1
|
Malina J, Kostrhunova H, Brabec V. Ni(II) Cylinders Damage DNA in Cancer Cells and Preferentially Bind Y-Shaped DNA Three-Way Junctions Blocking DNA Synthesis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2406814. [PMID: 39428899 DOI: 10.1002/smll.202406814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/30/2024] [Indexed: 10/22/2024]
Abstract
DNA three-way junctions are critical in various biological processes and hold significant potential for disease treatment and therapeutic applications. In this study, it is demonstrated that triple-stranded dinuclear [Ni2L3]4+ cylinders (L = C25H20N4) exhibit a preferential binding affinity for Y-shaped DNA three-way junctions (3WJs), even in the presence of an excess of competing DNA structures, including G-quadruplexes. Notably, the investigated Ni(II) cylinders are capable of halting DNA synthesis catalyzed by DNA polymerase by stabilizing the 3WJ on the template strand. Using an extended 1D nanoarchitecture model, it is further established the high affinity and selectivity of the cylinders for DNA 3WJs and explored their potential application in stabilizing short-armed 3WJs for constructing DNA nanomaterials. The combined use of Ni(II) cylinders and DNA damage response inhibitors also revealed that the cylinders promote DNA damage, leading to the formation of double-strand breaks. This effect is likely associated with i) the binding of cylinders to 3WJs and ii) the cytotoxic activity of the cylinders in cancer cells.
Collapse
Affiliation(s)
- Jaroslav Malina
- Czech Academy of Sciences, Institute of Biophysics, Brno, CZ-61200, Czech Republic
| | - Hana Kostrhunova
- Czech Academy of Sciences, Institute of Biophysics, Brno, CZ-61200, Czech Republic
| | - Viktor Brabec
- Czech Academy of Sciences, Institute of Biophysics, Brno, CZ-61200, Czech Republic
- Palacky University, Department of Biophysics, Faculty of Science, Olomouc, CZ-78371, Czech Republic
| |
Collapse
|
2
|
Malina J, Crowley JD, Brabec V. Interaction of dinuclear Co(III) cylinders with higher-order DNA structures. Chem Biol Interact 2024; 395:111031. [PMID: 38703805 DOI: 10.1016/j.cbi.2024.111031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 04/20/2024] [Accepted: 05/01/2024] [Indexed: 05/06/2024]
Abstract
Alternative DNA structures play critical roles in fundamental biological processes linked to human diseases. Thus, targeting and stabilizing these structures by specific ligands could affect the progression of cancer and other diseases. Here, we describe, using methods of molecular biophysics, the interactions of two oxidatively locked [Co2L3]6+ cylinders, rac-2 and meso-1, with diverse alternative DNA structures, such as junctions, G quadruplexes, and bulges. This study was motivated by earlier results demonstrating that both Co(III) cylinders exhibit potent and selective activity against cancer cells, accumulate in the nucleus of cancer cells, and prove to be efficient DNA binders. The results show that the bigger cylinder rac-2 stabilizes all DNA structures, while the smaller cylinder meso-1 stabilizes just the Y-shaped three-way junctions. Collectively, the results of this study suggest that the stabilization of alternative DNA structures by Co(III) cylinders investigated in this work might contribute to the mechanism of their biological activity.
Collapse
Affiliation(s)
- Jaroslav Malina
- Czech Academy of Sciences, Institute of Biophysics, CZ-61200, Brno, Czech Republic
| | - James D Crowley
- Department of Chemistry, University of Otago, Dunedin, 9016, Otago, New Zealand
| | - Viktor Brabec
- Czech Academy of Sciences, Institute of Biophysics, CZ-61200, Brno, Czech Republic; Department of Biophysics, Faculty of Science, Palacky University, CZ-78371, Olomouc, Czech Republic.
| |
Collapse
|
3
|
McGorman B, Poole S, López MV, Kellett A. Analysis of non-canonical three- and four-way DNA junctions. Methods 2023; 219:30-38. [PMID: 37690737 DOI: 10.1016/j.ymeth.2023.09.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/01/2023] [Accepted: 09/05/2023] [Indexed: 09/12/2023] Open
Abstract
The development of compounds that can selectively bind with non-canonical DNA structures has expanded in recent years. Junction DNA, including three-way junctions (3WJs) and four-way Holliday junctions (HJs), offer an intriguing target for developmental therapeutics as both 3WJs and HJs are involved in DNA replication and repair processes. However, there are a limited number of assays available for the analysis of junction DNA binding. Here, we describe the design and execution of multiplex fluorescent polyacrylamide gel electrophoresis (PAGE) and microscale thermophoresis (MST) assays that enable evaluation of junction-binding compounds. Two well characterised junction-binding compounds-a C6 linked bis-acridine ligand and an iron(II)-bound peptide helicate, which recognise HJs and 3WJs, respectively-were employed as probes for both MST and PAGE experiments. The multiplex PAGE assay expands beyond previously reported fluorescent PAGE as it uses four individual fluorophores that can be combined to visualise single-strands, pseudo-duplexes, and junction DNA present during 3WJ and HJ formation. The use of MST to identify the binding affinity of junction binding agents is, to our knowledge, first reported example of this technique. The combined use of PAGE and MST provides complementary results for the visualisation of 3WJ and HJ formation and the direct binding affinity (Kd and EC50) of these agents. These assays can be used to aid the discovery and design of new therapeutics targeting non-canonical nucleic acid structures.
Collapse
Affiliation(s)
- Bríonna McGorman
- SSPC, the Science Foundation Ireland Research Centre for Pharmaceuticals, School of Chemical Sciences, Dublin City University Glasnevin, Dublin 9, Ireland
| | - Simon Poole
- SSPC, the Science Foundation Ireland Research Centre for Pharmaceuticals, School of Chemical Sciences, Dublin City University Glasnevin, Dublin 9, Ireland
| | - Miguel Vázquez López
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Inorgánica. Universidade de Santiago de Compostela., Rúa Jenaro de la Fuente s/n, 15782 Santiago de Compostela, Spain
| | - Andrew Kellett
- SSPC, the Science Foundation Ireland Research Centre for Pharmaceuticals, School of Chemical Sciences, Dublin City University Glasnevin, Dublin 9, Ireland.
| |
Collapse
|
4
|
Malina J, Kostrhunova H, Scott P, Brabec V. Metallohelices stabilize DNA three-way junctions and induce DNA damage in cancer cells. Nucleic Acids Res 2023; 51:7174-7183. [PMID: 37351627 PMCID: PMC10415117 DOI: 10.1093/nar/gkad536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/31/2023] [Accepted: 06/08/2023] [Indexed: 06/24/2023] Open
Abstract
DNA three-way junctions (3WJ) represent one of the simplest supramolecular DNA structures arising as intermediates in homologous recombination in the absence of replication. They are also formed transiently during DNA replication. Here we examine the ability of Fe(II)-based metallohelices to act as DNA 3WJ binders and induce DNA damage in cells. We investigated the interaction of eight pairs of enantiomerically pure Fe(II) metallohelices with four different DNA junctions using biophysical and molecular biology methods. The results show that the metallohelices stabilize all types of tested DNA junctions, with the highest selectivity for the Y-shaped 3WJ and minimal selectivity for the 4WJ. The potential of the best stabilizer of DNA junctions and, at the same time, the most selective 3WJ binder investigated in this work to induce DNA damage was determined in human colon cancer HCT116 cells. These metallohelices proved to be efficient in killing cancer cells and triggering DNA damage that could yield therapeutic benefits.
