1
|
Zhang Y, Ma S, Chang W, Yu W, Zhang L. Nanozymes targeting mitochondrial repair in disease treatment. J Biotechnol 2024; 394:57-72. [PMID: 39159753 DOI: 10.1016/j.jbiotec.2024.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 08/01/2024] [Accepted: 08/15/2024] [Indexed: 08/21/2024]
Abstract
Mitochondria are crucial sites for biological oxidation and substance metabolism and plays a vital role in maintaining intracellular homeostasis. When mitochondria undergo oxidative damage or dysfunction, they can harm the organism, leading to various reactive oxygen species (ROS)-related diseases. Therefore, therapies targeting mitochondria are a strategy for treating multiple diseases. Many nanozymes can mimic antioxidant enzymes, which enables them to eliminate ROS to mitigate mitochondrial dysfunction. The therapeutic approaches and drugs targeting the mitochondrial electron transport chain (ETC) have emerged as effective treatments for oxidative stress-related diseases resulting from mitochondrial respiratory chain disorders. Therefore, nanozymes that can regulate homeostasis in the mitochondrial ETC have emerged as effective therapeutic agents for treating oxidative stress-related diseases. In addition, benefit from the controllability and modifiability of nanozymes, their modification with TPP, SS-31 peptide, and mitochondrial permeability membrane peptide to eliminate ROS and repair mitochondrial function. The nanozymes that specifically target mitochondria are powerful tools for the treatment of ROS-associated disorders. We discussed the design strategies pertaining to mitochondrion-targeted nanozymes to treat various diseases to develop more efficacious nanozyme tools for the treatment of ROS-related diseases in the future.
Collapse
Affiliation(s)
- Yuan Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China.
| | - Shuxian Ma
- Obstetric Ultrasound Department, Qingdao Women and Children's Hospital, Qingdao University, Qingdao, China
| | - Wenguang Chang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Wanpeng Yu
- Medical Collage, Qingdao University, Qingdao, China.
| | - Lei Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China.
| |
Collapse
|
2
|
Zhuang Z, Yu Y, Dong S, Sun X, Mao L. Carbon-based nanozymes: design, catalytic mechanisms, and environmental applications. Anal Bioanal Chem 2024; 416:5949-5964. [PMID: 38916795 DOI: 10.1007/s00216-024-05405-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 06/05/2024] [Accepted: 06/11/2024] [Indexed: 06/26/2024]
Abstract
Carbon-based nanozymes are synthetic nanomaterials that are predominantly constituted of carbon-based materials, which mimic the catalytic properties of natural enzymes, boasting features such as tunable catalytic activity, robust regenerative capacity, and exceptional stability. Due to the impressive enzymatic performance similar to various enzymes such as peroxidase, superoxide dismutase, and oxidase, they are widely used for detecting and degrading pollutants in the environment. This paper presents an exhaustive review of the fundamental design principles, catalytic mechanisms, and prospective applications of carbon-based nanozymes in the environmental field. These studies not only serve to augment the comprehension on the intricate operational mechanism inherent in these synthetic nanostructures, but also provide essential guidelines and illuminating perspectives for advancing their development and practical applications. Future studies that are imperative to delve into the untapped potential of carbon-based nanozymes within the environmental domain was needed to be explored to fully harness their ability to deliver broader and more impactful environmental preservation and management outcomes.
Collapse
Affiliation(s)
- Zheqi Zhuang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing, 210023, P. R. China
| | - Yanni Yu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing, 210023, P. R. China
| | - Shipeng Dong
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing, 210023, P. R. China.
| | - Xiaolin Sun
- Aviation Engineering Institute, Nanjing Vocational University of Industry Technology, Nanjing, 210023, P. R. China
| | - Liang Mao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing, 210023, P. R. China.
| |
Collapse
|
3
|
Baye AF, Abebe MW, Kim H. Boron-Nitrogen-Edged Biomass-Derived Carbon: A Multifunctional Approach for Colorimetric Detection of H 2O 2, Flame Retardancy, and Triboelectric Nanogenerator. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402449. [PMID: 38804870 DOI: 10.1002/smll.202402449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/14/2024] [Indexed: 05/29/2024]
Abstract
Enhancing the concentration and type of nitrogen (N) dopants within the Sp2-carbon domain of carbon recycled from biomass sources is an efficient approach to mimic CNT, GO, and rGO to activate oxidants such as H2O2, excluding toxic chemicals and limiting reaction steps. However, monitoring the kind and concentration of N species in the Sp2-C domain is unlikely with thermal treatments only. A high temperature for graphitization reduces N moieties, leading to low electron density. This inhibits H2O2 adsorption and activation on catalyst surfaces. In this study, coffee waste (CW) is converted into B, N-doped biochar (BXNbY) using boric acid-assisted pyrolysis (H3BO3 mass = X and carbonization temperature = Y) under N2 to overcome the challenge. The B dopant regulates the concentration and type of N, provides Lewis's acid sites, and converts graphitic-N to pyridine-N in BXNbY. The optimized B3Nb900 exhibits excellent colorimetric sensing performance toward H2O2 with a low detection limit (36.9 nM) and high selectivity in the presence of many interferences and milk samples due to high pyridinic-N and Sp2 domain sizes. Interestingly, B enhances other properties of N-containing CW-derived carbon and introduces self-extinguishing and tribopositive properties. Hence, BXNbY-coated polyurethane foam shows excellent flame retardancy and energy harvesting performance.
Collapse
Affiliation(s)
- Anteneh F Baye
- Department of Energy Science and Technology, Environmental Waste Recycle Institute, Myongji University, Yongin, Gyeonggi-do, 17058, Republic of Korea
| | - Medhen W Abebe
- Department of Energy Science and Technology, Environmental Waste Recycle Institute, Myongji University, Yongin, Gyeonggi-do, 17058, Republic of Korea
| | - Hern Kim
- Department of Energy Science and Technology, Environmental Waste Recycle Institute, Myongji University, Yongin, Gyeonggi-do, 17058, Republic of Korea
| |
Collapse
|
4
|
Yang N, Bei Y, Huang Y, Zheng W, Ma J, Ke J. An electrochemical immunosensor for sensitive and rapid detection of cystatin C based on Fe 3O 4/AuNPs-MWCNTs@PDA nanocomposite. Anal Biochem 2024; 696:115677. [PMID: 39307448 DOI: 10.1016/j.ab.2024.115677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 09/05/2024] [Accepted: 09/15/2024] [Indexed: 09/30/2024]
Abstract
Serum Cystatin C (CysC) is an impressive marker for early diagnosis of renal dysfunction. In this work, we established a novel electrochemical immunosensor based on Fe3O4/AuNPs-MWCNTs@PDA nanocomposite for the detection of CysC. The Fe3O4/AuNPs-MWCNTs@PDA nanozyme complex by polydopamine encapsulation can not only carry massive detection antibodies, but also bind the electroactive substance toluidine blue (TB) through electrostatic adsorption. By immobilizing AuNPs onto the electrode to bind the capture antibody (Ab1), we constructed a sandwich electrochemical immunosensor with low cost, high sensitivity, and repeatability. The detection range is 3.9-125.0 ng/mL with a significant linear relationship between the current peak difference (ip) and logarithm of the CysC concentration. Moreover, the detection limit of the immunosensor is 0.157 ng/mL. We have successfully utilized this novel immunosensor to detect CysC in human serum samples, and these results have implications for its potential use in clinical application.
Collapse
Affiliation(s)
- Nanfei Yang
- Department of Geriatric Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China; School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325035, China
| | - Yuncheng Bei
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing University, Nanjing, 210008, China
| | - Yahong Huang
- State Key Laboratory of Pharmaceutical Biotechnology, The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Wei Zheng
- State Key Laboratory of Pharmaceutical Biotechnology, The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Jiehua Ma
- Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China.
| | - Jiangqiong Ke
- Department of Geriatric Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China.
| |
Collapse
|
5
|
Tan Y, Chen S, Wang M, Fu H, Alvarez PJJ, Qu X. Intrinsic Peroxidase-like Activity of Polystyrene Nanoplastics Mediates Oxidative Stress. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:15475-15485. [PMID: 39172699 DOI: 10.1021/acs.est.4c04487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
Nanoplastics represent a global environmental concern due to their ubiquitous presence and potential adverse impacts on public and environmental health. There is a growing need to advance the mechanistic understanding of their reactivity as they interact with biological and environmental systems. Herein, for the first time, we report that polystyrene nanoplastics (PSNPs) have intrinsic peroxidase-like activity and are able to mediate oxidative stress. The peroxidase-like activity is dependent on temperature and pH, with a maximum at pH 4.5 and 40 °C. The catalytic activity exhibits saturation kinetics, as described by the Michaelis-Menten model. The peroxidase-like activity of PSNPs is attributed to their ability to mediate electron transfer from peroxidase substrates to H2O2. Ozone-induced PSNP aging can introduce oxygen-containing groups and disrupt aromatic structures on the nanoplastic surface. While ozonation initially enhances peroxidase-like activity by increasing oxygen-containing groups without degrading many aromatic structures, extended ozonation destroys aromatic structures, significantly reducing this activity. The peroxidase-like activity of PSNPs can mediate oxidative stress, which is generally positively correlated with their aromatic structures, as suggested by the ascorbic acid assay. These results help explain the reported oxidative stress exerted by nanoplastics and provide novel insights into their environmental and public health implications.
Collapse
Affiliation(s)
- Yi Tan
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Jiangsu 210023, China
| | - Siyue Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Jiangsu 210023, China
| | - Mengjiao Wang
- Greenpeace Research Laboratories, Bioscience, University of Exeter, Exeter EX4 4RN, United Kingdom
| | - Heyun Fu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Jiangsu 210023, China
| | - Pedro J J Alvarez
- Department of Civil and Environmental Engineering, Rice University, Houston, Texas 77005, United States
| | - Xiaolei Qu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Jiangsu 210023, China
- Nanjing University (Suzhou) High-tech Institute, Suzhou 215123, China
| |
Collapse
|
6
|
Feng K, Wang G, Wang S, Ma J, Wu H, Ma M, Zhang Y. Breaking the pH Limitation of Nanozymes: Mechanisms, Methods, and Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2401619. [PMID: 38615261 DOI: 10.1002/adma.202401619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/09/2024] [Indexed: 04/15/2024]
Abstract
Although nanozymes have drawn great attention over the past decade, the activities of peroxidase-like, oxidase-like, and catalase-like nanozymes are often pH dependent with elusive mechanism, which largely restricts their application. Therefore, a systematical discussion on the pH-related catalytic mechanisms of nanozymes together with the methods to overcome this limitation is in need. In this review, various nanozymes exhibiting pH-dependent catalytic activities are collected and the root causes for their pH dependence are comprehensively analyzed. Subsequently, regulatory concepts including catalytic environment reconstruction and direct catalytic activity improvement to break this pH restriction are summarized. Moreover, applications of pH-independent nanozymes in sensing, disease therapy, and pollutant degradation are overviewed. Finally, current challenges and future opportunities on the development of pH-independent nanozymes are suggested. It is anticipated that this review will promote the further design of pH-independent nanozymes and broaden their application range with higher efficiency.
