1
|
Masi M, Nedjar D, Bani M, Staiano I, Salvatore MM, Khenaka K, Castaldi S, Zorrilla JG, Andolfi A, Isticato R, Cimmino A. An Algerian Soil-Living Streptomyces alboflavus Strain as Source of Antifungal Compounds for the Management of the Pea Pathogen Fusarium oxysporum f. sp. pisi. J Fungi (Basel) 2024; 10:783. [PMID: 39590702 PMCID: PMC11596007 DOI: 10.3390/jof10110783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 11/07/2024] [Accepted: 11/08/2024] [Indexed: 11/28/2024] Open
Abstract
Fusarium wilt caused by Fusarium oxysporum f. sp. pisi (Fop) poses significant threats to pea cultivation worldwide. Controlling this disease is mainly achieved through the integration of various disease management procedures, among which biological control has proven to be a safe and effective approach. This study aims to extract and identify antifungal secondary metabolites from Streptomyces alboflavus KRO3 strain and assess their effectiveness in inhibiting the in vitro growth of Fop. This bacterial strain exerts in vitro antagonistic activity against Fop, achieving highly significant inhibition over one week. The ethyl acetate extract, obtained from its ISP2 agar medium culture, also exhibited strong antifungal activity, maintaining an inhibition rate of approximately 90% at concentrations up to 250 µg/plug compared to the control. Thus, the organic extract has been fractionated using chromatographic techniques and its bioguided purification allowed us to isolate the main bioactive compound. This latter was identified as metacycloprodigiosin using nuclear magnetic resonance (NMR) spectroscopy, electrospray ionization mass spectrometry (ESI-MS), and specific optical rotation data. Metacycloprodigiosin demonstrates dose-dependent inhibitory activity against the phytopathogen with an effective concentration of 125 µg/plug. The other secondary metabolites present in the ethyl acetate extract were also identified by gas chromatography-mass spectrometry (GC-MS) and nuclear magnetic resonance (NMR). This study highlighted the potential of S. alboflavus KRO3 strain and its antimicrobial compounds for the management of the pea pathogen Fusarium oxysporum f. sp. pisi.
Collapse
Affiliation(s)
- Marco Masi
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario Monte S. Angelo, Via Cinthia 4, 80126 Naples, Italy; (M.M.S.); (J.G.Z.); (A.A.); (A.C.)
| | - Dorsaf Nedjar
- Laboratory of Biotechnology, Higher National School of Biotechnology Taoufik Khaznadar, Nouveau Pôle Universitaire Ali Mendjeli, BP. E66, Constantine 25100, Algeria; (D.N.); (K.K.)
| | - Moustafa Bani
- Laboratory of Biotechnology, Higher National School of Biotechnology Taoufik Khaznadar, Nouveau Pôle Universitaire Ali Mendjeli, BP. E66, Constantine 25100, Algeria; (D.N.); (K.K.)
| | - Ivana Staiano
- Department of Biology, University of Naples Federico II, Complesso Universitario Monte S. Angelo, Via Cinthia 4, 80126 Naples, Italy; (I.S.); (S.C.); (R.I.)
| | - Maria Michela Salvatore
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario Monte S. Angelo, Via Cinthia 4, 80126 Naples, Italy; (M.M.S.); (J.G.Z.); (A.A.); (A.C.)
| | - Karima Khenaka
- Laboratory of Biotechnology, Higher National School of Biotechnology Taoufik Khaznadar, Nouveau Pôle Universitaire Ali Mendjeli, BP. E66, Constantine 25100, Algeria; (D.N.); (K.K.)
| | - Stefany Castaldi
- Department of Biology, University of Naples Federico II, Complesso Universitario Monte S. Angelo, Via Cinthia 4, 80126 Naples, Italy; (I.S.); (S.C.); (R.I.)
| | - Jesus Garcia Zorrilla
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario Monte S. Angelo, Via Cinthia 4, 80126 Naples, Italy; (M.M.S.); (J.G.Z.); (A.A.); (A.C.)
- Allelopathy Group, Department of Organic Chemistry, Facultad de Ciencias, Institute of Biomolecules (INBIO), University of Cadiz, C/Avenida República Saharaui, s/n, 11510 Puerto Real, Spain
| | - Anna Andolfi
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario Monte S. Angelo, Via Cinthia 4, 80126 Naples, Italy; (M.M.S.); (J.G.Z.); (A.A.); (A.C.)
| | - Rachele Isticato
- Department of Biology, University of Naples Federico II, Complesso Universitario Monte S. Angelo, Via Cinthia 4, 80126 Naples, Italy; (I.S.); (S.C.); (R.I.)
| | - Alessio Cimmino
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario Monte S. Angelo, Via Cinthia 4, 80126 Naples, Italy; (M.M.S.); (J.G.Z.); (A.A.); (A.C.)
| |
Collapse
|
2
|
Lu H, Wan Y, Wang Q, Li Y, Wu H, Ma N, Zhang Z, Zhang G. Aerobic Oxidative Hydroxylation of Arylboronic Acids under Visible-Light Irradiation without Metal Catalysts or Additives. Org Lett 2024; 26:1959-1964. [PMID: 38407134 DOI: 10.1021/acs.orglett.4c00436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Phenols are versatile synthetic intermediates and key structural motifs in many natural products and biologically active compounds. We herein report a visible-light-induced aerobic oxidative hydroxylation of arylboronic acids/pinacol esters using air as oxidant and without using any catalysts and base, etc., additives, providing a green entry to a variety of phenols in a highly efficient and concise fashion. This novel reaction is enabled by photoactivation of an electron donor-acceptor complex, in which THF serves as both the solvent and electron donor. DFT studies indicated that the oxidation process involves a concerted hydrogen abstraction transfer from THF and dehydroxylation of boronic acid undergoing spin crossover from triplet to singlet to produce an active peroxoboronic acid intermidiate. Salient merits of this chemistry include broad substrate scope and excellent functional group tolerance, gram-scale synthesis, and versatile late-stage functionalizations as well as the use of air, visible light, and catalyst- and additive-free conditions. This strategy introduces a novel photoreaction mode with the aid of a solvent, offering a succinct and environmentally sustainable route for synthesizing phenols. The strong practicability and highly efficient access to modifying complex biorelevant molecules bode well for the potential applications of this chemistry in pharmaceutical chemistry.
Collapse
Affiliation(s)
- Hongchen Lu
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Yameng Wan
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
- School of Chemistry and Chemical Engineering, Henan University of Science and Technology, Luoyang, Henan 471023, China
| | - Qiongjin Wang
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Yabo Li
- School of Chemistry and Chemical Engineering, Henan University of Science and Technology, Luoyang, Henan 471023, China
| | - Hao Wu
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Nana Ma
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Zhiguo Zhang
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Guisheng Zhang
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
3
|
Zhang H, Zhu H, Zhang Y, Ren G, Fang W, Fan Q, Xie Z. A Redox-neutral Nickel-catalysed Sulfonylation of (Hetero)aryl Boronic Acids with 2-Chlorothiazoles. Chem Asian J 2023; 18:e202300757. [PMID: 37817327 DOI: 10.1002/asia.202300757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/04/2023] [Accepted: 10/10/2023] [Indexed: 10/12/2023]
Abstract
A redox-neutral nickel-catalysed sulfonylation for arylsulfone synthesis was developed. (Hetero)aryl boronic acids reacted with potassium metabisulfite (K2 S2 O5 ) and readily available 2-chlorothiazoles in the presence of air-stable Ni(OTf)2 and 4,4-di-tert-butyl bipyridine (dtbpy) as a commercially available ligand to produce the corresponding 2-sulfonylthiazoles in moderate to excellent yields. This practical protocol tolerates a wide range of substrates including boronic acids and 2-chloro(benzo)thiazoles without additional bases, allowing the direct synthesis of functional arylsulfones.
