1
|
Bajaj N, Kitos AA, Mavragani N, Loutsch NR, Vlaisavljevich B, Murugesu M. Formation of a Decanuclear Organometallic Dysprosium Complex via a Radical-Radical Cross-Coupling Reaction. Angew Chem Int Ed Engl 2024; 63:e202411635. [PMID: 38963679 DOI: 10.1002/anie.202411635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/02/2024] [Accepted: 07/02/2024] [Indexed: 07/05/2024]
Abstract
Over the years, polynuclear cyclic or torus complexes have attracted increasing interest due to their unique metal topologies and properties. However, the isolation of polynuclear cyclic organometallic complexes is extremely challenging due to their inherent reactivity, which stems from the labile and reactive metal-carbon bonds. In this study, the pyrazine ligand undergoes a radical-radical cross-coupling reaction leading to the formation of a decanuclear [(Cp*)20Dy10(L1)10] ⋅ 12(C7H8) (1; where L1 = anion of 2-prop-2-enyl-2H-pyrazine; Cp* = pentamethylcyclopentadienyl) complex, where all DyIII metal centres are bridged by the anionic L1 ligand. Amongst the family of polynuclear Ln organometallic complexes bearing CpR 2Lnx units (CpR = substituted cyclopentadienyl), 1 features the highest nuclearity obtained to date. In-depth computational studies were conducted to elucidate the proposed reaction mechanism and formation of L1, while probing of the magnetic properties of 1, revealed slow magnetic relaxation upon application of a static dc field.
Collapse
Affiliation(s)
- Neha Bajaj
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie, Ottawa, Ontario, K1N 6N5, Canada
| | - Alexandros A Kitos
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie, Ottawa, Ontario, K1N 6N5, Canada
| | - Niki Mavragani
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie, Ottawa, Ontario, K1N 6N5, Canada
| | - Nathan R Loutsch
- Department of Chemistry, University of South Dakota, 414 E Clark St, Vermillion, South Dakota, 57069, United States
| | - Bess Vlaisavljevich
- Department of Chemistry, University of South Dakota, 414 E Clark St, Vermillion, South Dakota, 57069, United States
| | - Muralee Murugesu
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie, Ottawa, Ontario, K1N 6N5, Canada
| |
Collapse
|
2
|
Yang JF, Liu YF, Wei LL, Qiao KK, Zhao YQ, Shi L. Minisci-Type Dehydrogenative Coupling of N-Heteroaromatic Rings with Inert C(sp 3)-H Enabled by a Visible-Light-Catalyzed Intermolecular Hydrogen Atom Transfer Process. J Org Chem 2024; 89:4249-4260. [PMID: 38443760 DOI: 10.1021/acs.joc.4c00093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
The Minisci-type dehydrogenative coupling of N-heteroaromatic rings with inert C-H or Si-H partners via visible-light-catalyzed hydrogen atom transfer has been reported. This methodology allows the coupling reactions to be carried out in water as a solvent under air atmospheric conditions with visible-light illumination. A wide range of inert C-H and Si-H partners could be directly coupled with various N-aromatic heterocycles to deliver products in good to excellent yields.
Collapse
Affiliation(s)
- Jun-Feng Yang
- School of Chemistry, Dalian University of Technology, Dalian 116024, P. R. China
| | - Yun-Fei Liu
- School of Chemistry, Dalian University of Technology, Dalian 116024, P. R. China
| | - Lin-Lin Wei
- School of Chemistry, Dalian University of Technology, Dalian 116024, P. R. China
| | - Kai-Kai Qiao
- School of Chemistry, Dalian University of Technology, Dalian 116024, P. R. China
| | - Yan-Qiu Zhao
- School of Chemistry, Dalian University of Technology, Dalian 116024, P. R. China
| | - Lei Shi
- School of Chemistry, Dalian University of Technology, Dalian 116024, P. R. China
| |
Collapse
|
3
|
Niu KK, Cui J, Dong RZ, Yu S, Liu H, Xing LB. Visible-light-mediated direct C3 alkylation of quinoxalin-2(1 H)-ones using alkanes. Chem Commun (Camb) 2024; 60:2409-2412. [PMID: 38323602 DOI: 10.1039/d3cc06285f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
Due to the high C-H bond dissociation energy of alkanes, the utilization of alkanes as alkyl radical precursors for C-H functionalization of heteroarenes is synthetically captivating but practically challenging, especially under metal- and photocatalyst-free conditions. We report herein a mild and practical visible-light-mediated method for C-H alkylation of quinoxalin-2(1H)-ones using trifluoroacetic acid as a hydrogen atom transfer reagent and air as an oxidant. This mild protocol was performed under metal- and photocatalyst-free circumstances and presented good functional-group tolerance as well as a broad substrate scope.
Collapse
Affiliation(s)
- Kai-Kai Niu
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, P. R. China.
| | - Jing Cui
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, P. R. China.
| | - Rui-Zhi Dong
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, P. R. China.
| | - Shengsheng Yu
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, P. R. China.
| | - Hui Liu
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, P. R. China.
| | - Ling-Bao Xing
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, P. R. China.
| |
Collapse
|
4
|
Li QY, Cheng S, Ye Z, Huang T, Yang F, Lin YM, Gong L. Visible light-triggered selective C(sp 2)-H/C(sp 3)-H coupling of benzenes with aliphatic hydrocarbons. Nat Commun 2023; 14:6366. [PMID: 37821440 PMCID: PMC10567795 DOI: 10.1038/s41467-023-42191-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 10/02/2023] [Indexed: 10/13/2023] Open
Abstract
The direct and selective coupling of benzenes with aliphatic hydrocarbons is a promising strategy for C(sp2)-C(sp3) bond formation using readily available starting materials, yet it remains a significant challenge. In this study, we have developed a simplified photochemical system that incorporates catalytic amounts of iron(III) halides as multifunctional reagents and air as a green oxidant to address this synthetic problem. Under mild conditions, the reaction between a strong C(sp2)-H bond and a robust C(sp3)-H bond has been achieved, affording a broad range of cross-coupling products with high yields and commendable chemo-, site-selectivity. The iron halide acts as a multifunctional reagent that responds to visible light, initiates C-centered radicals, induces single-electron oxidation to carbocations, and participates in a subsequent Friedel-Crafts-type process. The gradual release of radical species and carbocation intermediates appears to be critical for achieving desirable reactivity and selectivity. This eco-friendly, cost-efficient approach offers access to various building blocks from abundant hydrocarbon feedstocks, and demonstrates the potential of iron halides in sustainable synthesis.
Collapse
Affiliation(s)
- Qian-Yu Li
- Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China
| | - Shiyan Cheng
- Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China
| | - Ziqi Ye
- Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China
| | - Tao Huang
- Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China
| | - Fuxing Yang
- Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China
| | - Yu-Mei Lin
- Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China.
| | - Lei Gong
- Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China.
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen, 361005, China.
| |
Collapse
|
5
|
Roy S, Panja S, Sahoo SR, Chatterjee S, Maiti D. Enroute sustainability: metal free C-H bond functionalisation. Chem Soc Rev 2023; 52:2391-2479. [PMID: 36924227 DOI: 10.1039/d0cs01466d] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
The term "C-H functionalisation" incorporates C-H activation followed by its transformation. In a single line, this can be defined as the conversion of carbon-hydrogen bonds into carbon-carbon or carbon-heteroatom bonds. The catalytic functionalisation of C-H bonds using transition metals has emerged as an atom-economical technique to engender new bonds without activated precursors which can be considered as a major drawback while attempting large-scale synthesis. Replacing the transition-metal-catalysed approach with a metal-free strategy significantly offers an alternative route that is not only inexpensive but also environmentally benign to functionalize C-H bonds. Recently metal free synthetic approaches have been flourishing to functionalize C-H bonds, motivated by the search for greener, cost-effective, and non-toxic catalysts. In this review, we will highlight the comprehensive and up-to-date discussion on recent examples of ground-breaking research on green and sustainable metal-free C-H bond functionalisation.