Collapse
Affiliation(s)
- Kaizheng Feng
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering & Basic Medicine Research and Innovation Center of Ministry of Education, Zhongda hospital, Southeast University, Nanjing, 211102, P. R. China
| | - Guancheng Wang
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering & Basic Medicine Research and Innovation Center of Ministry of Education, Zhongda hospital, Southeast University, Nanjing, 211102, P. R. China
| | - Shi Wang
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering & Basic Medicine Research and Innovation Center of Ministry of Education, Zhongda hospital, Southeast University, Nanjing, 211102, P. R. China
| | - Jingyuan Ma
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering & Basic Medicine Research and Innovation Center of Ministry of Education, Zhongda hospital, Southeast University, Nanjing, 211102, P. R. China
| | - Haoan Wu
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering & Basic Medicine Research and Innovation Center of Ministry of Education, Zhongda hospital, Southeast University, Nanjing, 211102, P. R. China
| | - Ming Ma
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering & Basic Medicine Research and Innovation Center of Ministry of Education, Zhongda hospital, Southeast University, Nanjing, 211102, P. R. China
| | - Yu Zhang
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering & Basic Medicine Research and Innovation Center of Ministry of Education, Zhongda hospital, Southeast University, Nanjing, 211102, P. R. China
| |
Collapse
|
7
|
Wang X, Wang J, Xu X, Zhao H, Liu Y, Peng X, Deng X, Huang T, Zhang H, Wei Y. Antitumor Therapy through Photothermal Performance Synergized with Catalytic Activity Based on the Boron Cluster Supramolecular Frameworks. ACS APPLIED MATERIALS & INTERFACES 2024; 16:32983-32991. [PMID: 38898566 DOI: 10.1021/acsami.4c03338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Chemodynamic therapy (CDT) has received widespread attention as a tumor optical treatment strategy in the field of malignant tumor therapy. Nonmetallic multifunctional nanomaterials as CDT agents, due to their low toxicity, long-lasting effects, and safety characteristics, have promising applications in the integrated diagnosis and treatment of cancer. Here, we modified the supramolecular framework of boron clusters, coupled with a variety of dyes to develop a series of metal-free agent compounds, and demonstrated that these nonmetallic compounds have excellent CDT activities through experiments. Subsequently, the best performing Methylene Blue/[closo-B12H12]2- (MB@B12H12) was used as an example. Through theoretical calculations, electron paramagnetic resonance spectroscopy, and 808 nm light irradiation, we confirmed that MB@B12H12 exhibited photothermal performance and CDT activity further. More importantly, we applied MB@B12H12 to melanoma cells and subcutaneous tumor, demonstrating its effective suppression of melanoma growth in vitro and in vivo through the synergistic effects of photothermal performance and CDT activity. This study emphasizes the generalizability of the coupling of dyes to [closo-B12H12]2- with important clinical translational potential for CDT reagents. Among them, MB@B12H12 may have a brighter future, paving the way for the rapid development of metal-free CDT reagents.
Collapse
Affiliation(s)
- Xinyu Wang
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Hubei Cancer Clinical Study Center & Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan 430071, China
| | - Jiajia Wang
- College of Chemistry and Molecular Sciences and National Demonstration Center for Experimental Chemistry, Wuhan University, Wuhan 430072, P. R. China
| | - Xiaoran Xu
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Hubei Cancer Clinical Study Center & Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan 430071, China
| | - Haixu Zhao
- College of Chemistry and Molecular Sciences and National Demonstration Center for Experimental Chemistry, Wuhan University, Wuhan 430072, P. R. China
| | - Yixin Liu
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Hubei Cancer Clinical Study Center & Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan 430071, China
| | - Xiaoqing Peng
- College of Chemistry and Molecular Sciences and National Demonstration Center for Experimental Chemistry, Wuhan University, Wuhan 430072, P. R. China
| | - Xuefan Deng
- College of Chemistry and Molecular Sciences and National Demonstration Center for Experimental Chemistry, Wuhan University, Wuhan 430072, P. R. China
| | - Tianhe Huang
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Hubei Cancer Clinical Study Center & Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan 430071, China
| | - Haibo Zhang
- College of Chemistry and Molecular Sciences and National Demonstration Center for Experimental Chemistry, Wuhan University, Wuhan 430072, P. R. China
| | - Yongchang Wei
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Hubei Cancer Clinical Study Center & Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan 430071, China
| |
Collapse
|
8
|
Shahid S, Khan A, Shahid W, Rehan M, Asif R, Nisar H, Kanwal Q, Choi JR. Nanoenzymes: A Radiant Hope for the Early Diagnosis and Effective Treatment of Breast and Ovarian Cancers. Int J Nanomedicine 2024; 19:5813-5835. [PMID: 38895143 PMCID: PMC11184228 DOI: 10.2147/ijn.s460712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 04/16/2024] [Indexed: 06/21/2024] Open
Abstract
Breast and ovarian cancers, despite having chemotherapy and surgical treatment, still have the lowest survival rate. Experimental stages using nanoenzymes/nanozymes for ovarian cancer diagnosis and treatment are being carried out, and correspondingly the current treatment approaches to treat breast cancer have a lot of adverse side effects, which is the reason why researchers and scientists are looking for new strategies with less side effects. Nanoenzymes have intrinsic enzyme-like activities and can reduce the shortcomings of naturally occurring enzymes due to the ease of storage, high stability, less expensive, and enhanced efficiency. In this review, we have discussed various ways in which nanoenzymes are being used to diagnose and treat breast and ovarian cancer. For breast cancer, nanoenzymes and their multi-enzymatic properties can control the level of reactive oxygen species (ROS) in cells or tissues, for example, oxidase (OXD) and peroxidase (POD) activity can be used to generate ROS, while catalase (CAT) or superoxide dismutase (SOD) activity can scavenge ROS. In the case of ovarian cancer, most commonly nanoceria is being investigated, and also when folic acid is combined with nanoceria there are additional advantages like inhibition of beta galactosidase. Nanocarriers are also used to deliver small interfering RNA that are effective in cancer treatment. Studies have shown that iron oxide nanoparticles are actively being used for drug delivery, similarly ferritin carriers are used for the delivery of nanozymes. Hypoxia is a major factor in ovarian cancer, therefore MnO2-based nanozymes are being used as a therapy. For cancer diagnosis and screening, nanozymes are being used in sonodynamic cancer therapy for cancer diagnosis and screening, whereas biomedical imaging and folic acid gold particles are also being used for image guided treatments. Nanozyme biosensors have been developed to detect ovarian cancer. This review article summarizes a detailed insight into breast and ovarian cancers in light of nanozymes-based diagnostic and therapeutic approaches.
Collapse
Affiliation(s)
- Samiah Shahid
- Research Centre for Health Sciences (RCHS), The University of Lahore, Lahore, Pakistan
- Institute of Molecular Biology and Biotechnology (IMBB), The University of Lahore, Lahore, Pakistan
| | - Ayesha Khan
- Research Centre for Health Sciences (RCHS), The University of Lahore, Lahore, Pakistan
| | - Wajeehah Shahid
- Department of Physics, The University of Lahore, Lahore, Pakistan
| | - Mehvesh Rehan
- Institute of Molecular Biology and Biotechnology (IMBB), The University of Lahore, Lahore, Pakistan
| | - Roha Asif
- Research Centre for Health Sciences (RCHS), The University of Lahore, Lahore, Pakistan
| | - Haseeb Nisar
- School of Life Sciences, University of Management and Technology, Lahore, Pakistan
| | - Qudsia Kanwal
- Department of Chemistry, The University of Lahore, Lahore, Pakistan
| | - Jeong Ryeol Choi
- School of Electronic Engineering, Kyonggi University, Suwon, Kyeonggi-do, 16227, Republic of Korea
| |
Collapse
|
9
|
Cui F, Li L, Wang D, Li J, Li T. Nanomaterials with Enzyme-like Properties for Combatting Foodborne Pathogen Infections: Classifications, Mechanisms, and Applications in Food Preservation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:10179-10194. [PMID: 38685503 DOI: 10.1021/acs.jafc.4c00872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
During the transportation and storage of food, foodborne spoilage caused by bacterial and biofilm infection is prone to occur, leading to issues such as short shelf life, economic loss, and sensory quality instability. Therefore, the development of novel and efficient antibacterial agents capable of efficiently inhibiting bacteria throughout various stages of food processing, transportation, and storage is strongly recommended by researchers. The emergence of nanozymes is considered to be an effective candidate for inhibiting foodborne bacteria agents in the food industry. As potent antibacterial agents, nanozymes have the advantages of low cost, high stability, strong broad-spectrum antibacterial ability, and biocompatibility. Herein, we aim to summarize the classification status of various nanozymes. Furthermore, the general catalytic bacteriostatic mechanism of nanozymes against intracellular bacteria, planktonic bacteria, and biofilm activities are highlighted, mainly concerning the destruction of cell walls and/or membranes, reactive oxygen species regulation, HOBr/Cl generation, damage of intracellular components, and so forth. In particular, the review focuses on the pivotal role of nanozymes as antibacterial agents and delivery vehicles in the fields of food preservation applications. We look forward to the future prospects, especially in the field of food preservation, to promote broader applications based on antimicrobial nanozymes.
Collapse
Affiliation(s)
- Fangchao Cui
- National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, China Light Industry Key Laboratory of Marine Fish Processing, College of Food Science and Technology, Bohai University, Jinzhou, Liaoning 121013, China
| | - Lanling Li
- National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, China Light Industry Key Laboratory of Marine Fish Processing, College of Food Science and Technology, Bohai University, Jinzhou, Liaoning 121013, China
| | - Dangfeng Wang
- National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, China Light Industry Key Laboratory of Marine Fish Processing, College of Food Science and Technology, Bohai University, Jinzhou, Liaoning 121013, China
| | - Jianrong Li
- National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, China Light Industry Key Laboratory of Marine Fish Processing, College of Food Science and Technology, Bohai University, Jinzhou, Liaoning 121013, China
| | - Tingting Li
- Key Laboratory of Biotechnology and Bioresources Utilization (Dalian Minzu University), Ministry of Education, Dalian, Liaoning 116029, China
| |
Collapse
|
10
|
Zhang Y, Lin T, Han M, Hu M, Xu Y, Huang W, Xiao F, Zhao A. A microelectrode electrochemical sensing platform based on heteroatoms doped carbon nanotubes arrays with peroxidase-like activity for in-situ detection in live cell. Anal Chim Acta 2024; 1297:342386. [PMID: 38438231 DOI: 10.1016/j.aca.2024.342386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/05/2024] [Accepted: 02/17/2024] [Indexed: 03/06/2024]
Abstract
In this work, we developed a new strategy to fabricate a series of transition metallic nanoparticles (NPs) embedded on B, N co-doped carbon nanotubes (CNTs) arrays modified flexible carbon fiber electrodes (M@BNCNTs/CF, M = Co, Fe, Ni) via facile inkjet printing assisted with chemical vapor deposition using Ionic liquid as solvent of printing ink and heteroatom dopants. Furthermore, Pt NPs via impregnation-thermal reduction process was anchored on the surface of Co@BNCNTs/CF (Pt-Co@BNCNTs/CF), which holds enhanced peroxidase-like activity and could be directly used as freestanding electrode to detect H2O2, exhibiting a low detection limit of 0.19 μM with wide linear range (0.5 μM-9.4 mM), and high sensitivity (1679 μA cm-2 mM-1). The excellent sensing performance of Pt-Co@BNCNTs/CF is attributed to the Pt, Co NPs anchored on CNTs with great catalytic activity, and the doping B, N would cause graphitic carbon with more defects to improve its inherent reactivity toward H2O2. Besides, CNTs arrays with high surface area also enlarge the exposure of active sites. Moreover, the Pt-Co@NBCNTs/CF microelectrode has been successfully applied in monitoring H2O2 secreted from human colonic cancer cells and normal colonic epithelial cells, which could offer crucial data for distinguishing various cell types and identifying cancer cells from normal cells. This work opens a new horizon to fabricate flexible miniaturized sensing device for extracellular analysis and offers an extended strategy to fabricate other metallic NPs embedded in heteroatoms doped CNTs functionalized flexible fiber electrode, by choosing diverse metal ions and ILs as inkjet printing precursors.
