved in the action of GnT-V toward N-glycan cores and surrounding amino acids. GENERAL SIGNIFICANCE Our data provide new insights into how GnT-V recognizes glycoproteins.
Collapse
|
5
|
Darby JF, Gilio AK, Piniello B, Roth C, Blagova E, Hubbard RE, Rovira C, Davies GJ, Wu L. Substrate Engagement and Catalytic Mechanisms of N-Acetylglucosaminyltransferase V. ACS Catal 2020. [DOI: 10.1021/acscatal.0c02222] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- John F. Darby
- Department of Chemistry, University of York, Heslington, York YO10 5DD, U.K
| | - Amelia K. Gilio
- Department of Chemistry, University of York, Heslington, York YO10 5DD, U.K
| | - Beatriz Piniello
- Departament de Quı́mica Inorgànica i Orgànica (Secció de Química Orgànica) and Institut de Quı́mica Teòrica i Computacional (IQTCUB), Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain
| | - Christian Roth
- Department of Chemistry, University of York, Heslington, York YO10 5DD, U.K
| | - Elena Blagova
- Department of Chemistry, University of York, Heslington, York YO10 5DD, U.K
| | | | - Carme Rovira
- Departament de Quı́mica Inorgànica i Orgànica (Secció de Química Orgànica) and Institut de Quı́mica Teòrica i Computacional (IQTCUB), Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Passeig Lluís Companys 23, 08020 Barcelona, Spain
| | - Gideon J. Davies
- Department of Chemistry, University of York, Heslington, York YO10 5DD, U.K
| | - Liang Wu
- Department of Chemistry, University of York, Heslington, York YO10 5DD, U.K
| |
Collapse
|
6
|
Nagae M, Yamaguchi Y, Taniguchi N, Kizuka Y. 3D Structure and Function of Glycosyltransferases Involved in N-glycan Maturation. Int J Mol Sci 2020; 21:E437. [PMID: 31936666 PMCID: PMC7014118 DOI: 10.3390/ijms21020437] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 01/06/2020] [Accepted: 01/08/2020] [Indexed: 12/21/2022] Open
Abstract
Glycosylation is the most ubiquitous post-translational modification in eukaryotes. N-glycan is attached to nascent glycoproteins and is processed and matured by various glycosidases and glycosyltransferases during protein transport. Genetic and biochemical studies have demonstrated that alternations of the N-glycan structure play crucial roles in various physiological and pathological events including progression of cancer, diabetes, and Alzheimer's disease. In particular, the formation of N-glycan branches regulates the functions of target glycoprotein, which are catalyzed by specific N-acetylglucosaminyltransferases (GnTs) such as GnT-III, GnT-IVs, GnT-V, and GnT-IX, and a fucosyltransferase, FUT8s. Although the 3D structures of all enzymes have not been solved to date, recent progress in structural analysis of these glycosyltransferases has provided insights into substrate recognition and catalytic reaction mechanisms. In this review, we discuss the biological significance and structure-function relationships of these enzymes.
Collapse
Affiliation(s)
- Masamichi Nagae
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yoshiki Yamaguchi
- Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Miyagi 981-8558, Japan;
| | - Naoyuki Taniguchi
- Department of Glyco-Oncology and Medical Biochemistry, Osaka International Cancer Institute, 3-1-69 Otemae, Chuo-ku, Osaka 541-8567, Japan;
| | - Yasuhiko Kizuka
- Center for Highly Advanced Integration of Nano and Life Sciences (G-CHAIN), Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| |
Collapse
|
7
|
Tang L, Chen X, Zhang X, Guo Y, Su J, Zhang J, Peng C, Chen X. N-Glycosylation in progression of skin cancer. Med Oncol 2019; 36:50. [PMID: 31037368 DOI: 10.1007/s12032-019-1270-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 04/11/2019] [Indexed: 12/29/2022]
Abstract
Skin cancer can be classified as cutaneous malignant melanoma, basal cell carcinoma, and squamous cell carcinoma. Due to the high level of morbidity and mortality, skin cancer has become a global public health issue worldwide while the pathogenesis of skin cancer is still unclear. It is necessary to further identify the pathogenesis of skin cancer and find candidate targets to diagnose and treat skin cancer. A variety of factors are known to be associated with skin cancer including N-glycosylation, which partly explained the malignant behaviors of skin cancer. In this review, we retrieved databases such as PubMed and Web of Science to elucidate its relationship between glycosylation and skin cancer. We summarized some key glycosyltransferases and proteins during the process of N-glycosylation related to skin cancer, which was helpful to unmask the additional mechanism of skin cancer and find some novel targets of skin cancer.