Collapse
Affiliation(s)
- Sayan Roy
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India.
| | - Subir Panja
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India.
| | - Sumeet Ranjan Sahoo
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India.
| | - Sagnik Chatterjee
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India.
| | - Debabrata Maiti
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India. .,Department of Interdisciplinary Program in Climate Studies, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| |
Collapse
|
6
|
Gong H, Wang J, Peng Y, Chen H, Deng H, Hao J, Wan W. Photocatalyzed difluoroalkylation of pyridine N-oxides. SYNTHETIC COMMUN 2022. [DOI: 10.1080/00397911.2022.2112057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Affiliation(s)
- Haiying Gong
- Department of Chemistry, Shanghai University, Shanghai, China
| | - Juan Wang
- Department of Chemistry, Shanghai University, Shanghai, China
| | - Yi Peng
- Department of Chemistry, Shanghai University, Shanghai, China
| | - Hua Chen
- Department of Chemistry, Shanghai University, Shanghai, China
| | - Hongmei Deng
- Laboratory of Microstructures, Shanghai University, Shanghai, China
| | - Jian Hao
- Department of Chemistry, Shanghai University, Shanghai, China
| | - Wen Wan
- Department of Chemistry, Shanghai University, Shanghai, China
| |
Collapse
|
7
|
Wang M, Zhang Z, Xiong C, Sun P, Zhou C. Microwave‐Accelerated Cross‐Dehydrogenative Coupling of Quinoxalin‐2(1
H
)‐ones with Alkanes under Transition‐Metal‐Free Conditions. ChemistrySelect 2022. [DOI: 10.1002/slct.202200816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Min Wang
- Nanjing Normal University Jiangsu Collaborative Innovation Center of Biomedical Functional Materials Nanjing 210023 China
- Huaibei Normal University Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education Huaibei Anhui 235000 China
| | - Zhongyi Zhang
- Huaibei Normal University Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education Huaibei Anhui 235000 China
| | - Chunxia Xiong
- Huaibei Normal University Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education Huaibei Anhui 235000 China
| | - Peipei Sun
- Nanjing Normal University Jiangsu Collaborative Innovation Center of Biomedical Functional Materials Nanjing 210023 China
| | - Chao Zhou
- Huaibei Normal University Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education Huaibei Anhui 235000 China
| |
Collapse
|
8
|
Golden DL, Suh SE, Stahl SS. Radical C(sp3)-H functionalization and cross-coupling reactions. Nat Rev Chem 2022; 6:405-427. [PMID: 35965690 PMCID: PMC9364982 DOI: 10.1038/s41570-022-00388-4] [Citation(s) in RCA: 90] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/12/2022] [Indexed: 11/09/2022]
Abstract
C─H functionalization reactions are playing an increasing role in the preparation and modification of complex organic molecules, including pharmaceuticals, agrochemicals, and polymer precursors. Radical C─H functionalization reactions, initiated by hydrogen-atom transfer (HAT) and proceeding via open-shell radical intermediates, have been expanding rapidly in recent years. These methods introduce strategic opportunities to functionalize C(sp3)─H bonds. Examples include synthetically useful advances in radical-chain reactivity and biomimetic radical-rebound reactions. A growing number of reactions, however, proceed via "radical relay" whereby HAT generates a diffusible radical that is functionalized by a separate reagent or catalyst. The latter methods provide the basis for versatile C─H cross-coupling methods with diverse partners. In the present review, highlights of recent radical-chain and radical-rebound methods provide context for a survey of emerging radical-relay methods, which greatly expand the scope and utility of intermolecular C(sp3)─H functionalization and cross coupling.
Collapse
Affiliation(s)
- Dung L. Golden
- Department of Chemistry, University of Wisconsin–Madison, WI, USA
- These authors contributed equally: Dung L. Golden, Sung-Eun Suh
| | - Sung-Eun Suh
- Department of Chemistry, University of Wisconsin–Madison, WI, USA
- These authors contributed equally: Dung L. Golden, Sung-Eun Suh
- Department of Chemistry, Ajou University, Suwon, Republic of Korea
| | - Shannon S. Stahl
- Department of Chemistry, University of Wisconsin–Madison, WI, USA
| |
Collapse
|
9
|
|
10
|
Li DS, Liu T, Hong Y, Cao CL, Wu J, Deng HP. Stop-Flow Microtubing Reactor-Assisted Visible Light-Induced Hydrogen-Evolution Cross Coupling of Heteroarenes with C(sp 3)–H Bonds. ACS Catal 2022. [DOI: 10.1021/acscatal.2c01087] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Dong-Sheng Li
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, People’s Republic of China
| | - Tao Liu
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Republic of Singapore
| | - Yang Hong
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, People’s Republic of China
| | - Chen-Lin Cao
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, People’s Republic of China
| | - Jie Wu
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Republic of Singapore
- National University of Singapore (Suzhou) Research Institute, No. 377 Lin Quan Street, Suzhou Industrial Park, Suzhou, Jiangsu 215123, People’s Republic of China
| | - Hong-Ping Deng
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, People’s Republic of China
| |
Collapse
|
11
|
Li C. On Inventing
Cross‐Dehydrogenative
Coupling (
CDC
): Forming C—C Bond from Two Different C—H Bonds. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202100796] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Chao‐Jun Li
- Department of Chemistry, FQRNT Centre for Green Chemistry and Catalysis McGill University 801 Sherbrooke Street W., Montreal Quebec H3A0B8 Canada
| |
Collapse
|
12
|
Kuehn L, Zapf L, Werner L, Stang M, Würtemberger-Pietsch S, Krummenacher I, Braunschweig H, Lacôte E, Marder TB, Radius U. NHC induced radical formation via homolytic cleavage of B–B bonds and its role in organic reactions. Chem Sci 2022; 13:8321-8333. [PMID: 35919710 PMCID: PMC9297536 DOI: 10.1039/d2sc02096c] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 06/07/2022] [Indexed: 11/21/2022] Open
Abstract
New borylation methodologies have been reported recently, wherein diboron(4) compounds apparently participate in free radical couplings via the homolytic cleavage of the B–B bond. We report herein that bis-NHC adducts of the type (NHC)2·B2(OR)4, which are thermally unstable and undergo intramolecular ring expansion reactions (RER), are sources of boryl radicals of the type NHC–BR2˙, exemplified by Me2ImMe·Bneop˙ 1a (Me2ImMe = 1,3,4,5-tetramethyl-imidazolin-2-ylidene, neop = neopentylglycolato), which are formed by homolytic B–B bond cleavage. Attempts to apply the boryl moiety 1a in a metal-free borylation reaction by suppressing the RER failed. However, based on these findings, a protocol was developed using Me2ImMe·B2pin23 for the transition metal- and additive-free boryl transfer to substituted aryl iodides and bromides giving aryl boronate esters in good yields. Analysis of the side products and further studies concerning the reaction mechanism revealed that radicals are likely involved. An aryl radical was trapped by TEMPO, an EPR resonance, which was suggestive of a boron-based radical, was detected in situ, and running the reaction in styrene led to the formation of polystyrene. The isolation of a boronium cation side product, [(Me2ImMe)2·Bpin]+I−7, demonstrated the fate of the second boryl moiety of B2pin2. Interestingly, Me2ImMe NHC reacts with aryl iodides and bromides generating radicals. A mechanism for the boryl radical transfer from Me2ImMe·B2pin23 to aryl iodides and bromides is proposed based on these experimental observations. Bis-NHC adducts of the type (NHC)2·B2(OR)4 are sources of boryl radicals of the type NHC–BR2˙, which are formed by homolytic B–B bond cleavage.![]()
Collapse
Affiliation(s)
- Laura Kuehn
- Institute for Inorganic Chemistry, Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Ludwig Zapf
- Institute for Inorganic Chemistry, Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Luis Werner
- Institute for Inorganic Chemistry, Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Martin Stang
- Institute for Inorganic Chemistry, Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Sabrina Würtemberger-Pietsch
- Institute for Inorganic Chemistry, Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Ivo Krummenacher
- Institute for Inorganic Chemistry, Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Holger Braunschweig
- Institute for Inorganic Chemistry, Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Emmanuel Lacôte
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, CNES, ArianeGroup, LHCEP, Bât. Raulin, 2 rue Victor Grignard, F-69622 Villeurbanne, France
| | - Todd B. Marder
- Institute for Inorganic Chemistry, Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Udo Radius
- Institute for Inorganic Chemistry, Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| |
Collapse
|
13
|
Rieder S, Meléndez C, Dénès F, Jangra H, Mulliri K, Zipse H, Renaud P. Radical chain monoalkylation of pyridines. Chem Sci 2021; 12:15362-15373. [PMID: 34976357 PMCID: PMC8635225 DOI: 10.1039/d1sc02748d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 10/21/2021] [Indexed: 12/27/2022] Open
Abstract
The monoalkylation of N-methoxypyridinium salts with alkyl radicals generated from alkenes (via hydroboration with catecholborane), alkyl iodides (via iodine atom transfer) and xanthates is reported. The reaction proceeds under neutral conditions since no acid is needed to activate the heterocycle and no external oxidant is required. A rate constant for the addition of a primary radical to N-methoxylepidinium >107 M-1 s-1 was experimentally determined. This rate constant is more than one order of magnitude larger than the one measured for the addition of primary alkyl radicals to protonated lepidine demonstrating the remarkable reactivity of methoxypyridinium salts towards radicals. The reaction has been used for the preparation of unique pyridinylated terpenoids and was extended to a three-component carbopyridinylation of electron-rich alkenes including enol esters, enol ethers and enamides.
