1
|
Song X, Zhao Q, Dang M, Hou X, Liu S, Ma Z, Ren Y. Quenching and enhancement mechanisms of a novel Cd-based coordination polymer as a multiresponsive fluorescent sensor for nitrobenzene and aniline. Anal Chim Acta 2024; 1316:342865. [PMID: 38969412 DOI: 10.1016/j.aca.2024.342865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 06/10/2024] [Indexed: 07/07/2024]
Abstract
BACKGROUND Nitroaromatic compounds are inherently hazardous and explosive, so convenient and rapid detection strategies are needed for the sake of human health and the environment. There is an urgent demand for chemical sensing materials that offer high sensitivity, operational simplicity, and recognizability to effectively monitor nitroaromatic residues in industrial wastewater. Despite its importance, the mechanisms underlying fluorescence quenching or enhancement in fluorescent sensing materials have not been extensively researched. The design and synthesis of multiresponsive fluorescent sensing materials have been a great challenge until now. RESULTS In this study, a one-dimensional Cd-based fluorescent porous coordination polymer (Cd-CIP-1) was synthesized using 5-(4-cyanobenzyl)isophthalic acid (5-H2CIP) and 4,4'-bis(1-imidazolyl)biphenyl (4,4'-bimp) and used for the selective detection of nitrobenzene in aqueous solution by fluorescence quenching, with a limit of detection of 1.38 × 10-8 mol L-1. The presence of aniline in the Cd-CIP-1 solution leads to the enhancement of fluorescence property. Density functional theory and time-dependent density functional theory calculations were carried out to elucidate the mechanisms of the fluorescence changes. This study revealed that the specific pore size of Cd-CIP-1 facilitates analyte screening and enhances host-guest electron coupling. Furthermore, π-π interactions and hydrogen bond between Cd-CIP-1 and the analytes result in intermolecular orbital overlap and thereby boosting electron transfer efficiency. The different electron flow directions in NB@Cd-CIP-1 and ANI@Cd-CIP-1 lead to fluorescence quenching and enhancement. SIGNIFICANCE AND NOVELTY The multiresponsive coordination polymer (Cd-CIP-1) can selectively detect nitrobenzene and recognize aniline in aqueous solutions. The mechanism of fluorescence quenching and enhancement has been thoroughly elucidated through a combination of density functional theory and experimental approaches. This study presents a promising strategy for the practical implementation of a multiresponsive fluorescent chemical sensor.
Collapse
Affiliation(s)
- Xiaoming Song
- Shaanxi Key Laboratory of Chemical Reaction Engineering, Laboratory of New Energy and New Function Materials, College of Chemistry and Chemical Engineering, Yan'an University, Yan'an, Shaanxi, 716000, China
| | - Qingxia Zhao
- Shaanxi Key Laboratory of Chemical Reaction Engineering, Laboratory of New Energy and New Function Materials, College of Chemistry and Chemical Engineering, Yan'an University, Yan'an, Shaanxi, 716000, China
| | - Mingxuan Dang
- Shaanxi Key Laboratory of Chemical Reaction Engineering, Laboratory of New Energy and New Function Materials, College of Chemistry and Chemical Engineering, Yan'an University, Yan'an, Shaanxi, 716000, China
| | - Xiufang Hou
- Shaanxi Key Laboratory of Chemical Reaction Engineering, Laboratory of New Energy and New Function Materials, College of Chemistry and Chemical Engineering, Yan'an University, Yan'an, Shaanxi, 716000, China.
| | - Shuai Liu
- Shaanxi Key Laboratory of Chemical Reaction Engineering, Laboratory of New Energy and New Function Materials, College of Chemistry and Chemical Engineering, Yan'an University, Yan'an, Shaanxi, 716000, China
| | - Zhihu Ma
- Shaanxi Key Laboratory of Chemical Reaction Engineering, Laboratory of New Energy and New Function Materials, College of Chemistry and Chemical Engineering, Yan'an University, Yan'an, Shaanxi, 716000, China
| | - Yixia Ren
- Shaanxi Key Laboratory of Chemical Reaction Engineering, Laboratory of New Energy and New Function Materials, College of Chemistry and Chemical Engineering, Yan'an University, Yan'an, Shaanxi, 716000, China.
| |
Collapse
|
2
|
O WY, Cui JF, Yu Q, Kung KKY, Chung SF, Leung YC, Wong MK. Isoindolium-Based Allenes: Reactivity Studies and Applications in Fluorescence Temperature Sensing and Cysteine Bioconjugation. Angew Chem Int Ed Engl 2023; 62:e202218038. [PMID: 36670048 DOI: 10.1002/anie.202218038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/19/2023] [Accepted: 01/20/2023] [Indexed: 01/22/2023]
Abstract
The reaction of a series of electron-deficient isoindolium-based allenes with sulfhydryl compounds has been studied, leading to the formation of isoindolium-based vinyl sulfides. The vinyl sulfides generated could be readily converted into the corresponding indanones and amines upon heating at 30-70 °C with good yields up to 61 %. The thermal cleavage reaction of vinyl sulfides was further studied for developing temperature-sensitive systems. Notably, a novel FRET-based fluorescent temperature sensor was designed and synthesized for temperature sensing at 50 °C, giving a 6.5-fold blue fluorescence enhancement. Moreover, chemoselective bioconjugation of cysteine-containing peptides with the isoindolium-based allenes for the construction of multifunctional peptide bioconjugates was investigated. Thermal cleavage of isoindoliums on the modified peptides at 35-70 °C gave indanone bioconjugates with up to >99 % conversion. These results indicated the biocompatibility of this novel temperature-sensitive reaction.
Collapse
Affiliation(s)
- Wa-Yi O
- State Key Laboratory of Chemical Biology and Drug Discovery, Research Institute for Future Food, Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China.,The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, 518057, China
| | - Jian-Fang Cui
- Department of Chemistry, Southern University of Science and Technology, 1088 Xueyuan Blvd., Shenzhen, 518055, China
| | - Qiong Yu
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, 518057, China
| | - Karen Ka-Yan Kung
- State Key Laboratory of Chemical Biology and Drug Discovery, Research Institute for Future Food, Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China.,The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, 518057, China
| | - Sai-Fung Chung
- Henry Cheng Research Laboratory for Drug Development, Lo Ka Chung Centre for Natural Anti-Cancer Drug Development, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
| | - Yun-Chung Leung
- Henry Cheng Research Laboratory for Drug Development, Lo Ka Chung Centre for Natural Anti-Cancer Drug Development, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
| | - Man-Kin Wong
- State Key Laboratory of Chemical Biology and Drug Discovery, Research Institute for Future Food, Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China.,The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, 518057, China
| |
Collapse
|
3
|
Kung KKY, Xu CF, O WY, Yu Q, Chung SF, Tam SY, Leung YC, Wong MK. Functionalized quinolizinium-based fluorescent reagents for modification of cysteine-containing peptides and proteins. RSC Adv 2022; 12:6248-6254. [PMID: 35424586 PMCID: PMC8981741 DOI: 10.1039/d1ra08329e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 01/21/2022] [Indexed: 11/26/2022] Open
Abstract
A series of quinolizinium-based fluorescent reagents were prepared by visible light-mediated gold-catalyzed cis-difunctionalization between quinolinium diazonium salts and electron-deficient alkyne-linked phenylethynyl trimethylsilanes. The electron-deficient alkynyl group of the quinolizinium-based fluorescent reagents underwent nucleophilic addition reaction with the sulfhydryl group on cysteine-containing peptides and proteins. The quinolizinium-based fluorescent reagents were found to function as highly selective reagents for the modification of cysteine-containing peptides and proteins with good to excellent conversions (up to 99%). Moreover, the modified BCArg mutants bearing cationic quinolizinium compounds 1b, 1d, 1e and 1h exhibit comparable activity in enzymatic and cytotoxicity assays to the unmodified one.