Collapse
Affiliation(s)
- Ling Tang
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Changsha, Hunan, China
- Hunan Engineering Research Center of Skin Health and Disease, Changsha, Hunan, China
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiaoping Chen
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xu Zhang
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Changsha, Hunan, China
- Hunan Engineering Research Center of Skin Health and Disease, Changsha, Hunan, China
| | - Yeye Guo
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Changsha, Hunan, China
- Hunan Engineering Research Center of Skin Health and Disease, Changsha, Hunan, China
| | - Juan Su
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Changsha, Hunan, China
- Hunan Engineering Research Center of Skin Health and Disease, Changsha, Hunan, China
| | - Jianglin Zhang
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Changsha, Hunan, China
- Hunan Engineering Research Center of Skin Health and Disease, Changsha, Hunan, China
| | - Cong Peng
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Changsha, Hunan, China.
- Hunan Engineering Research Center of Skin Health and Disease, Changsha, Hunan, China.
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Xiang Chen
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Changsha, Hunan, China.
- Hunan Engineering Research Center of Skin Health and Disease, Changsha, Hunan, China.
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
8
|
Structure and mechanism of cancer-associated N-acetylglucosaminyltransferase-V. Nat Commun 2018; 9:3380. [PMID: 30140003 PMCID: PMC6107550 DOI: 10.1038/s41467-018-05931-w] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 07/31/2018] [Indexed: 12/31/2022] Open
Abstract
N-acetylglucosaminyltransferase-V (GnT-V) alters the structure of specific N-glycans by modifying α1-6-linked mannose with a β1-6-linked N-acetylglucosamine branch. β1-6 branch formation on cell surface receptors accelerates cancer metastasis, making GnT-V a promising target for drug development. However, the molecular basis of GnT-V's catalytic mechanism and substrate specificity are not fully understood. Here, we report crystal structures of human GnT-V luminal domain with a substrate analog. GnT-V luminal domain is composed of a GT-B fold and two accessary domains. Interestingly, two aromatic rings sandwich the α1-6 branch of the acceptor N-glycan and restrain the global conformation, partly explaining the fine branch specificity of GnT-V. In addition, interaction of the substrate N-glycoprotein with GnT-V likely contributes to protein-selective and site-specific glycan modification. In summary, the acceptor-GnT-V complex structure suggests a catalytic mechanism, explains the previously observed inhibition of GnT-V by branching enzyme GnT-III, and provides a basis for the rational design of drugs targeting N-glycan branching.