Collapse
Affiliation(s)
- Yan Zhang
- Glyn O. Phillips Hydrocolloid Research Centre, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering of Ministry of Education, Key Laboratory of Industrial Microbiology in Hubei Province, Department of Bioengineering and Food Science, Hubei University of Technology, Wuhan, 430068, China.
| | - Tao Lin
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Huazhong University of Science and Technology), Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Minghui Han
- Glyn O. Phillips Hydrocolloid Research Centre, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering of Ministry of Education, Key Laboratory of Industrial Microbiology in Hubei Province, Department of Bioengineering and Food Science, Hubei University of Technology, Wuhan, 430068, China
| | - Min Hu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Huazhong University of Science and Technology), Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yun Xu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Huazhong University of Science and Technology), Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Wei Huang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Huazhong University of Science and Technology), Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Fei Xiao
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Huazhong University of Science and Technology), Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Anshun Zhao
- Henan Key Laboratory of Cancer Epigenetics, Cancer Institute, The First Affiliated Hospital, and College of Clinical Medicine, Henan University of Science and Technology, Luoyang, 471003, China.
| |
Collapse
|
11
|
Yao D, Xia L, Li G. Research Progress on the Application of Covalent Organic Framework Nanozymes in Analytical Chemistry. BIOSENSORS 2024; 14:163. [PMID: 38667156 PMCID: PMC11048148 DOI: 10.3390/bios14040163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/21/2024] [Accepted: 03/27/2024] [Indexed: 04/28/2024]
Abstract
Covalent organic frameworks (COFs) are porous crystals that have high designability and great potential in designing, encapsulating, and immobilizing nanozymes. COF nanozymes have also attracted extensive attention in analyte sensing and detection because of their abundant active sites, high enzyme-carrying capacity, and significantly improved stability. In this paper, we classify COF nanozymes into three types and review their characteristics and advantages. Then, the synthesis methods of these COF nanozymes are introduced, and their performances are compared in a list. Finally, the applications of COF nanozymes in environmental analysis, food analysis, medicine analysis, disease diagnosis, and treatment are reviewed. Furthermore, we also discuss the application prospects of COF nanozymes and the challenges they face.
Collapse
Affiliation(s)
- Dongmei Yao
- School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, China; (D.Y.); (L.X.)
- Guangxi Key Laboratory of Sericulture Ecology and Applied Intelligent Technology, Hechi University, Hechi 546300, China
| | - Ling Xia
- School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, China; (D.Y.); (L.X.)
| | - Gongke Li
- School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, China; (D.Y.); (L.X.)
| |
Collapse
|
12
|
Wu X, Li Y, Wen M, Xie Y, Zeng K, Liu YN, Chen W, Zhao Y. Nanocatalysts for modulating antitumor immunity: fabrication, mechanisms and applications. Chem Soc Rev 2024; 53:2643-2692. [PMID: 38314836 DOI: 10.1039/d3cs00673e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Immunotherapy harnesses the inherent immune system in the body to generate systemic antitumor immunity, offering a promising modality for defending against cancer. However, tumor immunosuppression and evasion seriously restrict the immune response rates in clinical settings. Catalytic nanomedicines can transform tumoral substances/metabolites into therapeutic products in situ, offering unique advantages in antitumor immunotherapy. Through catalytic reactions, both tumor eradication and immune regulation can be simultaneously achieved, favoring the development of systemic antitumor immunity. In recent years, with advancements in catalytic chemistry and nanotechnology, catalytic nanomedicines based on nanozymes, photocatalysts, sonocatalysts, Fenton catalysts, electrocatalysts, piezocatalysts, thermocatalysts and radiocatalysts have been rapidly developed with vast applications in cancer immunotherapy. This review provides an introduction to the fabrication of catalytic nanomedicines with an emphasis on their structures and engineering strategies. Furthermore, the catalytic substrates and state-of-the-art applications of nanocatalysts in cancer immunotherapy have also been outlined and discussed. The relationships between nanostructures and immune regulating performance of catalytic nanomedicines are highlighted to provide a deep understanding of their working mechanisms in the tumor microenvironment. Finally, the challenges and development trends are revealed, aiming to provide new insights for the future development of nanocatalysts in catalytic immunotherapy.
Collapse
Affiliation(s)
- Xianbo Wu
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China.
| | - Yuqing Li
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China.
| | - Mei Wen
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China.
| | - Yongting Xie
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China.
| | - Ke Zeng
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China.
| | - You-Nian Liu
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China.
| | - Wansong Chen
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China.
| | - Yanli Zhao
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore.
| |
Collapse
|
13
|
Teng L, Sun Y, Teng S, Hui P. Applications of nanomaterials in anti-VEGF treatment for ophthalmic diseases. J Biomed Mater Res A 2024; 112:296-306. [PMID: 37850566 DOI: 10.1002/jbm.a.37626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 08/05/2023] [Accepted: 10/03/2023] [Indexed: 10/19/2023]
Abstract
Angiogenesis has been determined to be essential in the occurrence and metastasis of diabetic retinopathy (DR), age-related macular degeneration (AMD), retinal vein occlusion (RVO), choroidal neovascularization (CNV), retinopathy of prematurity (ROP), tumor, etc. However, the clinical use of anti-vascular endothelial growth factors (VEGF) drugs is currently limited due to its high cost, potential side effects, and need for repeated injections. In recent years, nanotechnology has shown promising results in inhibiting neovascularization and reducing reactive oxygen species (ROS) or inflammatory factors. Some nanomaterials can also act as vehicles for drug delivery, such as lipid nanoparticles and PLGA. The process of angiogenesis and its molecular mechanism are discussed in this article. At the same time, this study aims to systematically review the research progress of nanotechnology and offer more treatment options for neovascularization-related diseases in clinical ophthalmology.
Collapse
Affiliation(s)
- Lu Teng
- The First Bethune Hospital of Jilin University, Jilin, China
| | - Yabin Sun
- The First Bethune Hospital of Jilin University, Jilin, China
| | - Siying Teng
- The First Bethune Hospital of Jilin University, Jilin, China
| | - Peng Hui
- The First Bethune Hospital of Jilin University, Jilin, China
| |
Collapse
|
14
|
Sun Z, Zhang B, Tu H, Pan C, Chai Y, Chen W. Advances in colorimetric biosensors of exosomes: novel approaches based on natural enzymes and nanozymes. NANOSCALE 2024; 16:1005-1024. [PMID: 38117141 DOI: 10.1039/d3nr05459d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Exosomes are 30-150 nm vesicles derived from diverse cell types, serving as one of the most important biomarkers for early diagnosis and prognosis of diseases. However, the conventional detection method for exosomes faces significant challenges, such as unsatisfactory sensitivity, complicated operation, and the requirement of complicated devices. In recent years, colorimetric exosome biosensors with a visual readout underwent rapid development due to the advances in natural enzyme-based assays and the integration of various types of nanozymes. These synthetic nanomaterials show unique physiochemical properties and catalytic abilities, enabling the construction of exosome colorimetric biosensors with novel principles. This review will illustrate the reaction mechanisms and properties of natural enzymes and nanozymes, followed by a detailed introduction of the recent advances in both types of enzyme-based colorimetric biosensors. A comparison between natural enzymes and nanozymes is made to provide insights into the research that improves the sensitivity and convenience of assays. Finally, the advantages, challenges, and future directions of enzymes as well as exosome colorimetric biosensors are highlighted, aiming at improving the overall performance from different approaches.
Collapse
Affiliation(s)
- Zhonghao Sun
- Department of Biomedical Engineering, Shenzhen University Medicine School, Shenzhen University, Shenzhen, 518055, China.
| | - Binmao Zhang
- Department of Biomedical Engineering, Shenzhen University Medicine School, Shenzhen University, Shenzhen, 518055, China.
| | - Hangjia Tu
- Department of Biomedical Engineering, Shenzhen University Medicine School, Shenzhen University, Shenzhen, 518055, China.
| | - Chuye Pan
- College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518055, China.
| | - Yujuan Chai
- Department of Biomedical Engineering, Shenzhen University Medicine School, Shenzhen University, Shenzhen, 518055, China.
| | - Wenwen Chen
- Department of Biomedical Engineering, Shenzhen University Medicine School, Shenzhen University, Shenzhen, 518055, China.
| |
Collapse
|
15
|
Chen X, Tang Z. Novel application of nanomedicine for the treatment of acute lung injury: a literature review. Ther Adv Respir Dis 2024; 18:17534666241244974. [PMID: 38616385 PMCID: PMC11017818 DOI: 10.1177/17534666241244974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 03/18/2024] [Indexed: 04/16/2024] Open
Abstract
Nanoparticles have attracted extensive attention due to their high degree of cell targeting, biocompatibility, controllable biological activity, and outstanding pharmacokinetics. Changing the size, morphology, and surface chemical groups of nanoparticles can increase the biological distribution of agents to achieve precise tissue targeting and optimize therapeutic effects. Examples of their use include nanoparticles designed for increasing antigen-specific immune responses, developing vaccines, and treating inflammatory diseases. Nanoparticles show the potential to become a new generation of therapeutic agents for regulating inflammation. Recently, many nanomaterials with targeted properties have been developed to treat acute lung injury/acute respiratory distress syndrome (ALI/ARDS). In this review, we provide a brief explanation of the pathological mechanism underlying ALI/ARDS and a systematic overview of the latest technology and research progress in nanomedicine treatments of ALI, including improved nanocarriers, nanozymes, and nanovaccines for the targeted treatment of lung injury. Ultimately, these nanomedicines will be used for the clinical treatment of ALI/ARDS.
Collapse
Affiliation(s)
- Xianfeng Chen
- Department of Intensive Care Unit, The First Affiliated Hospital of Guangxi Medical University, Nanning, PR China
| | - Zhanhong Tang
- Department of Intensive Care Unit, the First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Nanning 530021, China
| |
Collapse
|
16
|
Deshwal A, Saxena K, Sharma G, Rajesh, Sheikh FA, Seth CS, Tripathi RM. Nanozymes: A comprehensive review on emerging applications in cancer diagnosis and therapeutics. Int J Biol Macromol 2024; 256:128272. [PMID: 38000568 DOI: 10.1016/j.ijbiomac.2023.128272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 11/10/2023] [Accepted: 11/17/2023] [Indexed: 11/26/2023]
Abstract
Nanozymes, a new class of nanomaterials-based artificial enzymes, have gained huge attraction due to their high operational stability, working efficiency in extreme conditions, and resistance towards protease digestion. Nowadays, they are effectively substituted for natural enzymes for catalysis by closely resembling the active sites found in natural enzymes. Nanozymes can compensate for natural enzymes' drawbacks, such as high cost, poor stability, low yield, and storage challenges. Due to their transforming nature, nanozymes are of utmost importance in the detection and treatment of cancer. They enable precise cancer detection, tailored drug delivery, and catalytic therapy. Through enhanced diagnosis, personalized therapies, and reduced side effects, their adaptability and biocompatibility can transform the management of cancer. The review focuses on metal and metal oxide-based nanozymes, highlighting their catalytic processes, and their applications in the prevention and treatment of cancer. It emphasizes their potential to alter diagnosis and therapy, particularly when it comes to controlling reactive oxygen species (ROS). The article reveals the game-changing importance of nanozymes in the future of cancer care and describes future research objectives, making it a useful resource for researchers, and scientists. Lastly, outlooks for future perspective areas in this rapidly emerging field have been provided in detail.
Collapse
Affiliation(s)
- Akanksha Deshwal
- Amity Institute of Nanotechnology, Amity University Uttar Pradesh (AUUP), Noida 201313, India
| | - Kirti Saxena
- Amity Institute of Nanotechnology, Amity University Uttar Pradesh (AUUP), Noida 201313, India
| | - Garima Sharma
- Department of Biomedical Science & Institute of Bioscience and Biotechnology, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Rajesh
- CSIR-National Physical Laboratory, New Delhi, India
| | - Faheem A Sheikh
- Nanostructured and Biomimetic Lab, Department of Nanotechnology, University of Kashmir Hazratbal, Srinagar, Jammu and Kashmir 190006, India
| | | | - Ravi Mani Tripathi
- Amity Institute of Nanotechnology, Amity University Uttar Pradesh (AUUP), Noida 201313, India.
| |
Collapse
|
17
|
Tan Y, Sun S, Deng Z, Alvarez PJJ, Qu X. Intrinsic peroxidase-like activity of dissolved black carbon released from biochar. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 898:165347. [PMID: 37419343 DOI: 10.1016/j.scitotenv.2023.165347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 07/04/2023] [Accepted: 07/04/2023] [Indexed: 07/09/2023]
Abstract
Dissolved black carbon (DBC) is an important constituent of the natural organic carbon pool, influencing the global carbon cycling and the fate processes of many pollutants. In this work, we discovered that DBC released from biochar has intrinsic peroxidase-like activity. DBC samples were derived from four biomass stocks, including corn, peanut, rice, and sorghum straws. All DBC samples catalyze H2O2 decomposition into hydroxyl radicals, as determined by the electron paramagnetic resonance and the molecular probe. Similar to enzymes that exhibit saturation kinetics, the steady-state reaction rates follow the Michaelis-Menten equation. The peroxidase-like activity of DBC is controlled by the ping-pong mechanism, as suggested by parallel Lineweaver-Burk plots. Its activity increases with temperature from 10 to 80 °C and has an optimum at pH 5. The peroxidase-like activity of DBC is positively correlated with its aromaticity as aromatics can stabilize the reactive intermediates. The active sites in DBC also involve oxygen-containing groups, as inferred by increased activity after the chemical reduction of carbonyls. The peroxidase-like activity of DBC has significant implications for biogeochemical processing of carbon and potential health and ecological impacts of black carbon. It also highlights the need to advance the understanding of the occurrence and role of organic catalysts in natural systems.