Collapse
Affiliation(s)
- Karen Ka-Yan Kung
- The Hong Kong Polytechnic University Shenzhen Research Institute Shenzhen 518057 China
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University Hung Hom Hong Kong China
| | - Cai-Fung Xu
- The Hong Kong Polytechnic University Shenzhen Research Institute Shenzhen 518057 China
| | - Wa-Yi O
- The Hong Kong Polytechnic University Shenzhen Research Institute Shenzhen 518057 China
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University Hung Hom Hong Kong China
| | - Qiong Yu
- The Hong Kong Polytechnic University Shenzhen Research Institute Shenzhen 518057 China
| | - Sai-Fung Chung
- Henry Cheng Research Laboratory for Drug Development, Lo Ka Chung Centre for Natural Anti-Cancer Drug Development, The Hong Kong Polytechnic University Hung Hom Hong Kong China
| | - Suet-Ying Tam
- Henry Cheng Research Laboratory for Drug Development, Lo Ka Chung Centre for Natural Anti-Cancer Drug Development, The Hong Kong Polytechnic University Hung Hom Hong Kong China
| | - Yun-Chung Leung
- Henry Cheng Research Laboratory for Drug Development, Lo Ka Chung Centre for Natural Anti-Cancer Drug Development, The Hong Kong Polytechnic University Hung Hom Hong Kong China
| | - Man-Kin Wong
- The Hong Kong Polytechnic University Shenzhen Research Institute Shenzhen 518057 China
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University Hung Hom Hong Kong China
| |
Collapse
|
4
|
A Facile Probe for Fluorescence Turn-on and Simultaneous Naked-Eyes Discrimination of H 2S and biothiols (Cys and GSH) and Its Application. J Fluoresc 2021; 32:175-188. [PMID: 34687397 DOI: 10.1007/s10895-021-02838-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 10/18/2021] [Indexed: 10/20/2022]
Abstract
Hydrogen sulfide and biothiol molecules such as Cys and GSH acted important roles in many physiological processes. To simultaneously detect and distinguish them was quite necessary by a suitable fluorescent probe. A novel chemosensor 4-(4-(benzo[d]thiazol-2-yl)-2-methoxyphenoxy)-7-nitrobenzo[c][1,2,5]oxadiazole (BMNO) was designed to detect H2S/Cys/GSH using the combination of nitrobenzofurazan (NBD) and benzothiazole fluorophores linked by a facile ether bond. The probe BMNO was developed for simultaneous identification of H2S, Cys and GSH. Noticeably, the color changes (from colorless to light purple, light orange and light yellow) of probe BMNO solutions for sensing H2S, Cys and GSH could be observed by naked eyes, respectively. The probe BMNO exhibited high selectivity and sensitivity for H2S, Cys and GSH showing distinct optical signal with detection limit as low as 0.15 μM, 0.03 μM and 0.14 μM, respectively. The sensing mechanism was clarified by spectrum analysis and some controlled experiments. In addition, these outstanding properties of probe BMNO enabled its practical applications in detection H2S in beer, and in cell imaging for Cys and GSH as well.
Collapse
|
5
|
Çifteci A, Çelik SE, Apak R. Gold–Nanoparticle Based Turn–on Fluorometric Sensor for Quantification of Sulfhydryl and Disulfide Forms of Biothiols: Measurement of Thiol/Disulfide Homeostasis. ANAL LETT 2021. [DOI: 10.1080/00032719.2021.1958830] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Asuman Çifteci
- Department of Chemistry, Faculty of Engineering, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Saliha Esin Çelik
- Department of Chemistry, Faculty of Engineering, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Reşat Apak
- Department of Chemistry, Faculty of Engineering, Istanbul University-Cerrahpasa, Istanbul, Turkey
- Turkish Academy of Sciences (TUBA), Cankaya, Ankara, Turkey
| |
Collapse
|
6
|
Worch JC, Stubbs CJ, Price MJ, Dove AP. Click Nucleophilic Conjugate Additions to Activated Alkynes: Exploring Thiol-yne, Amino-yne, and Hydroxyl-yne Reactions from (Bio)Organic to Polymer Chemistry. Chem Rev 2021; 121:6744-6776. [PMID: 33764739 PMCID: PMC8227514 DOI: 10.1021/acs.chemrev.0c01076] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Indexed: 12/22/2022]
Abstract
The 1,4-conjugate addition reaction between activated alkynes or acetylenic Michael acceptors and nucleophiles (i.e., the nucleophilic Michael reaction) is a historically useful organic transformation. Despite its general utility, the efficiency and outcomes can vary widely and are often closely dependent upon specific reaction conditions. Nevertheless, with improvements in reaction design, including catalyst development and an expansion of the substrate scope to feature more electrophilic alkynes, many examples now present with features that are congruent with Click chemistry. Although several nucleophilic species can participate in these conjugate additions, ubiquitous nucleophiles such as thiols, amines, and alcohols are commonly employed and, consequently, among the most well developed. For many years, these conjugate additions were largely relegated to organic chemistry, but in the last few decades their use has expanded into other spheres such as bioorganic chemistry and polymer chemistry. Within these fields, they have been particularly useful for bioconjugation reactions and step-growth polymerizations, respectively, due to their excellent efficiency, orthogonality, and ambient reactivity. The reaction is expected to feature in increasingly divergent application settings as it continues to emerge as a Click reaction.
Collapse
Affiliation(s)
- Joshua C. Worch
- School
of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K.
| | - Connor J. Stubbs
- School
of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K.
| | - Matthew J. Price
- School
of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K.
| | - Andrew P. Dove
- School
of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K.
| |
Collapse
|
7
|
Wang S, Huang Y, Guan X. Fluorescent Probes for Live Cell Thiol Detection. Molecules 2021; 26:3575. [PMID: 34208153 PMCID: PMC8230801 DOI: 10.3390/molecules26123575] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/24/2021] [Accepted: 05/26/2021] [Indexed: 11/24/2022] Open
Abstract
Thiols play vital and irreplaceable roles in the biological system. Abnormality of thiol levels has been linked with various diseases and biological disorders. Thiols are known to distribute unevenly and change dynamically in the biological system. Methods that can determine thiols' concentration and distribution in live cells are in high demand. In the last two decades, fluorescent probes have emerged as a powerful tool for achieving that goal for the simplicity, high sensitivity, and capability of visualizing the analytes in live cells in a non-invasive way. They also enable the determination of intracellular distribution and dynamitic movement of thiols in the intact native environments. This review focuses on some of the major strategies/mechanisms being used for detecting GSH, Cys/Hcy, and other thiols in live cells via fluorescent probes, and how they are applied at the cellular and subcellular levels. The sensing mechanisms (for GSH and Cys/Hcy) and bio-applications of the probes are illustrated followed by a summary of probes for selectively detecting cellular and subcellular thiols.
Collapse
Affiliation(s)
| | | | - Xiangming Guan
- Department of Pharmaceutical Sciences, College of Pharmacy and Allied Health Professions, South Dakota State University, Box 2202C, Brookings, SD 57007, USA; (S.W.); (Y.H.)
| |
Collapse
|
8
|
Liu Y, Wu YX, Zhang D, Zhong H, Li D, He K, Wei WT, Yu S. Rational design of in situ localization solid-state fluorescence probe for bio-imaging of intracellular endogenous cysteine. Talanta 2020; 220:121364. [DOI: 10.1016/j.talanta.2020.121364] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 06/12/2020] [Accepted: 06/15/2020] [Indexed: 12/28/2022]
|
9
|
Duan Z, Zhu Y, Yang Y, He Z, Liu J, Li P, Wang H, Tang B. Fluorescent Imaging for Cysteine Detection In Vivo with High Selectivity. ChemistryOpen 2019; 8:316-320. [PMID: 30886789 PMCID: PMC6401529 DOI: 10.1002/open.201900045] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 02/13/2019] [Indexed: 01/30/2023] Open
Abstract
As an essential amino acid, cysteine is involved in various biosynthetic and metabolic processes, such as protein synthesis, hormone synthesis, and redox homeostatic maintenance. Inordinate cysteine levels are often associated with serious diseases. Thus, designing and synthesizing a novel fluorescent probe for determining the concentration of cellular cysteine, which could indirectly monitor the prevalence of these diseases, is essential. We developed a florescence probe P-Cy with good sensitivity for cysteine detection in vivo. P-Cy only exhibited good response toward cysteine but did not show response toward other biothiols, such as homocysteine (Hcy) and glutathione (GSH). In this study, we used P-Cy by successfully imaging cellular endogenous and exogenous cysteine levels. Furthermore, P-Cy was also performed in mice to detect cysteine level, indicating that P-Cy is a powerful tool for cysteine detection in situ.