Collapse
|
9
|
Bella M, Yan S, Šesták S, Kozmon S, Lin CH, Mucha J, Koóš M. Synthesis of a β- d
-Psicofuranosyl Sulfone and Inhibitory-Activity Evaluation Against N
-Acetylglucosaminyltransferase I. European J Org Chem 2017. [DOI: 10.1002/ejoc.201701102] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Maroš Bella
- Department of Glycochemistry; Institute of Chemistry; Slovak Academy of Sciences; Dúbravská cesta 9 84538 Bratislava Slovakia
| | - Shi Yan
- Department of Chemistry; University of Natural Resources and Life Sciences; Muthgasse 18 1190 Vienna Austria
| | - Sergej Šesták
- Department of Glycobiology; Institute of Chemistry; Slovak Academy of Sciences; Dúbravská cesta 9 84538 Bratislava Slovakia
| | - Stanislav Kozmon
- Department of Structure and Function of Saccharides; Institute of Chemistry; Slovak Academy of Sciences; Dúbravská cesta 9 84538 Bratislava Slovakia
| | - Chun-Hung Lin
- Institute of Biological Chemistry; Academia Sinica 128; Academia Road Sec. 2 115 Nankang Taipei Taiwan
| | - Ján Mucha
- Department of Glycobiology; Institute of Chemistry; Slovak Academy of Sciences; Dúbravská cesta 9 84538 Bratislava Slovakia
| | - Miroslav Koóš
- Department of Glycochemistry; Institute of Chemistry; Slovak Academy of Sciences; Dúbravská cesta 9 84538 Bratislava Slovakia
| |
Collapse
|
10
|
Enzymes for N-Glycan Branching and Their Genetic and Nongenetic Regulation in Cancer. Biomolecules 2016; 6:biom6020025. [PMID: 27136596 PMCID: PMC4919920 DOI: 10.3390/biom6020025] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 04/15/2016] [Accepted: 04/21/2016] [Indexed: 02/07/2023] Open
Abstract
N-glycan, a fundamental and versatile protein modification in mammals, plays critical roles in various physiological and pathological events including cancer progression. The formation of N-glycan branches catalyzed by specific N-acetylglucosaminyltransferases [GnT-III, GnT-IVs, GnT-V, GnT-IX (Vb)] and a fucosyltransferase, Fut8, provides functionally diverse N-glycosylated proteins. Aberrations of these branches are often found in cancer cells and are profoundly involved in cancer growth, invasion and metastasis. In this review, we focus on the GlcNAc and fucose branches of N-glycans and describe how their expression is dysregulated in cancer by genetic and nongenetic mechanisms including epigenetics and nucleotide sugar metabolisms. We also survey the roles that these N-glycans play in cancer progression and therapeutics. Finally, we discuss possible applications of our knowledge on basic glycobiology to the development of medicine and biomarkers for cancer therapy.
Collapse
|
11
|
Janoš P, Kozmon S, Tvaroška I, Koca J. Three-dimensional homology model of GlcNAc-TV glycosyltransferase. Glycobiology 2016; 26:757-771. [PMID: 26821880 DOI: 10.1093/glycob/cww010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 01/22/2016] [Indexed: 11/14/2022] Open
Abstract
The enzyme UDP-N-acetylglucosamine: α-d-mannoside β-1-6 N-acetylglucosaminyltransferase V (GnT-V) catalyzes the transfer of GlcNAc from the UDP-GlcNAc donor to the α-1-6-linked mannose of the trimannosyl core structure of glycoproteins to produce the β-1-6-linked branching of N-linked oligosaccharides. β-1-6-GlcNAc-branched N-glycans are associated with cancer growth and metastasis. Therefore, the inhibition of GnT-V represents a key target for anti-cancer drug development. However, the development of potent and specific inhibitors of GnT-V is hampered by the lack of information on the three-dimensional structure of the enzyme and on the binding characteristics of its substrates. Here we present the first 3D structure of GnT-V as a result of homology modeling. Various alignment methods, docking the donor and acceptor substrates, and molecular dynamics simulation were used to construct seven homology models of GnT-V and characterize the binding of its substrates. The best homology model is consistent with available experimental data. The three-dimensional model, the structure of the enzyme catalytic site and binding information obtained for the donor and acceptor can be useful in studies of the catalytic mechanism and design of inhibitors of GnT-V.