Collapse
Affiliation(s)
- Honglei Zhang
- Jiangxi Province Key Laboratory of Synthetic Chemistry, School of Chemistry and Materials Science, East China University of Technology, Nanchang, 330013, P. R. China
| | - Haibo Zhu
- Jiangxi Province Key Laboratory of Synthetic Chemistry, School of Chemistry and Materials Science, East China University of Technology, Nanchang, 330013, P. R. China
| | - Yingying Zhang
- Jiangxi Province Key Laboratory of Synthetic Chemistry, School of Chemistry and Materials Science, East China University of Technology, Nanchang, 330013, P. R. China
| | - Gaowen Ren
- Jiangxi Province Key Laboratory of Synthetic Chemistry, School of Chemistry and Materials Science, East China University of Technology, Nanchang, 330013, P. R. China
| | - Weiwei Fang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, 159 Longpan Road, Nanjing, P. R. China
| | - Qiangwen Fan
- Jiangxi Province Key Laboratory of Synthetic Chemistry, School of Chemistry and Materials Science, East China University of Technology, Nanchang, 330013, P. R. China
| | - Zongbo Xie
- Jiangxi Province Key Laboratory of Synthetic Chemistry, School of Chemistry and Materials Science, East China University of Technology, Nanchang, 330013, P. R. China
| |
Collapse
|
4
|
He M, Wu Y, Li R, Wang Y, Liu C, Zhang B. Aqueous pulsed electrochemistry promotes C-N bond formation via a one-pot cascade approach. Nat Commun 2023; 14:5088. [PMID: 37607922 PMCID: PMC10444869 DOI: 10.1038/s41467-023-40892-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 08/15/2023] [Indexed: 08/24/2023] Open
Abstract
Electrocatalytic C - N bond formation from inorganic nitrogen wastes is an emerging sustainable method for synthesizing organic amines but is limited in reaction scope. Integrating heterogeneous and homogeneous catalysis for one-pot reactions to construct C - N bonds is highly desirable. Herein, we report an aqueous pulsed electrochemistry-mediated transformation of nitrite and arylboronic acids to arylamines with high yields. The overall process involves nitrite electroreduction to ammonia over a Cu nanocoral cathode and subsequent coupling of NH3 with arylboronic acids catalyzed by in situ dissolved Cu(II) under a switched anodic potential. This pulsed protocol also promotes the migration of nucleophilic ArB(OH)3- and causes the consumption of OH- near the cathode surface, accelerating C - N formation and suppressing phenol byproducts. Cu(II) can be recycled via facile electroplating. The wide substrate scope, ready synthesis of 15N-labelled arylamines, and methodological expansion to cycloaddition and Click reactions highlight the great promise.
Collapse
Affiliation(s)
- Meng He
- Department of Chemistry, School of Science, Institute of Molecular Plus, Tianjin University, Tianjin, 300072, China
| | - Yongmeng Wu
- Department of Chemistry, School of Science, Institute of Molecular Plus, Tianjin University, Tianjin, 300072, China.
| | - Rui Li
- Department of Chemistry, School of Science, Institute of Molecular Plus, Tianjin University, Tianjin, 300072, China
| | - Yuting Wang
- Department of Chemistry, School of Science, Institute of Molecular Plus, Tianjin University, Tianjin, 300072, China
| | - Cuibo Liu
- Department of Chemistry, School of Science, Institute of Molecular Plus, Tianjin University, Tianjin, 300072, China
| | - Bin Zhang
- Department of Chemistry, School of Science, Institute of Molecular Plus, Tianjin University, Tianjin, 300072, China.
| |
Collapse
|
5
|
Andrews M, Carpentier A, Slawin AMZ, Cordes DB, Macgregor SA, Watson AJB. Mechanism of Cu-Catalyzed Iododeboronation: A Description of Ligand-Enabled Transmetalation, Disproportionation, and Turnover in Cu-Mediated Oxidative Coupling Reactions. ACS Catal 2023; 13:11117-11126. [PMID: 37614524 PMCID: PMC10442916 DOI: 10.1021/acscatal.3c02839] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/25/2023] [Indexed: 08/25/2023]
Abstract
We report a combined experimental and computational study of the mechanism of the Cu-catalyzed arylboronic acid iododeboronation reaction. A combination of structural and density functional theory (DFT) analyses has allowed determination of the identity of the reaction precatalyst with insight into each step of the catalytic cycle. Key findings include a rationale for ligand (phen) stoichiometry related to key turnover events-the ligand facilitates transmetalation via H-bonding to an organoboron boronate generated in situ and phen loss/gain is integral to the key oxidative events. These data provide a framework for understanding ligand effects on these key mechanistic processes, which underpin several classes of Cu-mediated oxidative coupling reactions.
Collapse
Affiliation(s)
- Matthew
J. Andrews
- EaStCHEM,
School of Chemistry, University of St Andrews, Purdie Building, St Andrews KY16 9ST, U.K.
| | - Ambre Carpentier
- Institute
of Chemical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, U.K.
| | - Alexandra M. Z. Slawin
- EaStCHEM,
School of Chemistry, University of St Andrews, Purdie Building, St Andrews KY16 9ST, U.K.
| | - David B. Cordes
- EaStCHEM,
School of Chemistry, University of St Andrews, Purdie Building, St Andrews KY16 9ST, U.K.
| | - Stuart A. Macgregor
- Institute
of Chemical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, U.K.
| | - Allan J. B. Watson
- EaStCHEM,
School of Chemistry, University of St Andrews, Purdie Building, St Andrews KY16 9ST, U.K.
| |
Collapse
|
6
|
Huang S, Cheemarla VKR, Tiana D, Lawrence SE. Experimental and Theoretical Investigation of Hydrogen-Bonding Interactions in Cocrystals of Sulfaguanidine. CRYSTAL GROWTH & DESIGN 2023; 23:2306-2320. [PMID: 37038403 PMCID: PMC10080660 DOI: 10.1021/acs.cgd.2c01337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 02/11/2023] [Indexed: 06/19/2023]
Abstract
Pharmaceutical cocrystals, a type of multicomponent crystalline material incorporating two or more molecular and/or ionic compounds connected by noncovalent interactions (such as hydrogen bonds, π-π interactions, and halogen bonds), are attracting increasing attention in crystal engineering. Sulfaguanidine (SGD), one of the most frequently used sulfonamide compounds, was chosen as a model compound in this work to further investigate the hydrogen bond interactions in cocrystals, since it possesses various hydrogen bond donor and acceptor sites. Five cocrystals of SGD, synthesized successfully by slurry and slow evaporation methods, were fully characterized by thermal analysis, X-ray techniques, and Fourier transform infrared spectroscopy. To gain insight into the nature of hydrogen-bonding interactions, theoretical calculations including the analysis of Hirshfeld surface, MEPS (molecular electrostatic potential surface), and QTAIM (quantum theory of atoms in molecules) were conducted. The results are a part of a systematic study of cocrystals of sulfonamides that aims to establish synthon hierarchies in cocrystals containing molecules with multiple hydrogen-bonding functional groups.