Collapse
Affiliation(s)
- Yi Tan
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Jiangsu 210023, China
| | - Su Sun
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Jiangsu 210023, China
| | - Zehui Deng
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Jiangsu 210023, China
| | - Pedro J J Alvarez
- Department of Civil and Environmental Engineering, Rice University, Houston, TX 77005, United States
| | - Xiaolei Qu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Jiangsu 210023, China.
| |
Collapse
|
18
|
Chai TQ, Chen GY, Chen LX, Wang JL, Zhang CY, Yang FQ. Adenine phosphate-Cu nanozyme with multienzyme mimicking activity for efficient degrading phenolic compounds and detection of hydrogen peroxide, epinephrine and glutathione. Anal Chim Acta 2023; 1279:341771. [PMID: 37827670 DOI: 10.1016/j.aca.2023.341771] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 08/29/2023] [Accepted: 08/31/2023] [Indexed: 10/14/2023]
Abstract
BACKGROUND With the development of nanotechnology, various nanomaterials with enzyme-like activity (nanozymes) have been reported. Due to their superior properties, nanozymes have shown important application potential in the fields of bioanalysis, disease detection, and environmental remediation. However, only a few nanomaterials with multi-enzyme mimicry activity have been reported. In this study, a novel multienzyme mimic was synthesized through a simple and rapid preparation protocol by coordinating copper ions with N3, N6 (amino), N7, and N9 on adenine phosphate. RESULTS The prepared adenine phosphate-Cu complex exhibits significant peroxidase, laccase, and oxidase mimicking activities. The Michaelis-Menten constant (Km) and the maximal velocity (Vmax) values of the peroxidase, laccase, and oxidase mimicking activities of AP-Cu nanozyme are 0.052 mM, 0.14 mM, and 2.49 mM; and 0.552 μM min-1, 6.70 μM min-1, and 2.24 μM min-1, respectively. Then, based on its laccase mimicking activity, the nanozyme was applied in the degradation of phenolic compounds. The calculated kinetic constant for the degradation of 2,4-dichlorophenol is 0.468 min-1 and the degradation efficiency of 2,4-dichlorophenol (0.1 mM) reaches 96.14% at 7 min. Finally, based on the multienzyme mimicking activity of adenine phosphate-Cu nanozyme, simple colorimetric sensing methods with high sensitivity and good selectivity were developed for the detection of hydrogen peroxide, epinephrine, and glutathione in the ranges of 20.0-200.0 μM (R2 = 0.9951), 5.0-100.0 μM (R2 = 0.9970), and 5.0-200.0 μM (R2 = 0.9924) with the limits of quantitation of 20.0 μM, 5.0 μM, and 5.0 μM, respectively. SIGNIFICANCE In short, the synthesis of nanozymes with multi-enzyme mimicry activity through coordination between copper ions and small molecule mimicry enzymes provides new ideas for the design and research of multi-enzyme mimics.
Collapse
Affiliation(s)
- Tong-Qing Chai
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, China
| | - Guo-Ying Chen
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, China
| | - Ling-Xiao Chen
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, China
| | - Jia-Li Wang
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, China
| | - Chun-Yan Zhang
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, China.
| | - Feng-Qing Yang
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, China.
| |
Collapse
|
19
|
Wang K, Mao W, Song X, Chen M, Feng W, Peng B, Chen Y. Reactive X (where X = O, N, S, C, Cl, Br, and I) species nanomedicine. Chem Soc Rev 2023; 52:6957-7035. [PMID: 37743750 DOI: 10.1039/d2cs00435f] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Reactive oxygen, nitrogen, sulfur, carbonyl, chlorine, bromine, and iodine species (RXS, where X = O, N, S, C, Cl, Br, and I) have important roles in various normal physiological processes and act as essential regulators of cell metabolism; their inherent biological activities govern cell signaling, immune balance, and tissue homeostasis. However, an imbalance between RXS production and consumption will induce the occurrence and development of various diseases. Due to the considerable progress of nanomedicine, a variety of nanosystems that can regulate RXS has been rationally designed and engineered for restoring RXS balance to halt the pathological processes of different diseases. The invention of radical-regulating nanomaterials creates the possibility of intriguing projects for disease treatment and promotes advances in nanomedicine. In this comprehensive review, we summarize, discuss, and highlight very-recent advances in RXS-based nanomedicine for versatile disease treatments. This review particularly focuses on the types and pathological effects of these reactive species and explores the biological effects of RXS-based nanomaterials, accompanied by a discussion and the outlook of the challenges faced and future clinical translations of RXS nanomedicines.
Collapse
Affiliation(s)
- Keyi Wang
- Department of Urology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, P. R. China.
| | - Weipu Mao
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing, 210009, P. R. China
| | - Xinran Song
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China.
| | - Ming Chen
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing, 210009, P. R. China
| | - Wei Feng
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China.
| | - Bo Peng
- Department of Urology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, P. R. China.
| | - Yu Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China.
| |
Collapse
|
20
|
Keum C, Hirschbiegel CM, Chakraborty S, Jin S, Jeong Y, Rotello VM. Biomimetic and bioorthogonal nanozymes for biomedical applications. NANO CONVERGENCE 2023; 10:42. [PMID: 37695365 PMCID: PMC10495311 DOI: 10.1186/s40580-023-00390-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 08/23/2023] [Indexed: 09/12/2023]
Abstract
Nanozymes mimic the function of enzymes, which drive essential intracellular chemical reactions that govern biological processes. They efficiently generate or degrade specific biomolecules that can initiate or inhibit biological processes, regulating cellular behaviors. Two approaches for utilizing nanozymes in intracellular chemistry have been reported. Biomimetic catalysis replicates the identical reactions of natural enzymes, and bioorthogonal catalysis enables chemistries inaccessible in cells. Various nanozymes based on nanomaterials and catalytic metals are employed to attain intended specific catalysis in cells either to mimic the enzymatic mechanism and kinetics or expand inaccessible chemistries. Each nanozyme approach has its own intrinsic advantages and limitations, making them complementary for diverse and specific applications. This review summarizes the strategies for intracellular catalysis and applications of biomimetic and bioorthogonal nanozymes, including a discussion of their limitations and future research directions.
Collapse
Affiliation(s)
- Changjoon Keum
- Center for Advanced Biomolecular Recognition, Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Cristina-Maria Hirschbiegel
- Department of Chemistry, University of Massachusetts, Amherst, 710 North Pleasant Street, Amherst, MA, 01003, USA
| | - Soham Chakraborty
- Department of Chemistry, University of Massachusetts, Amherst, 710 North Pleasant Street, Amherst, MA, 01003, USA
| | - Soyeong Jin
- Center for Advanced Biomolecular Recognition, Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- Department of Chemistry, Hanyang University, Seoul, 04763, Republic of Korea
| | - Youngdo Jeong
- Center for Advanced Biomolecular Recognition, Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea.
- Department of HY-KIST Bio-Convergence, Hanyang University, Seoul, 04763, Republic of Korea.
- Division of Bio-Medical Science and Technology, University of Science and Technology, Daejeon, 34113, Republic of Korea.
| | - Vincent M Rotello
- Department of Chemistry, University of Massachusetts, Amherst, 710 North Pleasant Street, Amherst, MA, 01003, USA.
| |
Collapse
|
21
|
Sánchez-Tirado E, Yáñez-Sedeño P, Pingarrón JM. Carbon-Based Enzyme Mimetics for Electrochemical Biosensing. MICROMACHINES 2023; 14:1746. [PMID: 37763909 PMCID: PMC10538133 DOI: 10.3390/mi14091746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 08/28/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023]
Abstract
Natural enzymes are used as special reagents for the preparation of electrochemical (bio)sensors due to their ability to catalyze processes, improving the selectivity of detection. However, some drawbacks, such as denaturation in harsh experimental conditions and their rapid de- gradation, as well as the high cost and difficulties in recycling them, restrict their practical applications. Nowadays, the use of artificial enzymes, mostly based on nanomaterials, mimicking the functions of natural products, has been growing. These so-called nanozymes present several advantages over natural enzymes, such as enhanced stability, low cost, easy production, and rapid activity. These outstanding features are responsible for their widespread use in areas such as catalysis, energy, imaging, sensing, or biomedicine. These materials can be divided into two main groups: metal and carbon-based nanozymes. The latter provides additional advantages compared to metal nanozymes, i.e., stable and tuneable activity and good biocompatibility, mimicking enzyme activities such as those of peroxidase, catalase, oxidase, superoxide dismutase, nuclease, or phosphatase. In this review article, we have focused on the use of carbon-based nanozymes for the preparation of electrochemical (bio)sensors. The main features of the most recent applications have been revised and illustrated with examples selected from the literature over the last four years (since 2020).
Collapse
Affiliation(s)
| | - Paloma Yáñez-Sedeño
- Department of Analytical Chemistry, Faculty of Chemistry, University Complutense of Madrid, 28040 Madrid, Spain; (E.S.-T.); (J.M.P.)
| | | |
Collapse
|
22
|
Yi Z, Ren Y, Li Y, Li Y, Long F, Zhu A. Rational design of three-in-one Pt/MnO 2/GO hybrid nanozyme with enhanced catalytic performance for colorimetric detection of ascorbic acid and cysteine. Talanta 2023; 265:124839. [PMID: 37418957 DOI: 10.1016/j.talanta.2023.124839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 06/03/2023] [Accepted: 06/19/2023] [Indexed: 07/09/2023]
Abstract
In this work, a novel three-in-one Pt/MnO2/GO hybrid nanozyme with wide pH and temperature working range was rational prepared using simple hydrothermal and reduction strategy. The prepared Pt/MnO2/GO displayed enhanced catalytic activity than single active component due to the excellent conductivity of GO, the increased active sites, the increased electron transfer capacity, the synergistic effect between each component and the decreased binding energy for adsorbed intermediates. Combing chemical characterization and theoretical simulation calculations, the O2 reduction process on the Pt/MnO2/GO nanozymes and the generated reactive oxygen species in the nanozyme-TMB system were thoroughly illustrated. Based on the excellent catalytic activity of Pt/MnO2/GO nanozymes, a colorimetric strategy was proposed to detect the ascorbic acid (AA) and cysteine (Cys), and the experimental results indicated that detection range of AA was 0.35-56 μM with a LOD of 0.075 μM and detection range of Cys was 0.5-32 μM with a LOD of 0.12 μM. Good recoveries were achieved in the human serum and fresh fruit juice detection procedures, demonstrating the potential applications of Pt/MnO2/GO-based colorimetric strategy in complex biological and food samples.