Collapse
Affiliation(s)
- Samuel Rieder
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern Freiestrasse 3 CH-3012 Bern Switzerland
| | - Camilo Meléndez
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern Freiestrasse 3 CH-3012 Bern Switzerland
| | - Fabrice Dénès
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern Freiestrasse 3 CH-3012 Bern Switzerland
| | - Harish Jangra
- Department of Chemistry, LMU München Butenandtstrasse 5-13 81377 München Germany
| | - Kleni Mulliri
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern Freiestrasse 3 CH-3012 Bern Switzerland
| | - Hendrik Zipse
- Department of Chemistry, LMU München Butenandtstrasse 5-13 81377 München Germany
| | - Philippe Renaud
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern Freiestrasse 3 CH-3012 Bern Switzerland
| |
Collapse
|
14
|
Zhang L, Liu Z, Tian X, Zi Y, Duan S, Fang Y, Chen W, Jing H, Yang L, Yang X. Transition-Metal-Free C(sp 3)-H Coupling of Cycloalkanes Enabled by Single-Electron Transfer and Hydrogen Atom Transfer. Org Lett 2021; 23:1714-1719. [PMID: 33591768 DOI: 10.1021/acs.orglett.1c00135] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Here we report a unique transition-metal-free C(sp3)-H/C(sp3)-H coupling of cycloalkanes at room temperature. Unactivated cycloalkanes and 2-azaallyls underwent the combination process of single-electron transfer (SET) and hydrogen atom transfer (HAT) to deliver a wide variety of cycloalkane-functionalized products. This expedient approach enables C(sp3)-H/C(sp3)-H coupling of cycloalkanes under mild conditions without transition metals, initiators, and oxidants.
Collapse
Affiliation(s)
- Linlin Zhang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, and School of Chemical Science and Technology, Yunnan University, Kunming 650091, P. R. China
| | - Zhengfen Liu
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, and School of Chemical Science and Technology, Yunnan University, Kunming 650091, P. R. China.,Faculty of Chemical and Environment Sciences, Qujing Normal University, Qujing 655011, P. R. China
| | - Xun Tian
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, and School of Chemical Science and Technology, Yunnan University, Kunming 650091, P. R. China
| | - Yujin Zi
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, and School of Chemical Science and Technology, Yunnan University, Kunming 650091, P. R. China
| | - Shengzu Duan
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, and School of Chemical Science and Technology, Yunnan University, Kunming 650091, P. R. China.,School of Chemistry & Environment, Key Laboratory of Intelligent Supramolecular Chemistry at the University of Yunnan Province, Yunnan Minzu University, Kunming 650500, P. R. China
| | - Yongsheng Fang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, and School of Chemical Science and Technology, Yunnan University, Kunming 650091, P. R. China
| | - Wen Chen
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, and School of Chemical Science and Technology, Yunnan University, Kunming 650091, P. R. China
| | - Hong Jing
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, and School of Chemical Science and Technology, Yunnan University, Kunming 650091, P. R. China
| | - Lijuan Yang
- School of Chemistry & Environment, Key Laboratory of Intelligent Supramolecular Chemistry at the University of Yunnan Province, Yunnan Minzu University, Kunming 650500, P. R. China
| | - Xiaodong Yang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, and School of Chemical Science and Technology, Yunnan University, Kunming 650091, P. R. China
| |
Collapse
|
15
|
Yennamaneni DR, Amrutham V, Gajula KS, Banothu R, Boosa M, Nama N. An atom-economical addition of methyl azaarenes with aromatic aldehydes via benzylic C(sp 3)-H bond functionalization under solvent- and catalyst-free conditions. Beilstein J Org Chem 2020; 16:3093-3103. [PMID: 33425033 PMCID: PMC7770386 DOI: 10.3762/bjoc.16.259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 12/01/2020] [Indexed: 11/23/2022] Open
Abstract
A convenient practical approach for the synthesis of 2-(pyridin-2-yl)ethanols by direct benzylic addition of azaarenes and aldehydes under catalyst- and solvent-free conditions is reported. This reaction is metal-free, green, and was carried out in a facile operative environment without using any hazardous transition metal catalysts or any other coupling reagents. Different aromatic aldehydes and azaarenes were monitored, and the yields of the resulting products were moderate to excellent. We accomplished several azaarene derivatives under neat conditions through a highly atom-economical pathway. To evaluate the preparative potential of this process, gram-scale reactions were performed up to a 10 g scale.
Collapse
Affiliation(s)
- Divya Rohini Yennamaneni
- Catalysis and Fine Chemicals Division, CSIR-Indian Institute of Chemical Technology, Hyderabad, Telangana, 500 007, India.,Academy of Scientific and Innovative Research, CSIR-HRDC Campus, Sector 19, Kamala Nehru Nagar, Ghaziabad, UP-201002, India
| | - Vasu Amrutham
- Catalysis and Fine Chemicals Division, CSIR-Indian Institute of Chemical Technology, Hyderabad, Telangana, 500 007, India.,Academy of Scientific and Innovative Research, CSIR-HRDC Campus, Sector 19, Kamala Nehru Nagar, Ghaziabad, UP-201002, India
| | - Krishna Sai Gajula
- Catalysis and Fine Chemicals Division, CSIR-Indian Institute of Chemical Technology, Hyderabad, Telangana, 500 007, India.,Academy of Scientific and Innovative Research, CSIR-HRDC Campus, Sector 19, Kamala Nehru Nagar, Ghaziabad, UP-201002, India
| | - Rammurthy Banothu
- Catalysis and Fine Chemicals Division, CSIR-Indian Institute of Chemical Technology, Hyderabad, Telangana, 500 007, India.,Academy of Scientific and Innovative Research, CSIR-HRDC Campus, Sector 19, Kamala Nehru Nagar, Ghaziabad, UP-201002, India
| | - Murali Boosa
- Catalysis and Fine Chemicals Division, CSIR-Indian Institute of Chemical Technology, Hyderabad, Telangana, 500 007, India.,Academy of Scientific and Innovative Research, CSIR-HRDC Campus, Sector 19, Kamala Nehru Nagar, Ghaziabad, UP-201002, India
| | - Narender Nama
- Catalysis and Fine Chemicals Division, CSIR-Indian Institute of Chemical Technology, Hyderabad, Telangana, 500 007, India.,Academy of Scientific and Innovative Research, CSIR-HRDC Campus, Sector 19, Kamala Nehru Nagar, Ghaziabad, UP-201002, India
| |
Collapse
|
16
|
Wang K, Mitchell JE, Ho SC, Walker EL. Oxidative Coupling of Light Alkanes to Liquid Fuels Using Isobutane as an Oxygen Carrier and the Alkane Structure–Reactivity Relationship. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c05244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
17
|
Liu DY, Liu X, Gao Y, Wang CQ, Tian JS, Loh TP. Decarboxylative C-H Alkylation of Heteroarene N-Oxides by Visible Light/Copper Catalysis. Org Lett 2020; 22:8978-8983. [PMID: 33174421 DOI: 10.1021/acs.orglett.0c03382] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
This paper reports a highly site-selective alkylation of heteroarene N-oxides using hypervalent iodine(III) carboxylates to serve as an alkylating agent in the presence of a cheap copper catalyst under visible light conditions. This mild method proceeds at room temperature in an air atmosphere and can withstand various heteroarene N-oxides as well as various primary, secondary, and tertiary alkyl carboxylic acids. It also provides a practical method for enabling the rapid conversion of commercially available raw materials into medically relevant "drug-like" molecules.