Collapse
Affiliation(s)
- Shan Huang
- School of Chemistry, Synthesis and Solid State Pharmaceutical Centre, University College Cork, Cork T12 K8AF, Ireland
- Analytical and Biological Chemistry Research Facility, University College Cork, Cork T12 K8AF, Ireland
| | - Vinay K R Cheemarla
- School of Chemistry, Synthesis and Solid State Pharmaceutical Centre, University College Cork, Cork T12 K8AF, Ireland
| | - Davide Tiana
- School of Chemistry, Synthesis and Solid State Pharmaceutical Centre, University College Cork, Cork T12 K8AF, Ireland
| | - Simon E Lawrence
- School of Chemistry, Synthesis and Solid State Pharmaceutical Centre, University College Cork, Cork T12 K8AF, Ireland
- Analytical and Biological Chemistry Research Facility, University College Cork, Cork T12 K8AF, Ireland
| |
Collapse
|
7
|
Yao W, Lv K, Xie Z, Qiu H, Ma M. Catalyst-Free Electrochemical Sulfonylation of Organoboronic Acids. J Org Chem 2023; 88:2296-2305. [PMID: 36727513 DOI: 10.1021/acs.joc.2c02690] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
A simple and efficient electrochemical sulfonylation of organoboronic acids with sodium arylsulfinate salts has been reported for the first time. A variety of aryl, heteroaryl, and alkenylsulfones were obtained in good to excellent yields via a simple electrochemical sulfonylation of various arylboronic acids, heterocyclic boronic acids, or alkenylboronic acids with sodium arylsulfinate at room temperature in 5 h under the catalyst-free and additive-free conditions. A plausible mechanism has been proposed based on various radical-trapping and CV control experiments.
Collapse
Affiliation(s)
- Weiwei Yao
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Kang Lv
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Zixi Xie
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Hui Qiu
- Department of Chemistry and Material Science, College of Science, Nanjing Forestry University, Nanjing 210037, China
| | - Mengtao Ma
- Department of Chemistry and Material Science, College of Science, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
8
|
Choi SJ, Kim SH. Bench-stable oxidant sodium percarbonate for functional group transformation of arylboronic acids. Tetrahedron Lett 2023. [DOI: 10.1016/j.tetlet.2023.154378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
9
|
Ge X, Rao Y, Xu L, Zhou M, Kurosaki R, Aratani N, Osuka A, Song J. Bottom-Up Synthesis of Multiply Fused Pd II Anthriporphyrinoids. ACS CENTRAL SCIENCE 2022; 8:1627-1632. [PMID: 36589884 PMCID: PMC9801503 DOI: 10.1021/acscentsci.2c01218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Indexed: 06/17/2023]
Abstract
Anthriporphyrinoid and its dimeric homologues were synthesized by Suzuki-Miyaura coupling and subsequent oxidation. Both porphyrinoids were smoothly converted to their PdII complexes and were further decorated by Suzuki-Miyaura coupling with thiophene derivatives and subsequent oxidative fusion reaction to provide multiply fused compounds. Most PdII anthriporphyrinoids have been structurally well characterized to be planar for monomeric and helically twisted for dimeric species. The dimeric anthriporphyrinoids show paratropic ring currents due to their global antiaromatic networks, the extent of which increases with an increase of conjugated network. Multiply fused dimeric anthriporphyrinoids show helical structures, fully reversible six redox potentials, small HOMO-LUMO gaps, and absorption tails reaching in the near-infrared region, suggesting the high potential of this approach to explore molecular graphene. Optical separations of the dimeric helical species were accomplished, and racemization barrier heights were determined.
Collapse
Affiliation(s)
- Xinrun Ge
- Key
Laboratory of Chemical Biology and Traditional Chinese Medicine, Ministry
of Educational of China, Key Laboratory of the Assembly and Application
of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha 410081, China
| | - Yutao Rao
- Key
Laboratory of Chemical Biology and Traditional Chinese Medicine, Ministry
of Educational of China, Key Laboratory of the Assembly and Application
of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha 410081, China
| | - Ling Xu
- Key
Laboratory of Chemical Biology and Traditional Chinese Medicine, Ministry
of Educational of China, Key Laboratory of the Assembly and Application
of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha 410081, China
| | - Mingbo Zhou
- Key
Laboratory of Chemical Biology and Traditional Chinese Medicine, Ministry
of Educational of China, Key Laboratory of the Assembly and Application
of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha 410081, China
| | - Ryo Kurosaki
- Division
of Materials Science, Nara Institute of
Science and Technology (NAIST) 8916-5 Takayama-cho, Ikoma 630-0192, Japan
| | - Naoki Aratani
- Division
of Materials Science, Nara Institute of
Science and Technology (NAIST) 8916-5 Takayama-cho, Ikoma 630-0192, Japan
| | - Atsuhiro Osuka
- Key
Laboratory of Chemical Biology and Traditional Chinese Medicine, Ministry
of Educational of China, Key Laboratory of the Assembly and Application
of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha 410081, China
| | - Jianxin Song
- Key
Laboratory of Chemical Biology and Traditional Chinese Medicine, Ministry
of Educational of China, Key Laboratory of the Assembly and Application
of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha 410081, China
| |
Collapse
|
10
|
Saranya PV, Saranya S, Dhanya R, Anilkumar G. Green Synthesis of 2‐Aminobenzothiazoles via Copper Catalysis under Microwave Irradiation. ChemistrySelect 2022. [DOI: 10.1002/slct.202202718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
| | - Salim Saranya
- School of Chemical Sciences Mahatma Gandhi University, PD Hills Kottayam Kerala INDIA 686560
| | - Raju Dhanya
- School of Chemical Sciences Mahatma Gandhi University, PD Hills Kottayam Kerala INDIA 686560
| | - Gopinathan Anilkumar
- School of Chemical Sciences Mahatma Gandhi University, PD Hills Kottayam Kerala INDIA 686560
| |
Collapse
|
11
|
Microwave Assisted Esterification of Aryl/Alkyl Acids Catalyzed by N-Fluorobenzenesulfonimide. Catalysts 2022. [DOI: 10.3390/catal12111413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The susceptibility of the carbonyl group towards nucleophilic attack affords the construction of various organic compounds. Thus, investigations of carbonyl activation applying greener methodologies are highly important. In the present work, among the investigated N-halo compounds, N-fluorobenzenesulfonimide (NFSi) has been found as an efficient and selective catalyst in the reaction of direct esterification of aryl and alkyl carboxylic acids supported by microwave (MW) irradiation. The comprehensive esterification of different benzoic acids and mono-, di- and tri-carboxy alkyl derivatives was performed, whereby significant reaction time reductions were achieved. The presented method used NFSi as an easily manipulatable, non-metal, water- and air-tolerant catalyst, allowing simple synthetic and isolation procedures and energy saving, compared to conventional methodologies. Importantly, in contrast to esterification under thermal conditions, where N-halo compounds behave as pre-catalysts, in the MW-supported protocol, a distinct reaction mechanism has been proposed that assumes NFSi as a sustainable catalyst. Moreover, a scale-up of the industrially important derivative was performed.