Collapse
Affiliation(s)
- Zhuwen Duan
- College of Chemistry, Chemical Engineering and Materials Science, Institute of Biomedical Sciences, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of EducationShandong normal UniversityJinan250014PR China
| | - Youming Zhu
- College of Chemistry, Chemical Engineering and Materials Science, Institute of Biomedical Sciences, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of EducationShandong normal UniversityJinan250014PR China
| | - Yuyun Yang
- College of Chemistry, Chemical Engineering and Materials Science, Institute of Biomedical Sciences, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of EducationShandong normal UniversityJinan250014PR China
| | - Zixu He
- College of Chemistry, Chemical Engineering and Materials Science, Institute of Biomedical Sciences, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of EducationShandong normal UniversityJinan250014PR China
| | - Ju Liu
- College of Chemistry, Chemical Engineering and Materials Science, Institute of Biomedical Sciences, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of EducationShandong normal UniversityJinan250014PR China
- Medical Research Center, Shandong Provincial Qianfoshan HospitalShandong UniversityJinan250014PR China
| | - Ping Li
- College of Chemistry, Chemical Engineering and Materials Science, Institute of Biomedical Sciences, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of EducationShandong normal UniversityJinan250014PR China
| | - Hui Wang
- College of Chemistry, Chemical Engineering and Materials Science, Institute of Biomedical Sciences, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of EducationShandong normal UniversityJinan250014PR China
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Institute of Biomedical Sciences, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of EducationShandong normal UniversityJinan250014PR China
| |
Collapse
|
10
|
Liu L, Zhang Q, Wang J, Zhao L, Liu L, Lu Y. A specific fluorescent probe for fast detection and cellular imaging of cysteine based on a water-soluble conjugated polymer combined with copper(II). Talanta 2019; 198:128-136. [PMID: 30876540 DOI: 10.1016/j.talanta.2019.02.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 01/19/2019] [Accepted: 02/01/2019] [Indexed: 11/19/2022]
Abstract
In pure water system, the specific and rapid detection of cysteine (Cys) is very important and challenging. Herein, a new optical probe was developed for the purpose based on the complex of cupric ion (Cu2+) with a water-soluble conjugated polymer, poly[3-(3-N,N-diacetateaminopropoxy)-4-methyl thiophene disodium salts] (PTCO2). The fluorescence of PTCO2 in 100% aqueous solution can almost completely extinguished by Cu2+ ions due to its intrinsic paramagnetic properties. Among various amino acids, only Cys causes immediately the efficient recovery of the Cu2+-quenched fluorescence of PTCO2 with ~31-folds fluorescence enhancement because of the stronger affinity of Cys to Cu2+ leading to the formation of Cu2+-Cys complex through Cu-S bond and separation of Cu2+ from weak-fluorescent PTCO2-Cu(II) ensemble and thereby restoring the free PTCO2 fluorescence. In tris-HCl buffer solution (2 mM, pH 7.4), the intensity of the restored fluorescence is linear with the concentration of Cys, ranging from 0 to 120 μM and the estimated detection limit of Cys is 3.3 × 10-7 M with the correlation coefficient R = 0.9981. In addition, the PTCO2-Cu(II) ensemble probe exhibits low cytotoxicity and good membrane penetration, and its application in living cell imaging of Cys has also been explored.
Collapse
Affiliation(s)
- Lihua Liu
- School of Materials Science & Engineering, Tianjin Key Laboratory for Photoelectric Materials and Devices, Key Laboratory of Display Materials & Photoelectric Devices, Ministry of Education, Tianjin University of Technology, Tianjin 300384, China
| | - Qiang Zhang
- School of Materials Science & Engineering, Tianjin Key Laboratory for Photoelectric Materials and Devices, Key Laboratory of Display Materials & Photoelectric Devices, Ministry of Education, Tianjin University of Technology, Tianjin 300384, China
| | - Jing Wang
- School of Materials Science & Engineering, Tianjin Key Laboratory for Photoelectric Materials and Devices, Key Laboratory of Display Materials & Photoelectric Devices, Ministry of Education, Tianjin University of Technology, Tianjin 300384, China
| | - Linlin Zhao
- School of Materials Science & Engineering, Tianjin Key Laboratory for Photoelectric Materials and Devices, Key Laboratory of Display Materials & Photoelectric Devices, Ministry of Education, Tianjin University of Technology, Tianjin 300384, China
| | - Lixia Liu
- School of Materials Science & Engineering, Tianjin Key Laboratory for Photoelectric Materials and Devices, Key Laboratory of Display Materials & Photoelectric Devices, Ministry of Education, Tianjin University of Technology, Tianjin 300384, China
| | - Yan Lu
- School of Materials Science & Engineering, Tianjin Key Laboratory for Photoelectric Materials and Devices, Key Laboratory of Display Materials & Photoelectric Devices, Ministry of Education, Tianjin University of Technology, Tianjin 300384, China.
| |
Collapse
|
11
|
Karakuş E, Sayar M, Dartar S, Kaya BU, Emrullahoğlu M. Fluorescein propiolate: a propiolate-decorated fluorescent probe with remarkable selectivity towards cysteine. Chem Commun (Camb) 2019; 55:4937-4940. [DOI: 10.1039/c9cc01774g] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A fluorescent probe decorated with an alkynyl ester unit (e.g. propiolate) displayed a selective turn-on type fluorescent response towards cysteine.
Collapse
Affiliation(s)
- Erman Karakuş
- Department of Chemistry
- Faculty of Science
- Izmir Institute of Technology (IZTECH)
- Izmir
- Turkey
| | - Melike Sayar
- Department of Chemistry
- Faculty of Science
- Izmir Institute of Technology (IZTECH)
- Izmir
- Turkey
| | - Suay Dartar
- Department of Chemistry
- Faculty of Science
- Izmir Institute of Technology (IZTECH)
- Izmir
- Turkey
| | - Beraat Umur Kaya
- Department of Chemistry
- Faculty of Science
- Izmir Institute of Technology (IZTECH)
- Izmir
- Turkey
| | - Mustafa Emrullahoğlu
- Department of Chemistry
- Faculty of Science
- Izmir Institute of Technology (IZTECH)
- Izmir
- Turkey
| |
Collapse
|
12
|
Wang C, Wang Y, Wang G, Chen S, Huang C. Two-isophorone fluorophore-based design of a ratiometric fluorescent probe and its application in the sensing of biothiols. J Mater Chem B 2019; 7:5633-5639. [DOI: 10.1039/c9tb01671f] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A newly designed ratiometric fluorescent probe is applied in the sensing of biothiols.
Collapse
Affiliation(s)
- Chengcheng Wang
- The Education Ministry Key Laboratory of Resource Chemistry
- Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors
- Department of Chemistry
- Shanghai Normal University
- Shanghai 200234
| | - Yang Wang
- The Education Ministry Key Laboratory of Resource Chemistry
- Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors
- Department of Chemistry
- Shanghai Normal University
- Shanghai 200234
| | - Guanyang Wang
- The Education Ministry Key Laboratory of Resource Chemistry
- Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors
- Department of Chemistry
- Shanghai Normal University
- Shanghai 200234
| | - Shangjun Chen
- The Education Ministry Key Laboratory of Resource Chemistry
- Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors
- Department of Chemistry
- Shanghai Normal University
- Shanghai 200234
| | - Chusen Huang
- The Education Ministry Key Laboratory of Resource Chemistry
- Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors
- Department of Chemistry
- Shanghai Normal University
- Shanghai 200234
| |
Collapse
|
13
|
Ravasco JMJM, Faustino H, Trindade A, Gois PMP. Bioconjugation with Maleimides: A Useful Tool for Chemical Biology. Chemistry 2018; 25:43-59. [PMID: 30095185 DOI: 10.1002/chem.201803174] [Citation(s) in RCA: 301] [Impact Index Per Article: 50.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Indexed: 02/06/2023]
Abstract
Maleimide chemistry stands out in the bioconjugation toolbox by virtue of its synthetic accessibility, excellent reactivity, and practicability. The second-generation of clinically approved antibody-drug conjugates (ADC) and much of the current ADC pipeline in clinical trials contain the maleimide linkage. However, thiosuccinimide linkages are now known to be less robust than once thought, and ergo, are correlated with suboptimal pharmacodynamics, pharmacokinetics, and safety profiles in some ADC constructs. Rational design of novel generations of maleimides and maleimide-type reagents have been reported to address the shortcomings of classical maleimides, allowing for the formation of robust bioconjugate linkages. This review highlights the main strategies for rational reagent design that have allowed irreversible bioconjugations in cysteines, reversible labelling strategies and disulfide re-bridging.