Collapse
Affiliation(s)
- Duan-Yang Liu
- Institute of Advanced Synthesis (IAS), Nanjing Tech University (NanjingTech), Nanjing 211816, P. R. China
| | - Xu Liu
- Institute of Advanced Synthesis (IAS), Nanjing Tech University (NanjingTech), Nanjing 211816, P. R. China
| | - Yan Gao
- Institute of Advanced Synthesis (IAS), Northwestern Polytechnical University (NPU), Xi'an 710072, China.,Yangtze River Delta Research Institute of Northwestern Polytechnical University, Taicang, Jiangsu 215400, China
| | - Chao-Qun Wang
- Institute of Advanced Synthesis (IAS), Nanjing Tech University (NanjingTech), Nanjing 211816, P. R. China
| | - Jie-Sheng Tian
- Institute of Advanced Synthesis (IAS), Northwestern Polytechnical University (NPU), Xi'an 710072, China.,Yangtze River Delta Research Institute of Northwestern Polytechnical University, Taicang, Jiangsu 215400, China.,Institute of Advanced Synthesis (IAS), Nanjing Tech University (NanjingTech), Nanjing 211816, P. R. China
| | - Teck-Peng Loh
- Institute of Advanced Synthesis (IAS), Northwestern Polytechnical University (NPU), Xi'an 710072, China.,Yangtze River Delta Research Institute of Northwestern Polytechnical University, Taicang, Jiangsu 215400, China.,Institute of Advanced Synthesis (IAS), Nanjing Tech University (NanjingTech), Nanjing 211816, P. R. China.,Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371
| |
Collapse
|
18
|
Madasu J, Shinde S, Das R, Patel S, Shard A. Potassium tert-butoxide mediated C-C, C-N, C-O and C-S bond forming reactions. Org Biomol Chem 2020; 18:8346-8365. [PMID: 33020791 DOI: 10.1039/d0ob01382j] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Potassium tertiary butoxide (KOtBu) mediated constructions of C-C, C-O, C-N, and C-S bonds are reviewed with special emphasis on their synthetic applications. KOtBu can be used to perform reactions already known to be carried out using transition metals, but it has advantages in terms of environmental congruence and economic cost. KOtBu is widely employed in organic synthesis to mediate the construction of C-C, C-O, C-N, C-S and miscellaneous bonds in good to excellent yields. Synthetic uses of KOtBu in coupling, alkylation, arylation, α-phenylation, cyclization, Heck-type, annulation, photo-arylation, aromatic-substitution, amidation, and silylation reactions are summarized and discussed. The mechanisms through which KOtBu carries out a specific reaction are also discussed. One of the goals of this review is to attract the attention of chemists as to the benefits of using KOtBu as an environmentally benign alternative to transition metals and its applications in the construction of chemical bonds with predominant importance in organic synthesis. This review completely covers the synthetic protocols that have been performed using KOtBu in the last two decades.
Collapse
Affiliation(s)
- Jayashree Madasu
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gujarat 380054, India.
| | - Shital Shinde
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gujarat 380054, India.
| | - Rudradip Das
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gujarat 380054, India.
| | - Sagarkumar Patel
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gujarat 380054, India.
| | - Amit Shard
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gujarat 380054, India.
| |
Collapse
|
19
|
Shao X, Wu X, Wu S, Zhu C. Metal-Free Radical-Mediated C(sp3)–H Heteroarylation of Alkanes. Org Lett 2020; 22:7450-7454. [DOI: 10.1021/acs.orglett.0c02475] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Xin Shao
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu 215123, China
| | - Xinxin Wu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu 215123, China
| | - Shuo Wu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu 215123, China
| | - Chen Zhu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu 215123, China
- Key Laboratory of Synthesis Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, Chinese Academy of Science, 345 Lingling Road, Shanghai 200032, China
| |
Collapse
|
20
|
Qin P, Sun J, Wang F, Wang J, Wang H, Zhou M. Visible‐Light‐Induced C2 Alkylation of Heterocyclic N‐Oxides with N‐Hydroxyphthalimide Esters under Metal‐Free Conditions. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000517] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Pi‐Tao Qin
- School of Chemistry and Materials Science Liaoning Shihua University Fushun 113001 People's Republic of China
| | - Jing Sun
- School of Chemistry and Materials Science Liaoning Shihua University Fushun 113001 People's Republic of China
| | - Fei Wang
- School of Chemistry and Materials Science Liaoning Shihua University Fushun 113001 People's Republic of China
| | - Jing‐Yun Wang
- School of Chemistry and Materials Science Liaoning Shihua University Fushun 113001 People's Republic of China
| | - He Wang
- School of Chemistry and Materials Science Liaoning Shihua University Fushun 113001 People's Republic of China
| | - Ming‐Dong Zhou
- School of Chemistry and Materials Science Liaoning Shihua University Fushun 113001 People's Republic of China
| |
Collapse
|
21
|
Batra A, Singh KN. Recent Developments in Transition Metal‐Free Cross‐Dehydrogenative Coupling Reactions for C–C Bond Formation. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000785] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Aanchal Batra
- PG Department of Chemistry Mehr Chand Mahajan DAV College for Women Sec 36/A 160036 Chandigarh India
| | - Kamal Nain Singh
- Department of Chemistry and Centre of Advanced studies in Chemistry Panjab University 160014 Chandigarh India
| |
Collapse
|
22
|
Mech P, Bogunia M, Nowacki A, Makowski M. Calculations of pKa Values of Selected Pyridinium and Its N-Oxide Ions in Water and Acetonitrile. J Phys Chem A 2019; 124:538-551. [DOI: 10.1021/acs.jpca.9b10319] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Paulina Mech
- Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Małgorzata Bogunia
- Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Andrzej Nowacki
- Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Mariusz Makowski
- Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| |
Collapse
|
23
|
Gao L, Wang G, Cao J, Chen H, Gu Y, Liu X, Cheng X, Ma J, Li S. Lewis Acid-Catalyzed Selective Reductive Decarboxylative Pyridylation of N-Hydroxyphthalimide Esters: Synthesis of Congested Pyridine-Substituted Quaternary Carbons. ACS Catal 2019. [DOI: 10.1021/acscatal.9b03798] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Liuzhou Gao
- Key Laboratory of Mesoscopic Chemistry of Ministry of Education, Institute of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, People’s Republic of China
| | - Guoqiang Wang
- Key Laboratory of Mesoscopic Chemistry of Ministry of Education, Institute of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, People’s Republic of China
| | - Jia Cao
- Key Laboratory of Mesoscopic Chemistry of Ministry of Education, Institute of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, People’s Republic of China
| | - Hui Chen
- Key Laboratory of Mesoscopic Chemistry of Ministry of Education, Institute of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, People’s Republic of China
| | - Yuming Gu
- Key Laboratory of Mesoscopic Chemistry of Ministry of Education, Institute of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, People’s Republic of China
| | - Xueting Liu
- Key Laboratory of Mesoscopic Chemistry of Ministry of Education, Institute of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, People’s Republic of China
| | - Xu Cheng
- Key Laboratory of Mesoscopic Chemistry of Ministry of Education, Institute of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, People’s Republic of China
- Institute of Chemistry and Biomedical Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, People’s Republic of China
| | - Jing Ma
- Key Laboratory of Mesoscopic Chemistry of Ministry of Education, Institute of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, People’s Republic of China
| | - Shuhua Li
- Key Laboratory of Mesoscopic Chemistry of Ministry of Education, Institute of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, People’s Republic of China
| |
Collapse
|
24
|
Jonsson AL. Direct Oxidative Cross-Coupling Reactions of Disulfides and N-Heteroaromatics with Mineral Oil. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b01929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
25
|
Buquoi JQ, Lear JM, Gu X, Nagib DA. Heteroarene Phosphinylalkylation via a Catalytic, Polarity-Reversing Radical Cascade. ACS Catal 2019; 9:5330-5335. [PMID: 31275730 PMCID: PMC6608589 DOI: 10.1021/acscatal.9b01580] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A polarity-reversing radical cascade strategy for alkene di-functionalization by vicinal C-C and C-P bond-formation has been developed. This approach to concurrently adding phosphorous and a heteroarene across an olefin is enabled by photocatalytic generation of electrophilic P-centered radicals. Upon chemoselective addition to an olefin, the resulting nucleophilic C-centered radical selectively combines with electrophilic heteroarenes, such as pyridines. This multi-component coupling scheme for phosphinylalkylation complements classic two-component methods for hydrophosphinylation of alkenes and C-H phosphinylation of arenes. Included competition and photo-quenching experiments provide insight into the selectivity and mechanism of this polarity-reversal pathway.