Collapse
|
12
|
Beletskaya IP, Ananikov VP. Transition-Metal-Catalyzed C–S, C–Se, and C–Te Bond Formations via Cross-Coupling and Atom-Economic Addition Reactions. Achievements and Challenges. Chem Rev 2022; 122:16110-16293. [DOI: 10.1021/acs.chemrev.1c00836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Irina P. Beletskaya
- Chemistry Department, Lomonosov Moscow State University, Vorob’evy gory, Moscow 119899, Russia
| | - Valentine P. Ananikov
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, Moscow 119991, Russia
| |
Collapse
|
13
|
Sun J, Jena HS, Abednatanzi S, Liu YY, Leus K, Van Der Voort P. A Green Alternative for the Direct Aerobic Iodination of Arenes Using Molecular Iodine and a POM@MOF Catalyst. ACS APPLIED MATERIALS & INTERFACES 2022; 14:37681-37688. [PMID: 35943818 DOI: 10.1021/acsami.2c07130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Iodoarenes are important precursors for fine chemicals and pharmaceuticals. The direct iodination of arenes using molecular iodine (I2) has emerged as an attractive green synthesis method. Most of the direct iodination protocols are still homogeneous systems that require harsh conditions and use or produce toxic products. We report a new heterogeneous catalytic route for the direct aerobic iodination of arenes under mild conditions using a PMoV2 polyoxometalate (POM) embedded in the metal-organic framework (MOF) MIL-101 (PMoV2@MIL-101). The catalyst shows full yield for the conversion of mesitylene to 2-iodomesitylene at a rate that is similar to the homogeneous POM system. Moreover, the catalyst is applicable for a wide range of substrates in an oxygen atmosphere without using any co-catalysts or sacrificial agents. To the best of our knowledge, this is the first report on designing a sustainable and green MOF-based heterogeneous catalytic system for the direct iodination reaction using molecular oxygen and iodine.
Collapse
Affiliation(s)
- Jiamin Sun
- COMOC─Center for Ordered Materials, Organometallics and Catalysis, Department of Chemistry, Ghent University, Krijgslaan 281, Building S3, 9000 Ghent, Belgium
| | - Himanshu Sekhar Jena
- COMOC─Center for Ordered Materials, Organometallics and Catalysis, Department of Chemistry, Ghent University, Krijgslaan 281, Building S3, 9000 Ghent, Belgium
| | - Sara Abednatanzi
- COMOC─Center for Ordered Materials, Organometallics and Catalysis, Department of Chemistry, Ghent University, Krijgslaan 281, Building S3, 9000 Ghent, Belgium
| | - Ying-Ya Liu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 116023 Dalian, PR China
| | - Karen Leus
- COMOC─Center for Ordered Materials, Organometallics and Catalysis, Department of Chemistry, Ghent University, Krijgslaan 281, Building S3, 9000 Ghent, Belgium
| | - Pascal Van Der Voort
- COMOC─Center for Ordered Materials, Organometallics and Catalysis, Department of Chemistry, Ghent University, Krijgslaan 281, Building S3, 9000 Ghent, Belgium
| |
Collapse
|
14
|
Bardakov VG, Yakubenko AA, Verkhov VA, Antonov AS. Organoboron Derivatives of 1,8-Bis(dimethylamino)naphthalene: Synthesis, Structure, Stability, and Reactivity. Organometallics 2022. [DOI: 10.1021/acs.organomet.2c00115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Victor G. Bardakov
- Institute of Chemistry, St. Petersburg State University, Universitetskii pr. 26, St. Petersburg 198504, Russian Federation
| | - Artyom A. Yakubenko
- Institute of Chemistry, St. Petersburg State University, Universitetskii pr. 26, St. Petersburg 198504, Russian Federation
| | - Valeriy A. Verkhov
- Institute of Chemistry, St. Petersburg State University, Universitetskii pr. 26, St. Petersburg 198504, Russian Federation
| | - Alexander S. Antonov
- Institute of Chemistry, St. Petersburg State University, Universitetskii pr. 26, St. Petersburg 198504, Russian Federation
| |
Collapse
|
15
|
Zimba HC, Baldassari LL, Moro AV. A copper-catalysed one-pot hydroboration/azidation/cycloaddition reaction of alkynes. Org Biomol Chem 2022; 20:6239-6244. [PMID: 35611798 DOI: 10.1039/d2ob00635a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein we report our study on the development of a catalytic one-pot process, showing the challenges and advantages encountered all over the way. At the end, we developed a regioselective, environmentally friendly, and operationally simple method to explore the reactivity of functionalized propargylic alkynes through three copper-catalysed reactions in a single reaction vessel. The sequence consisted of a hydroboration, azidation, and 1,3-dipolar cycloaddition and led to the regioselective formation of vinyl 1,2,3-triazoles in good yields.
Collapse
Affiliation(s)
- Hamilton C Zimba
- Instituto de Química, Universidade Federal do Rio Grande do Sul, Av. Bento, Gonçalves 9500, Campus do Vale, 91501-970, Porto Alegre, RS, Brazil.
| | - Lucas L Baldassari
- Instituto de Química, Universidade Federal do Rio Grande do Sul, Av. Bento, Gonçalves 9500, Campus do Vale, 91501-970, Porto Alegre, RS, Brazil.
| | - Angélica V Moro
- Instituto de Química, Universidade Federal do Rio Grande do Sul, Av. Bento, Gonçalves 9500, Campus do Vale, 91501-970, Porto Alegre, RS, Brazil.
| |
Collapse
|
16
|
Tajbakhsh M, Naimi-Jamal MR. Copper-doped functionalized β-cyclodextrin as an efficient green nanocatalyst for synthesis of 1,2,3-triazoles in water. Sci Rep 2022; 12:4948. [PMID: 35322100 PMCID: PMC8943073 DOI: 10.1038/s41598-022-08868-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 03/07/2022] [Indexed: 12/04/2022] Open
Abstract
The synthesis of 1,2,3-triazoles with immobilized Cu(I) in thiosemicarbazide-functionalized β-cyclodextrin (Cu@TSC-β-CD) as a supramolecular catalyst was discussed. The catalyst was characterized by Fourier-transform infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA), X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), and Inductively Coupled Plasma Optical Emission Spectroscopy (ICP-OES) measurements. The catalyst showed high activity (up to 95% yields of triazole products under optimized reaction conditions), providing a one-pot, atom-economic, and highly regioselective green method for 1,2,3-triazoles synthesis in an azide-alkyne cycloaddition (AAC) protocol in water. High stability and no appreciable leaching of Cu(I) were observed, owing to its strong binding via the coordination with thiosemicarbazide functionality.