Collapse
Affiliation(s)
- Jaroslav Malina
- Czech Academy of Sciences, Institute of Biophysics, Brno, CZ-61200, Czech Republic
| | - Hana Kostrhunova
- Czech Academy of Sciences, Institute of Biophysics, Brno, CZ-61200, Czech Republic
| | - Peter Scott
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK
| | - Viktor Brabec
- Czech Academy of Sciences, Institute of Biophysics, Brno, CZ-61200, Czech Republic
| |
Collapse
|
5
|
Craig JS, Melidis L, Williams HD, Dettmer SJ, Heidecker AA, Altmann PJ, Guan S, Campbell C, Browning DF, Sigel RKO, Johannsen S, Egan RT, Aikman B, Casini A, Pöthig A, Hannon MJ. Organometallic Pillarplexes That Bind DNA 4-Way Holliday Junctions and Forks. J Am Chem Soc 2023. [PMID: 37318835 DOI: 10.1021/jacs.3c00118] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Holliday 4-way junctions are key to important biological DNA processes (insertion, recombination, and repair) and are dynamic structures that adopt either open or closed conformations, the open conformation being the biologically active form. Tetracationic metallo-supramolecular pillarplexes display aryl faces about a cylindrical core, an ideal structure to interact with open DNA junction cavities. Combining experimental studies and MD simulations, we show that an Au pillarplex can bind DNA 4-way (Holliday) junctions in their open form, a binding mode not accessed by synthetic agents before. Pillarplexes can bind 3-way junctions too, but their large size leads them to open up and expand that junction, disrupting the base pairing, which manifests in an increased hydrodynamic size and lower junction thermal stability. At high loading, they rearrange both 4-way and 3-way junctions into Y-shaped forks to increase the available junction-like binding sites. Isostructural Ag pillarplexes show similar DNA junction binding behavior but lower solution stability. This pillarplex binding contrasts with (but complements) that of metallo-supramolecular cylinders, which prefer 3-way junctions and can rearrange 4-way junctions into 3-way junction structures. The pillarplexes' ability to bind open 4-way junctions creates exciting possibilities to modulate and switch such structures in biology, as well as in synthetic nucleic acid nanostructures. In human cells, the pillarplexes do reach the nucleus, with antiproliferative activity at levels similar to those of cisplatin. The findings provide a new roadmap for targeting higher-order junction structures using a metallo-supramolecular approach, as well as expanding the toolbox available to design bioactive junction binders into organometallic chemistry.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Roland K O Sigel
- Department of Chemistry, University of Zürich, Winterthurerstr. 190, 8057 Zürich, Switzerland
| | - Silke Johannsen
- Department of Chemistry, University of Zürich, Winterthurerstr. 190, 8057 Zürich, Switzerland
| | | | | | | | | | | |
Collapse
|
6
|
McQuaid K, Pipier A, Cardin C, Monchaud D. Interactions of small molecules with DNA junctions. Nucleic Acids Res 2022; 50:12636-12656. [PMID: 36382400 PMCID: PMC9825177 DOI: 10.1093/nar/gkac1043] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 10/13/2022] [Accepted: 10/23/2022] [Indexed: 11/17/2022] Open
Abstract
The four natural DNA bases (A, T, G and C) associate in base pairs (A=T and G≡C), allowing the attached DNA strands to assemble into the canonical double helix of DNA (or duplex-DNA, also known as B-DNA). The intrinsic supramolecular properties of nucleobases make other associations possible (such as base triplets or quartets), which thus translates into a diversity of DNA structures beyond B-DNA. To date, the alphabet of DNA structures is ripe with approximately 20 letters (from A- to Z-DNA); however, only a few of them are being considered as key players in cell biology and, by extension, valuable targets for chemical biology intervention. In the present review, we summarise what is known about alternative DNA structures (what are they? When, where and how do they fold?) and proceed to discuss further about those considered nowadays as valuable therapeutic targets. We discuss in more detail the molecular tools (ligands) that have been recently developed to target these structures, particularly the three- and four-way DNA junctions, in order to intervene in the biological processes where they are involved. This new and stimulating chemical biology playground allows for devising innovative strategies to fight against genetic diseases.
Collapse
Affiliation(s)
- Kane T McQuaid
- Department of Chemistry, University of Reading, Whiteknights, Reading RG6 6AD, UK
| | - Angélique Pipier
- Institut de Chimie Moléculaire de l’Université de Bourgogne (ICMUB), CNRS UMR 6302, UBFC Dijon, 21078 Dijon, France
| | - Christine J Cardin
- Department of Chemistry, University of Reading, Whiteknights, Reading RG6 6AD, UK
| | - David Monchaud
- Institut de Chimie Moléculaire de l’Université de Bourgogne (ICMUB), CNRS UMR 6302, UBFC Dijon, 21078 Dijon, France
| |
Collapse
|
7
|
Ivens E, Cominetti MM, Searcey M. Junctions in DNA: underexplored targets for therapeutic intervention. Bioorg Med Chem 2022; 69:116897. [DOI: 10.1016/j.bmc.2022.116897] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/15/2022] [Accepted: 06/20/2022] [Indexed: 11/02/2022]
|
8
|
Malina J, Kostrhunova H, Brabec V. Dinuclear nickel( ii) supramolecular helicates down-regulate gene expression in human cells by stabilizing DNA G-quadruplexes formed in the promoter regions. Inorg Chem Front 2022. [DOI: 10.1039/d2qi01435a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Dinuclear nickel(ii) supramolecular helicates selectively stabilize DNA G-quadruplexes and suppress G-quadruplex-regulated genes.
Collapse
Affiliation(s)
- Jaroslav Malina
- Czech Academy of Sciences, Institute of Biophysics, Kralovopolska 135, CZ-61265 Brno, Czech Republic
| | - Hana Kostrhunova
- Czech Academy of Sciences, Institute of Biophysics, Kralovopolska 135, CZ-61265 Brno, Czech Republic
| | - Viktor Brabec
- Czech Academy of Sciences, Institute of Biophysics, Kralovopolska 135, CZ-61265 Brno, Czech Republic
| |
Collapse
|
9
|
Zell J, Duskova K, Chouh L, Bossaert M, Chéron N, Granzhan A, Britton S, Monchaud D. Dual targeting of higher-order DNA structures by azacryptands induces DNA junction-mediated DNA damage in cancer cells. Nucleic Acids Res 2021; 49:10275-10288. [PMID: 34551430 PMCID: PMC8501980 DOI: 10.1093/nar/gkab796] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 08/16/2021] [Accepted: 09/01/2021] [Indexed: 12/11/2022] Open
Abstract
DNA is intrinsically dynamic and folds transiently into alternative higher-order structures such as G-quadruplexes (G4s) and three-way DNA junctions (TWJs). G4s and TWJs can be stabilised by small molecules (ligands) that have high chemotherapeutic potential, either as standalone DNA damaging agents or combined in synthetic lethality strategies. While previous approaches have claimed to use ligands that specifically target either G4s or TWJs, we report here on a new approach in which ligands targeting both TWJs and G4s in vitro demonstrate cellular effects distinct from that of G4 ligands, and attributable to TWJ targeting. The DNA binding modes of these new, dual TWJ-/G4-ligands were studied by a panel of in vitro methods and theoretical simulations, and their cellular properties by extensive cell-based assays. We show here that cytotoxic activity of TWJ-/G4-ligands is mitigated by the DNA damage response (DDR) and DNA topoisomerase 2 (TOP2), making them different from typical G4-ligands, and implying a pivotal role of TWJs in cells. We designed and used a clickable ligand, TrisNP-α, to provide unique insights into the TWJ landscape in cells and its modulation upon co-treatments. This wealth of data was exploited to design an efficient synthetic lethality strategy combining dual ligands with clinically relevant DDR inhibitors.
Collapse
Affiliation(s)
- Joanna Zell
- Institut de Chimie Moléculaire de l’Université de Bourgogne (ICMUB), CNRS UMR 6302, UBFC Dijon, 21078 Dijon, France
| | - Katerina Duskova
- Institut de Chimie Moléculaire de l’Université de Bourgogne (ICMUB), CNRS UMR 6302, UBFC Dijon, 21078 Dijon, France
| | - Leïla Chouh
- Institut Curie, CNRS UMR 9187, INSERM U1196, PSL Research University, 91405 Orsay, France
- Université Paris Saclay, CNRS UMR 9187, INSERM U1196, 91405 Orsay, France
| | - Madeleine Bossaert
- Institut de Pharmacologie et de Biologie Structurale (IPBS), CNRS UMR 5089, Université de Toulouse, UPS, Équipe labellisée la Ligue Contre le Cancer, 31077 Toulouse, France
| | - Nicolas Chéron
- Pasteur, Département de chimie, École Normale Supérieure (ENS), CNRS UMR8640, PSL Research University, Sorbonne Université, 75005 Paris, France
| | - Anton Granzhan
- Institut Curie, CNRS UMR 9187, INSERM U1196, PSL Research University, 91405 Orsay, France
- Université Paris Saclay, CNRS UMR 9187, INSERM U1196, 91405 Orsay, France
| | - Sébastien Britton
- Institut de Pharmacologie et de Biologie Structurale (IPBS), CNRS UMR 5089, Université de Toulouse, UPS, Équipe labellisée la Ligue Contre le Cancer, 31077 Toulouse, France
| | - David Monchaud
- Institut de Chimie Moléculaire de l’Université de Bourgogne (ICMUB), CNRS UMR 6302, UBFC Dijon, 21078 Dijon, France
| |
Collapse
|
10
|
Gómez-González J, Bouzada D, Pérez-Márquez LA, Sciortino G, Maréchal JD, Vázquez López M, Vázquez ME. Stereoselective Self-Assembly of DNA Binding Helicates Directed by the Viral β-Annulus Trimeric Peptide Motif. Bioconjug Chem 2021; 32:1564-1569. [PMID: 34320309 PMCID: PMC8485332 DOI: 10.1021/acs.bioconjchem.1c00312] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
![]()
Combining
coordination chemistry and peptide engineering offers
extraordinary opportunities for developing novel molecular (supra)structures.
Here, we demonstrate that the β-annulus motif is capable of
directing the stereoselective assembly of designed peptides containing
2,2′-bipyridine ligands into parallel three-stranded chiral
peptide helicates, and that these helicates selectively bind with
high affinity to three-way DNA junctions.