Collapse
Affiliation(s)
- João M J M Ravasco
- Bioorganic Chemistry Department, Research Institute for Medicines, (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisboa, Portugal
| | - Hélio Faustino
- Bioorganic Chemistry Department, Research Institute for Medicines, (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisboa, Portugal
| | - Alexandre Trindade
- Bioorganic Chemistry Department, Research Institute for Medicines, (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisboa, Portugal.,School of Chemistry, University of Leeds, Leeds, LS2 9JT, UK
| | - Pedro M P Gois
- Bioorganic Chemistry Department, Research Institute for Medicines, (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisboa, Portugal
| |
Collapse
|
14
|
Jang HJ, Ahn HM, Kim MS, Kim C. A highly selective colorimetric chemosensor for sequential detection of Fe 3+ and pyrophosphate in aqueous solution. Tetrahedron 2017. [DOI: 10.1016/j.tet.2017.10.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
15
|
Chevalier A, Renard PY, Romieu A. Azo-Based Fluorogenic Probes for Biosensing and Bioimaging: Recent Advances and Upcoming Challenges. Chem Asian J 2017; 12:2008-2028. [DOI: 10.1002/asia.201700682] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Indexed: 12/26/2022]
Affiliation(s)
- Arnaud Chevalier
- Normandie Université, CNRS, UNIROUEN, INSA Rouen; COBRA (UMR 6014), IRCOF; rue Tesnières 76000 Rouen France
| | - Pierre-Yves Renard
- Normandie Université, CNRS, UNIROUEN, INSA Rouen; COBRA (UMR 6014), IRCOF; rue Tesnières 76000 Rouen France
| | - Anthony Romieu
- ICMUB, UMR 6302, CNRS; University Bourgogne Franche-Comté; 9, Avenue Alain Savary 21078 Dijon cedex France
- Institut Universitaire de France; 103, Boulevard Saint-Michel 75005 Paris France
| |
Collapse
|
16
|
Ruan YF, Zhang N, Zhu YC, Zhao WW, Xu JJ, Chen HY. Photoelectrochemical Bioanalysis Platform of Gold Nanoparticles Equipped Perovskite Bi4NbO8Cl. Anal Chem 2017. [DOI: 10.1021/acs.analchem.6b05153] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Yi-Fan Ruan
- State
Key Laboratory of Analytical Chemistry for Life Science and Collaborative
Innovation Center of Chemistry for Life Science, School of Chemistry
and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Nan Zhang
- State
Key Laboratory of Analytical Chemistry for Life Science and Collaborative
Innovation Center of Chemistry for Life Science, School of Chemistry
and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yuan-Cheng Zhu
- State
Key Laboratory of Analytical Chemistry for Life Science and Collaborative
Innovation Center of Chemistry for Life Science, School of Chemistry
and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Wei-Wei Zhao
- State
Key Laboratory of Analytical Chemistry for Life Science and Collaborative
Innovation Center of Chemistry for Life Science, School of Chemistry
and Chemical Engineering, Nanjing University, Nanjing 210023, China
- Department
of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
| | - Jing-Juan Xu
- State
Key Laboratory of Analytical Chemistry for Life Science and Collaborative
Innovation Center of Chemistry for Life Science, School of Chemistry
and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Hong-Yuan Chen
- State
Key Laboratory of Analytical Chemistry for Life Science and Collaborative
Innovation Center of Chemistry for Life Science, School of Chemistry
and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
17
|
Xu YY, Sun YY, Zhang YJ, Lu CH, Miao JF. Detection of biological thiols based on a colorimetric method. J Zhejiang Univ Sci B 2017; 17:807-812. [PMID: 27704750 DOI: 10.1631/jzus.b1500232] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Biological thiols (biothiols), an important kind of functional biomolecules, such as cysteine (Cys) and glutathione (GSH), play vital roles in maintaining the stability of the intracellular environment. In past decades, studies have demonstrated that metabolic disorder of biothiols is related to many serious disease processes and will lead to extreme damage in human and numerous animals. We carried out a series of experiments to detect biothiols in biosamples, including bovine plasma and cell lysates of seven different cell lines based on a simple colorimetric method. In a typical test, the color of the test solution could gradually change from blue to colorless after the addition of biothiols. Based on the color change displayed, experimental results reveal that the percentage of biothiols in the embryonic fibroblast cell line is significantly higher than those in the other six cell lines, which provides the basis for the following biothiols-related study.
Collapse
Affiliation(s)
- Yuan-Yuan Xu
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Yang-Yang Sun
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Yu-Juan Zhang
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Chen-He Lu
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Jin-Feng Miao
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
18
|
Fu X, Gu D, Zhao S, Zhou N, Zhang H. A Dual-Readout Method for Biothiols Detection Based on the NSET of Nitrogen-Doped Carbon Quantum Dots–Au Nanoparticles System. J Fluoresc 2017; 27:1597-1605. [DOI: 10.1007/s10895-017-2095-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 04/04/2017] [Indexed: 10/19/2022]
|
19
|
Brown TE, Marozas IA, Anseth KS. Amplified Photodegradation of Cell-Laden Hydrogels via an Addition-Fragmentation Chain Transfer Reaction. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2017; 29:10.1002/adma.201605001. [PMID: 28112845 PMCID: PMC5489340 DOI: 10.1002/adma.201605001] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 11/14/2016] [Indexed: 05/17/2023]
Abstract
Hydrogels crosslinked by allyl-sulfide-containing molecules are presented. By exposure to light in the presence of a photoinitiator and a free monofunctional thiol, photodegradation is achieved. Both the gelation and degradation are cytocompatible and allow for cell encapsulation and subsequent release. The photodegradation kinetics and depths attainable are superior to those of traditional cell-laden photodegradable hydrogels.
Collapse
Affiliation(s)
- Tobin E Brown
- Department of Chemical and Biological Engineering and the BioFrontiers Institute, University of Colorado Boulder, Jennie Smoly Caruthers Biotechnology Building, 3415 Colorado Ave, Boulder, CO, 80303, USA
| | - Ian A Marozas
- Department of Chemical and Biological Engineering and the BioFrontiers Institute, University of Colorado Boulder, Jennie Smoly Caruthers Biotechnology Building, 3415 Colorado Ave, Boulder, CO, 80303, USA
| | - Kristi S Anseth
- Department of Chemical and Biological Engineering and the BioFrontiers Institute, University of Colorado Boulder, Jennie Smoly Caruthers Biotechnology Building, 3415 Colorado Ave, Boulder, CO, 80303, USA
- Howard Hughes Medical Institute, University of Colorado Boulder, Jennie Smoly Caruthers Biotechnology Building, 3415 Colorado Ave, Boulder, CO, 80303, USA
| |
Collapse
|
20
|
Liu K, Du G, Zhao M, Ye L, Shen H, Jiang L. A polymer-based probe for specific discrimination of cysteine. Org Biomol Chem 2017; 15:4859-4866. [DOI: 10.1039/c7ob00956a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A kind of polymer-based turn-on fluorescent probe for specific detection of cysteine with high sensitivity has been developed.
Collapse
Affiliation(s)
- Keyuan Liu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
- China
| | - Ganhong Du
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
- China
| | - Mengna Zhao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
- China
| | - Long Ye
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
- China
| | - Huifang Shen
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
- China
| | - Liming Jiang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
- China
| |
Collapse
|
21
|
Guo J, Kuai Z, Zhang Z, Yang Q, Shan Y, Li Y. A simple colorimetric and fluorescent probe with high selectivity towards cysteine over homocysteine and glutathione. RSC Adv 2017. [DOI: 10.1039/c6ra28829d] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A novel turn-on fluorescent sensor AQDA with high selective towards cysteine.