Collapse
Affiliation(s)
- Mahdieh Tajbakhsh
- Research Laboratory of Green Organic Synthesis and Polymers, Department of Chemistry, Iran University of Science and Technology, P.O. Box 16846-13114, Tehran, Iran
| | - Mohammad Reza Naimi-Jamal
- Research Laboratory of Green Organic Synthesis and Polymers, Department of Chemistry, Iran University of Science and Technology, P.O. Box 16846-13114, Tehran, Iran.
| |
Collapse
|
17
|
Jang M, Lim T, Park BY, Han MS. Metal-Free, Rapid, and Highly Chemoselective Reduction of Aromatic Nitro Compounds at Room Temperature. J Org Chem 2022; 87:910-919. [PMID: 34983185 DOI: 10.1021/acs.joc.1c01431] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In this study, we developed a metal-free and highly chemoselective method for the reduction of aromatic nitro compounds. This reduction was performed using tetrahydroxydiboron [B2(OH)4] as the reductant and 4,4'-bipyridine as the organocatalyst and could be completed within 5 min at room temperature. Under optimal conditions, nitroarenes with sensitive functional groups, such as vinyl, ethynyl, carbonyl, and halogen, were converted into the corresponding anilines with excellent selectivity while avoiding the undesirable reduction of the sensitive functional groups.
Collapse
Affiliation(s)
- Mingyeong Jang
- Department of Chemistry, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Taeho Lim
- Department of Chemistry, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Byoung Yong Park
- Department of Chemistry, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Min Su Han
- Department of Chemistry, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| |
Collapse
|
18
|
Application of Raw and Chemically Modified Biomasses for Heterogeneous Cu-Catalysed Conversion of Aryl boronic Acids to Phenols Derivatives. Catalysts 2022. [DOI: 10.3390/catal12010092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
This work describes the application of raw and chemically modified cellulose and sugarcane bagasse for ipso-hydroxylation of aryl boronic acids in environmentally friendly reaction conditions. The catalytic efficiency of five support-[Cu] materials was compared in forming phenols from aryl boronic acids. Our investigation highlights that the CEDA-[Cu] material (6-deoxy-6-aminoethyleneamino cellulose loaded with Cu) leads to the best results under very mild reaction conditions. The optimized catalytic sequence, allowing a facile transformation of boronic acids to phenols, required the mandatory and joint presence of the support, Cu2O, and KOH at room temperature. CEDA-[Cu] was characterized using 13C solid-state NMR, ICP, and FTIR. The use of CEDA-[Cu] accounts for the efficacious synthesis of variously substituted phenol derivatives and presents very good recyclability after five catalytic cycles.
Collapse
|
19
|
Fan CH, Xu T, Ke Z, Yeung YY. Autocatalytic aerobic ipso-hydroxylation of arylboronic acid with Hantzsch ester and Hantzsch pyridine. Org Chem Front 2022. [DOI: 10.1039/d2qo00618a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
ipso-Hydroxylation of arylboronic acids with Hantzsch ester has been developed. The by-product Hantzsch pyridine was found to promote the reaction in the presence of oxygen under ambient conditions.
Collapse
Affiliation(s)
- Chi-Hang Fan
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, China
| | - Tianyue Xu
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, China
| | - Zhihai Ke
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Shenzhen, Guangdong 518172, China
| | - Ying-Yeung Yeung
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, China
| |
Collapse
|
20
|
González MJ, Bauer F, Breit B. Cobalt-Catalyzed Hydroboration of Terminal and Internal Alkynes. Org Lett 2021; 23:8199-8203. [PMID: 34618449 DOI: 10.1021/acs.orglett.1c02854] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A novel methodology to access synthetically versatile vinylboronic esters through a ligand-controlled cobalt-catalyzed hydroboration of terminal and internal alkynes is reported. The approach relies on the in situ reduction of Co(II) by H-BPin in the presence of bisphosphine ligands generating catalytically active Co(I) hydride complexes. This procedure avoids the use of stoichiometric amounts of base, and no boron-containing byproducts are generated which is translated into high functional group tolerance and atom economy.
Collapse
Affiliation(s)
- María J González
- Institut für Organische Chemie, Albert-Ludwigs-Universität 21, 79104 Freiburg, Germany
| | - Felix Bauer
- Institut für Organische Chemie, Albert-Ludwigs-Universität 21, 79104 Freiburg, Germany
| | - Bernhard Breit
- Institut für Organische Chemie, Albert-Ludwigs-Universität 21, 79104 Freiburg, Germany
| |
Collapse
|
21
|
Sakata Y, Yoshida S, Hosoya T. Synthesis of Azidoanilines by the Buchwald-Hartwig Amination. J Org Chem 2021; 86:15674-15688. [PMID: 34694814 DOI: 10.1021/acs.joc.1c02251] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We report a Buchwald-Hartwig amination compatible with azido functionality. Treatment of azidoaryl iodides and amines with fourth-generation Buchwald precatalyst coordinated by CPhos and sodium tert-butoxide in 1,4-dioxane at 50 °C afforded the corresponding azidoanilines while leaving the azido groups intact. The method showed a broad substrate scope and was applicable to the synthesis of diazido compounds as photoaffinity probe candidates of pharmaceutical amines and multiazido platform molecules.
Collapse
Affiliation(s)
- Yuki Sakata
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo101-0062, Japan
| | - Suguru Yoshida
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo101-0062, Japan
| | - Takamitsu Hosoya
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo101-0062, Japan
| |
Collapse
|
22
|
Siddiqui H, Baheej MAA, Ullah S, Rizvi F, Iqbal S, Haniffa HM, Wahab AT, Choudhary MI. Synthesis of 1,2,3,triazole modified analogues of hydrochlorothiazide via click chemistry approach and in-vitro α-glucosidase enzyme inhibition studies. Mol Divers 2021; 26:2049-2067. [PMID: 34608550 DOI: 10.1007/s11030-021-10314-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 09/07/2021] [Indexed: 10/20/2022]
Abstract
The current study was aimed to discover potent inhibitors of α-glucosidase enzyme. A 25 membered library of new 1,2,3-triazole derivatives of hydrochlorothiazide (1) (HCTZ, a diuretic drug also being used for the treatment of high blood pressure) was synthesized through click chemistry approach. The structures of all derivatives 2-26 were deduced by MS, IR, 1H-NMR, and 13C-NMR spectroscopic techniques. All the compounds were found to be new. Compounds 1-26 were evaluated for α-glucosidase enzyme inhibition activity. Among them, 18 compounds showed potent inhibitory activity against α-glucosidase with IC50 values between 24 and 379 µM. α-Glucosidase inhibitor drug acarbose (IC50 = 875.75 ± 2.08 μM) was used as the standard. Kinetics studies of compounds 6, 9, 11, 12, 15, 20, 23, and 24 revealed that only compound 15 as a mixed-type of inhibitor, while others were non-competitive inhibitors of α-glucosidase enzyme. All the compounds were found to be non-cytotoxic when checked against mouse fibroblast 3T3 cell line.