Collapse
Affiliation(s)
- Jacobo Gómez-González
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Inorgánica, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - David Bouzada
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Lidia A Pérez-Márquez
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Inorgánica, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Giuseppe Sciortino
- Insilichem, Departament de Química, Universitat Autònoma de Barcelona, 08193 Cerdanyola, Spain
| | - Jean-Didier Maréchal
- Insilichem, Departament de Química, Universitat Autònoma de Barcelona, 08193 Cerdanyola, Spain
| | - Miguel Vázquez López
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Inorgánica, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - M Eugenio Vázquez
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| |
Collapse
|
11
|
Lisboa LS, Riisom M, Vasdev RAS, Jamieson SMF, Wright LJ, Hartinger CG, Crowley JD. Cavity-Containing [Fe 2L 3] 4+ Helicates: An Examination of Host-Guest Chemistry and Cytotoxicity. Front Chem 2021; 9:697684. [PMID: 34307299 PMCID: PMC8292671 DOI: 10.3389/fchem.2021.697684] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 06/16/2021] [Indexed: 02/04/2023] Open
Abstract
Two new di(2,2′-bipyridine) ligands, 2,6-bis([2,2′-bipyridin]-5-ylethynyl)pyridine (L1) and bis(4-([2,2′-bipyridin]-5-ylethynyl)phenyl)methane (L2) were synthesized and used to generate two metallosupramolecular [Fe2(L)3](BF4)4 cylinders. The ligands and cylinders were characterized using elemental analysis, electrospray ionization mass spectrometry, UV-vis, 1H-, 13C and DOSY nuclear magnetic resonance (NMR) spectroscopies. The molecular structures of the [Fe2(L)3](BF4)4 cylinders were confirmed using X-ray crystallography. Both the [Fe2(L1)3](BF4)4 and [Fe2(L2)3](BF4)4 complexes crystallized as racemic (rac) mixtures of the ΔΔ (P) and ΛΛ (M) helicates. However, 1H NMR spectra showed that in solution the larger [Fe2(L2)3](BF4)4 was a mixture of the rac-ΔΔ/ΛΛ and meso-ΔΛ isomers. The host-guest chemistry of the helicates, which both feature a central cavity, was examined with several small drug molecules. However, none of the potential guests were found to bind within the helicates. In vitro cytotoxicity assays demonstrated that both helicates were active against four cancer cell lines. The smaller [Fe2(L1)3](BF4)4 system displayed low μM activity against the HCT116 (IC50 = 7.1 ± 0.5 μM) and NCI-H460 (IC50 = 4.9 ± 0.4 μM) cancer cells. While the antiproliferative effects against all the cell lines examined were less than the well-known anticancer drug cisplatin, their modes of action would be expected to be very different.
Collapse
Affiliation(s)
- Lynn S Lisboa
- Department of Chemistry, University of Otago, Dunedin, New Zealand
| | - Mie Riisom
- School of Chemical Sciences, University of Auckland, Auckland, New Zealand.,Auckland Cancer Society Research Centre, University of Auckland, Auckland, New Zealand
| | - Roan A S Vasdev
- Department of Chemistry, University of Otago, Dunedin, New Zealand
| | - Stephen M F Jamieson
- Auckland Cancer Society Research Centre, University of Auckland, Auckland, New Zealand
| | - L James Wright
- School of Chemical Sciences, University of Auckland, Auckland, New Zealand
| | | | - James D Crowley
- Department of Chemistry, University of Otago, Dunedin, New Zealand
| |
Collapse
|
12
|
Tran NM, Yoo H. Recent advances in heteroleptic multiple-stranded metallosupramolecules. Dalton Trans 2021; 49:11819-11827. [PMID: 32797124 DOI: 10.1039/d0dt02243h] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Well-ordered combination of defined coordination spheres and multiple types of ligands (heteroleptic) in a given structure can expand the structural complexity and functional diversity of the resulting metallosupramolecules. Such heteroleptic metallosupramolecular architectures are expected to afford advanced utility in a variety of applications. In this concise review article, recent advances in the development of multi-nuclear-cluster-based heteroleptic multiple-stranded (HLMS) metallosupramolecules are summarized and demonstrated. To construct HLMS metallosupramolecules, one type of multitopic ligands can be employed for building up multiple strands, while another type of ligands can be utilized to construct multi-nuclear clusters. Most HLMS metallosupramolecules adopt helical geometries and have high molecular symmetry, which can be key factors for the structural completion. HLMS metallosupramolecules can be used as basic building blocks for the fabrication of higher-order polymeric or discrete assembly architectures with well-defined geometries.
Collapse
Affiliation(s)
- Ngoc Minh Tran
- Department of Materials Science and Chemical Engineering, Hanyang University, Ansan, Gyeonggi-do 15588, Republic of Korea.
| | - Hyojong Yoo
- Department of Materials Science and Chemical Engineering, Hanyang University, Ansan, Gyeonggi-do 15588, Republic of Korea.
| |
Collapse
|
13
|
Dey N, Haynes CJE. Supramolecular Coordination Complexes as Optical Biosensors. Chempluschem 2021; 86:418-433. [PMID: 33665986 DOI: 10.1002/cplu.202100004] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/15/2021] [Indexed: 12/11/2022]
Abstract
In recent years, luminescent supramolecular coordination complexes (SCCs), including 2D-metallacycles and 3D-metallacages have been utilised for biomolecular analysis. Unlike small-molecular probes, the dimensions, size, shape, and flexibility of these complexes can easily be tuned by combining ligands designed with particular geometries, symmetries and denticity with metal ions with strong geometrical binding preferences. The well-defined cavities that result, in combination with the other non-covalent interactions that can be programmed into the ligand design, facilitate great selectivity towards guest binding. In this Review we will discuss the application of luminescent metallacycles and cages in the binding and detection of a wide range of biomolecules, such as carbohydrates, proteins, amino acids, and biogenic amines. We aim to explore the effect of the structural diversity of SCCs on the extent of biomolecular sensing, expressed in terms of sensitivity, selectivity and detection range.
Collapse
Affiliation(s)
- Nilanjan Dey
- Graduate School of Science, Kyoto University, Japan
| | | |
Collapse
|
14
|
Hooper CAJ, Cardo L, Craig JS, Melidis L, Garai A, Egan RT, Sadovnikova V, Burkert F, Male L, Hodges NJ, Browning DF, Rosas R, Liu F, Rocha FV, Lima MA, Liu S, Bardelang D, Hannon MJ. Rotaxanating Metallo-supramolecular Nano-cylinder Helicates to Switch DNA Junction Binding. J Am Chem Soc 2020; 142:20651-20660. [DOI: 10.1021/jacs.0c07750] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Catherine A. J. Hooper
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Lucia Cardo
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - James S. Craig
- Physical Sciences for Health Centre, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Lazaros Melidis
- Physical Sciences for Health Centre, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Aditya Garai
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Ross T. Egan
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Viktoriia Sadovnikova
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Florian Burkert
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Louise Male
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Nikolas J. Hodges
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Douglas F. Browning
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Roselyne Rosas
- Aix Marseille Univ, CNRS, Centrale Marseille, FSCM, Spectropole, Marseille 13007, France
| | - Fengbo Liu
- The State Key Laboratory of Refractories and Metallurgy, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
| | - Fillipe V. Rocha
- Department of Chemistry, Federal University of São Carlos, São Carlos 13565-905, Brazil
| | - Mauro A. Lima
- Department of Chemistry, Federal University of São Carlos, São Carlos 13565-905, Brazil
| | - Simin Liu
- The State Key Laboratory of Refractories and Metallurgy, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
| | | | - Michael J. Hannon
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
- Physical Sciences for Health Centre, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| |
Collapse
|
15
|
Wang X, Tao Z. Expanding the analytical applications of nucleic acid hybridization using junction probes. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2020; 12:4931-4938. [PMID: 33043948 DOI: 10.1039/d0ay01605e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Nucleic acid hybridization is crucial in target recognition with respect to in vitro and in vivo nucleic acid biosensing. Conventional linear probes and molecular beacons encounter challenges in multiplexing and specific recognition of intractable nucleic acids. Advances in nucleic acid nanotechnologies have resulted in a set of novel structural probes: junction probes (JPs), which make full use of the advantages of specificity, stability, programmability and predictability of Watson-Crick base pairing. In recent years, junction probes have been regularly implemented in constructing systems related to biosensing, synthetic biology and gene regulation. Herein, we summarize the latest advances in JP designs as potential nucleic acid biosensing systems and their expansive applications, and provide some general guidelines for developing JP based sensing strategies for implementation of such systems.
Collapse
Affiliation(s)
- Xuchu Wang
- Department of Laboratory Medicine, The Second Affiliated Hospital of Zhejiang University, Hangzhou, China.
| | | |
Collapse
|
16
|
Li X, Shi Z, Wu J, Wu J, He C, Hao X, Duan C. Lighting up metallohelices: from DNA binders to chemotherapy and photodynamic therapy. Chem Commun (Camb) 2020; 56:7537-7548. [PMID: 32573609 DOI: 10.1039/d0cc02194f] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The design of novel agents that specifically target DNA and interrupt its normal biological processes is an attractive goal in drug design. Among the promising metallodrugs, metal-directed self-assembled metallohelices with defined three-dimensional stereochemical structures display unique structure-inherent and unprecedented noncovalent targeting abilities towards DNA, resulting in excellent anticancer or antibiotic activities. A newly burgeoning hotspot is focusing on lighting them up by embedding luminescent metal ions as the vertices. The photoactive metallohelices that combine strong interactions toward DNA targets and efficient 1O2 quantum yield may provide new motivation in diagnostic and photodynamic therapy (PDT) areas. This perspective focuses on research progress on metallohelices as DNA binders and chemotherapeutic agents, and highlights recent advances in fabricating luminescent examples for PDT. The relative assembly strategies are also discussed and compared. Finally, perspectives on the future development of the lit-up metallohelices are presented.