Collapse
Affiliation(s)
- Zhihao Yi
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
| | - Yashuang Ren
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
| | - Yang Li
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
| | - Yanna Li
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
| | - Feng Long
- School of Environment and Natural Resource, Renmin University of China, Beijing, 100872, China.
| | - Anna Zhu
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China.
| |
Collapse
|
23
|
Wan J, Zou JM, Zhou SJ, Pan FL, Hua F, Zhang YL, Nie JF, Zhang Y. A bimetallic (Ni/Co) metal-organic framework with excellent oxidase-like activity for colorimetric sensing of ascorbic acid. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:1819-1825. [PMID: 36961405 DOI: 10.1039/d2ay01927b] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
A novel nanozyme of bimetallic (Ni/Co) metal-organic framework (Ni/Co-MOF) was synthesized using a simultaneous precipitation and acid etching method with a zeolitic imidazolate framework ZIF-67 as the template. The as-synthesized Ni/Co-MOF catalyst presented a three-dimensional hollow nanocage structure and exhibited excellent intrinsic oxidase-like activity. It was demonstrated that Ni/Co-MOF could directly catalyze the oxidation of 3,3',5,5'-tetramethylbenzidine (TMB) to produce a blue product (oxidized TMB, oxTMB) in the absence of H2O2. The mechanisms and kinetics of this nanozyme activity were investigated, and it was determined that the catalytic activity of Ni/Co-MOF was closely related to temperature and solution pH. Owing to its strong reducibility, ascorbic acid (AA) could reduce oxTMB, and the blue color of the reaction mixture faded over time. Therefore, a novel colorimetric platform was constructed to detect AA based on the oxidase-like activity of Ni/Co-MOF. Under optimal conditions, the absorbance of ox-TMB at 652 nm decreased linearly over the 0.015-50 μM AA range with a detection limit of 0.004 μM.
Collapse
Affiliation(s)
- Jing Wan
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, 12 Jiangan Road, Guilin 541004, China.
| | - Jian-Mei Zou
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, 12 Jiangan Road, Guilin 541004, China.
| | - Shu-Jing Zhou
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, 12 Jiangan Road, Guilin 541004, China.
| | - Feng-Lan Pan
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, 12 Jiangan Road, Guilin 541004, China.
| | - Fei Hua
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, 12 Jiangan Road, Guilin 541004, China.
| | - Yu-Lan Zhang
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, 12 Jiangan Road, Guilin 541004, China.
| | - Jin-Fang Nie
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, 12 Jiangan Road, Guilin 541004, China.
| | - Yun Zhang
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, 12 Jiangan Road, Guilin 541004, China.
| |
Collapse
|
24
|
Kurup CP, Ahmed MU. Nanozymes towards Personalized Diagnostics: A Recent Progress in Biosensing. BIOSENSORS 2023; 13:bios13040461. [PMID: 37185536 PMCID: PMC10136715 DOI: 10.3390/bios13040461] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/24/2023] [Accepted: 04/04/2023] [Indexed: 05/17/2023]
Abstract
This review highlights the recent advancements in the field of nanozymes and their applications in the development of point-of-care biosensors. The use of nanozymes as enzyme-mimicking components in biosensing systems has led to improved performance and miniaturization of these sensors. The unique properties of nanozymes, such as high stability, robustness, and surface tunability, make them an attractive alternative to traditional enzymes in biosensing applications. Researchers have explored a wide range of nanomaterials, including metals, metal oxides, and metal-organic frameworks, for the development of nanozyme-based biosensors. Different sensing strategies, such as colorimetric, fluorescent, electrochemical and SERS, have been implemented using nanozymes as signal-producing components. Despite the numerous advantages, there are also challenges associated with nanozyme-based biosensors, including stability and specificity, which need to be addressed for their wider applications. The future of nanozyme-based biosensors looks promising, with the potential to bring a paradigm shift in biomolecular sensing. The development of highly specific, multi-enzyme mimicking nanozymes could lead to the creation of highly sensitive and low-biofouling biosensors. Integration of nanozymes into point-of-care diagnostics promises to revolutionize healthcare by improving patient outcomes and reducing costs while enhancing the accuracy and sensitivity of diagnostic tools.
Collapse
Affiliation(s)
- Chitra Padmakumari Kurup
- Biosensors and Nanobiotechnology Laboratory, Integrated Science Building, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong BE1410, Brunei
| | - Minhaz Uddin Ahmed
- Biosensors and Nanobiotechnology Laboratory, Integrated Science Building, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong BE1410, Brunei
| |
Collapse
|
25
|
Dadi S, Temur N, Gul OT, Yilmaz V, Ocsoy I. In Situ Synthesis of Horseradish Peroxidase Nanoflower@Carbon Nanotube Hybrid Nanobiocatalysts with Greatly Enhanced Catalytic Activity. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:4819-4828. [PMID: 36944167 PMCID: PMC10077815 DOI: 10.1021/acs.langmuir.3c00260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/09/2023] [Indexed: 06/18/2023]
Abstract
Organic-inorganic hybrid nanoflowers (NFs) consisting of horseradish peroxidase (HRP) and copper II (Cu2+) are successfully synthesized with the involvement of carbon nanotubes (CNTs) by in situ and post-modification methods. Catalytic activities of in situ synthesized HRP-NF@CNT (HRP-NF@CNT-Is) and post-modification-synthesized HRP-NF@CNTs (HRP-NF@CNT-Pm) are systematically examined. The 30 mg CNTs incorporated HRP-NF@CNT-Is (HRP-NF@CNT-30Is) exhibits greatly increased catalytic activity and stability toward 3,3',5,5'-tetramethylbenzidine (TMB), thanks to the synergistic effect between HRP-NF and CNTs and the peroxidase-like activity of CNTs in the presence of hydrogen peroxide (H2O2). While HRP-NF@CNT-30Is retains almost 85% of its initial activity even after 10 cycles, HRP-NF (without CNTs) loses half of its initial activity at the same experimental conditions. We study how two experimental parameters, the pH values and temperatures, influence the catalytic activity of HRP-NF@CNT-30Is, in addition to the fact that HRP-NF@CNT-30Is is employed to detect the presence of H2O2 and glutathione (GSH) with colorimetric and spectrophotometric readouts. For instance, HRP-NF@CNT-30Is is used to sensitively detect H2O2 in the range of 20 to 300 μM with an LOD of 2.26 μM. The catalytic activity of HRP-NF@CNT-30Is is suppressed in the presence of GSH, and then an obvious color change from blue to nearly colorless is observed. Using this strategy, GSH is also sensitively determined in the range of 20-200 μM with an LOD of 11.2 μM. We expect that HRP-NF@CNTs can be used as a promising and novel nanobiocatalyst for various biomedical and industrial applications in the near future.
Collapse
Affiliation(s)
- Seyma Dadi
- Department
of Analytical Chemistry, Faculty of Pharmacy, Erciyes University, Kayseri 38039, Turkey
- Department
of Nanotechnology Engineering, Abdullah
Gül University, Kayseri 38080, Turkey
| | - Nimet Temur
- Department
of Analytical Chemistry, Faculty of Pharmacy, Erciyes University, Kayseri 38039, Turkey
| | - O. Tolga Gul
- Department
of Physics, Polatlı Faculty of Science and Letters, Ankara Hacı Bayram Veli University, Ankara 06900, Turkey
| | - Vedat Yilmaz
- Department
of Analytical Chemistry, Faculty of Pharmacy, Erciyes University, Kayseri 38039, Turkey
| | - Ismail Ocsoy
- Department
of Analytical Chemistry, Faculty of Pharmacy, Erciyes University, Kayseri 38039, Turkey
| |
Collapse
|
26
|
Ji X, Li Q, Su R, Wang Y, Qi W. Peroxidase-Mimicking Hierarchically Organized Gold Particles for Glucose Detection. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:3216-3224. [PMID: 36821815 DOI: 10.1021/acs.langmuir.2c02909] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
In this work, we synthesize a series of hierarchically organized gold nanoparticles (Au HOPs-X) with peroxidase (POD)-like catalytic activity by the in situ reduction of Au-thiolate hierarchically organized particles (Au HOPs). The initial Au HOPs show little POD-like catalytic activity. However, after the reduction of the particles, the Au HOPs-X showed enhanced POD-like catalytic activity, where X represents the reduction degree of Au HOPs. The reasons are as follows: (1) the Au-thiolate complexes on the surface of the Au HOPs-X were reduced into Au nanoparticles, and the active Au0 content increases with the increase of the reduction degree; (2) the specific surface area of Au HOPs-X becomes larger. Based on this, the Au HOPs-10 with the highest catalytic activity were combined with glucose oxidase to obtain a standard curve as a function of glucose concentrations. The color of the solutions was captured by mobile phone photos to determine their saturation, and the rapid detection of glucose was achieved through the standard curve of glucose concentration and saturation determined in this study.
Collapse
Affiliation(s)
- Xiaoxuan Ji
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Qing Li
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Rongxin Su
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, P. R. China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Yuefei Wang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, P. R. China
- Key Laboratory of Polymeric Materials Design and Synthesis for Biomedical Function, Soochow University, Suzhou 215123, China
| | - Wei Qi
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, P. R. China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University, Tianjin 300072, P. R. China
| |
Collapse
|
27
|
Hatta MHM, Matmin J, Malek NANN, Kamisan FH, Badruzzaman A, Batumalaie K, Ling Lee S, Abdul Wahab R. COVID‐19: Prevention, Detection, and Treatment by Using Carbon Nanotubes‐Based Materials. ChemistrySelect 2023. [DOI: 10.1002/slct.202204615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Affiliation(s)
- Mohd Hayrie Mohd Hatta
- Centre for Research and Development Asia Metropolitan University 81750 Johor Bahru Johor Malaysia
| | - Juan Matmin
- Department of Chemistry Faculty of Science Universiti Teknologi Malaysia 81310 UTM Johor Bahru Johor Malaysia
- Centre for Sustainable Nanomaterials Ibnu Sina Institute for Scientific and Industrial Research Universiti Teknologi Malaysia 81310 UTM Johor Bahru Johor Malaysia
| | - Nik Ahmad Nizam Nik Malek
- Centre for Sustainable Nanomaterials Ibnu Sina Institute for Scientific and Industrial Research Universiti Teknologi Malaysia 81310 UTM Johor Bahru Johor Malaysia
- Department of Biosciences, Faculty of Science Universiti Teknologi Malaysia 81310 UTM Johor Bahru Johor Malaysia
| | - Farah Hidayah Kamisan
- Department of Biomedical Sciences Faculty of Health Sciences Asia Metropolitan University 81750 Johor Bahru Johor Malaysia
| | - Aishah Badruzzaman
- Centre for Foundation, Language and General Studies Asia Metropolitan University 81750 Johor Bahru Johor Malaysia
| | - Kalaivani Batumalaie
- Department of Biomedical Sciences Faculty of Health Sciences Asia Metropolitan University 81750 Johor Bahru Johor Malaysia
| | - Siew Ling Lee
- Department of Chemistry Faculty of Science Universiti Teknologi Malaysia 81310 UTM Johor Bahru Johor Malaysia
- Centre for Sustainable Nanomaterials Ibnu Sina Institute for Scientific and Industrial Research Universiti Teknologi Malaysia 81310 UTM Johor Bahru Johor Malaysia
| | - Roswanira Abdul Wahab
- Department of Chemistry Faculty of Science Universiti Teknologi Malaysia 81310 UTM Johor Bahru Johor Malaysia
| |
Collapse
|
28
|
Chen J, Liu X, Zheng G, Feng W, Wang P, Gao J, Liu J, Wang M, Wang Q. Detection of Glucose Based on Noble Metal Nanozymes: Mechanism, Activity Regulation, and Enantioselective Recognition. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2205924. [PMID: 36509680 DOI: 10.1002/smll.202205924] [Citation(s) in RCA: 37] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/17/2022] [Indexed: 06/17/2023]
Abstract
Glucose monitoring is essential to evaluate the degree of glucose metabolism disorders. The enzymatic determination has been the most widely used method in glucose detection because of its high efficiency, accuracy, and sensitivity. Noble metal nanomaterials (NMs, i.e., Au, Ag, Pt, and Pd), inheriting their excellent electronic, optical, and enzyme-like properties, are classified as noble metal nanozymes (NMNZs). As the NMNZs are often involved in two series of reactions, the oxidation of glucose and the chromogenic reaction of peroxide, here the chemical mechanism by employing NMNZs with glucose oxidase (GOx) and peroxidase (POD) mimicking activities is briefly summarized first. Subsequently, the regulation strategies of the GOx-like, POD-like and tandem enzyme-like activities of NMNZs are presented in detail, including the materials, size, morphology, composition, and the reaction condition of the representative NMs. In addition, in order to further mimic the enantioselectivity of enzyme, the design of NMNZs with enantioselective recognition of d-glucose and l-glucose by using different chiral compounds (DNA, amino acids, and cyclodextrins) and molecular imprinting is further described in this review. Finally, the feasible solutions to the existing challenges and a vision for future development possibilities are discussed.