Collapse
Affiliation(s)
- Hina Siddiqui
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan.
| | - M A A Baheej
- Department of Chemical Sciences, Faculty of Applied Sciences, South Eastern University, Oluvil, Sri Lanka
| | - Saeed Ullah
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Fazila Rizvi
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Shazia Iqbal
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Haroon M Haniffa
- Department of Chemical Sciences, Faculty of Applied Sciences, South Eastern University, Oluvil, Sri Lanka
| | - Atia-Tul Wahab
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - M Iqbal Choudhary
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan. .,Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan. .,Department of Biochemistry, King Abdul Aziz University, Jeddah, 21452, Saudi Arabia. .,Department of Chemistry, Faculty of Science and Technology, Universitas Airlangga, Komplek Campus C, Surabaya, 60115, Indonesia.
| |
Collapse
|
23
|
Kawamoto T, Ryu I. Blacklight‐Induced Hydroxylation of Arylboronic Acids Leading to Hydroxyarenes Using Molecular Oxygen and Tetrabutylammonium Borohydride. Helv Chim Acta 2021. [DOI: 10.1002/hlca.202100102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Takuji Kawamoto
- Department of Applied Chemistry Yamaguchi University Ube, Yamaguchi 755-8611 Japan
| | - Ilhyong Ryu
- Organization for Research Promotion Osaka Prefecture University Sakai, Osaka 599-8531 Japan
- Department of Applied Chemistry National Yang Ming Chiao Tung University (NYCU) Hsinchu 30010 Taiwan
| |
Collapse
|
24
|
Kondo Y, Kimura H, Fukumoto C, Yagi Y, Hattori Y, Kawashima H, Yasui H. Copper-mediated radioiodination reaction through aryl boronic acid or ester precursor and its application to direct radiolabeling of a cyclic peptide. J Labelled Comp Radiopharm 2021; 64:336-345. [PMID: 33990983 DOI: 10.1002/jlcr.3925] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 04/16/2021] [Accepted: 05/06/2021] [Indexed: 11/06/2022]
Abstract
A copper-mediated radioiodination using aryl boronic precursors is attracting attention as a solution to oxidative iododestannylation and nickel-mediated radioiodination drawbacks. The copper-mediated radiolabeling method allows radioiodination at room temperature with stable aryl boronic precursors without preparing complex starting materials or reagents and can be performed in a reaction vessel exposed to air. This method has good potential in radiochemistry; however, studies on the scope of copper-mediated radioiodination through boronic precursors are insufficient. In particular, few reports have demonstrated the effect of protecting groups on radiolabeling efficiency. Therefore, the effect of the protecting group of aryl boronic acids on the copper-mediated radioiodination was investigated. In addition, this method, which does not require heating, is expected to be useful for direct radiolabeling of peptides. Thus, we attempted direct radioiodination of c(RGDyk) as an example. The resulting radioiodination method was well tolerated in various substrates and was unaffected by the pinacol ester-type protecting group. Also, c(RGDyk) was labeled with 125 I via copper-mediated radioiodination using an aryl boronic acid precursor. The reaction time and yield were improved, compared with the indirect method. Furthermore, the large difference in polarity between the boronic acid precursor and the radiolabeled compound facilitated purification.
Collapse
Affiliation(s)
- Yuto Kondo
- Department of Analytical and Bioinorganic Chemistry, Division of Analytical and Physical Chemistry, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Hiroyuki Kimura
- Department of Analytical and Bioinorganic Chemistry, Division of Analytical and Physical Chemistry, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Chiaki Fukumoto
- Department of Analytical and Bioinorganic Chemistry, Division of Analytical and Physical Chemistry, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Yusuke Yagi
- Department of Analytical and Bioinorganic Chemistry, Division of Analytical and Physical Chemistry, Kyoto Pharmaceutical University, Kyoto, Japan
- Department of Radiological Technology, Faculty of Medical Science, Kyoto College of Medical Science, Kyoto, Japan
| | - Yasunao Hattori
- Center for Instrumental Analysis, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Hidekazu Kawashima
- Radioisotope Research Center, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Hiroyuki Yasui
- Department of Analytical and Bioinorganic Chemistry, Division of Analytical and Physical Chemistry, Kyoto Pharmaceutical University, Kyoto, Japan
| |
Collapse
|
25
|
Shirakami Y, Watabe T, Obata H, Kaneda K, Ooe K, Liu Y, Teramoto T, Toyoshima A, Shinohara A, Shimosegawa E, Hatazawa J, Fukase K. Synthesis of [ 211At]4-astato-L-phenylalanine by dihydroxyboryl-astatine substitution reaction in aqueous solution. Sci Rep 2021; 11:12982. [PMID: 34155314 PMCID: PMC8217504 DOI: 10.1038/s41598-021-92476-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 06/08/2021] [Indexed: 11/08/2022] Open
Abstract
Astatine-211 (211At)-labeled phenylalanine is expected to be a promising agent for targeted alpha-particle therapy for the treatment of patients with glioma. The existing reactions to prepare the labeled compound usually require organic solvents and metals that are toxic and hazardous to the environment. In this study, we developed a novel method wherein astatination was realized via the substitution of 211At for a dihydroxyboryl group coupled to phenylalanine. [211At]4-astato-L-phenylalanine was obtained as the carrier-free product in aqueous medium in high radiochemical yields (98.1 ± 1.9%, n = 5). The crude reaction mixture was purified by solid-phase extraction, and the radiochemical purity of the product was 99.3 ± 0.7% (n = 5). The high yield and purity were attributed to the formation of [211At]AtI and AtI2- as the reactive intermediates in the astatination reaction. The reaction did not require any organic solvents or toxic reagents, suggesting that this method is suitable for clinical applications.
Collapse
Affiliation(s)
- Yoshifumi Shirakami
- Institute for Radiation Sciences, Osaka University, Suita, 565-0871, Japan.
- Research Center for Nuclear Physics, Osaka University, Suita, 565-0871, Japan.
| | - Tadashi Watabe
- Institute for Radiation Sciences, Osaka University, Suita, 565-0871, Japan
- Department of Tracer Kinetics and Nuclear Medicine, Graduate School of Medicine, Osaka University, Suita, 565-0871, Japan
| | - Honoka Obata
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, 560-0043, Japan
| | - Kazuko Kaneda
- Institute for Radiation Sciences, Osaka University, Suita, 565-0871, Japan
| | - Kazuhiro Ooe
- Institute for Radiation Sciences, Osaka University, Suita, 565-0871, Japan
- Department of Tracer Kinetics and Nuclear Medicine, Graduate School of Medicine, Osaka University, Suita, 565-0871, Japan
| | - Yuwei Liu
- Department of Tracer Kinetics and Nuclear Medicine, Graduate School of Medicine, Osaka University, Suita, 565-0871, Japan
| | - Takahiro Teramoto
- Institute for Radiation Sciences, Osaka University, Suita, 565-0871, Japan
| | - Atsushi Toyoshima
- Institute for Radiation Sciences, Osaka University, Suita, 565-0871, Japan
| | - Atsushi Shinohara
- Institute for Radiation Sciences, Osaka University, Suita, 565-0871, Japan
- Department of Tracer Kinetics and Nuclear Medicine, Graduate School of Medicine, Osaka University, Suita, 565-0871, Japan
| | - Eku Shimosegawa
- Department of Molecular Imaging in Medicine, Osaka University Graduate School of Medicine, Suita, 565-0871, Japan
| | - Jun Hatazawa
- Research Center for Nuclear Physics, Osaka University, Suita, 565-0871, Japan
| | - Koichi Fukase
- Institute for Radiation Sciences, Osaka University, Suita, 565-0871, Japan
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, 560-0043, Japan
| |
Collapse
|
26
|
An Y, Yan H, Dong Z, Satz AL. DNA-Compatible Click Reaction Employing In Situ Generated Azides from Boronic Acids. Curr Protoc 2021; 1:e125. [PMID: 33956399 DOI: 10.1002/cpz1.125] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
An efficient method for the synthesis of DNA-conjugated 1,2,3-triazoles is copper (II) [Cu(II)-β-cyclodextrin]-mediated Huisgen cycloaddition ("click reaction") of DNA-conjugated alkynes with azides. However, a diverse array of building blocks is required to produce useful DNA encoded libraries, and the commercial availability of azides is limited. The method described herein generates azides in situ from aryl borates and TMSN3 , which then further react with DNA-conjugated terminal alkynes. © 2021 Wiley Periodicals LLC. Basic Protocol 1: Conjugation of PEG linker to DNA headpiece Basic Protocol 2: DNA conjugated terminal alkyne preparation Basic Protocol 3: DNA compatible one-pot click reaction Basic Protocol 4: LCMS monitoring.