Collapse
Affiliation(s)
- J Quentin Buquoi
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, United States
| | - Jeremy M Lear
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, United States
| | - Xin Gu
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, United States
| | - David A Nagib
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, United States
| |
Collapse
|
26
|
Evano G, Theunissen C. Beyond Friedel and Crafts: Innate Alkylation of C−H Bonds in Arenes. Angew Chem Int Ed Engl 2019; 58:7558-7598. [DOI: 10.1002/anie.201806631] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Indexed: 12/28/2022]
Affiliation(s)
- Gwilherm Evano
- Laboratoire de Chimie Organique, Service de Chimie et Physico-Chimie OrganiquesUniversité libre de Bruxelles (ULB) Avenue F.D. Roosevelt 50, CP160/06 1050 Brussels Belgium
| | - Cédric Theunissen
- Laboratoire de Chimie Organique, Service de Chimie et Physico-Chimie OrganiquesUniversité libre de Bruxelles (ULB) Avenue F.D. Roosevelt 50, CP160/06 1050 Brussels Belgium
| |
Collapse
|
27
|
Huang CY, Li J, Liu W, Li CJ. Diacetyl as a "traceless" visible light photosensitizer in metal-free cross-dehydrogenative coupling reactions. Chem Sci 2019; 10:5018-5024. [PMID: 31183051 PMCID: PMC6530541 DOI: 10.1039/c8sc05631e] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 04/07/2019] [Indexed: 12/22/2022] Open
Abstract
Minisci alkylation is of prime importance for its applicability in functionalizing diverse heteroarenes, which are core structures in many bioactive compounds. In alkyl radical generation processes, precious metal catalysts, high temperatures and excessive oxidants are generally involved, which lead to sustainability and safety concerns. Herein we report a new strategy using diacetyl (2,3-butanedione) as an abundant, visible light-sensitive and "traceless" hydrogen atom abstractor to achieve metal-free cross-dehydrogenative Minisci alkylation under mild conditions. Mechanistic studies supported hydrogen atom transfer (HAT) between an activated C(sp3)-H substrate and diacetyl. Moreover, with the assistance of di-tert-butyl peroxide (DTBP), the scope of the reaction could be extended to strong aliphatic C-H bonds via diacetyl-mediated energy transfer. The robustness of this strategy was demonstrated by functionalizing complex molecules such as quinine, fasudil, nicotine, menthol and alanine derivatives.
Collapse
Affiliation(s)
- Chia-Yu Huang
- Department of Chemistry , FRQNT Centre for Green Chemistry and Catalysis , McGill University , 801 Sherbrooke St. W. , Montreal , Quebec H3A 0B8 , Canada .
| | - Jianbin Li
- Department of Chemistry , FRQNT Centre for Green Chemistry and Catalysis , McGill University , 801 Sherbrooke St. W. , Montreal , Quebec H3A 0B8 , Canada .
| | - Wenbo Liu
- Department of Chemistry , FRQNT Centre for Green Chemistry and Catalysis , McGill University , 801 Sherbrooke St. W. , Montreal , Quebec H3A 0B8 , Canada .
| | - Chao-Jun Li
- Department of Chemistry , FRQNT Centre for Green Chemistry and Catalysis , McGill University , 801 Sherbrooke St. W. , Montreal , Quebec H3A 0B8 , Canada .
| |
Collapse
|
28
|
Evano G, Theunissen C. Jenseits von Friedel und Crafts: immanente Alkylierung von C‐H‐Bindungen in Arenen. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201806631] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Gwilherm Evano
- Laboratoire de Chimie Organique, Service de Chimie et Physico-Chimie OrganiquesUniversité libre de Bruxelles (ULB) Avenue F. D. Roosevelt 50, CP160/06 1050 Brüssel Belgien
| | - Cédric Theunissen
- Laboratoire de Chimie Organique, Service de Chimie et Physico-Chimie OrganiquesUniversité libre de Bruxelles (ULB) Avenue F. D. Roosevelt 50, CP160/06 1050 Brüssel Belgien
| |
Collapse
|
29
|
Su J, Zhang K, Zhuang M, Ma F, Zhang W, Sun H, Zhang G, Jian Y, Gao Z. One‐Pot Synthesis of Indoles from Aniline and α,β‐Ynones through an Iodine‐Mediated Transition‐Metal‐Free Tandem
aza
‐Michael addition/C−H Functionalization. ASIAN J ORG CHEM 2019. [DOI: 10.1002/ajoc.201900152] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Jie Su
- Key Laboratory of Applied Surface and Colloid Chemistry, MOESchool of Chemistry and Chemical EngineeringShaanxi Normal University No. 620, West Chang'an Avenue, Chang'an District Xi'an P.R.China 710119
| | - Kan Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry, MOESchool of Chemistry and Chemical EngineeringShaanxi Normal University No. 620, West Chang'an Avenue, Chang'an District Xi'an P.R.China 710119
| | - Mengyuan Zhuang
- Key Laboratory of Applied Surface and Colloid Chemistry, MOESchool of Chemistry and Chemical EngineeringShaanxi Normal University No. 620, West Chang'an Avenue, Chang'an District Xi'an P.R.China 710119
| | - Fuyu Ma
- Key Laboratory of Applied Surface and Colloid Chemistry, MOESchool of Chemistry and Chemical EngineeringShaanxi Normal University No. 620, West Chang'an Avenue, Chang'an District Xi'an P.R.China 710119
| | - Wei‐Qiang Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry, MOESchool of Chemistry and Chemical EngineeringShaanxi Normal University No. 620, West Chang'an Avenue, Chang'an District Xi'an P.R.China 710119
| | - Huaming Sun
- Key Laboratory of Applied Surface and Colloid Chemistry, MOESchool of Chemistry and Chemical EngineeringShaanxi Normal University No. 620, West Chang'an Avenue, Chang'an District Xi'an P.R.China 710119
| | - Guofang Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry, MOESchool of Chemistry and Chemical EngineeringShaanxi Normal University No. 620, West Chang'an Avenue, Chang'an District Xi'an P.R.China 710119
| | - Yajun Jian
- Key Laboratory of Applied Surface and Colloid Chemistry, MOESchool of Chemistry and Chemical EngineeringShaanxi Normal University No. 620, West Chang'an Avenue, Chang'an District Xi'an P.R.China 710119
| | - Ziwei Gao
- Key Laboratory of Applied Surface and Colloid Chemistry, MOESchool of Chemistry and Chemical EngineeringShaanxi Normal University No. 620, West Chang'an Avenue, Chang'an District Xi'an P.R.China 710119
| |
Collapse
|
30
|
Mao S, Luo K, Wang L, Zhao HY, Shergalis A, Xin M, Neamati N, Jin Y, Zhang SQ. Metal-Free C-2-H Alkylation of Quinazolin-4-ones with Alkanes via Cross-Dehydrogenative Coupling. Org Lett 2019; 21:2365-2368. [DOI: 10.1021/acs.orglett.9b00638] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Shuai Mao
- Department of Medicinal Chemistry, School of Pharmacy, Xi’an Jiaotong University, Xi’an 710061, China
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Kaixiu Luo
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650091, P. R. China
| | - Lu Wang
- Department of Medicinal Chemistry, School of Pharmacy, Xi’an Jiaotong University, Xi’an 710061, China
| | - Hong-Yi Zhao
- Department of Medicinal Chemistry, School of Pharmacy, Xi’an Jiaotong University, Xi’an 710061, China
| | - Andrea Shergalis
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Minhang Xin
- Department of Medicinal Chemistry, School of Pharmacy, Xi’an Jiaotong University, Xi’an 710061, China
| | - Nouri Neamati
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Yi Jin
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650091, P. R. China
| | - San-Qi Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Xi’an Jiaotong University, Xi’an 710061, China
| |
Collapse
|
31
|
Liang XA, Niu L, Wang S, Liu J, Lei A. Visible-Light-Induced C(sp3)–H Oxidative Arylation with Heteroarenes. Org Lett 2019; 21:2441-2444. [DOI: 10.1021/acs.orglett.9b00744] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Xing-An Liang
- Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, People’s Republic of China
| | - Linbin Niu
- Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, People’s Republic of China