Collapse
Affiliation(s)
- Jiaqi Chen
- School of Mechanical Engineering, Chengdu University, Chengdu, 610000, China
| | - Xiaoyang Liu
- School of Mechanical Engineering, Chengdu University, Chengdu, 610000, China
| | - Guangchao Zheng
- School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, 450001, China
| | - Wei Feng
- School of Mechanical Engineering, Chengdu University, Chengdu, 610000, China
| | - Pan Wang
- School of Mechanical Engineering, Chengdu University, Chengdu, 610000, China
| | - Jian Gao
- School of Mechanical Engineering, Chengdu University, Chengdu, 610000, China
| | - Jianbo Liu
- College of Opto-electronic Engineering, Zaozhuang University, Zaozhuang, 277160, China
| | - Mingzhe Wang
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China
| | - Qingyuan Wang
- School of Mechanical Engineering, Chengdu University, Chengdu, 610000, China
| |
Collapse
|
29
|
Chi Z, Wang Q, Gu J. Recent advances in colorimetric sensors based on nanozymes with peroxidase-like activity. Analyst 2023; 148:487-506. [PMID: 36484756 DOI: 10.1039/d2an01850k] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Nanozymes have been widely used to construct colorimetric sensors due to their advantages of cost-effectiveness, high stability, good biocompatibility, and ease of modification. The emergence of nanozymes greatly enhanced the detection sensitivity and stability of the colorimetric sensing platform. Recent significant research has focused on designing various sensors based on nanozymes with peroxidase-like activity for colorimetric analysis. However, with the deepening of research, nanozymes with peroxidase-like activity has also exposed some problems, such as weak affinity and low catalytic activity. In view of the above issues, existing investigations have shown that the catalytic properties of nanozymes can be improved by adding surface modification and changing the structure of nanomaterials. In this review, we summarize the recent trends and advances of colorimetric sensors based on several typical nanozymes with peroxidase-like activities, including noble metals, metal oxides, metal sulfides/metal selenides, and carbon and metal-organic frameworks (MOF). Finally, the current challenges and prospects of colorimetric sensors based on nanozymes with peroxidase-like activity are summarized and discussed to provide a reference for researchers in related fields.
Collapse
Affiliation(s)
- Zhongmei Chi
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou, Liaoning Province, 121013, P. R. China.
| | - Qiong Wang
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou, Liaoning Province, 121013, P. R. China.
| | - Jiali Gu
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou, Liaoning Province, 121013, P. R. China.
| |
Collapse
|
30
|
Carbon-based nanozymes: Design, catalytic mechanism, and bioapplication. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
31
|
Razavi M, Barras A, Szunerits S, Khoshkam M, Kompany-Zareh M, Boukherroub R. A colorimetric assay and MCR-ALS analysis of the peroxidase-like activity of poly (N-phenylglycine) functionalized with polyethylene glycol (PNPG-PEG) nanozyme for the determination of dopamine. Anal Chim Acta 2022; 1235:340493. [DOI: 10.1016/j.aca.2022.340493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 10/02/2022] [Accepted: 10/05/2022] [Indexed: 11/30/2022]
|
32
|
Gao Y, Wang Y, Wang Y, Magaud P, Liu Y, Zeng F, Yang J, Baldas L, Song Y. Nanocatalysis meets microfluidics: A powerful platform for sensitive bioanalysis. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
33
|
Pushpalatha C, Sowmya SV, Augustine D, Kumar C, Gayathri VS, Shakir A, Prabhu TN, Sandhya KV, Patil S. Antibacterial Nanozymes: An Emerging Innovative Approach to Oral Health Management. Top Catal 2022. [DOI: 10.1007/s11244-022-01731-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
34
|
Zheng X, Zhao J, Wang S, Hu L. Research Progress of Antioxidant Nanomaterials for Acute Pancreatitis. Molecules 2022; 27:7238. [PMID: 36364064 PMCID: PMC9658789 DOI: 10.3390/molecules27217238] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/16/2022] [Accepted: 10/21/2022] [Indexed: 08/30/2023] Open
Abstract
Acute pancreatitis (AP) is a complex inflammatory disease caused by multiple etiologies, the pathogenesis of which has not been fully elucidated. Oxidative stress is important for the regulation of inflammation-related signaling pathways, the recruitment of inflammatory cells, the release of inflammatory factors, and other processes, and plays a key role in the occurrence and development of AP. In recent years, antioxidant therapy that suppresses oxidative stress by scavenging reactive oxygen species has become a research highlight of AP. However, traditional antioxidant drugs have problems such as poor drug stability and low delivery efficiency, which limit their clinical translation and applications. Nanomaterials bring a brand-new opportunity for the antioxidant treatment of AP. This review focuses on the multiple advantages of nanomaterials, including small size, good stability, high permeability, and long retention effect, which can be used not only as effective carriers of traditional antioxidant drugs but also directly as antioxidants. In this review, after first discussing the association between oxidative stress and AP, we focused on summarizing the literature related to antioxidant nanomaterials for the treatment of AP and highlighting the effects of these nanomaterials on the indicators related to oxidative stress in pathological states, aiming to provide references for follow-up research and promote clinical application.
Collapse
Affiliation(s)
- Xiaoyi Zheng
- Ningxia Medical University, Postgraduate Training Base in Shanghai Gongli Hospital, Pudong New Area, No. 219 Miao Pu Road, Shanghai 200135, China
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, No. 168 Changhai Road, Shanghai 200433, China
| | - Jiulong Zhao
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, No. 168 Changhai Road, Shanghai 200433, China
| | - Shige Wang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, No. 516 Jungong Road, Shanghai 200093, China
| | - Lianghao Hu
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, No. 168 Changhai Road, Shanghai 200433, China
| |
Collapse
|
35
|
Atomically-precise Au24Ag1 Clusterzymes with Enhanced Peroxidase-like Activity for Bioanalysis. Chem Res Chin Univ 2022. [DOI: 10.1007/s40242-022-2259-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
36
|
Zhang X, Wang S, Dao J, Guo J, Gao Y. A colorimetric sensing platform for the determination of H 2O 2 using 2D-1D MoS 2-CNT nanozymes. RSC Adv 2022; 12:28349-28358. [PMID: 36320511 PMCID: PMC9533402 DOI: 10.1039/d2ra04831k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 09/15/2022] [Indexed: 06/16/2023] Open
Abstract
A novel colorimetric platform based on nano-composites of two-dimensional (2D) molybdenum disulfide nanosheets (MoS2 NSs) and one-dimensional (1D) carbon nanotubes (CNTs), called 2D-1D MoS2-CNT nanozyme, was fabricated for the selective and sensitive determination of hydrogen peroxide (H2O2) in soda water. The MoS2-CNT nanozyme was synthesized through a one-step solvothermal reduction method. The introduced CNTs could effectively prevent the stacking of MoS2 nanosheets (NSs) and not only expanded the interlayer distance of MoS2 NSs from 0.620 nm to 0.710 nm but also improved their specific surface. Under acidic conditions, the as-prepared 2D-1D MoS2-CNT nanozymes could oxidize the colorless 3,3',5,5'-tetramethylbenzidine (TMB) to blue-oxidized TMB (oxTMB) in the presence of H2O2, resulting in enhanced peroxidase-like (POD-like) activity. The kinetic study showed that MoS2-CNT nanozyme had stronger catalytic activity than natural horseradish peroxidase (HRP). The linear range for H2O2 colorimetric determination was 5.00-500 μmol L-1 with a limit of detection (LOD) of 1.40 μmol L-1. Furthermore, the established determination method was applied to actual samples and the recoveries of H2O2 spiked in soda water were in the range of 92.3-107%, showing feasibility for the analysis of food.
Collapse
Affiliation(s)
- Xin Zhang
- College of Chemical Engineering, Inner Mongolia University of Technology 49 Aimin Road Hohhot 100085 China
| | - Siqin Wang
- College of Chemical Engineering, Inner Mongolia University of Technology 49 Aimin Road Hohhot 100085 China
| | - Jiahao Dao
- College of Chemical Engineering, Inner Mongolia University of Technology 49 Aimin Road Hohhot 100085 China
| | - Jiajing Guo
- College of Chemical Engineering, Inner Mongolia University of Technology 49 Aimin Road Hohhot 100085 China
| | - Yanfang Gao
- College of Chemical Engineering, Inner Mongolia University of Technology 49 Aimin Road Hohhot 100085 China
| |
Collapse
|
37
|
A colorimetric biosensor based on peroxidase-like activity of CuO nanoparticles for simultaneous detection of microRNAs. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02417-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
38
|
Alsharif NB, Samu GF, Sáringer S, Szerlauth A, Takács D, Hornok V, Dékány I, Szilagyi I. Antioxidant colloids via heteroaggregation of cerium oxide nanoparticles and latex beads. Colloids Surf B Biointerfaces 2022; 216:112531. [PMID: 35525228 DOI: 10.1016/j.colsurfb.2022.112531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/25/2022] [Accepted: 04/27/2022] [Indexed: 10/18/2022]
Abstract
Antioxidant colloids were developed via controlled heteroaggregation of cerium oxide nanoparticles (CeO2 NPs) and sulfate-functionalized polystyrene latex (SL) beads. Positively charged CeO2 NPs were directly immobilized onto SL particles of opposite surface charge via electrostatic attraction (SL/Ce composite), while negatively charged CeO2 NPs were initially functionalized with poly(diallyldimethylammonium chloride) (PDADMAC) polyelectrolyte and then, aggregated with the SL particles (SPCe composite). The PDADMAC served to induce a charge reversal on CeO2 NPs, while the SL support prevented nanoparticle aggregation under conditions, where the dispersions of bare CeO2 NPs were unstable. Both SL/Ce and SPCe showed enhanced radical scavenging activity compared to bare CeO2 NPs and were found to mimic peroxidase enzymes. The results demonstrate that SL beads are suitable supports to formulate CeO2 particles and to achieve remarkable dispersion storage stability. The PDADMAC functionalization and immobilization of CeO2 NPs neither compromised the peroxidase-like activity nor the radical scavenging potential. The obtained SL/Ce and SPCe artificial enzymes are foreseen to be excellent antioxidant agents in various applications in the biomedical, food, and cosmetic industries.