Collapse
Affiliation(s)
- Yulong An
- HitS Business Unit, WuXi AppTec, Shanghai, China
| | - Hao Yan
- HitS Business Unit, WuXi AppTec, Shanghai, China
| | | | | |
Collapse
|
27
|
Shi S, Liu Z, Wu Z, Zhou H, Lu J. Preparation and biological evaluation of radioiodine-labeled triphenylphosphine derivatives as mitochondrial targeting probes. J Labelled Comp Radiopharm 2021; 64:271-281. [PMID: 33870522 DOI: 10.1002/jlcr.3910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/12/2021] [Accepted: 04/13/2021] [Indexed: 11/08/2022]
Abstract
The positive-charged lipophilic triphenylphosphonium cations (TPPs+ ) have been served as mitochondrial targeting vehicles for the delivery of various probes. In this study, we developed a new method for the preparation of radioiodine-labeled TPPs+ . Four 125 I-labeled TPPs+ , [125 I] 9-[125 I] 12, were prepared from the corresponding triphenylphosphine phenylborate precursors of B 5-B 8 via an optimized copper-catalyzed one-step procedure in high radiochemical yield (>95%). After radio-HPLC purification, the final products could be obtained with high specific activity. Their physicochemical properties, in vitro cellular uptake, and ex vivo mice biodistribution were investigated. The results suggested the 125 I-labeled TPPs+ were lipophilic and could specifically accumulate in the mitochondrial-rich myocardial cells through the mitochondrial membrane potential.
Collapse
Affiliation(s)
- Shuyu Shi
- Key Laboratory of Radiopharmaceuticals, Beijing Normal University, Ministry of Education, Beijing, China
- College of Chemistry, Beijing Normal University, Beijing, China
| | - Zelan Liu
- Key Laboratory of Radiopharmaceuticals, Beijing Normal University, Ministry of Education, Beijing, China
- College of Chemistry, Beijing Normal University, Beijing, China
| | - Zhenmin Wu
- Key Laboratory of Radiopharmaceuticals, Beijing Normal University, Ministry of Education, Beijing, China
- College of Chemistry, Beijing Normal University, Beijing, China
| | - Hang Zhou
- Key Laboratory of Radiopharmaceuticals, Beijing Normal University, Ministry of Education, Beijing, China
- College of Chemistry, Beijing Normal University, Beijing, China
| | - Jie Lu
- Key Laboratory of Radiopharmaceuticals, Beijing Normal University, Ministry of Education, Beijing, China
- College of Chemistry, Beijing Normal University, Beijing, China
| |
Collapse
|
28
|
Qian YE, Zheng L, Xiang HY, Yang H. Recent progress in the nitration of arenes and alkenes. Org Biomol Chem 2021; 19:4835-4851. [PMID: 34017966 DOI: 10.1039/d1ob00384d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Nitro compounds are a predominant class of synthetic intermediates and building blocks for the preparation of a wide range of nitrogen-containing compounds in the chemical industry. As such, impressive progress has been currently made in the nitration of aromatics and olefins with excellent functional group tolerance and site-selectivity. In this mini review, we intend to highlight the regiospecific nitration of arenes and alkenes in various reaction systems. The involved mechanisms are discussed as well.
Collapse
Affiliation(s)
- Yu-En Qian
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China.
| | - Lan Zheng
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China.
| | - Hao-Yue Xiang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China.
| | - Hua Yang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China.
| |
Collapse
|
29
|
Dandia A, Sharma R, Saini P, Badgoti RS, Rathore KS, Parewa V. The graphite-catalyzed ipso-functionalization of arylboronic acids in an aqueous medium: metal-free access to phenols, anilines, nitroarenes, and haloarenes. RSC Adv 2021; 11:18040-18049. [PMID: 35480165 PMCID: PMC9033238 DOI: 10.1039/d1ra01940f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 04/30/2021] [Indexed: 12/20/2022] Open
Abstract
An efficient, metal-free, and sustainable strategy has been described for the ipso-functionalization of phenylboronic acids using air as an oxidant in an aqueous medium. A range of carbon materials has been tested as carbocatalysts. To our surprise, graphite was found to be the best catalyst in terms of the turnover frequency. A broad range of valuable substituted aromatic compounds, i.e., phenols, anilines, nitroarenes, and haloarenes, has been prepared via the functionalization of the C-B bond into C-N, C-O, and many other C-X bonds. The vital role of the aromatic π-conjugation system of graphite in this protocol has been established and was observed via numerous analytic techniques. The heterogeneous nature of graphite facilitates the high recyclability of the carbocatalyst. This effective and easy system provides a multipurpose approach for the production of valuable substituted aromatic compounds without using any metals, ligands, bases, or harsh oxidants.
Collapse
Affiliation(s)
- Anshu Dandia
- Centre of Advanced Studies, Department of Chemistry, University of Rajasthan Jaipur India
| | - Ruchi Sharma
- Centre of Advanced Studies, Department of Chemistry, University of Rajasthan Jaipur India
| | - Pratibha Saini
- Centre of Advanced Studies, Department of Chemistry, University of Rajasthan Jaipur India
| | - Ranveer Singh Badgoti
- Centre of Advanced Studies, Department of Chemistry, University of Rajasthan Jaipur India
| | - Kuldeep S Rathore
- Department of Physics, Arya College of Engineering and IT Jaipur India
| | - Vijay Parewa
- Centre of Advanced Studies, Department of Chemistry, University of Rajasthan Jaipur India
| |
Collapse
|
30
|
Wang J, Ju MY, Wang X, Ma YN, Wei D, Chen X. Hydroboration Reaction and Mechanism of Carboxylic Acids using NaNH 2(BH 3) 2, a Hydroboration Reagent with Reducing Capability between NaBH 4 and LiAlH 4. J Org Chem 2021; 86:5305-5316. [PMID: 33729800 DOI: 10.1021/acs.joc.1c00302] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Hydroboration reactions of carboxylic acids using sodium aminodiboranate (NaNH2[BH3]2, NaADBH) to form primary alcohols were systematically investigated, and the reduction mechanism was elucidated experimentally and computationally. The transfer of hydride ions from B atoms to C atoms, the key step in the mechanism, was theoretically illustrated and supported by experimental results. The intermediates of NH2B2H5, PhCH═CHCOOBH2NH2BH3-, PhCH═CHCH2OBO, and the byproducts of BH4-, NH2BH2, and NH2BH3- were identified and characterized by 11B and 1H NMR. The reducing capacity of NaADBH was found between that of NaBH4 and LiAlH4. We have thus found that NaADBH is a promising reducing agent for hydroboration because of its stability and easy handling. These reactions exhibit excellent yields and good selectivity, therefore providing alternative synthetic approaches for the conversion of carboxylic acids to primary alcohols with a wide range of functional group tolerance.