| | - Shengchun Wang
- Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, People’s Republic of China
| | - Jiamei Liu
- Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, People’s Republic of China
| | - Aiwen Lei
- Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, People’s Republic of China
| |
Collapse
|
32
|
Li GX, Hu X, He G, Chen G. Photoredox-Mediated Minisci-type Alkylation of N-Heteroarenes with Alkanes with High Methylene Selectivity. ACS Catal 2018. [DOI: 10.1021/acscatal.8b04079] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Guo-Xing Li
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Xiafei Hu
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Gang He
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300071, China
| | - Gong Chen
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300071, China
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
33
|
Han S, Chakrasali P, Park J, Oh H, Kim S, Kim K, Pandey AK, Han SH, Han SB, Kim IS. Reductive C2-Alkylation of Pyridine and Quinoline N
-Oxides Using Wittig Reagents. Angew Chem Int Ed Engl 2018; 57:12737-12740. [DOI: 10.1002/anie.201807159] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Indexed: 11/11/2022]
Affiliation(s)
- Sangil Han
- School of Pharmacy; Sungkyunkwan University; Suwon 16419 Republic of Korea
| | - Prashant Chakrasali
- Bio and Drug Discovery Division; Korea Research Institute of Chemical Technology; Daejeon 34114 Republic of Korea
- Department of Medicinal and Pharmaceutical Chemistry; University of Science and Technology; Daejeon 34113 Republic of Korea
| | - Jihye Park
- School of Pharmacy; Sungkyunkwan University; Suwon 16419 Republic of Korea
| | - Hyunjung Oh
- School of Pharmacy; Sungkyunkwan University; Suwon 16419 Republic of Korea
| | - Saegun Kim
- School of Pharmacy; Sungkyunkwan University; Suwon 16419 Republic of Korea
| | - Kyuneun Kim
- Bio and Drug Discovery Division; Korea Research Institute of Chemical Technology; Daejeon 34114 Republic of Korea
- Department of Medicinal and Pharmaceutical Chemistry; University of Science and Technology; Daejeon 34113 Republic of Korea
| | - Ashok Kumar Pandey
- School of Pharmacy; Sungkyunkwan University; Suwon 16419 Republic of Korea
| | - Sang Hoon Han
- School of Pharmacy; Sungkyunkwan University; Suwon 16419 Republic of Korea
| | - Soo Bong Han
- Bio and Drug Discovery Division; Korea Research Institute of Chemical Technology; Daejeon 34114 Republic of Korea
- Department of Medicinal and Pharmaceutical Chemistry; University of Science and Technology; Daejeon 34113 Republic of Korea
| | - In Su Kim
- School of Pharmacy; Sungkyunkwan University; Suwon 16419 Republic of Korea
| |
Collapse
|
34
|
Han S, Chakrasali P, Park J, Oh H, Kim S, Kim K, Pandey AK, Han SH, Han SB, Kim IS. Reductive C2-Alkylation of Pyridine and Quinoline N
-Oxides Using Wittig Reagents. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201807159] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Sangil Han
- School of Pharmacy; Sungkyunkwan University; Suwon 16419 Republic of Korea
| | - Prashant Chakrasali
- Bio and Drug Discovery Division; Korea Research Institute of Chemical Technology; Daejeon 34114 Republic of Korea
- Department of Medicinal and Pharmaceutical Chemistry; University of Science and Technology; Daejeon 34113 Republic of Korea
| | - Jihye Park
- School of Pharmacy; Sungkyunkwan University; Suwon 16419 Republic of Korea
| | - Hyunjung Oh
- School of Pharmacy; Sungkyunkwan University; Suwon 16419 Republic of Korea
| | - Saegun Kim
- School of Pharmacy; Sungkyunkwan University; Suwon 16419 Republic of Korea
| | - Kyuneun Kim
- Bio and Drug Discovery Division; Korea Research Institute of Chemical Technology; Daejeon 34114 Republic of Korea
- Department of Medicinal and Pharmaceutical Chemistry; University of Science and Technology; Daejeon 34113 Republic of Korea
| | - Ashok Kumar Pandey
- School of Pharmacy; Sungkyunkwan University; Suwon 16419 Republic of Korea
| | - Sang Hoon Han
- School of Pharmacy; Sungkyunkwan University; Suwon 16419 Republic of Korea
| | - Soo Bong Han
- Bio and Drug Discovery Division; Korea Research Institute of Chemical Technology; Daejeon 34114 Republic of Korea
- Department of Medicinal and Pharmaceutical Chemistry; University of Science and Technology; Daejeon 34113 Republic of Korea
| | - In Su Kim
- School of Pharmacy; Sungkyunkwan University; Suwon 16419 Republic of Korea
| |
Collapse
|
35
|
Synthesis of ( Z )-nitroalkene derivatives through oxidative dehydrogenation coupling of α -aminocarbonyl compounds with nitromethane by copper catalysis. Tetrahedron Lett 2018. [DOI: 10.1016/j.tetlet.2018.07.032] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
36
|
Surendra Babu GV, Sai Prathima P, Perumgani PC, Sridhar B, Venkateshwar Rao T, Mohan Rao M. Metal-free cross-dehydrogenative coupling approach for C-H bond functionalization of 2-phenyl pyridine derivatives in water. HETEROATOM CHEMISTRY 2018. [DOI: 10.1002/hc.21423] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Gogu Venkata Surendra Babu
- Catalysis Laboratory; Inorganic and Physical Chemistry Division; CSIR; Indian Institute of Chemical Technology; Hyderabad India
| | - Parvathaneni Sai Prathima
- Catalysis Laboratory; Inorganic and Physical Chemistry Division; CSIR; Indian Institute of Chemical Technology; Hyderabad India
| | - Pullaiah C. Perumgani
- Catalysis Laboratory; Inorganic and Physical Chemistry Division; CSIR; Indian Institute of Chemical Technology; Hyderabad India
| | - Balasubramanian Sridhar
- Catalysis Laboratory; Inorganic and Physical Chemistry Division; CSIR; Indian Institute of Chemical Technology; Hyderabad India
| | - Tumula Venkateshwar Rao
- Catalysis Laboratory; Inorganic and Physical Chemistry Division; CSIR; Indian Institute of Chemical Technology; Hyderabad India
| | - Mandapati Mohan Rao
- Catalysis Laboratory; Inorganic and Physical Chemistry Division; CSIR; Indian Institute of Chemical Technology; Hyderabad India
| |
Collapse
|
37
|
Synthesis of Alkyl-Substituted Pyrazine N
-Oxides by Transition-Metal-Free Oxidative Cross-Coupling Reactions. ASIAN J ORG CHEM 2018. [DOI: 10.1002/ajoc.201800183] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
38
|
Roudesly F, Veiros LF, Oble J, Poli G. Pd-Catalyzed Direct C–H Alkenylation and Allylation of Azine N-Oxides. Org Lett 2018; 20:2346-2350. [DOI: 10.1021/acs.orglett.8b00689] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Fares Roudesly
- Sorbonne Université, Faculté des Sciences et Ingénierie, CNRS, Institut Parisien de Chimie Moléculaire, IPCM, 4 place Jussieu, 75005 Paris, France
| | - Luis F. Veiros
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av Rovisco Pais 1, 1049-001 Lisbon, Portugal
| | - Julie Oble
- Sorbonne Université, Faculté des Sciences et Ingénierie, CNRS, Institut Parisien de Chimie Moléculaire, IPCM, 4 place Jussieu, 75005 Paris, France
| | - Giovanni Poli
- Sorbonne Université, Faculté des Sciences et Ingénierie, CNRS, Institut Parisien de Chimie Moléculaire, IPCM, 4 place Jussieu, 75005 Paris, France
| |
Collapse
|
39
|
Abstract
Among organic compounds hydrocarbons are inexpensive and possibly the most abundant among natural resources. Developing strategies for selective functionalisation of inert hydrocarbon C-H bonds is one of the most ideal synthetic paths that a synthetic chemist could think of. This critical review focuses on the recent development of various directed and non-directed cycloalkylations leading to the formation of carbon-carbon (C-C) and carbon-heteroatom (C-X) bonds. Apart from various transition metal catalysed cycloalkylations, this review also covers various metal-free cycloalkylation processes.