Collapse
Affiliation(s)
- Pavel Janoš
- Central European Institute of Technology (CEITEC).,Faculty of Science-National Centre for Biomolecular Research, Masaryk University, Brno, Czech Republic
| | - Stanislav Kozmon
- Central European Institute of Technology (CEITEC).,Faculty of Science-National Centre for Biomolecular Research, Masaryk University, Brno, Czech Republic.,Institute of Chemistry, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Igor Tvaroška
- Central European Institute of Technology (CEITEC).,Institute of Chemistry, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Jaroslav Koca
- Central European Institute of Technology (CEITEC).,Faculty of Science-National Centre for Biomolecular Research, Masaryk University, Brno, Czech Republic
| |
Collapse
|
12
|
|
13
|
Hanashima S, Korekane H, Taniguchi N, Yamaguchi Y. Synthesis of N-glycan units for assessment of substrate structural requirements of N-acetylglucosaminyltransferase III. Bioorg Med Chem Lett 2014; 24:4533-4537. [PMID: 25139566 DOI: 10.1016/j.bmcl.2014.07.074] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 07/22/2014] [Accepted: 07/29/2014] [Indexed: 12/27/2022]
Abstract
N-Acetylglucosaminyltransferase (GnT) III is a glycosyltransferase which produces bisected N-glycans by transferring GlcNAc to the 4-position of core mannose. Bisected N-glycans are involved in physiological and pathological processes through the functional regulation of their carrier proteins. An understanding of the biological functions of bisected glycans will be greatly accelerated by use of specific inhibitors of GnT-III. Thus far, however, such inhibitors have not been developed and even the substrate-binding mode of GnT-III is not fully understood. To gain insight into structural features required of the substrate, we systematically synthesized four N-glycan units, the branching parts of the bisected and non-bisected N-glycans. The series of syntheses were achieved from a common core trimannose, giving bisected tetra- and hexasaccharides as well as non-bisected tri- and pentasaccharides. A competitive GnT-III inhibition assay using the synthetic substrates revealed a vital role for the Manβ(1-4)GlcNAc moiety. In keeping with previous reports, GlcNAc at the α1,3-branch is also involved in the interaction. The structural requirements of GnT-III elucidated in this study will provide a basis for rational inhibitor design.
Collapse
Affiliation(s)
- Shinya Hanashima
- Structural Glycobiology Team, Systems Glycobiology Research Group, RIKEN-Max Planck Joint Research Center for Systems Chemical Biology, RIKEN Global Research Cluster, Wako, Saitama 351-0198, Japan; Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Hiroaki Korekane
- Disease Glycomics Team, Systems Glycobiology Research Group, RIKEN-Max Planck Joint Research Center for Systems Chemical Biology, RIKEN Global Research Cluster, Wako, Saitama 351-0198, Japan
| | - Naoyuki Taniguchi
- Disease Glycomics Team, Systems Glycobiology Research Group, RIKEN-Max Planck Joint Research Center for Systems Chemical Biology, RIKEN Global Research Cluster, Wako, Saitama 351-0198, Japan
| | - Yoshiki Yamaguchi
- Structural Glycobiology Team, Systems Glycobiology Research Group, RIKEN-Max Planck Joint Research Center for Systems Chemical Biology, RIKEN Global Research Cluster, Wako, Saitama 351-0198, Japan.
| |
Collapse
|
14
|
Tedaldi LM, Pierce M, Wagner GK. Optimised chemical synthesis of 5-substituted UDP-sugars and their evaluation as glycosyltransferase inhibitors. Carbohydr Res 2012; 364:22-7. [PMID: 23147042 DOI: 10.1016/j.carres.2012.10.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Revised: 10/09/2012] [Accepted: 10/11/2012] [Indexed: 10/27/2022]
Abstract
We have investigated the applicability of different chemical methods for pyrophosphate bond formation to the synthesis of 5-substituted UDP-galactose and UDP-N-acetylglucosamine derivatives. The use of phosphoromorpholidate chemistry, in conjunction with N-methyl imidazolium chloride as the promoter, was identified as the most reliable synthetic protocol for the preparation of these non-natural sugar-nucleotides. Under these conditions, the primary synthetic targets 5-iodo UDP-galactose and 5-iodo UDP-N-acetylglucosamine were consistently obtained in isolated yields of 40-43%. Both 5-iodo UDP-sugars were used successfully as substrates in the Suzuki-Miyaura cross-coupling with 5-formylthien-2-ylboronic acid under aqueous conditions. Importantly, 5-iodo UDP-GlcNAc and 5-(5-formylthien-2-yl) UDP-GlcNAc showed moderate inhibitory activity against the GlcNAc transferase GnT-V, providing the first examples for the inhibition of a GlcNAc transferase by a base-modified donor analogue.