Collapse
Affiliation(s)
- Jing Guo
- College of Chemistry
- Jilin University
- Changchun 130021
- P. R. China
| | - Ziyu Kuai
- National Engineering Laboratory for AIDS Vaccine
- College of Life Sciences
- Jilin University
- Changchun 130021
- P. R. China
| | - Zhixiang Zhang
- Institute of Theoretical Chemistry
- Jilin University
- Changchun 130021
- P. R. China
| | - Qingbiao Yang
- College of Chemistry
- Jilin University
- Changchun 130021
- P. R. China
| | - Yaming Shan
- National Engineering Laboratory for AIDS Vaccine
- College of Life Sciences
- Jilin University
- Changchun 130021
- P. R. China
| | - Yaoxian Li
- College of Chemistry
- Jilin University
- Changchun 130021
- P. R. China
| |
Collapse
|
22
|
Chen X, Wong YK, Wang J, Zhang J, Lee YM, Shen HM, Lin Q, Hua ZC. Target identification with quantitative activity based protein profiling (ABPP). Proteomics 2016; 17. [PMID: 27723264 DOI: 10.1002/pmic.201600212] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 09/14/2016] [Accepted: 10/06/2016] [Indexed: 12/20/2022]
Abstract
As many small bioactive molecules fulfill their functions through interacting with protein targets, the identification of such targets is crucial in understanding their mechanisms of action (MOA) and side effects. With technological advancements in target identification, it has become possible to accurately and comprehensively study the MOA and side effects of small molecules. While small molecules with therapeutic potential were derived solely from nature in the past, the remodeling and synthesis of such molecules have now been made possible. Presently, while some small molecules have seen successful application as drugs, the majority remain undeveloped, requiring further understanding of their MOA and side effects to fully tap into their potential. Given the typical promiscuity of many small molecules and the complexity of the cellular proteome, a high-flux and high-accuracy method is necessary. While affinity chromatography approaches combined with MS have had successes in target identification, limitations associated with nonspecific results remain. To overcome these complications, quantitative chemical proteomics approaches have been developed including metabolic labeling, chemical labeling, and label-free methods. These new approaches are adopted in conjunction with activity-based protein profiling (ABPP), allowing for a rapid process and accurate results. This review will briefly introduce the principles involved in ABPP, then summarize current advances in quantitative chemical proteomics approaches as well as illustrate with examples how ABPP coupled with quantitative chemical proteomics has been used to detect the targets of drugs and other bioactive small molecules including natural products.
Collapse
Affiliation(s)
- Xiao Chen
- The State Key Laboratory of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, P. R., China
| | - Yin Kwan Wong
- Department of Biological Sciences, National University of Singapore, Singapore.,Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Jigang Wang
- The State Key Laboratory of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, P. R., China.,Department of Biological Sciences, National University of Singapore, Singapore.,Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Interdisciplinary Research Group in Infectious Diseases, Singapore-MIT Alliance for Research & Technology (SMART), Singapore
| | - Jianbin Zhang
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Clinical Research Institute, Zhejiang Provincial People's Hospital, Hangzhou, P. R., China
| | - Yew-Mun Lee
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Han-Ming Shen
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore
| | - Qingsong Lin
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Zi-Chun Hua
- The State Key Laboratory of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, P. R., China
| |
Collapse
|
23
|
Babür B, Seferoğlu N, Öcal M, Sonugur G, Akbulut H, Seferoğlu Z. A novel fluorescence turn-on coumarin-pyrazolone based monomethine probe for biothiol detection. Tetrahedron 2016. [DOI: 10.1016/j.tet.2016.06.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
24
|
Gunnoo SB, Madder A. Chemical Protein Modification through Cysteine. Chembiochem 2016; 17:529-53. [DOI: 10.1002/cbic.201500667] [Citation(s) in RCA: 242] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Indexed: 12/15/2022]
Affiliation(s)
- Smita B. Gunnoo
- Organic & Biomimetic Chemistry Research Group; Department of Organic and Macromolecular Chemistry; Ghent University; Krijgslaan 281 9000 Gent Belgium
| | - Annemieke Madder
- Organic & Biomimetic Chemistry Research Group; Department of Organic and Macromolecular Chemistry; Ghent University; Krijgslaan 281 9000 Gent Belgium
| |
Collapse
|
25
|
You GR, Jang HJ, Jo TG, Kim C. A novel displacement-type colorimetric chemosensor for the detection of Cu2+and GSH in aqueous solution. RSC Adv 2016. [DOI: 10.1039/c6ra12368f] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
A new selective and sensitive chemosensor1for the sequential detection of Cu2+and GSHvianaked-eye has been developed.
Collapse
Affiliation(s)
- Ga Rim You
- Department of Fine Chemistry and Department of Interdisciplinary Bio IT Materials
- Seoul National University of Science and Technology
- Seoul 139-743
- Korea
| | - Hyo Jung Jang
- Department of Fine Chemistry and Department of Interdisciplinary Bio IT Materials
- Seoul National University of Science and Technology
- Seoul 139-743
- Korea
| | - Tae Geun Jo
- Department of Fine Chemistry and Department of Interdisciplinary Bio IT Materials
- Seoul National University of Science and Technology
- Seoul 139-743
- Korea
| | - Cheal Kim
- Department of Fine Chemistry and Department of Interdisciplinary Bio IT Materials
- Seoul National University of Science and Technology
- Seoul 139-743
- Korea
| |
Collapse
|
26
|
Liu Y, Meng F, Lin W. Single fluorescent probe for reversibly detecting copper ions and cysteine in a pure water system. RSC Adv 2016. [DOI: 10.1039/c6ra03313j] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
In this work, we have engineered a novel fluorescent probe PI, which remarkably can reversible detect copper ion and cysteine in pure water system for the first time.
Collapse
Affiliation(s)
- Yong Liu
- Institute of Fluorescent Probes for Biological Imaging
- School of Chemistry and Chemical Engineering
- School of Biological Science and Technology
- University of Jinan
- Jinan
| | - Fangfang Meng
- Institute of Fluorescent Probes for Biological Imaging
- School of Chemistry and Chemical Engineering
- School of Biological Science and Technology
- University of Jinan
- Jinan
| | - Weiying Lin
- Institute of Fluorescent Probes for Biological Imaging
- School of Chemistry and Chemical Engineering
- School of Biological Science and Technology
- University of Jinan
- Jinan
| |
Collapse
|
27
|
Wang J, Liu HB, Tong Z, Ha CS. Fluorescent/luminescent detection of natural amino acids by organometallic systems. Coord Chem Rev 2015. [DOI: 10.1016/j.ccr.2015.05.008] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
28
|
Stanley M, Han C, Knebel A, Murphy P, Shpiro N, Virdee S. Orthogonal thiol functionalization at a single atomic center for profiling transthiolation activity of E1 activating enzymes. ACS Chem Biol 2015; 10:1542-54. [PMID: 25845023 DOI: 10.1021/acschembio.5b00118] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Transthiolation is a fundamental biological reaction and is utilized by many enzymes involved in the conjugation of ubiquitin and ubiquitin-like proteins. However, tools that enable selective profiling of this activity are lacking. Transthiolation requires cysteine-cysteine juxtaposition; therefore a method that enables irreversible "stapling" of proximal thiols would facilitate the development of novel probes that could be used to profile this activity. Herein, we characterize biocompatible chemistry that enables sequential functionalization of cysteines within proteins at a single atomic center. We use our method to develop a new class of activity-based probe that profiles transthiolation activity of human E1 activating enzymes. We demonstrate use in vitro and in situ and compatibility with competitive activity-based protein profiling. We also use the probe to gain insight into the determinants of transthiolation between E2 and a RING-in-between-RING (RBR) E3 ligase. Furthermore, we anticipate that this method of thiol functionalization will have broad utility by enabling simple redox-stable cross-linking of proximal cysteines in general.
Collapse
Affiliation(s)
- Mathew Stanley
- MRC Protein
Phosphorylation
and Ubiquitylation Unit, College of Life Sciences, University of Dundee, Dow Street, Dundee DD1
5EH, United Kingdom
| | - Cong Han
- MRC Protein
Phosphorylation
and Ubiquitylation Unit, College of Life Sciences, University of Dundee, Dow Street, Dundee DD1
5EH, United Kingdom
| | - Axel Knebel
- MRC Protein
Phosphorylation
and Ubiquitylation Unit, College of Life Sciences, University of Dundee, Dow Street, Dundee DD1
5EH, United Kingdom
| | - Paul Murphy
- MRC Protein
Phosphorylation
and Ubiquitylation Unit, College of Life Sciences, University of Dundee, Dow Street, Dundee DD1
5EH, United Kingdom
| | - Natalia Shpiro
- MRC Protein
Phosphorylation
and Ubiquitylation Unit, College of Life Sciences, University of Dundee, Dow Street, Dundee DD1
5EH, United Kingdom
| | - Satpal Virdee
- MRC Protein
Phosphorylation
and Ubiquitylation Unit, College of Life Sciences, University of Dundee, Dow Street, Dundee DD1
5EH, United Kingdom
| |
Collapse
|
29
|
Koniev O, Wagner A. Developments and recent advancements in the field of endogenous amino acid selective bond forming reactions for bioconjugation. Chem Soc Rev 2015; 44:5495-551. [PMID: 26000775 DOI: 10.1039/c5cs00048c] [Citation(s) in RCA: 397] [Impact Index Per Article: 44.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Bioconjugation methodologies have proven to play a central enabling role in the recent development of biotherapeutics and chemical biology approaches. Recent endeavours in these fields shed light on unprecedented chemical challenges to attain bioselectivity, biocompatibility, and biostability required by modern applications. In this review the current developments in various techniques of selective bond forming reactions of proteins and peptides were highlighted. The utility of each endogenous amino acid-selective conjugation methodology in the fields of biology and protein science has been surveyed with emphasis on the most relevant among reported transformations; selectivity and practical use have been discussed.