Collapse
Affiliation(s)
- Arghya Banerjee
- Department of Chemistry, Indian Institute of Technology Guwahati, 781 039, Assam, India.
| | - Satavisha Sarkar
- Department of Chemistry, Indian Institute of Technology Guwahati, 781 039, Assam, India.
| | - Bhisma K Patel
- Department of Chemistry, Indian Institute of Technology Guwahati, 781 039, Assam, India.
| |
Collapse
|
40
|
Sen C, Ghosh SC. Transition-Metal-Free Regioselective Alkylation of Quinoline N-Oxides via Oxidative Alkyl Migration and C−C Bond Cleavage of tert-/sec-Alcohols. Adv Synth Catal 2018. [DOI: 10.1002/adsc.201701330] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Chiranjit Sen
- Natural Products and Green Chemistry Division and AcSIR; Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), G.B. Marg; Bhavnagar- 364002 Gujarat, India
| | - Subhash C. Ghosh
- Natural Products and Green Chemistry Division and AcSIR; Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), G.B. Marg; Bhavnagar- 364002 Gujarat, India
| |
Collapse
|
41
|
Lantaño B, Barata-Vallejo S, Postigo A. Organic dye-photocatalyzed fluoroalkylation of heteroarene-N-oxide derivatives. Org Biomol Chem 2018; 16:6718-6727. [DOI: 10.1039/c8ob01653d] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A direct CHet–H perfluoroalkylation reaction of heteroaromatic-N-oxides has been achieved. Acid-catalyzed transformation of the perfluoroalkylated-N-oxides leads to 2-(perfluoroalkyl)benzo[f][1,3]oxazepines. De-oxygenation of the perfluoroalkylated heteroaromatic-N-oxides affords a regioselective radical perfluoroalkylation protocol.
Collapse
Affiliation(s)
- Beatriz Lantaño
- Departamento de Quimica Organica
- Universidad de Buenos Aires Facultad de Farmacia y Bioquimica
- CP 1113-Buenos Aires
- Argentina
| | - Sebastián Barata-Vallejo
- Departamento de Quimica Organica
- Universidad de Buenos Aires Facultad de Farmacia y Bioquimica
- CP 1113-Buenos Aires
- Argentina
| | - Al Postigo
- Departamento de Quimica Organica
- Universidad de Buenos Aires Facultad de Farmacia y Bioquimica
- CP 1113-Buenos Aires
- Argentina
| |
Collapse
|
42
|
Chen R, Yu JT, Cheng J. Metal-free oxidative decarbonylative alkylation of chromones using aliphatic aldehydes. Org Biomol Chem 2018; 16:3568-3571. [DOI: 10.1039/c8ob00720a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
A decarbonylative alkylation of chromones via radical conjugate addition under metal-free conditions was developed using aliphatic aldehydes as alkylating reagents.
Collapse
Affiliation(s)
- Rongzhen Chen
- School of Petrochemical Engineering
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology
- Changzhou University
- Changzhou 213164
- P. R. China
| | - Jin-Tao Yu
- School of Petrochemical Engineering
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology
- Changzhou University
- Changzhou 213164
- P. R. China
| | - Jiang Cheng
- School of Petrochemical Engineering
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology
- Changzhou University
- Changzhou 213164
- P. R. China
| |
Collapse
|
43
|
Wang CS, Roisnel T, Dixneuf PH, Soulé JF. Synthesis of 2-Pyridinemethyl Ester Derivatives from Aldehydes and 2-Alkylheterocycle N-Oxides via Copper-Catalyzed Tandem Oxidative Coupling–Rearrangement. Org Lett 2017; 19:6720-6723. [DOI: 10.1021/acs.orglett.7b03446] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Chang-Sheng Wang
- Institut des Sciences Chimiques de Rennes, UMR 6226 CNRS-Université de Rennes “Organométalliques: Matériaux et Catalyse”, Campus de Beaulieu, 35042 Rennes, France
| | - Thierry Roisnel
- Institut des Sciences Chimiques de Rennes, UMR 6226 CNRS-Université de Rennes “Organométalliques: Matériaux et Catalyse”, Campus de Beaulieu, 35042 Rennes, France
| | - Pierre H. Dixneuf
- Institut des Sciences Chimiques de Rennes, UMR 6226 CNRS-Université de Rennes “Organométalliques: Matériaux et Catalyse”, Campus de Beaulieu, 35042 Rennes, France
| | - Jean-François Soulé
- Institut des Sciences Chimiques de Rennes, UMR 6226 CNRS-Université de Rennes “Organométalliques: Matériaux et Catalyse”, Campus de Beaulieu, 35042 Rennes, France
| |
Collapse
|
44
|
Wang X, Lei B, Ma L, Zhu L, Zhang X, Zuo H, Zhuang D, Li Z. Cobalt-Catalyzed Cross-Dehydrogenative C(sp 2 )-C(sp 3 ) Coupling of Oxazole/Thiazole with Ether or Cycloalkane. Chem Asian J 2017; 12:2799-2803. [PMID: 28929591 DOI: 10.1002/asia.201701258] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 09/18/2017] [Indexed: 11/08/2022]
Abstract
Direct C5-alkylation of oxazole/thiazole with ether or cycloalkane has been achieved through a cobalt-catalyzed cross-dehydrogenative coupling (CDC) process in moderate to good yields. This transformation represents the first C(sp2 )-C(sp3 ) cross-coupling at the C5-position of the oxazole/thiazole via double C-H bond cleavages. Various functional groups on oxazole/thiazole substrates, as well as water and air, are well-tolerated with this concise and practical protocol, constituting straightforward access to heterocycles with great medicinal significance. A preliminary mechanism involving a radical process has also been proposed.
Collapse
Affiliation(s)
- Xiaojiao Wang
- Department of Pharmaceutical and Biological Engineering, School of Chemical Engineering, Sichuan University, No.24 South Section 1, Yihuan Road, Chengdu, 610065, China
| | - Bowen Lei
- Department of Pharmaceutical and Biological Engineering, School of Chemical Engineering, Sichuan University, No.24 South Section 1, Yihuan Road, Chengdu, 610065, China
| | - Lifang Ma
- Department of Pharmaceutical and Biological Engineering, School of Chemical Engineering, Sichuan University, No.24 South Section 1, Yihuan Road, Chengdu, 610065, China
| | - Lisi Zhu
- Department of Pharmaceutical and Biological Engineering, School of Chemical Engineering, Sichuan University, No.24 South Section 1, Yihuan Road, Chengdu, 610065, China
| | - Xinyue Zhang
- Department of Pharmaceutical and Biological Engineering, School of Chemical Engineering, Sichuan University, No.24 South Section 1, Yihuan Road, Chengdu, 610065, China
| | - Hao Zuo
- Department of Pharmaceutical and Biological Engineering, School of Chemical Engineering, Sichuan University, No.24 South Section 1, Yihuan Road, Chengdu, 610065, China
| | - Dailin Zhuang
- Department of Pharmaceutical and Biological Engineering, School of Chemical Engineering, Sichuan University, No.24 South Section 1, Yihuan Road, Chengdu, 610065, China
| | - Ziyuan Li
- Department of Pharmaceutical and Biological Engineering, School of Chemical Engineering, Sichuan University, No.24 South Section 1, Yihuan Road, Chengdu, 610065, China
| |
Collapse
|
45
|
Liu P, Liu W, Li CJ. Catalyst-Free and Redox-Neutral Innate Trifluoromethylation and Alkylation of Aromatics Enabled by Light. J Am Chem Soc 2017; 139:14315-14321. [DOI: 10.1021/jacs.7b08685] [Citation(s) in RCA: 128] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Peng Liu
- Department
of Chemistry and FQRNT Centre for Green Chemistry and Catalysis, McGill University, 801 Sherbrooke St. W., Montreal, Quebec H3A 0B8, Canada
- Ministry
of Education Key laboratory of Combinatorial Biosynthesis and Drug
Discovery, Hubei Provincial Engineering and Technology Research Center
for Fluorinated Pharmaceuticals, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Wenbo Liu
- Department
of Chemistry and FQRNT Centre for Green Chemistry and Catalysis, McGill University, 801 Sherbrooke St. W., Montreal, Quebec H3A 0B8, Canada
| | - Chao-Jun Li
- Department
of Chemistry and FQRNT Centre for Green Chemistry and Catalysis, McGill University, 801 Sherbrooke St. W., Montreal, Quebec H3A 0B8, Canada
| |
Collapse
|
46
|
Lakshman MK, Vuram PK. Cross-dehydrogenative coupling and oxidative-amination reactions of ethers and alcohols with aromatics and heteroaromatics. Chem Sci 2017; 8:5845-5888. [PMID: 28970941 PMCID: PMC5618789 DOI: 10.1039/c7sc01045a] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 05/22/2017] [Indexed: 11/21/2022] Open
Abstract
Cross-dehydrogenative coupling (CDC) is a process in which, typically, a C-C bond is formed at the expense of two C-H bonds, either catalyzed by metals or other organic compounds, or via uncatalyzed processes. In this perspective, we present various modes of C-H bond-activation at sp3 centers adjacent to ether oxygen atoms, followed by C-C bond formation with aromatic systems as well as with heteroaromatic systems. C-N bond-formation with NH-containing heteroaromatics, leading to hemiaminal ethers, is also an event that can occur analogously to C-C bond formation, but at the expense of C-H and N-H bonds. A large variety of hemiaminal ether-forming reactions have recently appeared in the literature and this perspective also includes this complementary chemistry. In addition, the participation of C-H bonds in alcohols in such processes is also described. Facile access to a wide range of compounds can be attained through these processes, rendering such reactions useful for synthetic applications via Csp3 bond activations.