Collapse
Affiliation(s)
- Xuezhao Li
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024, China.
| | | | | | | | | | | | | |
Collapse
|
17
|
Crlikova H, Malina J, Novohradsky V, Kostrhunova H, Vasdev RAS, Crowley JD, Kasparkova J, Brabec V. Antiproliferative Activity and Associated DNA Interactions of [Co2L3]6+ Cylinders Derived from Bis(bidentate) 2-Pyridyl-1,2,3-triazole Ligands. Organometallics 2020. [DOI: 10.1021/acs.organomet.0c00146] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Hana Crlikova
- Department of Biophysics, Faculty of Science, Palacky University, Slechtitelu 27, CZ-783-71 Olomouc, Czech Republic
| | - Jaroslav Malina
- Czech Academy of Sciences, Institute of Biophysics, Kralovopolska 135, CZ-61265 Brno, Czech Republic
| | - Vojtech Novohradsky
- Czech Academy of Sciences, Institute of Biophysics, Kralovopolska 135, CZ-61265 Brno, Czech Republic
| | - Hana Kostrhunova
- Czech Academy of Sciences, Institute of Biophysics, Kralovopolska 135, CZ-61265 Brno, Czech Republic
| | - Roan A. S. Vasdev
- Department of Chemistry, University of Otago, P.O. Box 56, Dunedin 9016, Otago, New Zealand
| | - James D. Crowley
- Department of Chemistry, University of Otago, P.O. Box 56, Dunedin 9016, Otago, New Zealand
| | - Jana Kasparkova
- Department of Biophysics, Faculty of Science, Palacky University, Slechtitelu 27, CZ-783-71 Olomouc, Czech Republic
- Czech Academy of Sciences, Institute of Biophysics, Kralovopolska 135, CZ-61265 Brno, Czech Republic
| | - Viktor Brabec
- Czech Academy of Sciences, Institute of Biophysics, Kralovopolska 135, CZ-61265 Brno, Czech Republic
| |
Collapse
|
18
|
Oukacine F, Ravelet C, Peyrin E. Enantiomeric sensing and separation by nucleic acids. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2019.115733] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
19
|
Duskova K, Lejault P, Benchimol É, Guillot R, Britton S, Granzhan A, Monchaud D. DNA Junction Ligands Trigger DNA Damage and Are Synthetic Lethal with DNA Repair Inhibitors in Cancer Cells. J Am Chem Soc 2019; 142:424-435. [PMID: 31833764 DOI: 10.1021/jacs.9b11150] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Translocation of DNA and RNA polymerases along their duplex substrates results in DNA supercoiling. This torsional stress promotes the formation of plectonemic structures, including three-way DNA junction (TWJ), which can block DNA transactions and lead to DNA damage. While cells have evolved multiple mechanisms to prevent the accumulation of such structures, stabilizing TWJ through ad hoc ligands offer an opportunity to trigger DNA damage in cells with high levels of transcription and replication, such as cancer cells. Here, we develop a series of azacryptand-based TWJ ligands, we thoroughly characterize their TWJ-interacting properties in vitro and demonstrate their capacity to trigger DNA damage in rapidly dividing human cancer cells. We also demonstrate that TWJ ligands are amenable to chemically induced synthetic lethality strategies upon association with inhibitors of DNA repair, thus paving the way toward innovative drug combinations to fight cancers.
Collapse
Affiliation(s)
- Katerina Duskova
- Institut de Chimie Moléculaire de l'Université de Bourgogne (ICMUB), CNRS UMR 6302 , UBFC Dijon , 21078 Dijon , France
| | - Pauline Lejault
- Institut de Chimie Moléculaire de l'Université de Bourgogne (ICMUB), CNRS UMR 6302 , UBFC Dijon , 21078 Dijon , France
| | - Élie Benchimol
- Institut Curie, CNRS UMR 9187, INSERM U1196 , PSL Research University , 91405 Orsay , France.,Université Paris Saclay, CNRS UMR 9187, INSERM U1196 , Université Paris-Sud , 91405 Orsay , France
| | - Régis Guillot
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO), CNRS UMR 8182, Université Paris-Sud , Université Paris Saclay , 91405 Orsay , France
| | - Sébastien Britton
- Institut de Pharmacologie et de Biologie Structurale (IPBS), CNRS UMR 5089, Université de Toulouse , UPS , Equipe labellisée la Ligue Contre le Cancer , 31077 Toulouse , France
| | - Anton Granzhan
- Institut Curie, CNRS UMR 9187, INSERM U1196 , PSL Research University , 91405 Orsay , France.,Université Paris Saclay, CNRS UMR 9187, INSERM U1196 , Université Paris-Sud , 91405 Orsay , France
| | - David Monchaud
- Institut de Chimie Moléculaire de l'Université de Bourgogne (ICMUB), CNRS UMR 6302 , UBFC Dijon , 21078 Dijon , France
| |
Collapse
|
20
|
Zhu J, Haynes CJE, Kieffer M, Greenfield JL, Greenhalgh RD, Nitschke JR, Keyser UF. Fe II4L 4 Tetrahedron Binds to Nonpaired DNA Bases. J Am Chem Soc 2019; 141:11358-11362. [PMID: 31283214 PMCID: PMC7007224 DOI: 10.1021/jacs.9b03566] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A water-soluble self-assembled supramolecular FeII4L4 tetrahedron binds to single stranded DNA, mismatched DNA base pairs, and three-way DNA junctions. Binding of the coordination cage quenches fluorescent labels on the DNA strand, which provides an optical means to detect the interaction and allows the position of the binding site to be gauged with respect to the fluorescent label. Utilizing the quenching and binding properties of the coordination cage, we developed a simple and rapid detection method based on fluorescence quenching to detect unpaired bases in double-stranded DNA.
Collapse
Affiliation(s)
- Jinbo Zhu
- Cavendish Laboratory, University of Cambridge , JJ Thomson Avenue , Cambridge CB3 0HE , United Kingdom
| | - Cally J E Haynes
- Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge CB2 1EW , United Kingdom
| | - Marion Kieffer
- Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge CB2 1EW , United Kingdom
| | - Jake L Greenfield
- Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge CB2 1EW , United Kingdom
| | - Ryan D Greenhalgh
- Cavendish Laboratory, University of Cambridge , JJ Thomson Avenue , Cambridge CB3 0HE , United Kingdom
| | - Jonathan R Nitschke
- Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge CB2 1EW , United Kingdom
| | - Ulrich F Keyser
- Cavendish Laboratory, University of Cambridge , JJ Thomson Avenue , Cambridge CB3 0HE , United Kingdom
| |
Collapse
|
21
|
van Rixel VHS, Busemann A, Wissingh MF, Hopkins SL, Siewert B, van de Griend C, Siegler MA, Marzo T, Papi F, Ferraroni M, Gratteri P, Bazzicalupi C, Messori L, Bonnet S. Induction of a Four-Way Junction Structure in the DNA Palindromic Hexanucleotide 5'-d(CGTACG)-3' by a Mononuclear Platinum Complex. Angew Chem Int Ed Engl 2019; 58:9378-9382. [PMID: 31046177 PMCID: PMC6618160 DOI: 10.1002/anie.201814532] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Indexed: 12/22/2022]
Abstract
Four-way junctions (4WJs) are supramolecular DNA assemblies comprising four interacting DNA strands that in biology are involved in DNA-damage repair. In this study, a new mononuclear platinum(II) complex 1 was prepared that is capable of driving the crystallization of the DNA oligomer 5'-d(CGTACG)-3' specifically into a 4WJ-like motif. In the crystal structure of the 1-CGTACG adduct, the distorted-square-planar platinum complex binds to the core of the 4WJ-like motif through π-π stacking and hydrogen bonding, without forming any platinum-nitrogen coordination bonds. Our observations suggest that the specific molecular properties of the metal complex are crucially responsible for triggering the selective assembly of this peculiar DNA superstructure.