Collapse
Affiliation(s)
- Nizar B Alsharif
- MTA-SZTE Lendület Biocolloids Research Group, University of Szeged, H-6720 Szeged, Hungary
| | - Gergely F Samu
- Department of Physical Chemistry and Materials Science, University of Szeged, H-6720 Szeged, Hungary
| | - Szilárd Sáringer
- MTA-SZTE Lendület Biocolloids Research Group, University of Szeged, H-6720 Szeged, Hungary; Department of Physical Chemistry and Materials Science, University of Szeged, H-6720 Szeged, Hungary
| | - Adél Szerlauth
- MTA-SZTE Lendület Biocolloids Research Group, University of Szeged, H-6720 Szeged, Hungary
| | - Dóra Takács
- MTA-SZTE Lendület Biocolloids Research Group, University of Szeged, H-6720 Szeged, Hungary
| | - Viktoria Hornok
- Department of Physical Chemistry and Materials Science, University of Szeged, H-6720 Szeged, Hungary
| | - Imre Dékány
- Department of Physical Chemistry and Materials Science, University of Szeged, H-6720 Szeged, Hungary
| | - Istvan Szilagyi
- MTA-SZTE Lendület Biocolloids Research Group, University of Szeged, H-6720 Szeged, Hungary; Department of Physical Chemistry and Materials Science, University of Szeged, H-6720 Szeged, Hungary.
| |
Collapse
|
39
|
Feng L, Zhang L, Chu S, Zhang S, Chen X, Gong Y, Du Z, Mao G, Wang H. One-pot fabrication of nanozyme with 2D/1D heterostructure by in-situ growing MoS2 nanosheets onto single-walled carbon nanotubes with enhanced catalysis for colorimetric detection of glutathione. Anal Chim Acta 2022; 1221:340083. [DOI: 10.1016/j.aca.2022.340083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 04/28/2022] [Accepted: 06/11/2022] [Indexed: 11/28/2022]
|
40
|
Isho RD, Sher Mohammad NM, Omer KM. Enhancing enzymatic activity of Mn@Co 3O 4 nanosheets as mimetic nanozyme for colorimetric assay of ascorbic acid. Anal Biochem 2022; 654:114818. [PMID: 35841925 DOI: 10.1016/j.ab.2022.114818] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 06/29/2022] [Accepted: 07/09/2022] [Indexed: 01/10/2023]
Abstract
In nanozyme-based assays, increasing enzymatic activity is very desirable for enhancing sensitivity and lowering the detection limit. In this study, novel Mn doped cobalt oxide nanosheets (Mn@Co3O4 NSs) were synthesized by hydrothermal process. The obtained Mn@Co3O4 possessed enhanced dual-enzyme mimetic, oxidase and peroxidase, and can catalytically oxidize of 3, 3', 5, 5'-tetramethylbenzidine (TMB), to a blue product of oxidized TMB. The enzyme kinetics were well-described mathematically using a common Michaelis-Menten and Lineweaver Burk model. The enzyme kinetics constant (Km) was found to be 0.15 mM, which is relatively low comparing with pure Co3O4 nanosheets (0.35 mM) and natural enzyme HRP (0.434 mM). Therefore, the efficient colorimetric method was achieved for determination of H2O2 and ascorbic acid. The limit of detection (LOD) of H2O2 was 8.0 μM and the linear range was 20-200 μM based on direct turn on of the peroxidase-like activity of Mn@Co3O4. While, for ascorbic acid detection based on turn-off approach, the linearity range for the ascorbic acid was 1-8 μM with LOD of 0.4 μM. Moreover, the colorimetric system exhibited good stability and selectivity toward the detection of ascorbic acid effectively in real samples (vitamin C tablets) with satisfactorily accuracy and precision.
Collapse
Affiliation(s)
- Ramya D Isho
- Department of Chemistry, College of Science, University of Zakho, Duhok City, Kurdistan Region, Iraq
| | - Nidhal M Sher Mohammad
- Department of Chemistry, College of Science, University of Zakho, Duhok City, Kurdistan Region, Iraq.
| | - Khalid M Omer
- Center for Biomedical Analysis, Department of Chemistry, College of Science, University of Sulaimani, Qliasan St, 46002, Sulaimani City, Kurdistan Region, Iraq.
| |
Collapse
|
41
|
Guo X, Huang H, Cui R, Wang D, Liu J, Wang D, Liu S, Zhao Y, Dong J, Sun B. Graphdiyne Oxide Quantum Dots: The Enhancement of Peroxidase-like Activity and Their Applications in Sensing H 2O 2 and Cysteine. ACS APPLIED BIO MATERIALS 2022; 5:3418-3427. [PMID: 35703404 DOI: 10.1021/acsabm.2c00361] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
As one of the typical carbon nanomaterials, graphdiyne (GDY) with unique chemical, physical, and electronic properties has a great potential in various fields. Although it is an important member of carbon nanozymes, the research on its intrinsic enzyme mimetic properties and applications is still limited. Herein, graphdiyne oxide quantum dots (GDYO QDs) have been synthesized through oxidative cleavage, which exhibit enhanced peroxidase-like activity with lower Km and higher Vmax than those of most carbon-based nanozymes. The catalytic mechanism is explored, showing that the enhanced catalytic performance is attributed to the good conjugated structure, large number of oxygen-containing groups, and small-sized nanosheets with few layers. As a kind of peroxidase mimetic, the GDY-based nanozyme has excellent potential in sensing H2O2 and biological antioxidants through the colorimetric assay, with a linear range from 5 to 500 μM and detection limit of 1.5 μM for H2O2 and a linear range from 0 to 90 μM and detection limit of 0.48 μM for l-cysteine. Our work will be beneficial to develop high-performance artificial enzymes and to understand their mechanism for better applications.
Collapse
Affiliation(s)
- Xihong Guo
- CAS Key Lab for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Huan Huang
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Rongli Cui
- CAS Key Lab for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Dongmei Wang
- CAS Key Lab for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China.,University of Chinese Academy of Science, Beijing 100049, China
| | - Jiali Liu
- CAS Key Lab for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Dan Wang
- CAS Key Lab for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China.,University of Chinese Academy of Science, Beijing 100049, China
| | - Shuhu Liu
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Yidong Zhao
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Jinquan Dong
- CAS Key Lab for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Baoyun Sun
- CAS Key Lab for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
42
|
Altuner EE, Ozalp VC, Yilmaz MD, Sudagidan M, Aygun A, Acar EE, Tasbasi BB, Sen F. Development of electrochemical aptasensors detecting phosphate ions on TMB substrate with epoxy-based mesoporous silica nanoparticles. CHEMOSPHERE 2022; 297:134077. [PMID: 35218784 DOI: 10.1016/j.chemosphere.2022.134077] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/10/2022] [Accepted: 02/19/2022] [Indexed: 06/14/2023]
Abstract
This study, it is aimed to develop an electrochemical aptasensor that can detect phosphate ions using 3.3'5.5' tetramethylbenzidine (TMB). It is based on the principle of converting the binding affinity of the target molecule phosphate ion (PO43-) into an electrochemical signal with specific aptamer sequences for the aptasensor to be developed. The aptamer structure served as a gate for the TMB to be released and was used to trap the TMB molecule in mesoporous silica nanoparticles (MSNPs). The samples for this study were characterized by transmission electron spectroscopy (TEM), Brunner-Emmet-Teller, dynamic light scattering&electrophoretic light scattering, and induction coupled plasma atomic emission spectroscopy. According to TEM analysis, MSNPs have a morphologically hexagonal structure and an average size of 208 nm. In this study, palladium-carbon nanoparticles (Pd/C NPs) with catalytic reaction were used as an alternative to the biologically used horseradish peroxidase (HRP) enzyme for the release of TMB in the presence of phosphate ions. The limit of detection (LOD) was calculated as 0.983 μM, the limit of determination (LOQ) was calculated as 3.276 μM, and the dynamic linear phosphate range was found to be 50-1000 μM. The most important advantage of this bio-based aptasensor assembly is that it does not contain molecules such as a protein that cannot be stored for a long time at room temperature, so its shelf life is very long compared to similar systems developed with antibodies. The proposed sensor shows good recovery in phosphate ion detection and is considered to have great potential among electrochemical sensors.
Collapse
Affiliation(s)
- Elif Esra Altuner
- Department of Biochemistry, Dumlupinar University, 43000, Kutahya, Turkiye.
| | - Veli Cengiz Ozalp
- Medical School, Department of Medical Biology, Atilim University, 06830, Ankara, Turkiye.
| | - M Deniz Yilmaz
- Department of Bioengineering, Faculty of Engineering and Architecture, Konya Food and Agriculture University, 42080, Konya, Turkiye
| | - Mert Sudagidan
- KIT-ARGEM, R&D Center, Konya Food and Agriculture University, 42080, Konya, Turkiye
| | - Aysenur Aygun
- Department of Biochemistry, Dumlupinar University, 43000, Kutahya, Turkiye
| | - Elif Esma Acar
- KIT-ARGEM, R&D Center, Konya Food and Agriculture University, 42080, Konya, Turkiye
| | - Behiye Busra Tasbasi
- KIT-ARGEM, R&D Center, Konya Food and Agriculture University, 42080, Konya, Turkiye
| | - Fatih Sen
- Department of Biochemistry, Dumlupinar University, 43000, Kutahya, Turkiye.
| |
Collapse
|
43
|
Zhang X, Chen X, Zhao Y. Nanozymes: Versatile Platforms for Cancer Diagnosis and Therapy. NANO-MICRO LETTERS 2022; 14:95. [PMID: 35384520 PMCID: PMC8986955 DOI: 10.1007/s40820-022-00828-2] [Citation(s) in RCA: 91] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 02/17/2022] [Indexed: 05/08/2023]
Abstract
Natural enzymes usually suffer from high production cost, ease of denaturation and inactivation, and low yield, making them difficult to be broadly applicable. As an emerging type of artificial enzyme, nanozymes that combine the characteristics of nanomaterials and enzymes are promising alternatives. On the one hand, nanozymes have high enzyme-like catalytic activities to regulate biochemical reactions. On the other hand, nanozymes also inherit the properties of nanomaterials, which can ameliorate the shortcomings of natural enzymes and serve as versatile platforms for diverse applications. In this review, various nanozymes that mimic the catalytic activity of different enzymes are introduced. The achievements of nanozymes in different cancer diagnosis and treatment technologies are summarized by highlighting the advantages of nanozymes in these applications. Finally, future research directions in this rapidly developing field are outlooked.
Collapse
Affiliation(s)
- Xiaodong Zhang
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Xiaokai Chen
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Yanli Zhao
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore.
| |
Collapse
|
44
|
Lu D, Li J, Wu Z, Yuan L, Fang W, Zou P, Ma L, Wang X. High-activity daisy-like zeolitic imidazolate framework-67/reduced grapheme oxide-based colorimetric biosensor for sensitive detection of hydrogen peroxide. J Colloid Interface Sci 2022; 608:3069-3078. [PMID: 34802765 DOI: 10.1016/j.jcis.2021.11.034] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 11/04/2021] [Accepted: 11/08/2021] [Indexed: 11/24/2022]
Abstract
Colorimetric biosensors, based on enzyme-like nanomaterials, have come into the spotlight in virtue of their visual detection. Herein, a daisy-like zeolitic imidazolate framework-67/reduced grapheme oxide (ZIF-67/rGO) nanozyme with unique 3D hierarchical structures has been designed to realize visual detection of hydrogen peroxide (H2O2) that is recognized as a strong oxidizing agent or reactive oxygen species associated with oxidative stress in biological systems. The daisy-like ZIF-67/rGO is prepared by a facile one-step liquid-phase method conducted under room temperature. The successful introduction of rGO endows the daisy-like ZIF-67/rGO nanozyme with abundant porous structure, high specific surface area, and good charge transfer capability, which significantly accelerates the adsorbability and recognition towards the substrates and the oxidation rate of TMB-H2O2 reaction, and thus improving the nanozyme activity observably. It is conductive to nanozyme-modulated H2O2 determination. The established colorimetric biosensor platform based on ZIF-67/rGO nanozyme exhibits remarkable sensitivity and high specificity for the application in visual detection of H2O2. The detection limit of ZIF-67/rGO-based biosensor platform is as low as 3.81 μM, which is nearly 8 times lower than that of ZIF-67-based biosensor platform. Moreover, its potential applicability as an ideal platform for colorimetric biosensors is demonstrated by testing the concentration of H2O2 in milk samples, which sheds light on the promising application of the proposed biosensing system in point-of-care detection.