Collapse
Affiliation(s)
- Oleksandr Koniev
- Laboratory of Functional Chemo-Systems (UMR 7199), Labex Medalis, University of Strasbourg, 74 Route du Rhin, 67401 Illkirch-Graffenstaden, France.
| | | |
Collapse
|
30
|
Wang F, Zhou L, Zhao C, Wang R, Fei Q, Luo S, Guo Z, Tian H, Zhu WH. A dual-response BODIPY-based fluorescent probe for the discrimination of glutathione from cystein and homocystein. Chem Sci 2015; 6:2584-2589. [PMID: 29560246 PMCID: PMC5812429 DOI: 10.1039/c5sc00216h] [Citation(s) in RCA: 199] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 02/18/2015] [Indexed: 12/22/2022] Open
Abstract
In situ monitoring of intracellular thiol activity in cell growth and function is highly desirable. However, the discriminative detection of glutathione (GSH) from cysteine (Cys) and homocystein (Hcy) and from common amino acids still remains a challenge due to the similar reactivity of the thiol groups in these amino acids. Here we report a novel strategy for selectively sensing GSH by a dual-response mechanism. Integrating two independent reaction sites with a disulfide linker and a thioether function into a fluorescent BODIPY-based chemsensor can guarantee the synergetic dual-response in an elegant fashion to address the discrimination of GSH. In the first synergetic reaction process, the thiol group in GSH, Cys and Hcy induces disulfide cleavage and subsequent intramolecular cyclization to release the unmasked phenol-based BODIPY (discriminating thiol amino acids from other amino acids). In the second synergetic process, upon the substitution of the thioether with the nucleophilic thiolate to form a sulfenyl-BODIPY, only the amino groups of Cys and Hcy, but not that of GSH, undergo a further intramolecular displacement to yield an amino-substituted BODIPY. In this way, we make full use of the kinetically favorable cyclic transition state in the intramolecular rearrangement, and enable photophysical distinction between sulfenyl- and amino-substituted BODIPY for allowing the discriminative detection of GSH over Cys and Hcy and thiol-lacking amino acids under physiological conditions. Moreover, this probe exhibits a distinguishable ratiometric fluorescence pattern generated from the orange imaging channel to the red channel, which proves the differentiation of GSH from Cys and Hcy in living cells.
Collapse
Affiliation(s)
- Feiyi Wang
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals , Shanghai Key Laboratory of Functional Materials Chemistry , Collaborative Innovation Center for Coal Based Energy (i-CCE) , East China University of Science & Technology , Shanghai 200237 , P. R. China . ;
| | - Li Zhou
- Shanghai Key Laboratory of New Drug Design , School of Pharmacy , East China University of Science & Technology , Shanghai 200237 , P. R. China
| | - Chunchang Zhao
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals , Shanghai Key Laboratory of Functional Materials Chemistry , Collaborative Innovation Center for Coal Based Energy (i-CCE) , East China University of Science & Technology , Shanghai 200237 , P. R. China . ;
| | - Rui Wang
- Shanghai Key Laboratory of New Drug Design , School of Pharmacy , East China University of Science & Technology , Shanghai 200237 , P. R. China
| | - Qiang Fei
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals , Shanghai Key Laboratory of Functional Materials Chemistry , Collaborative Innovation Center for Coal Based Energy (i-CCE) , East China University of Science & Technology , Shanghai 200237 , P. R. China . ;
| | - Sihang Luo
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals , Shanghai Key Laboratory of Functional Materials Chemistry , Collaborative Innovation Center for Coal Based Energy (i-CCE) , East China University of Science & Technology , Shanghai 200237 , P. R. China . ;
| | - Zhiqian Guo
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals , Shanghai Key Laboratory of Functional Materials Chemistry , Collaborative Innovation Center for Coal Based Energy (i-CCE) , East China University of Science & Technology , Shanghai 200237 , P. R. China . ;
| | - He Tian
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals , Shanghai Key Laboratory of Functional Materials Chemistry , Collaborative Innovation Center for Coal Based Energy (i-CCE) , East China University of Science & Technology , Shanghai 200237 , P. R. China . ;
| | - Wei-Hong Zhu
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals , Shanghai Key Laboratory of Functional Materials Chemistry , Collaborative Innovation Center for Coal Based Energy (i-CCE) , East China University of Science & Technology , Shanghai 200237 , P. R. China . ;
| |
Collapse
|
31
|
Fung E, Chua K, Ganz T, Nemeth E, Ruchala P. Thiol-derivatized minihepcidins retain biological activity. Bioorg Med Chem Lett 2015; 25:763-6. [PMID: 25599838 DOI: 10.1016/j.bmcl.2014.12.094] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2014] [Accepted: 12/29/2014] [Indexed: 12/14/2022]
Abstract
Minihepcidins are small peptides that mimic biological activity of the iron-regulatory hormone hepcidin. Structurally, they contain thiol-free-cysteine residue in position 7 which is crucial for their bioactivity. Nonetheless, free sulfhydryl group is not desirable in pharmaceutical entities as it may lead to dermatological side effects. Moreover free thiol moiety is quite reactive and depending on conditions/reagents may be alkylated and/or oxidized giving various Cys-derivatives: S-alkyl cysteines, sulfoxides, sulfones, disulfides, cysteinesulfinic and cysteic acids. To limit such reactivity and maintain bioactivity of minihepcidin(s) we used thiol-protection strategy based on activated vinyl thioethers. Novel S-protected analogs of physiologically active minihepcidin PR73 were synthesized and tested in vitro showing activity comparable to parental molecule. The most active compound, PR73SH was also tested in vivo showing activity profile analogous to PR73. Collectively, our findings suggest that S-vinyl-derivatization of minihepcidin(s) may be a suitable approach in the development of physiologically active agonists of hepcidin.
Collapse
Affiliation(s)
- Eileen Fung
- Department of Medicine, University of California at Los Angeles, 10833 Le Conte Avenue, Los Angeles, CA 90095, USA
| | - Kristine Chua
- Department of Medicine, University of California at Los Angeles, 10833 Le Conte Avenue, Los Angeles, CA 90095, USA
| | - Tomas Ganz
- Department of Medicine, University of California at Los Angeles, 10833 Le Conte Avenue, Los Angeles, CA 90095, USA
| | - Elizabeta Nemeth
- Department of Medicine, University of California at Los Angeles, 10833 Le Conte Avenue, Los Angeles, CA 90095, USA
| | - Piotr Ruchala
- Department of Medicine, University of California at Los Angeles, 10833 Le Conte Avenue, Los Angeles, CA 90095, USA; Department of Psychiatry and Biobehavioral Sciences, University of California at Los Angeles, 760 Westwood Plaza, Los Angeles, CA 90095, USA.
| |
Collapse
|
32
|
Yang L, Qu W, Zhang X, Hang Y, Hua J. Constructing a FRET-based molecular chemodosimeter for cysteine over homocysteine and glutathione by naphthalimide and phenazine derivatives. Analyst 2015; 140:182-9. [DOI: 10.1039/c4an01732c] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A chemodosimeter PHSN achieved turn-on fluorescence enhancement at 540 nm and discrimination of cysteine from homocysteine and glutathione in Hela cells.
Collapse
Affiliation(s)
- Lin Yang
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Weisong Qu
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Xiao Zhang
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Yandi Hang
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Jianli Hua
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals
- East China University of Science and Technology
- Shanghai 200237
- China
| |
Collapse
|
33
|
Liu X, Gao L, Yang L, Zou L, Chen W, Song X. A phthalimide-based fluorescent probe for thiol detection with a large Stokes shift. RSC Adv 2015. [DOI: 10.1039/c5ra00255a] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A phthalimide-based fluorescent probe for thiols with a large Stokes shift (161 nm) was developed via PET and ESIPT mechanisms. This probe displayed good selectivity and high sensitivity toward thiols. Imaging intracellular thiols was successfully achieved in living cells.