Collapse
Affiliation(s)
- Vincent H. S. van Rixel
- Leiden Institute of ChemistryLeiden UniversityEinsteinweg 55, PO Box 95022333CCLeidenThe Netherlands
| | - Anja Busemann
- Leiden Institute of ChemistryLeiden UniversityEinsteinweg 55, PO Box 95022333CCLeidenThe Netherlands
| | - Mathijs F. Wissingh
- Leiden Institute of ChemistryLeiden UniversityEinsteinweg 55, PO Box 95022333CCLeidenThe Netherlands
| | - Samantha L. Hopkins
- Leiden Institute of ChemistryLeiden UniversityEinsteinweg 55, PO Box 95022333CCLeidenThe Netherlands
| | - Bianka Siewert
- Leiden Institute of ChemistryLeiden UniversityEinsteinweg 55, PO Box 95022333CCLeidenThe Netherlands
| | - Corjan van de Griend
- Leiden Institute of ChemistryLeiden UniversityEinsteinweg 55, PO Box 95022333CCLeidenThe Netherlands
| | | | - Tiziano Marzo
- Department of PharmacyUniversity of PisaVia Bonanno Pisano 656126PisaItaly
| | - Francesco Papi
- Department of ChemistryUniversity of FlorenceVia della Lastruccia 350019Sesto Fiorentino (FI)Italy
| | - Marta Ferraroni
- Department of ChemistryUniversity of FlorenceVia della Lastruccia 350019Sesto Fiorentino (FI)Italy
| | - Paola Gratteri
- Department NEUROFARBA—Pharmaceutical and Nutraceutical sectionLaboratory of Molecular Modeling Cheminformatics and QSARUniversity of FlorenceVia Ugo Schiff 650019Sesto Fiorentino (FI)Italy
| | - Carla Bazzicalupi
- Department of ChemistryUniversity of FlorenceVia della Lastruccia 350019Sesto Fiorentino (FI)Italy
| | - Luigi Messori
- Department of Chemistry “Ugo Schiff”University of FlorenceItaly
| | - Sylvestre Bonnet
- Leiden Institute of ChemistryLeiden UniversityEinsteinweg 55, PO Box 95022333CCLeidenThe Netherlands
| |
Collapse
|
22
|
Guyon L, Pirrotta M, Duskova K, Granzhan A, Teulade-Fichou MP, Monchaud D. TWJ-Screen: an isothermal screening assay to assess ligand/DNA junction interactions in vitro. Nucleic Acids Res 2019; 46:e16. [PMID: 29149299 PMCID: PMC5815093 DOI: 10.1093/nar/gkx1118] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 10/24/2017] [Indexed: 12/17/2022] Open
Abstract
The quest for chemicals able to operate at selected genomic loci in a spatiotemporally controlled manner is desirable to create manageable DNA damages. Mounting evidence now shows that alternative DNA structures, including G-quadruplexes and branched DNA (or DNA junctions), might hamper proper progression of replication fork, thus triggering DNA damages and genomic instability. Therefore, small molecules that stabilize these DNA structures are currently scrutinized as a promising way to create genomic defects that cannot be dealt with properly by cancer cells. While much emphasis has been recently given to G-quadruplexes and related ligands, we report herein on three-way DNA junctions (TWJ) and related ligands. We first highlight the biological implications of TWJ and their strategic relevance as triggers for replicative stress. Then, we describe a new in vitro high-throughput screening assay, TWJ-Screen, which allows for identifying TWJ ligands with both high affinity and selectivity for TWJ over other DNA structures (duplexes and quadruplexes), in a convenient and unbiased manner as demonstrated by the screening of a library of 25 compounds from different chemical families. TWJ-Screen thus represents a reliable mean to uncover molecular tools able to foster replicative stress through an innovative approach, thus providing new strategic opportunities to combat cancers.
Collapse
Affiliation(s)
- Ludivine Guyon
- Institut de Chimie Moléculaire, ICMUB CNRS UMR6302, UBFC, 21078 Dijon, France
| | - Marc Pirrotta
- Institut de Chimie Moléculaire, ICMUB CNRS UMR6302, UBFC, 21078 Dijon, France
| | - Katerina Duskova
- Institut de Chimie Moléculaire, ICMUB CNRS UMR6302, UBFC, 21078 Dijon, France
| | - Anton Granzhan
- Institut Curie, PSL Research University, CNRS UMR9187, INSERM U1196, 91405 Orsay, France
| | | | - David Monchaud
- Institut de Chimie Moléculaire, ICMUB CNRS UMR6302, UBFC, 21078 Dijon, France
- To whom correspondence should be addressed. Tel: +33 380 399 043; Fax: 33 380 396 117;
| |
Collapse
|
23
|
van Rixel VHS, Busemann A, Wissingh MF, Hopkins SL, Siewert B, van de Griend C, Siegler MA, Marzo T, Papi F, Ferraroni M, Gratteri P, Bazzicalupi C, Messori L, Bonnet S. Induction of a Four‐Way Junction Structure in the DNA Palindromic Hexanucleotide 5′‐d(CGTACG)‐3′ by a Mononuclear Platinum Complex. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201814532] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Vincent H. S. van Rixel
- Leiden Institute of ChemistryLeiden University Einsteinweg 55, PO Box 9502 2333CC Leiden The Netherlands
| | - Anja Busemann
- Leiden Institute of ChemistryLeiden University Einsteinweg 55, PO Box 9502 2333CC Leiden The Netherlands
| | - Mathijs F. Wissingh
- Leiden Institute of ChemistryLeiden University Einsteinweg 55, PO Box 9502 2333CC Leiden The Netherlands
| | - Samantha L. Hopkins
- Leiden Institute of ChemistryLeiden University Einsteinweg 55, PO Box 9502 2333CC Leiden The Netherlands
| | - Bianka Siewert
- Leiden Institute of ChemistryLeiden University Einsteinweg 55, PO Box 9502 2333CC Leiden The Netherlands
| | - Corjan van de Griend
- Leiden Institute of ChemistryLeiden University Einsteinweg 55, PO Box 9502 2333CC Leiden The Netherlands
| | | | - Tiziano Marzo
- Department of PharmacyUniversity of Pisa Via Bonanno Pisano 6 56126 Pisa Italy
| | - Francesco Papi
- Department of ChemistryUniversity of Florence Via della Lastruccia 3 50019 Sesto Fiorentino (FI) Italy
| | - Marta Ferraroni
- Department of ChemistryUniversity of Florence Via della Lastruccia 3 50019 Sesto Fiorentino (FI) Italy
| | - Paola Gratteri
- Department NEUROFARBA—Pharmaceutical and Nutraceutical sectionLaboratory of Molecular Modeling Cheminformatics and QSARUniversity of Florence Via Ugo Schiff 6 50019 Sesto Fiorentino (FI) Italy
| | - Carla Bazzicalupi
- Department of ChemistryUniversity of Florence Via della Lastruccia 3 50019 Sesto Fiorentino (FI) Italy
| | - Luigi Messori
- Department of Chemistry “Ugo Schiff”University of Florence Italy
| | - Sylvestre Bonnet
- Leiden Institute of ChemistryLeiden University Einsteinweg 55, PO Box 9502 2333CC Leiden The Netherlands
| |
Collapse
|
24
|
Duskova K, Lamarche J, Amor S, Caron C, Queyriaux N, Gaschard M, Penouilh MJ, de Robillard G, Delmas D, Devillers CH, Granzhan A, Teulade-Fichou MP, Chavarot-Kerlidou M, Therrien B, Britton S, Monchaud D. Identification of Three-Way DNA Junction Ligands through Screening of Chemical Libraries and Validation by Complementary in Vitro Assays. J Med Chem 2019; 62:4456-4466. [PMID: 30942581 DOI: 10.1021/acs.jmedchem.8b01978] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The human genome is replete with repetitive DNA sequences that can fold into thermodynamically stable secondary structures such as hairpins and quadruplexes. Cellular enzymes exist to cope with these structures whose stable accumulation would result in DNA damage through interference with DNA transactions such as transcription and replication. Therefore, the chemical stabilization of secondary DNA structures offers an attractive way to foster DNA transaction-associated damages to trigger cell death in proliferating cancer cells. While much emphasis has been recently given to DNA quadruplexes, we focused here on three-way DNA junctions (TWJ) and report on a strategy to identify TWJ-targeting agents through a combination of in vitro techniques (TWJ-screen, polyacrylamide gel electrophoresis, fluorescence resonance energy transfer-melting, electrospray ionization mass spectrometry, dialysis equilibrium, and sulforhodamine B assays). We designed a complete workflow and screened 1200 compounds to identify promising TWJ ligands selected on stringent criteria in terms of TWJ-folding ability, affinity, and selectivity.