Collapse
Affiliation(s)
- Lauren M Tedaldi
- King's College London, School of Biomedical Sciences, Institute of Pharmaceutical Science & Department of Chemistry, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, United Kingdom
| | | | | |
Collapse
|
15
|
Development of inhibitors as research tools for carbohydrate-processing enzymes. Biochem Soc Trans 2012; 40:913-28. [DOI: 10.1042/bst20120201] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Carbohydrates, which are present in all domains of life, play important roles in a host of cellular processes. These ubiquitous biomolecules form highly diverse and often complex glycan structures without the aid of a template. The carbohydrate structures are regulated solely by the location and specificity of the enzymes responsible for their synthesis and degradation. These enzymes, glycosyltransferases and glycoside hydrolases, need to be functionally well characterized in order to investigate the structure and function of glycans. The use of enzyme inhibitors, which target a particular enzyme, can significantly aid this understanding, and may also provide insights into therapeutic applications. The present article describes some of the approaches used to design and develop enzyme inhibitors as tools for investigating carbohydrate-processing enzymes.
Collapse
|
16
|
Figlus M, Wellaway N, Cooper AWJ, Sollis SL, Hartley RC. Synthesis of arrays using low molecular weight MPEG-assisted Mitsunobu reaction. ACS COMBINATORIAL SCIENCE 2011; 13:280-5. [PMID: 21438502 DOI: 10.1021/co100091n] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Triphenylphosphine tagged with a short poly-(ethyleneglycol)-ω-monomethyl ether chain (light MPEG, 10−16 ethylenoxy units, (M)TPP-G2) and an MPEG-tagged version of diethyl azodicarboxylate ((M)DEAD) have been used to prepare a 20 member library of esters, ethers, and sulfonamides, with cLogP's in the range of 1.4−5.7 on a 0.1 mmol scale. Removal of MPEG-tagged side products was achieved by MPEG-assisted solid-phase extraction (MSPE) on prepacked silica columns to give the products in good yield and high purity.
Collapse
Affiliation(s)
- Marek Figlus
- WestCHEM Department of Chemistry, University of Glasgow, Glasgow, G12 8QQ, United Kingdom
| | - Natalie Wellaway
- GSK Medicines Centre, Gunnels Wood Rd, Stevenage, SG1 2NY, United Kingdom
| | | | - Steven L. Sollis
- GSK Medicines Centre, Gunnels Wood Rd, Stevenage, SG1 2NY, United Kingdom
| | - Richard C. Hartley
- WestCHEM Department of Chemistry, University of Glasgow, Glasgow, G12 8QQ, United Kingdom
| |
Collapse
|
17
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: an update for the period 2005-2006. MASS SPECTROMETRY REVIEWS 2011; 30:1-100. [PMID: 20222147 DOI: 10.1002/mas.20265] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
This review is the fourth update of the original review, published in 1999, on the application of MALDI mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2006. The review covers fundamental studies, fragmentation of carbohydrate ions, method developments, and applications of the technique to the analysis of different types of carbohydrate. Specific compound classes that are covered include carbohydrate polymers from plants, N- and O-linked glycans from glycoproteins, glycated proteins, glycolipids from bacteria, glycosides, and various other natural products. There is a short section on the use of MALDI-TOF mass spectrometry for the study of enzymes involved in glycan processing, a section on industrial processes, particularly the development of biopharmaceuticals and a section on the use of MALDI-MS to monitor products of chemical synthesis of carbohydrates. Large carbohydrate-protein complexes and glycodendrimers are highlighted in this final section.