Collapse
Affiliation(s)
- Xingjiang Liu
- College of Chemistry & Chemical Engineering
- Central South University
- 410083 Changsha
- P. R. China
| | - Li Gao
- College of Chemistry & Chemical Engineering
- Central South University
- 410083 Changsha
- P. R. China
| | - Liu Yang
- College of Chemistry & Chemical Engineering
- Central South University
- 410083 Changsha
- P. R. China
| | - Lifen Zou
- College of Chemistry & Chemical Engineering
- Central South University
- 410083 Changsha
- P. R. China
| | - Wenqiang Chen
- College of Chemistry & Chemical Engineering
- Central South University
- 410083 Changsha
- P. R. China
| | - Xiangzhi Song
- College of Chemistry & Chemical Engineering
- Central South University
- 410083 Changsha
- P. R. China
- State Key Laboratory for Powder Metallurgy
| |
Collapse
|
34
|
Shiu HY, Chong HC, Leung YC, Zou T, Che CM. Phosphorescent proteins for bio-imaging and site selective bio-conjugation of peptides and proteins with luminescent cyclometalated iridium(III) complexes. Chem Commun (Camb) 2014; 50:4375-8. [PMID: 24643302 DOI: 10.1039/c3cc48376b] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A new bio-conjugation reaction for site selective modification of proteins and peptides with phosphorescent iridium(III) complexes has been developed; the Ir(III)-modified proteins and peptides display long emission lifetimes and large Stoke shifts that can be used for bio-imaging studies.
Collapse
Affiliation(s)
- Hoi-Yan Shiu
- State Key Laboratory of Synthetic Chemistry, Institute of Molecular Functional Materials and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China.
| | | | | | | | | |
Collapse
|
35
|
Ma DH, Kim D, Akisawa T, Lee KH, Kim KT, Ahn KH. An FITC-BODIPY FRET Couple: Application to Selective, Ratiometric Detection and Bioimaging of Cysteine. Chem Asian J 2014; 10:894-902. [DOI: 10.1002/asia.201403073] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Indexed: 01/24/2023]
|
36
|
Li M, Wu X, Wang Y, Li Y, Zhu W, James TD. A near-infrared colorimetric fluorescent chemodosimeter for the detection of glutathione in living cells. Chem Commun (Camb) 2014; 50:1751-3. [PMID: 24400318 DOI: 10.1039/c3cc48128j] [Citation(s) in RCA: 150] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A novel near-infrared (NIR) and colorimetric fluorescent molecular probe based on a dicyanomethylene-4H-pyran chromophore for the selective detection of glutathione in living cells has been developed. The fluorescence OFF-ON switch is triggered by cleavage of the 2,4-dinitrobenzensulfonyl (DNBS) unit by the interaction with GSH.
Collapse
Affiliation(s)
- Meng Li
- Department of Chemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK.
| | | | | | | | | | | |
Collapse
|
37
|
Wang F, Guo Z, Li X, Li X, Zhao C. Development of a Small Molecule Probe Capable of Discriminating Cysteine, Homocysteine, and Glutathione with Three Distinct Turn-On Fluorescent Outputs. Chemistry 2014; 20:11471-8. [DOI: 10.1002/chem.201403450] [Citation(s) in RCA: 127] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Indexed: 01/09/2023]
|
38
|
Yang XF, Huang Q, Zhong Y, Li Z, Li H, Lowry M, Escobedo JO, Strongin RM. A dual emission fluorescent probe enables simultaneous detection of glutathione and cysteine/homocysteine. Chem Sci 2014; 5:2177-2183. [PMID: 24995124 PMCID: PMC4074921 DOI: 10.1039/c4sc00308j] [Citation(s) in RCA: 264] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Many studies have shown that glutathione (GSH) and cysteine (Cys) / homocysteine (Hcy) levels are interrelated in biological systems. To unravel the complicated biomedical mechanisms by which GSH and Cys/Hcy are involved in various disease states, probes that display distinct signals in response to GSH and Cys/Hcy are highly desirable. In this work, we report a rhodol thioester (1) that responds to GSH and Cys/Hcy with distinct fluorescence emissions in neutral media. Probe 1 reacts with Cys/Hcy to form the corresponding deconjugated spirolactam via a tandem native chemical ligation (NCL) reaction. This intramolecular spirocyclization leads to the "quinone - phenol" transduction of rhodol dyes, and an excited-state intramolecular proton transfer (ESIPT) process between the phenolic hydroxyl proton and the aromatic nitrogen in the benzothiazole unit occurs upon photoexcitation, thus affording 2-(2'-hydroxyphenyl) benzothiazole (HBT) emission (454 nm). In the case of the tripeptide GSH, only transthioesterification takes place removing the intramolecular photo-induced electron transfer (PET) process caused by the electron deficient 4-nitrobenzene moiety giving rise to a large fluorescence enhancement at the rhodol emission band (587 nm). The simultaneous detection of GSH and Cys/Hcy is attributed to the significantly different rates of intramolecular S,N-acyl shift of their corresponding thioester adducts derived from 1. The utility of probe 1 has been demonstrated in various biological systems including serum and cells.
Collapse
Affiliation(s)
- Xiao-Feng Yang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, P.R. China
| | - Qian Huang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, P.R. China
| | - Yaogang Zhong
- College of Life Sciences, Northwest University, Xi'an 710069, P.R. China
| | - Zheng Li
- College of Life Sciences, Northwest University, Xi'an 710069, P.R. China
| | - Hua Li
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, P.R. China
| | - Mark Lowry
- Department of Chemistry, Portland State University, Portland, OR, 97201, USA
| | - Jorge O. Escobedo
- Department of Chemistry, Portland State University, Portland, OR, 97201, USA
| | - Robert M. Strongin
- Department of Chemistry, Portland State University, Portland, OR, 97201, USA
| |
Collapse
|
39
|
Zhao C, Li X, Wang F. Target-Triggered NIR Emission with a Large Stokes Shift for the Detection and Imaging of Cysteine in Living Cells. Chem Asian J 2014; 9:1777-81. [DOI: 10.1002/asia.201402043] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Indexed: 11/06/2022]
|
40
|
Koniev O, Leriche G, Nothisen M, Remy JS, Strub JM, Schaeffer-Reiss C, Van Dorsselaer A, Baati R, Wagner A. Selective Irreversible Chemical Tagging of Cysteine with 3-Arylpropiolonitriles. Bioconjug Chem 2014; 25:202-6. [DOI: 10.1021/bc400469d] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
| | | | | | | | - Jean-Marc Strub
- Laboratoire
de Spectrométrie de Masse BioOrganique (UMR 7178), Institut Pluridisciplinaire Hubert Curien, University of Strasbourg, 25 rue
Becquerel, 67087 Strasbourg, France
| | - Christine Schaeffer-Reiss
- Laboratoire
de Spectrométrie de Masse BioOrganique (UMR 7178), Institut Pluridisciplinaire Hubert Curien, University of Strasbourg, 25 rue
Becquerel, 67087 Strasbourg, France
| | - Alain Van Dorsselaer
- Laboratoire
de Spectrométrie de Masse BioOrganique (UMR 7178), Institut Pluridisciplinaire Hubert Curien, University of Strasbourg, 25 rue
Becquerel, 67087 Strasbourg, France
| | | | | |
Collapse
|
41
|
Lv H, Yang XF, Zhong Y, Guo Y, Li Z, Li H. Native Chemical Ligation Combined with Spirocyclization of Benzopyrylium Dyes for the Ratiometric and Selective Fluorescence Detection of Cysteine and Homocysteine. Anal Chem 2014; 86:1800-7. [DOI: 10.1021/ac4038027] [Citation(s) in RCA: 138] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Hongmin Lv
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi’an, Shaanxi 710069, P. R. China
| | - Xiao-Feng Yang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi’an, Shaanxi 710069, P. R. China
| | - Yaogang Zhong
- College
of Life Sciences, Northwest University, Xi’an, Shaanxi 710069, P. R. China
| | - Yuan Guo
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi’an, Shaanxi 710069, P. R. China
| | - Zheng Li
- College
of Life Sciences, Northwest University, Xi’an, Shaanxi 710069, P. R. China
| | - Hua Li
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi’an, Shaanxi 710069, P. R. China
| |
Collapse
|
42
|
Han Q, Shi Z, Tang X, Yang L, Mou Z, Li J, Shi J, Chen C, Liu W, Yang H, Liu W. A colorimetric and ratiometric fluorescent probe for distinguishing cysteine from biothiols in water and living cells. Org Biomol Chem 2014; 12:5023-30. [DOI: 10.1039/c4ob00463a] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
A highly selective merocyanine-based fluorescent probe was developed, which can significantly distinguish Cys from Hcy and GSH by their kinetic profiles in water and respond to the intracellular Cys.