Collapse
Affiliation(s)
- Katerina Duskova
- Institut de Chimie Moléculaire (ICMUB), CNRS UMR6302, UBFC , 21078 Dijon , France
| | - Jérémy Lamarche
- Institut de Chimie Moléculaire (ICMUB), CNRS UMR6302, UBFC , 21078 Dijon , France
| | - Souheila Amor
- Lipids, Nutrition & Cancers (LNC), INSERM U1321, UBFC , 21000 Dijon , France
| | - Coralie Caron
- Institut Curie, PSL Research University, CNRS UMR9187, INSERM U1196 , 91405 Orsay , France.,Université Paris-Sud, Université Paris Saclay , 91405 Orsay , France
| | - Nicolas Queyriaux
- Laboratoire de Chimie et Biologie des Métaux , Université Grenoble Alpes, CNRS UMR5249, CEA , 38054 Grenoble , France
| | - Marie Gaschard
- Institut de Chimie , Université de Neuchâtel , CH-2000 Neuchatel , Switzerland
| | - Marie-José Penouilh
- Pôle Chimie Moléculaire (PACSMUB) , Faculté des Sciences Mirande, UBFC , 21078 Dijon , France
| | | | - Dominique Delmas
- Lipids, Nutrition & Cancers (LNC), INSERM U1321, UBFC , 21000 Dijon , France
| | - Charles H Devillers
- Institut de Chimie Moléculaire (ICMUB), CNRS UMR6302, UBFC , 21078 Dijon , France
| | - Anton Granzhan
- Institut Curie, PSL Research University, CNRS UMR9187, INSERM U1196 , 91405 Orsay , France.,Université Paris-Sud, Université Paris Saclay , 91405 Orsay , France
| | - Marie-Paule Teulade-Fichou
- Institut Curie, PSL Research University, CNRS UMR9187, INSERM U1196 , 91405 Orsay , France.,Université Paris-Sud, Université Paris Saclay , 91405 Orsay , France
| | - Murielle Chavarot-Kerlidou
- Laboratoire de Chimie et Biologie des Métaux , Université Grenoble Alpes, CNRS UMR5249, CEA , 38054 Grenoble , France
| | - Bruno Therrien
- Institut de Chimie , Université de Neuchâtel , CH-2000 Neuchatel , Switzerland
| | - Sébastien Britton
- Institut de Pharmacologie et de Biologie Structurale, IPBS, CNRS UMR5089, Université de Toulouse, UPS, équipe labellisée la Ligue Contre le Cancer , 31077 Toulouse , France
| | - David Monchaud
- Institut de Chimie Moléculaire (ICMUB), CNRS UMR6302, UBFC , 21078 Dijon , France
| |
Collapse
|
25
|
Yang Z, Chen Y, Li G, Tian Z, Zhao L, Wu X, Ma Q, Liu M, Yang P. Supramolecular Recognition of Three Way Junction DNA by a Cationic Calix[3]carbazole. Chemistry 2018; 24:6087-6093. [PMID: 29315943 DOI: 10.1002/chem.201705564] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Indexed: 12/31/2022]
Abstract
DNA three-way junctions (TWJ-DNA) are intermediate structures in DNA replication and/or recombination. They play very important roles in biological processes, but more subtle functions are still unknown due partially to the lack of a fluorescent ligand. In this study, a cationic calix[3]carbazole (2) has been synthesized and its properties of interacting with TWJ-DNA have been evaluated by UV/Vis and fluorescence spectroscopy, circular dichroism (CD), gel electrophoresis, and 1 H NMR studies. The results show that 2 binds to the central hydrophobic cavity of TWJ-DNA. Moreover, it could selectively bind to TWJ-DNA over duplex and quadruplex DNA. Furthermore, 2 possesses the capability of serving as the TWJ-DNA probe as its trap-II excimer emission is turned on by TWJ-DNA.
Collapse
Affiliation(s)
- Zhaozheng Yang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, P. R. China
| | - Yan Chen
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, P. R. China
| | - Gang Li
- Key Laboratory of Structure-Based Drug Design and Discovery, Shenyang Pharmaceutical University), Ministry of Education, Shenyang, 110016, P. R. China
| | - Zhangmin Tian
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, P. R. China
| | - Liang Zhao
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, P. R. China
| | - Xi Wu
- Shenzhen Institute for Drug Control, Shenzhen, 518057, P. R. China
| | - Qi Ma
- Key Laboratory of Structure-Based Drug Design and Discovery, Shenyang Pharmaceutical University), Ministry of Education, Shenyang, 110016, P. R. China
| | - Mingzhe Liu
- Key Laboratory of Structure-Based Drug Design and Discovery, Shenyang Pharmaceutical University), Ministry of Education, Shenyang, 110016, P. R. China
| | - Peng Yang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, P. R. China
| |
Collapse
|
26
|
Casini A, Woods B, Wenzel M. The Promise of Self-Assembled 3D Supramolecular Coordination Complexes for Biomedical Applications. Inorg Chem 2017; 56:14715-14729. [PMID: 29172467 DOI: 10.1021/acs.inorgchem.7b02599] [Citation(s) in RCA: 156] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In the supramolecular chemistry field, coordination-driven self-assembly has provided the basis for tremendous growth across many subdisciplines, spanning from fundamental investigations regarding the design and synthesis of new architectures to defining different practical applications. Within this framework, supramolecular coordination complexes (SCCs), defined as large chemical entities formed from smaller precursor building blocks of ionic metal nodes and organic multidentate ligands, resulting in intricate and well-defined supramolecular structures, hold great promise. Notably, interest in the construction of discrete 3D molecular architectures, such as those offered by SCCs, has experienced extraordinary progress because of their potential application as sensors, catalysts, probes, and containers and in basic host-guest chemistry. Despite numerous synthetic efforts and a number of inherent favorable properties, the field of 3D SCCs for biomedical applications is still in its infancy. This Viewpoint focuses on 3D SCCs, specifically metallacages and helicates, first briefly presenting the fundamentals in terms of the synthesis and characterization of their host-guest properties, followed by an overview of the possible biological applications with representative examples. Thus, emphasis will be given in particular to metallacages as drug delivery systems and to chiral helicates as DNA recognition domains. Overall, we will provide an update on the state-of-the-art literature and will define the challenges in this fascinating research area at the interface of different disciplines.
Collapse
Affiliation(s)
- Angela Casini
- School of Chemistry, Cardiff University , Main Building, Park Place, CF10 3AT Cardiff, United Kingdom
| | - Benjamin Woods
- School of Chemistry, Cardiff University , Main Building, Park Place, CF10 3AT Cardiff, United Kingdom
| | - Margot Wenzel
- School of Chemistry, Cardiff University , Main Building, Park Place, CF10 3AT Cardiff, United Kingdom
| |
Collapse
|
27
|
Vasdev RAS, Preston D, Scottwell SØ, Brooks HJL, Crowley JD, Schramm MP. Oxidatively Locked [Co₂L₃] 6+ Cylinders Derived from Bis(bidentate) 2-Pyridyl-1,2,3-triazole "Click" Ligands: Synthesis, Stability, and Antimicrobial Studies. Molecules 2016; 21:E1548. [PMID: 27854348 PMCID: PMC6273053 DOI: 10.3390/molecules21111548] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 11/04/2016] [Accepted: 11/10/2016] [Indexed: 11/17/2022] Open
Abstract
A small family of [Co₂(Lpytrz)₃]6+ cylinders was synthesised from bis(bidentate) 2-pyridyl-1,2,3-triazole "click" ligands (Lpytrz) through an "assembly-followed-by-oxidation" method. The cylinders were characterised using ¹H, 13C, and DOSY NMR, IR, and UV-Vis spectroscopies, along with electrospray ionisation mass spectrometry (ESMS). Stability studies were conducted in dimethyl sulfoxide (DMSO) and D₂O. In contrast to similar, previously studied, [Fe₂(Lpytrz)₃]4+ helicates the more kinetically inert [Co₂(Lpytrz)₃]6+ systems proved stable (over a period of days) when exposed to DMSO and were even more stable in D₂O. The triply stranded [Co₂(Lpytrz)₃]6+ systems and the corresponding "free" ligands were tested for antimicrobial activity in vitro against both Gram-positive (Staphylococcus aureus) and Gram-negative (Escherichia coli) microorganisms. Agar-based disk diffusion and Mueller-Hinton broth micro-dilution assays showed that the [Co₂(Lpytrz)₃]6+ cylinders were not active against either strain of bacteria. It is presumed that a high charge of the [Co₂(Lpytrz)₃]6+ cylinders is preventing them from crossing the bacterial cell membranes, rendering the compounds biologically inactive.
Collapse
Affiliation(s)
- Roan A S Vasdev
- Department of Chemistry, University of Otago, P.O. Box 56, Dunedin 9016, Otago, New Zealand.
| | - Dan Preston
- Department of Chemistry, University of Otago, P.O. Box 56, Dunedin 9016, Otago, New Zealand.
| | - Synøve Ø Scottwell
- Department of Chemistry, University of Otago, P.O. Box 56, Dunedin 9016, Otago, New Zealand.
| | - Heather J L Brooks
- Department of Microbiology and Immunology, University of Otago, P.O. Box 56, 720 Cumberland Street, Dunedin 9054, Otago, New Zealand.
| | - James D Crowley
- Department of Chemistry, University of Otago, P.O. Box 56, Dunedin 9016, Otago, New Zealand.
| | - Michael P Schramm
- Department of Chemistry and Biochemistry, California State University, Long Beach, 1250 Bellflower Boulevard, Long Beach, CA 90840-9507, USA.
| |
Collapse
|
28
|
Iron(II) supramolecular helicates interfere with the HIV-1 Tat-TAR RNA interaction critical for viral replication. Sci Rep 2016; 6:29674. [PMID: 27405089 PMCID: PMC4940744 DOI: 10.1038/srep29674] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 06/21/2016] [Indexed: 01/15/2023] Open
Abstract
The interaction between the HIV-1 transactivator protein Tat and TAR (transactivation responsive region) RNA, plays a critical role in HIV-1 transcription. Iron(II) supramolecular helicates were evaluated for their in vitro activity to inhibit Tat–TAR RNA interaction using UV melting studies, electrophoretic mobility shift assay, and RNase A footprinting. The results demonstrate that iron(II) supramolecular helicates inhibit Tat-TAR interaction at nanomolar concentrations by binding to TAR RNA. These studies provide a new insight into the biological potential of metallosupramolecular helicates.