Collapse
Affiliation(s)
- Mahesh K Lakshman
- Department of Chemistry , The City College of New York , 160 Convent Avenue , New York 10031 , USA .
- The Ph.D. Program in Chemistry , The Graduate Center of The City University of New York , New York 10016 , USA
| | - Prasanna K Vuram
- Department of Chemistry , The City College of New York , 160 Convent Avenue , New York 10031 , USA .
| |
Collapse
|
47
|
Wang J, Sang R, Chong X, Zhao Y, Fan W, Li Z, Zhao J. Copper-catalyzed radical cascade oxyalkylation of olefinic amides with simple alkanes: highly efficient access to benzoxazines. Chem Commun (Camb) 2017; 53:7961-7964. [PMID: 28660972 DOI: 10.1039/c7cc04213b] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
A copper-catalyzed C(sp3)-H bond functionalization of simple alkanes with olefinic amides was developed for the efficient synthesis of important benzoxazine derivatives. It involves new C-C and C-O bond formation in one step via a radical cascade process.
Collapse
Affiliation(s)
- Jie Wang
- College of Chemistry & Environmental Science, Hebei University, Baoding, Hebei 071002, P. R. China.
| | | | | | | | | | | | | |
Collapse
|
48
|
Kumar R, Kumar R, Dhiman AK, Sharma U. Regioselective Metal-Free C2−H Arylation of Quinoline N
-Oxides with Aryldiazonium Salts/Anilines under Ambient Conditions. ASIAN J ORG CHEM 2017. [DOI: 10.1002/ajoc.201700267] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Rakesh Kumar
- Department of Natural Product Chemistry and Process Development (NPCPD); CSIR-Institute of Himalayan Bioresource Technology, Palampur; Himachal Pradesh 176061 India
- Academy of Scientific and Innovative Research; Anusandhan Bhawan 2 Rafi Marg New Delhi 110001 India
| | - Rakesh Kumar
- Department of Natural Product Chemistry and Process Development (NPCPD); CSIR-Institute of Himalayan Bioresource Technology, Palampur; Himachal Pradesh 176061 India
| | - Ankit Kumar Dhiman
- Department of Natural Product Chemistry and Process Development (NPCPD); CSIR-Institute of Himalayan Bioresource Technology, Palampur; Himachal Pradesh 176061 India
| | - Upendra Sharma
- Department of Natural Product Chemistry and Process Development (NPCPD); CSIR-Institute of Himalayan Bioresource Technology, Palampur; Himachal Pradesh 176061 India
- Academy of Scientific and Innovative Research; Anusandhan Bhawan 2 Rafi Marg New Delhi 110001 India
| |
Collapse
|
49
|
Soni V, Khake SM, Punji B. Nickel-Catalyzed C(sp2)–H/C(sp3)–H Oxidative Coupling of Indoles with Toluene Derivatives. ACS Catal 2017. [DOI: 10.1021/acscatal.7b01044] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Vineeta Soni
- Organometallic Synthesis
and Catalysis Group, Chemical Engineering Division, CSIR−National Chemical Laboratory (CSIR−NCL), Dr. Homi Bhabha Road, Pune 411 008, Maharashtra, India
| | - Shrikant M. Khake
- Organometallic Synthesis
and Catalysis Group, Chemical Engineering Division, CSIR−National Chemical Laboratory (CSIR−NCL), Dr. Homi Bhabha Road, Pune 411 008, Maharashtra, India
| | - Benudhar Punji
- Organometallic Synthesis
and Catalysis Group, Chemical Engineering Division, CSIR−National Chemical Laboratory (CSIR−NCL), Dr. Homi Bhabha Road, Pune 411 008, Maharashtra, India
| |
Collapse
|
50
|
Banerjee S, Yang YF, Jenkins ID, Liang Y, Toutov AA, Liu WB, Schuman DP, Grubbs RH, Stoltz BM, Krenske EH, Houk KN, Zare RN. Ionic and Neutral Mechanisms for C-H Bond Silylation of Aromatic Heterocycles Catalyzed by Potassium tert-Butoxide. J Am Chem Soc 2017; 139:6880-6887. [PMID: 28462580 DOI: 10.1021/jacs.6b13032] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Exploiting C-H bond activation is difficult, although some success has been achieved using precious metal catalysts. Recently, it was reported that C-H bonds in aromatic heterocycles were converted to C-Si bonds by reaction with hydrosilanes under the catalytic action of potassium tert-butoxide alone. The use of Earth-abundant potassium cation as a catalyst for C-H bond functionalization seems to be without precedent, and no mechanism for the process was established. Using ambient ionization mass spectrometry, we are able to identify crucial ionic intermediates present during the C-H silylation reaction. We propose a plausible catalytic cycle, which involves a pentacoordinate silicon intermediate consisting of silane reagent, substrate, and the tert-butoxide catalyst. Heterolysis of the Si-H bond, deprotonation of the heteroarene, addition of the heteroarene carbanion to the silyl ether, and dissociation of tert-butoxide from silicon lead to the silylated heteroarene product. The steps of the silylation mechanism may follow either an ionic route involving K+ and tBuO- ions or a neutral heterolytic route involving the [KOtBu]4 tetramer. Both mechanisms are consistent with the ionic intermediates detected experimentally. We also present reasons why KOtBu is an active catalyst whereas sodium tert-butoxide and lithium tert-butoxide are not, and we explain the relative reactivities of different (hetero)arenes in the silylation reaction. The unique role of KOtBu is traced, in part, to the stabilization of crucial intermediates through cation-π interactions.
Collapse
Affiliation(s)
- Shibdas Banerjee
- Department of Chemistry, Stanford University , Stanford, California 94305-5080, United States
| | - Yun-Fang Yang
- Department of Chemistry and Biochemistry, University of California , Los Angeles, California 90095-1569, United States
| | - Ian D Jenkins
- Eskitis Institute, Griffith University , Nathan, QLD 4111, Australia
| | - Yong Liang
- Department of Chemistry and Biochemistry, University of California , Los Angeles, California 90095-1569, United States
| | - Anton A Toutov
- Division of Chemistry and Chemical Engineering, California Institute of Technology , Pasadena, California 91125, United States
| | - Wen-Bo Liu
- Division of Chemistry and Chemical Engineering, California Institute of Technology , Pasadena, California 91125, United States
| | - David P Schuman
- Division of Chemistry and Chemical Engineering, California Institute of Technology , Pasadena, California 91125, United States
| | - Robert H Grubbs
- Division of Chemistry and Chemical Engineering, California Institute of Technology , Pasadena, California 91125, United States
| | - Brian M Stoltz
- Division of Chemistry and Chemical Engineering, California Institute of Technology , Pasadena, California 91125, United States
| | - Elizabeth H Krenske
- School of Chemistry and Molecular Biosciences, The University of Queensland , Brisbane, QLD 4072, Australia
| | - Kendall N Houk
- Department of Chemistry and Biochemistry, University of California , Los Angeles, California 90095-1569, United States
| | - Richard N Zare
- Department of Chemistry, Stanford University , Stanford, California 94305-5080, United States
| |
Collapse
|