Collapse
Affiliation(s)
- David J Harvey
- Department of Biochemistry, Oxford Glycobiology Institute, University of Oxford, Oxford OX1 3QU, UK.
| |
Collapse
|
18
|
Manabe S, Ishii K, Ito Y. N-Benzyl-2,3-trans-Carbamate-Bearing Glycosyl Donors for 1,2-cis-Selective Glycosylation Reactions. European J Org Chem 2010. [DOI: 10.1002/ejoc.201001278] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
19
|
Le Calvez PB, Scott CJ, Migaud ME. Multisubstrate adduct inhibitors: drug design and biological tools. J Enzyme Inhib Med Chem 2010; 24:1291-318. [PMID: 19912064 DOI: 10.3109/14756360902843809] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In drug discovery, different methods exist to create new inhibitors possessing satisfactory biological activity. The multisubstrate adduct inhibitor (MAI) approach is one of these methods, which consists of a covalent combination between analogs of the substrate and the cofactor or of the multiple substrates used by the target enzyme. Adopted as the first line of investigation for many enzymes, this method has brought insights into the enzymatic mechanism, structure, and inhibitory requirements. In this review, the MAI approach, applied to different classes of enzyme, is reported from the point of view of biological activity.
Collapse
|
20
|
Figlus M, Tarruella AC, Messer A, Sollis SL, Hartley RC. Low molecular weight MPEG-assisted organic synthesis. Chem Commun (Camb) 2010; 46:4405-7. [DOI: 10.1039/c0cc00415d] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
21
|
|
22
|
Encinas L, Chiara JL. Lipophilic Thioglycosides for the Solution-Phase Synthesis of Oligosaccharides Using Biphasic Liquid-Liquid Separation. European J Org Chem 2009. [DOI: 10.1002/ejoc.200900081] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
23
|
Identification of trimannoside-recognizing peptide sequences from a T7 phage display screen using a QCM device. Bioorg Med Chem 2008; 17:195-202. [PMID: 19027303 DOI: 10.1016/j.bmc.2008.11.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2008] [Revised: 11/04/2008] [Accepted: 11/04/2008] [Indexed: 01/17/2023]
Abstract
Here, we report on the identification of trimannoside-recognizing peptide sequences from a T7 phage display screen using a quartz-crystal microbalance (QCM) device. A trimannoside derivative that can form a self-assembled monolayer (SAM) was synthesized and used for immobilization on the gold electrode surface of a QCM sensor chip. After six sets of one-cycle affinity selection, T7 phage particles displaying PSVGLFTH (8-mer) and SVGLGLGFSTVNCF (14-mer) were found to be enriched at a rate of 17/44, 9/44, respectively, suggesting that these peptides specifically recognize trimannoside. Binding checks using the respective single T7 phage and synthetic peptide also confirmed the specific binding of these sequences to the trimannoside-SAM. Subsequent analysis revealed that these sequences correspond to part of the primary amino acid sequence found in many mannose- or hexose-related proteins. Taken together, these results demonstrate the effectiveness of our T7 phage display environment for affinity selection of binding peptides. We anticipate this screening result will also be extremely useful in the development of inhibitors or drug delivery systems targeting polysaccharides as well as further investigations into the function of carbohydrates in vivo.
Collapse
|
24
|
|
25
|
Manabe S, Ueki A, Ito Y. Polymer-supported oligosaccharide synthesis using ultrafiltration methodology. Chem Commun (Camb) 2007:3673-5. [PMID: 17728890 DOI: 10.1039/b705324j] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Polymer-supported oligosaccharide synthesis was carried out using an ultrafiltration technique in which the synthesized polymer-bound oligosaccharides were separated from the other reagents by ultrafiltration though membranes with specifically sized pores.
Collapse
Affiliation(s)
- Shino Manabe
- RIKEN (The Institute of Physical and Chemical Research), Hirosawa, Wako, Saitama, Japan.
| | | | | |
Collapse
|