Collapse
|
29
|
Malina J, Scott P, Brabec V. Recognition of DNA/RNA bulges by antimicrobial and antitumor metallohelices. Dalton Trans 2016. [PMID: 26212708 DOI: 10.1039/c5dt02018b] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Bulged structures have been identified in nucleic acids and have been shown to be linked to biomolecular processes involved in numerous diseases. Thus, chemical agents with affinity for bulged nucleic acids are of general biological significance. Herein, the mechanism of specific recognition and stabilization of bulged DNA and RNA by helical bimetallic species was established through detailed molecular biophysics and biochemistry assays. These agents, known as 'flexicates', are potential mimetics of α-helical peptides in cancer treatment, exhibiting antimicrobial and antitumor effects. The flexicates have positive impacts on the thermal stability of DNA duplexes containing bulges, which means that the flexicates interact with the duplexes containing bulges, and that these interactions stabilize the secondary structures of these duplexes. Notably, the stabilising effect of the flexicates increases with the size of the bulge, the maximal stabilization is observed for the duplexes containing a bulge composed of at least three bases. The flexicates bind most preferentially to the bulges composed of pyrimidines flanked on both sides also by pyrimidines. It is suggested that it is so because these bulges exhibit greatest conformational variability in comparison with other combinations of bases in the bulge loop and bases flanking the bulge. Finally, the results indicate that there is only one dominant binding site for the flexicates on the DNA and RNA bulges and that the flexicates bind directly to the bulge or in its close proximity. It is also shown that the flexicates effectively bind to RNA duplexes containing the bulged region of HIV-1 TAR RNA.
Collapse
Affiliation(s)
- Jaroslav Malina
- Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Kralovopolska 135, CZ-61265 Brno, Czech Republic.
| | | | | |
Collapse
|
30
|
Malina J, Hannon MJ, Brabec V. Iron(II) supramolecular helicates condense plasmid DNA and inhibit vital DNA-related enzymatic activities. Chemistry 2015; 21:11189-95. [PMID: 26103944 DOI: 10.1002/chem.201501307] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Indexed: 11/06/2022]
Abstract
The dinuclear iron(II) supramolecular helicates [Fe2 L3 ]Cl4 (L=C25 H20 N4 ) bind to DNA through noncovalent (i.e., hydrogen-bonding, electrostatic) interactions and exhibit antimicrobial and anticancer effects. In this study, we show that the helicates condense plasmid DNA with a much higher potency than conventional DNA-condensing agents. Notably, molecules of DNA in the presence of the M enantiomer of [Fe2 L3 ]Cl4 do not form intermolecular aggregates typically formed by other condensing agents, such as spermidine or spermine. The helicates inhibit the activity of several DNA-processing enzymes, such as RNA polymerase, DNA topoisomerase I, deoxyribonuclease I, and site-specific restriction endonucleases. However, the results also indicate that the DNA condensation induced by the helicates does not play a crucial role in these inhibition reactions. The mechanisms for the inhibitory effects of [Fe2 L3 ]Cl4 helicates on DNA-related enzymatic activities have been proposed.
Collapse
Affiliation(s)
- Jaroslav Malina
- Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i. Kralovopolska 135, 612 65 Brno (Czech Republic)
| | - Michael J Hannon
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT (UK)
| | - Viktor Brabec
- Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i. Kralovopolska 135, 612 65 Brno (Czech Republic).
| |
Collapse
|
31
|
McNeill SM, Preston D, Lewis JEM, Robert A, Knerr-Rupp K, Graham DO, Wright JR, Giles GI, Crowley JD. Biologically active [Pd2L4](4+) quadruply-stranded helicates: stability and cytotoxicity. Dalton Trans 2015; 44:11129-36. [PMID: 25997516 DOI: 10.1039/c5dt01259g] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
There is emerging interest in the anti-proliferative effects of metallosupramolecular systems due to the different size and shape of these metallo-architectures compared to traditional small molecule drugs. Palladium(II)-containing systems are the most abundant class of metallosupramolecular complexes, yet their biological activity has hardly been examined. Here a small series of [Pd2(L)4](BF4)4 quadruply-stranded, dipalladium(II) architectures were screened for their cytotoxic effects against three cancer cell lines and one non-malignant line. The helicates exhibited a range of cytotoxic properties, with the most cytotoxic complex [Pd2(hextrz)4](BF4)4 possessing low micromolar IC50 values against all of the cell lines tested, while the other helicates displayed moderate or no cytotoxicity. Against the MDA-MB-231 cell line, which is resistant to platinum-based drugs, [Pd2(hextrz)4](BF4)4 was 7-fold more active than cisplatin. Preliminary mechanistic studies indicate that the [Pd2(hextrz)4](BF4)4 helicate does not induce cell death in the same way as clinically used metal complexes such as cisplatin. Rather than interacting with DNA, the helicate appears to disrupt the cell membrane. These studies represent the first biological characterisation of quadruply-stranded helicate architectures, and provide insight into the design requirements for the development of biologically active and stable palladium(II)-containing metallosupramolecular architectures.
Collapse
Affiliation(s)
- Samantha M McNeill
- Department of Pharmacology and Toxicology, University of Otago, P.O. Box 913, Dunedin, New Zealand.
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Novotna J, Laguerre A, Granzhan A, Pirrotta M, Teulade-Fichou MP, Monchaud D. Cationic azacryptands as selective three-way DNA junction binding agents. Org Biomol Chem 2015; 13:215-22. [DOI: 10.1039/c4ob01846j] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Azacryptands are promising candidates for assessing the therapeutic potential of three-way DNA junctions.
Collapse
Affiliation(s)
- Jana Novotna
- Institute of Molecular Chemistry
- University of Dijon
- Dijon
- France
- Department of Analytical Chemistry
| | | | | | - Marc Pirrotta
- Institute of Molecular Chemistry
- University of Dijon
- Dijon
- France
| | | | - David Monchaud
- Institute of Molecular Chemistry
- University of Dijon
- Dijon
- France
| |
Collapse
|
33
|
|
34
|
Barros SA, Chenoweth DM. Recognition of nucleic acid junctions using triptycene-based molecules. Angew Chem Int Ed Engl 2014; 53:13746-50. [PMID: 25257803 DOI: 10.1002/anie.201407061] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 10/09/2014] [Indexed: 12/24/2022]
Abstract
The modulation of nucleic acids by small molecules is an essential process across the kingdoms of life. Targeting nucleic acids with small molecules represents a significant challenge at the forefront of chemical biology. Nucleic acid junctions are ubiquitous structural motifs in nature and in designed materials. Herein, we describe a new class of structure-specific nucleic acid junction stabilizers based on a triptycene scaffold. Triptycenes provide significant stabilization of DNA and RNA three-way junctions, providing a new scaffold for the development of nucleic acid junction binders with enhanced recognition properties. Additionally, we report cytotoxicity and cell uptake data in two human ovarian carcinoma cell lines.
Collapse
Affiliation(s)
- Stephanie A Barros
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, PA 19104 (USA)
| | | |
Collapse
|
35
|
Barros SA, Chenoweth DM. Recognition of Nucleic Acid Junctions Using Triptycene-Based Molecules. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201407061] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
36
|
Wu L, Zhao C, Ren J, Qu X. Label-free Electrochemiluminescent Enantioselective Sensor for Distinguishing between Chiral Metallosupramolecular Complexes. Chemistry 2014; 20:11675-9. [DOI: 10.1002/chem.201403481] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Indexed: 02/04/2023]
|
37
|
Malina J, Hannon MJ, Brabec V. Recognition of DNA bulges by dinuclear iron(II) metallosupramolecular helicates. FEBS J 2014; 281:987-97. [PMID: 24355059 DOI: 10.1111/febs.12696] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2013] [Revised: 11/05/2013] [Accepted: 11/25/2013] [Indexed: 12/24/2022]
Abstract
Bulged DNA structures are of general biological significance because of their important roles in a number of biochemical processes. Compounds capable of targeting bulged DNA sequences can be used as probes for studying their role in nucleic acid function, or could even have significant therapeutic potential. The interaction of [Fe(2)L(3)](4+) metallosupramolecular helicates (L = C(25)H(20)N(4)) with DNA duplexes containing bulges has been studied by measurement of the DNA melting temperature and gel electrophoresis. This study was aimed at exploring binding affinities of the helicates for DNA bulges of various sizes and nucleotide sequences. The studies reported herein reveal that both enantiomers of [Fe(2)L(3)](4+) bind to DNA bulges containing at least two unpaired nucleotides. In addition, these helicates show considerably enhanced affinity for duplexes containing unpaired pyrimidines in the bulge and/or pyrimidines flanking the bulge on both sides. We suggest that the bulge creates the structural motif, such as the triangular prismatic pocket formed by the unpaired bulge bases, to accommodate the [Fe(2)L(3)](4+) helicate molecule, and is probably responsible for the affinity for duplexes with a varying number of bulge bases. Our results reveal that DNA bulges represent another example of unusual DNA structures recognized by dinuclear iron(II) ([Fe(2)L(3)](4+)) supramolecular helicates.
Collapse
Affiliation(s)
- Jaroslav Malina
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Brno, Czech Republic
| | | | | |
Collapse
|
38
|
Gamba I, Rama G, Ortega-Carrasco E, Maréchal JD, Martínez-Costas J, Eugenio Vázquez M, López MV. Programmed stereoselective assembly of DNA-binding helical metallopeptides. Chem Commun (Camb) 2014; 50:11097-100. [DOI: 10.1039/c4cc03606a] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We have applied solid phase peptide synthesis methods for the construction of peptide ligands that coordinate Fe(ii) ions and fold into chiral peptide helicates that show great affinity and chiral selectivity for three-way DNA junctions and promising cell-internalization properties.