Collapse
Affiliation(s)
- Dongxiao Lu
- Nanophotonics and Biophotonics Key Laboratory of Jilin Province, Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun 130022, China
| | - Jinhua Li
- Nanophotonics and Biophotonics Key Laboratory of Jilin Province, Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun 130022, China.
| | - Zhe Wu
- Nanophotonics and Biophotonics Key Laboratory of Jilin Province, Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun 130022, China
| | - Lin Yuan
- Nanophotonics and Biophotonics Key Laboratory of Jilin Province, Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun 130022, China
| | - Wenhui Fang
- Nanophotonics and Biophotonics Key Laboratory of Jilin Province, Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun 130022, China
| | - Peng Zou
- Nanophotonics and Biophotonics Key Laboratory of Jilin Province, Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun 130022, China
| | - Li Ma
- Department of Physics and Astronomy, Georgia Southern University, Statesboro, GA 30460, USA
| | - Xiaojun Wang
- Department of Physics and Astronomy, Georgia Southern University, Statesboro, GA 30460, USA.
| |
Collapse
|
45
|
Lee J, Liao H, Wang Q, Han J, Han J, Shin HE, Ge M, Park W, Li F. Exploration of nanozymes in viral diagnosis and therapy. EXPLORATION (BEIJING, CHINA) 2022; 2:20210086. [PMID: 37324577 PMCID: PMC10191057 DOI: 10.1002/exp.20210086] [Citation(s) in RCA: 65] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 12/21/2021] [Indexed: 06/15/2023]
Abstract
Nanozymes are nanomaterials with similar catalytic activities to natural enzymes. Compared with natural enzymes, they have numerous advantages, including higher physiochemical stability, versatility, and suitability for mass production. In the past decade, the synthesis of nanozymes and their catalytic mechanisms have advanced beyond the simple replacement of natural enzymes, allowing for fascinating applications in various fields such as biosensing and disease treatment. In particular, the exploration of nanozymes as powerful toolkits in diagnostic viral testing and antiviral therapy has attracted growing attention. It can address the great challenges faced by current natural enzyme-based viral testing technologies, such as high cost and storage difficulties. Therefore, nanozyme can provide a novel nanozyme-based antiviral therapeutic regime with broader availability and generalizability that are keys to fighting a pandemic such as COVID-19. Herein, we provide a timely review of the state-of-the-art nanozymes regarding their catalytic activities, as well as a focused discussion on recent research into the use of nanozymes in viral testing and therapy. The remaining challenges and future perspectives will also be outlined. Ultimately, this review will inform readers of the current knowledge of nanozymes and inspire more innovative studies to push forward the frontier of this field.
Collapse
Affiliation(s)
- Jiyoung Lee
- Institute of PharmaceuticsCollege of Pharmaceutical SciencesZhejiang UniversityHangzhouZhejiangP. R. China
| | - Hongwei Liao
- Institute of PharmaceuticsCollege of Pharmaceutical SciencesZhejiang UniversityHangzhouZhejiangP. R. China
| | - Qiyue Wang
- Institute of PharmaceuticsCollege of Pharmaceutical SciencesZhejiang UniversityHangzhouZhejiangP. R. China
| | - Jieun Han
- Department of Biomedical‐Chemical Engineering and BiotechnologyThe Catholic University of KoreaBucheonGyeonggiRepublic of Korea
- Department of BiotechnologyThe Catholic University of KoreaBucheonGyeonggiRepublic of Korea
| | - Jun‐Hyeok Han
- Department of Biomedical‐Chemical Engineering and BiotechnologyThe Catholic University of KoreaBucheonGyeonggiRepublic of Korea
- Department of BiotechnologyThe Catholic University of KoreaBucheonGyeonggiRepublic of Korea
- Department of Biological ScienceKorea UniversitySeoulRepublic of Korea
| | - Ha Eun Shin
- Department of Biomedical‐Chemical Engineering and BiotechnologyThe Catholic University of KoreaBucheonGyeonggiRepublic of Korea
- Department of BiotechnologyThe Catholic University of KoreaBucheonGyeonggiRepublic of Korea
| | - Minghua Ge
- Zhejiang Provincial People's Hospital HangzhouHangzhouP. R. China
| | - Wooram Park
- Department of Biomedical‐Chemical Engineering and BiotechnologyThe Catholic University of KoreaBucheonGyeonggiRepublic of Korea
- Department of BiotechnologyThe Catholic University of KoreaBucheonGyeonggiRepublic of Korea
| | - Fangyuan Li
- Institute of PharmaceuticsCollege of Pharmaceutical SciencesZhejiang UniversityHangzhouZhejiangP. R. China
- Hangzhou Institute of Innovative MedicineCollege of Pharmaceutical SciencesZhejiang UniversityHangzhouP. R. China
| |
Collapse
|
46
|
Ultrasensitive Pd nano catalyst as peroxidase mimetics for colorimetric sensing and evaluation of antioxidants and total polyphenols in beverages and fruit juices. Talanta 2022; 238:123000. [PMID: 34857333 DOI: 10.1016/j.talanta.2021.123000] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/23/2021] [Accepted: 10/25/2021] [Indexed: 12/25/2022]
Abstract
Herein, we developed a new Pd NP from the aq extract of Elsholtzia blanda Benth. flower that showed efficient peroxidase mimetic activity. The catalytic mechanism was confirmed through colorimetric analysis. The optimizations of temperature, concentration, PH and time were done to find out the best procedure to implement the intrinsic catalytic activity in practical applications. Michaelis-Menten constants were evaluated for both TMB and H2O2 substrate to investigate the affinity of Pd NP towards them. Km was observed to be 42.35 mM for H2O2 and 0.0076 mM for TMB. Antioxidants were sensed using the peroxidase mimetic property up to nanomolar levels with a LOD = 0.78 nM for Gallic acid 0.85 nM for Tannic acid. The method was further implemented in comparing the radical scavenging power of different phenolic compounds. Smart-phone based analysis was done for observing the change in colour which could further be utilized as an analytical tool for study the antioxidant activity. R-Square values of 0.97 and 0.96 for detection of gallic acid and tannic acid respectively suggest good linearity of the plot. Lastly, the system was utilized in the evaluation of total antioxidant capacity (TAC) and total phenolic content (TPC) in commercially available juices and beverages.
Collapse
|
47
|
Liu Y, Yan J, Huang Y, Sun Z, Zhang H, Fu L, Li X, Jin Y. Single-Atom Fe-Anchored Nano-Diamond With Enhanced Dual-Enzyme Mimicking Performance for H 2O 2 and Glutathione Detection. Front Bioeng Biotechnol 2022; 9:790849. [PMID: 35047488 PMCID: PMC8762219 DOI: 10.3389/fbioe.2021.790849] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 12/03/2021] [Indexed: 01/26/2023] Open
Abstract
Glutathione (GSH) is an important antioxidant and free radical scavenger that converts harmful toxins into harmless substances and excretes them out of the body. In the present study, we successfully prepared single-atom iron oxide-nanoparticle (Fe-NP)-modified nanodiamonds (NDs) named Fe-NDs via a one-pot in situ reduction method. This nanozyme functionally mimics two major enzymes, namely, peroxidase and oxidase. Accordingly, a colorimetric sensing platform was designed to detect hydrogen peroxide (H2O2) and GSH. Owing to their peroxidase-like activity, Fe-NDs can oxidize colorless 3,3',5,5'-tetramethylbenzidine (TMB) into blue with sufficient linearity at H2O2 concentrations of 1-60 μM and with a detection limit of 0.3 μM. Furthermore, using different concentrations of GSH, oxidized TMB can be reduced to TMB, and the color change from blue to nearly colorless can be observed by the naked eye (linear range, 1-25 μM; detection limit, 0.072 μM). The established colorimetric method based on oxidase-like activity can be successfully used to detect reduced GSH in tablets and injections with good selectivity and high sensitivity. The results of this study exhibited reliable consistency with the detection results obtained using high-performance liquid chromatography (HPLC). Therefore, the Fe-NDs colorimetric sensor designed in this study offers adequate accuracy and sensitivity.
Collapse
Affiliation(s)
- Ying Liu
- College of Chemistry, Jilin University, Changchun, China
| | - Jianghong Yan
- First Clinical Hospital, Jilin Province Academy of Traditional Chinese Medicine, Changchun, China
| | - Yu Huang
- College of Chemistry, Jilin University, Changchun, China
| | - Zhiheng Sun
- College of Chemistry, Jilin University, Changchun, China
| | - Huijing Zhang
- College of Chemistry, Jilin University, Changchun, China
| | - Lihaoyuan Fu
- College of Chemistry, Jilin University, Changchun, China
| | - Xuwen Li
- College of Chemistry, Jilin University, Changchun, China
| | - Yongri Jin
- College of Chemistry, Jilin University, Changchun, China
| |
Collapse
|
48
|
He X, Luo Q, Li Y, Guo Z, Liu Z. Construction of DNA ligase-mimicking nanozymes via molecular imprinting. J Mater Chem B 2022; 10:6716-6723. [DOI: 10.1039/d1tb02325j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Enzyme mimics are of significant importance due to their facile preparation, low cost and stability to rigorous environment. Molecularly imprinted polymers (MIPs) have been important synthetic mimics of enzymes. However,...
Collapse
|
49
|
Li J, Li Y. Facile Synthesis of Pd-Ir Nanocubes for Biosensing. Front Chem 2021; 9:775220. [PMID: 34900937 PMCID: PMC8651546 DOI: 10.3389/fchem.2021.775220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 10/28/2021] [Indexed: 11/23/2022] Open
Abstract
Displaying extremely high peroxidase-like activity and uniform cubic structure enclosed by (100) facets, Pd-Ir nanocubes are an attractive nanomaterial for bioanalysis. However, there exists a great challenge to deposit atomic layers of Ir on the surface of Pd nanocubes due to the relatively low energy barrier of homogeneous nucleation of Ir atoms compared to heterogeneous nucleation. Here, a simple and surfactant-free approach is presented to synthesize Pd-Ir nanocubes with atomic Ir shell thickness in an aqueous solution at room temperature. Biomolecules such as antibodies and nucleic acids have free access to the surface of Pd-Ir nanocubes. Applications of Pd-Ir nanocubes in immunoassays and aptamer-based biosensors are realized, exploiting the excellent peroxidase activity and fluorescence quenching ability of Pd-Ir nanocubes. This work makes a significant step forward towards the practical utility of Pd-Ir nanocubes in bioanalysis.
Collapse
Affiliation(s)
- Jiuxing Li
- Department of Biochemistry and Biomedical Sciences, Michael G. DeGroote Institute of Infectious Disease Research (IIDR), McMaster University, Hamilton, ON, Canada
| | - Yingfu Li
- Department of Biochemistry and Biomedical Sciences, Michael G. DeGroote Institute of Infectious Disease Research (IIDR), McMaster University, Hamilton, ON, Canada
| |
Collapse
|
50
|
Wang X, Wang H, Zhou S. Progress and Perspective on Carbon-Based Nanozymes for Peroxidase-like Applications. J Phys Chem Lett 2021; 12:11751-11760. [PMID: 34854687 DOI: 10.1021/acs.jpclett.1c03219] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Tumor microenvironment-responsive chemodynamic therapy (CDT), an approach based on Fenton/Fenton-like reaction to convert hydrogen peroxide (H2O2) into the highly cytotoxic hydroxyl radical (·OH) in situ to kill cancer cells, represents an important direction for cancer therapy. Different types of nanozymes (nanomaterial-based catalysts that can mimic the activities of natural enzymes) have been developed to mimic peroxidase. This Perspective highlights the latest research progress regarding low-cost and biocompatible carbon-based nanozymes for peroxidase mimics. The effects of structure and surface properties of carbon-based nanozymes on their electronic transfer and peroxidase-like activity are analyzed, including nanospheres, nanotubes, nanosheets, and graphene quantum dots (GQDs) with or without surface functionalization and heteroatom doping. We expand our newly developed carbon nitride (g-C3N4) QD systems to nanozyme application, which are highly efficient in converting the intracellular H2O2 to ·OH species to kill 4T1 cancer cells and demonstrate a great potential for CDT.
Collapse
Affiliation(s)
- Xingyu Wang
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, Anhui, P.R. China
- University of Science and Technology of China, Hefei, 230026, Anhui, P.R. China
| | - Hui Wang
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, Anhui, P.R. China
- University of Science and Technology of China, Hefei, 230026, Anhui, P.R. China
- The Anhui Key Laboratory of Condensed Matter Physics at Extreme Conditions, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, Anhui, P.R. China
| | - Shuiqin Zhou
- Department of Chemistry of The College of Staten Island and the Ph.D. Program of Chemistry of The Graduate Center, The City University of New York, Staten Island, New York 10314, United States
| |
Collapse
|