Collapse
Affiliation(s)
- Qingxin Han
- Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province and State Key Laboratory of Applied Organic Chemistry
- Lanzhou University
- Lanzhou 730000, P. R. China
| | - Zhaohua Shi
- Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province and State Key Laboratory of Applied Organic Chemistry
- Lanzhou University
- Lanzhou 730000, P. R. China
| | - Xiaoliang Tang
- Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province and State Key Laboratory of Applied Organic Chemistry
- Lanzhou University
- Lanzhou 730000, P. R. China
| | - Lizi Yang
- Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province and State Key Laboratory of Applied Organic Chemistry
- Lanzhou University
- Lanzhou 730000, P. R. China
| | - Zuolin Mou
- Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province and State Key Laboratory of Applied Organic Chemistry
- Lanzhou University
- Lanzhou 730000, P. R. China
| | - Jing Li
- College of Pharmacy
- Lanzhou University
- Lanzhou 730000, P. R. China
| | - Jinmin Shi
- Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province and State Key Laboratory of Applied Organic Chemistry
- Lanzhou University
- Lanzhou 730000, P. R. China
| | - Chunyang Chen
- Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province and State Key Laboratory of Applied Organic Chemistry
- Lanzhou University
- Lanzhou 730000, P. R. China
| | - Wei Liu
- Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province and State Key Laboratory of Applied Organic Chemistry
- Lanzhou University
- Lanzhou 730000, P. R. China
| | - Huan Yang
- Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province and State Key Laboratory of Applied Organic Chemistry
- Lanzhou University
- Lanzhou 730000, P. R. China
| | - Weisheng Liu
- Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province and State Key Laboratory of Applied Organic Chemistry
- Lanzhou University
- Lanzhou 730000, P. R. China
| |
Collapse
|
43
|
Wang W, Zhao N, Geng Y, Cui SB, Hauser J, Decurtins S, Liu SX. A highly sensitive TTF-functionalised probe for the determination of physiological thiols and its application in tumor cells. RSC Adv 2014. [DOI: 10.1039/c4ra06455k] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A tetrathiafulvalene (TTF)-fused piazselenole as a novel redox-active and fluorescent probe for highly sensitive determination of physiological thiols is presented.
Collapse
Affiliation(s)
- Wei Wang
- Key Laboratory of Sensor Analysis of Tumor Marker
- Ministry of Education
- College of Chemistry and Molecular Engineering
- Qingdao University of Science and Technology
- Qingdao 266042, China
| | - Na Zhao
- Key Laboratory of Sensor Analysis of Tumor Marker
- Ministry of Education
- College of Chemistry and Molecular Engineering
- Qingdao University of Science and Technology
- Qingdao 266042, China
| | - Yan Geng
- Department of Chemistry and Biochemistry
- University of Bern
- CH-3012 Bern, Switzerland
| | - Shi-Bin Cui
- Key Laboratory of Sensor Analysis of Tumor Marker
- Ministry of Education
- College of Chemistry and Molecular Engineering
- Qingdao University of Science and Technology
- Qingdao 266042, China
| | - Jürg Hauser
- Department of Chemistry and Biochemistry
- University of Bern
- CH-3012 Bern, Switzerland
| | - Silvio Decurtins
- Department of Chemistry and Biochemistry
- University of Bern
- CH-3012 Bern, Switzerland
| | - Shi-Xia Liu
- Department of Chemistry and Biochemistry
- University of Bern
- CH-3012 Bern, Switzerland
| |
Collapse
|
44
|
Wang SQ, Wu QH, Wang HY, Zheng XX, Shen SL, Zhang YR, Miao JY, Zhao BX. Novel pyrazoline-based fluorescent probe for detecting glutathione and its application in cells. Biosens Bioelectron 2013; 55:386-90. [PMID: 24434493 DOI: 10.1016/j.bios.2013.12.047] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Revised: 12/20/2013] [Accepted: 12/20/2013] [Indexed: 01/02/2023]
Abstract
A novel compound, 2-(1,5-diphenyl-4,5-dihydro-1H-pyrazol-3-yl)phenyl acrylate (probe L), was designed and synthesized as a highly sensitive and selective fluorescent probe for recognizing and detecting glutathione among cysteine, homocysteine and other amino acids. The structures of related compounds were characterized using IR, NMR and HRMS spectroscopy analysis. The probe is a non-fluorescent compound. On being mixed with glutathione in buffered EtOH:PBS=3:7 solution at pH 7.4, the probe exhibited the blue emission of the pyrazoline at 474 nm and a 83-fold enhancement in fluorescence intensity. This probe is very sensitive and displayed a linear fluorescence off-on response to glutathione with fluorometric detection limit of 8.2 × 10(-8)M. The emission of the probe is pH independent in the physiological pH range. Live-cell imaging of HeLa cells confirmed the cell permeability of the probe and its ability to selectively discriminate GSH from Cys and Hcy in cells. The toxicity of the probe was low in cultured HeLa cells.
Collapse
Affiliation(s)
- Sheng-Qing Wang
- Institute of Organic Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, PR China
| | - Qing-Hua Wu
- Institute of Developmental Biology, School of Life Science, Shandong University, Jinan 250100, PR China
| | - Hao-Yan Wang
- Institute of Organic Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, PR China
| | - Xiao-Xin Zheng
- Institute of Organic Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, PR China
| | - Shi-Li Shen
- Institute of Organic Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, PR China
| | - Yan-Ru Zhang
- Institute of Organic Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, PR China
| | - Jun-Ying Miao
- Institute of Developmental Biology, School of Life Science, Shandong University, Jinan 250100, PR China.
| | - Bao-Xiang Zhao
- Institute of Organic Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, PR China.
| |
Collapse
|
45
|
Peng R, Lin L, Wu X, Liu X, Feng X. Fluorescent Sensor Based on BINOL for Recognition of Cysteine, Homocysteine, and Glutathione. J Org Chem 2013; 78:11602-5. [DOI: 10.1021/jo401932n] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Ruixue Peng
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Lili Lin
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Xiaoxia Wu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Xiaohua Liu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Xiaoming Feng
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| |
Collapse
|
46
|
Chen S, Tian J, Jiang Y, Zhao Y, Zhang J, Zhao S. A one-step selective fluorescence turn-on detection of cysteine and homocysteine based on a facile CdTe/CdS quantum dots–phenanthroline system. Anal Chim Acta 2013; 787:181-8. [DOI: 10.1016/j.aca.2013.05.048] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2013] [Revised: 05/24/2013] [Accepted: 05/27/2013] [Indexed: 01/02/2023]
|
47
|
Sun B, Zhang K, Chen L, Guo L, Ai S. A novel photoelectrochemical sensor based on PPIX-functionalized WO3–rGO nanohybrid-decorated ITO electrode for detecting cysteine. Biosens Bioelectron 2013; 44:48-51. [DOI: 10.1016/j.bios.2013.01.014] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 01/05/2013] [Accepted: 01/07/2013] [Indexed: 01/03/2023]
|
48
|
Thiol-selective sensor based on intramolecular energy transfer between a bichromophoric system. Tetrahedron 2013. [DOI: 10.1016/j.tet.2013.04.038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
49
|
A novel label-free optical cysteine sensor based on the competitive oxidation reaction catalyzed by G-quadruplex halves. Biosens Bioelectron 2013; 43:268-73. [DOI: 10.1016/j.bios.2012.12.032] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Revised: 12/02/2012] [Accepted: 12/17/2012] [Indexed: 01/14/2023]
|
50
|
Santos-Figueroa LE, Moragues ME, Climent E, Agostini A, Martínez-Máñez R, Sancenón F. Chromogenic and fluorogenic chemosensors and reagents for anions. A comprehensive review of the years 2010-2011. Chem Soc Rev 2013; 42:3489-613. [PMID: 23400370 DOI: 10.1039/c3cs35429f] [Citation(s) in RCA: 361] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
This review focuses on examples reported in the years 2010-2011 dealing with the design of chromogenic and fluorogenic chemosensors or reagents for anions.
Collapse
Affiliation(s)
- Luis E Santos-Figueroa
- Centro Interuniversitario de Reconocimiento Molecular y Desarrollo Tecnológico, (IDM), Unidad Mixta Universidad Politécnica de Valencia - Universitat de València, Spain
| | | | | | | | | | | |
Collapse
|