Collapse
Affiliation(s)
- Ilaria Gamba
- Departamento de Química Inorgánica
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS)
- Universidade de Santiago de Compostela
- 15782 Santiago de Compostela, Spain
| | - Gustavo Rama
- Departamento de Química Inorgánica
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS)
- Universidade de Santiago de Compostela
- 15782 Santiago de Compostela, Spain
| | | | | | - José Martínez-Costas
- Departamento de Bioquímica y Biología Molecular
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS)
- Universidade de Santiago de Compostela
- 15782 Santiago de Compostela, Spain
| | - M. Eugenio Vázquez
- Departamento de Química Orgánica
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS)
- Universidade de Santiago de Compostela
- 15782 Santiago de Compostela, Spain
| | - Miguel Vázquez López
- Departamento de Química Inorgánica
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS)
- Universidade de Santiago de Compostela
- 15782 Santiago de Compostela, Spain
| |
Collapse
|
39
|
Cámara V, Masciocchi N, Gil-Rubio J, Vicente J. Triple Helicates with Golden Strands: Self-Assembly of M2Au6Complexes from Gold(I) Metallaligands and Iron(II), Cobalt(II) or Zinc(II) Cations. Chemistry 2013; 20:1389-402. [DOI: 10.1002/chem.201303744] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Indexed: 11/05/2022]
|
40
|
Phongtongpasuk S, Paulus S, Schnabl J, Sigel RKO, Spingler B, Hannon MJ, Freisinger E. Binding of a Designed Anti-Cancer Drug to the Central Cavity of an RNA Three-Way Junction. Angew Chem Int Ed Engl 2013; 52:11513-6. [DOI: 10.1002/anie.201305079] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Indexed: 11/08/2022]
|
41
|
Phongtongpasuk S, Paulus S, Schnabl J, Sigel RKO, Spingler B, Hannon MJ, Freisinger E. Binding of a Designed Anti-Cancer Drug to the Central Cavity of an RNA Three-Way Junction. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201305079] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
42
|
Brabec V, Howson SE, Kaner RA, Lord RM, Malina J, Phillips RM, Abdallah QMA, McGowan PC, Rodger A, Scott P. Metallohelices with activity against cisplatin-resistant cancer cells; does the mechanism involve DNA binding? Chem Sci 2013. [DOI: 10.1039/c3sc51731d] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
|
43
|
Stefan L, Bertrand B, Richard P, Le Gendre P, Denat F, Picquet M, Monchaud D. Assessing the Differential Affinity of Small Molecules for Noncanonical DNA Structures. Chembiochem 2012; 13:1905-12. [DOI: 10.1002/cbic.201200396] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Indexed: 01/19/2023]
|
44
|
Gill MR, Thomas JA. Ruthenium(II) polypyridyl complexes and DNA--from structural probes to cellular imaging and therapeutics. Chem Soc Rev 2012; 41:3179-92. [PMID: 22314926 DOI: 10.1039/c2cs15299a] [Citation(s) in RCA: 627] [Impact Index Per Article: 52.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
In the last few decades, coordination complexes based on d(6) metal centres and polypyridyl ligand architectures been developed as structure- and site-specific reversible DNA binding agents. Due to their attractive photophysical properties, much of this research has focused on complexes based on ruthenium(II) centres and, more recently, attention has turned to the use of these complexes in biological contexts. As the rules that govern the cellular uptake and cellular localisation of such systems are determined they are finding numerous applications ranging from imaging to therapeutics. This review illustrates how the interdisciplinary nature of this research-which takes in synthetic chemistry, biophysical and in cellulo studies-makes this an exciting area in which an array of further applications are likely to emerge.
Collapse
Affiliation(s)
- Martin R Gill
- Department of Chemistry, University of Sheffield, Sheffield, UK.
| | | |
Collapse
|
45
|
Feng L, Zhao C, Xiao Y, Wu L, Ren J, Qu X. Electrochemical DNA three-way junction based sensor for distinguishing chiral metallo-supramolecular complexes. Chem Commun (Camb) 2012; 48:6900-2. [DOI: 10.1039/c2cc32496b] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
46
|
Mishra RK, Upadhyay KK, Shukla S, Mishra R. A zinc(ii) directed triple-stranded helicate incorporating a nine membered metallamacrocycle: supramolecular cylinders mimicking P1 nuclease. Chem Commun (Camb) 2012; 48:4238-40. [DOI: 10.1039/c2cc00094f] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
47
|
Howson SE, Bolhuis A, Brabec V, Clarkson GJ, Malina J, Rodger A, Scott P. Optically pure, water-stable metallo-helical ‘flexicate’ assemblies with antibiotic activity. Nat Chem 2011; 4:31-6. [DOI: 10.1038/nchem.1206] [Citation(s) in RCA: 176] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Accepted: 10/17/2011] [Indexed: 01/18/2023]
|
48
|
Suchánková T, Kubíček K, Kašpárková J, Brabec V, Kozelka J. Platinum-DNA interstrand crosslinks: molecular determinants of bending and unwinding of the double helix. J Inorg Biochem 2011; 108:69-79. [PMID: 22019433 DOI: 10.1016/j.jinorgbio.2011.09.025] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2011] [Revised: 09/09/2011] [Accepted: 09/14/2011] [Indexed: 10/17/2022]
Abstract
Platinum diamine complexes are able to crosslink the guanines of d(GC)(2) dinucleotides within double-stranded DNA. The interstrand crosslink thus formed causes a bend of the double helix toward the minor groove and the helical sense changes locally to left-handed, resulting in a considerable unwinding. The bend and unwinding angles have been shown to depend on the platinum ligands. Here, we have used molecular dynamics simulations to investigate the DNA 20-mer d(C(1)T(2)C(3)T(4)C(5)C(6)T(7)T(8)G*(9)C(10)T(11)C(12)T(13)C(14)C(15)T(16)T(17)C(18)T(19)C(20))-d(G(21)A(22)G(23)A(24)A(25)G(26)G(27)A(28)G(29)A(30)G*(31)C(32)A(33)A(34)G(35)G(36)A(37)G(38)A(39)G(40)) with the G* guanines crosslinked by cis-Pt(NH(3))(2)(2+), Pt(R,R-DACH)(2+), or Pt(S,S-DACH)(2+). Previous investigations on cisplatin interstrand adducts indicated that the structure is similar in solid state and in solution; thus, we used the reported X-ray structure of a cisplatin adduct as a starting model. Replacing in the MD-relaxed model for the DNA duplex crosslinked with cis-Pt(NH(3))(2)(2+) the two NH(3) platinum ligands by R,R-DACH or S,S-DACH led to clashes between the DACH residue and the deoxyribose of C(12). Confrontation of MD-derived models with gel shift measurements suggested that these clashes are avoided differently in the adducts of Pt(R,R-DACH)(2+)versus Pt(S,S-DACH)(2+). The R,R-isomer avoids the clash by untwisting the T(11)/A(30)-C(12)/G(29) step, thus increasing the global unwinding. In contrast, the S,S-isomer modifies the shift and slide parameters of this step, which dislocates the helical axis and enhances the bend angle. The clash that leads to the differentiation of the structures as a function of the diamine ligand is related to a hydrogen bond between the platinum complex and the T(11) base and could be characteristic of interstrand crosslinks at d(pyG*Cpy)-d(puG*Cpu) sequences.
Collapse
Affiliation(s)
- Tereza Suchánková
- Department of Biophysics, Faculty of Sciences, Palacky University, Olomouc, Czech Republic
| | | | | | | | | |
Collapse
|
49
|
Vuong S, Stefan L, Lejault P, Rousselin Y, Denat F, Monchaud D. Identifying three-way DNA junction-specific small-molecules. Biochimie 2011; 94:442-50. [PMID: 21884749 DOI: 10.1016/j.biochi.2011.08.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Accepted: 08/14/2011] [Indexed: 11/26/2022]
Abstract
Three-way junction DNA (TWJ-DNA, also known as 3WJ-DNA) is an alternative secondary DNA structure comprised of three duplex-DNAs that converge towards a single point, termed the branch point. This point is characterized by unique geometrical properties that make its specific targeting by synthetic small-molecules possible. Such a targeting has already been demonstrated in the solid state but not thoroughly biophysically investigated in solution. Herein, a set of simple biophysical assays has been developed to identify TWJ-specific small-molecule ligands; these assays, inspired by the considerable body of work that has been reported to characterize the interactions between small-molecules and other higher-order DNA (notably quadruplex-DNA), have been calibrated with a known non-specific DNA binder (the porphyrin TMPyP4) and validated via the study of a small series of triazacyclononane (TACN) derivatives (metal-free or not) and the identification of a fairly-affinic and exquisitely TWJ-selective candidate (a TACN-quinoline construct named TACN-Q).
Collapse
Affiliation(s)
- Sophie Vuong
- Institut de Chimie Moléculaire de l'Université de Bourgogne, CNRS UMR5260, 9 Avenue Alain Savary, 21000 Dijon, France
| | | | | | | | | | | |
Collapse
|
50
|
Cardo L, Sadovnikova V, Phongtongpasuk S, Hodges NJ, Hannon MJ. Arginine conjugates of metallo-supramolecular cylinders prescribe helicity and enhance DNA junction binding and cellular activity. Chem Commun (Camb) 2011; 47:6575-7. [DOI: 10.1039/c1cc11356a] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|