Collapse
Affiliation(s)
- Jin Wang
- School of Chemistry and Chemical Engineering, Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials, Henan Normal University, Xinxiang 453007, China.,College of Chemistry and Chemical Engineering, Mudanjiang Normal University, Mudanjiang 157011, China
| | - Ming-Yue Ju
- School of Chemistry and Chemical Engineering, Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials, Henan Normal University, Xinxiang 453007, China
| | - Xinghua Wang
- Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Yan-Na Ma
- School of Chemistry and Chemical Engineering, Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials, Henan Normal University, Xinxiang 453007, China.,Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Donghui Wei
- Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Xuenian Chen
- School of Chemistry and Chemical Engineering, Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials, Henan Normal University, Xinxiang 453007, China.,Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
31
|
Direct bromodeboronation of arylboronic acids with CuBr2 in water. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2020.152738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
32
|
Application of bis(phosphinite) pincer nickel complexes to the catalytic hydrosilylation of aldehydes. Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2020.120088] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
33
|
Liu L, Xiao H, Xiao F, Xie Y, Huang H, Deng G. Synthesis of β-Ketosulfone from Sodium Sulfinate and Aryl Ethyl Ketone/Indanone. CHINESE J ORG CHEM 2021. [DOI: 10.6023/cjoc202109050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
34
|
Mali M, Jayaram V, Sharma GVM, Ghosh S, Berrée F, Dorcet V, Carboni B. Copper-Mediated Synthesis of ( E)-1-Azido and ( Z)-1,2-Diazido Alkenes from 1-Alkene-1,2-diboronic Esters: An Approach to Mono- and 1,2-Di-(1,2,3-Triazolyl)-Alkenes and Fused Bis-(1,2,3-Triazolo)-Pyrazines. J Org Chem 2020; 85:15104-15115. [PMID: 33151061 DOI: 10.1021/acs.joc.0c01980] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A stereoselective and convenient route has been demonstrated to access (Z)-1,2-diazido alkenes from the corresponding 1,2-diboronic esters via a copper-mediated reaction with sodium azide. Alternately, mono-functionalization was regioselectively carried out with trimethylsilyl azide as an azidation reactant. The in situ conversion of bis-azides to the corresponding bis-triazoles can be readily achieved in the presence of copper sulfate and sodium ascorbate, while the modification of the catalytic system opened a new convenient route to bis-triazolo-pyrazines, a new class of fused heterocycles.
Collapse
Affiliation(s)
- Maruti Mali
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad 500 007, India
| | - Vankudoth Jayaram
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad 500 007, India
| | - Gangavaram V M Sharma
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad 500 007, India
| | - Subhash Ghosh
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad 500 007, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Fabienne Berrée
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226, F-35000 Rennes, France
| | - Vincent Dorcet
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226, F-35000 Rennes, France
| | - Bertrand Carboni
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226, F-35000 Rennes, France
| |
Collapse
|
35
|
Microwave-assisted one-pot quick synthesis of 1-monosubstituted 1,2,3-triazoles from arylboronic acids, sodium azide and 3-butyn-2-ols. J CHEM SCI 2020. [DOI: 10.1007/s12039-020-01856-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
36
|
Elumalai V, Hansen JH. A scalable and green one-minute synthesis of substituted phenols. RSC Adv 2020; 10:40582-40587. [PMID: 35520826 PMCID: PMC9057563 DOI: 10.1039/d0ra08580d] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 10/23/2020] [Indexed: 12/23/2022] Open
Abstract
A mild, green and highly efficient protocol was developed for the synthesis of substituted phenols via ipso-hydroxylation of arylboronic acids in ethanol. The method utilizes the combination of aqueous hydrogen peroxide as the oxidant and H2O2/HBr as the reagent under unprecedentedly simple and convenient conditions. A wide range of arylboronic acids were smoothly transformed into substituted phenols in very good to excellent yields without chromatographic purification. The reaction is scalable up to at least 5 grams at room temperature with one-minute reaction time and can be combined in a one-pot sequence with bromination and Pd-catalyzed cross-coupling to generate more diverse, highly substituted phenols.
Collapse
Affiliation(s)
- Vijayaragavan Elumalai
- UiT The Arctic University of Norway, Department of Chemistry, Chemical Synthesis and Analysis Group N9037 Tromsø Norway
| | - Jørn H Hansen
- UiT The Arctic University of Norway, Department of Chemistry, Chemical Synthesis and Analysis Group N9037 Tromsø Norway
| |
Collapse
|
37
|
Tse EG, Houston SD, Williams CM, Savage GP, Rendina LM, Hallyburton I, Anderson M, Sharma R, Walker GS, Obach RS, Todd MH. Nonclassical Phenyl Bioisosteres as Effective Replacements in a Series of Novel Open-Source Antimalarials. J Med Chem 2020; 63:11585-11601. [PMID: 32678591 DOI: 10.1021/acs.jmedchem.0c00746] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The replacement of one chemical motif with another that is broadly similar is a common method in medicinal chemistry to modulate the physical and biological properties of a molecule (i.e., bioisosterism). In recent years, bioisosteres such as cubane and bicyclo[1.1.1]pentane (BCP) have been used as highly effective phenyl mimics. Herein, we show the successful incorporation of a range of phenyl bioisosteres during the open-source optimization of an antimalarial series. Cubane (19) and closo-carborane (23) analogues exhibited improved in vitro potency against Plasmodium falciparum compared to the parent phenyl compound; however, these changes resulted in a reduction in metabolic stability; unusually, enzyme-mediated oxidation was found to take place on the cubane core. A BCP analogue (22) was found to be equipotent to its parent phenyl compound and showed significantly improved metabolic properties. While these results demonstrate the utility of these atypical bioisosteres when used in a medicinal chemistry program, the search to find a suitable bioisostere may well require the preparation of many candidates, in our case, 32 compounds.
Collapse
Affiliation(s)
- Edwin G Tse
- School of Chemistry, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Sevan D Houston
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Craig M Williams
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland 4072, Australia
| | - G Paul Savage
- Ian Wark Laboratory, CSIRO Manufacturing, Melbourne, Victoria 3168, Australia
| | - Louis M Rendina
- School of Chemistry, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Irene Hallyburton
- Drug Discovery Unit, Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee DD1 5EH, U.K
| | - Mark Anderson
- Drug Discovery Unit, Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee DD1 5EH, U.K
| | - Raman Sharma
- Pfizer Inc., Groton, Connecticut 06340, United States
| | | | - R Scott Obach
- Pfizer Inc., Groton, Connecticut 06340, United States
| | - Matthew H Todd
- School of Pharmacy, University College London, London WC1N 1AX, U.K
| |
Collapse
|
38
|
Reddy Depa M, Potla S, Narkhede UC, Jadhav VD, Vidavalur S. Copper-mediated regioselective efficient direct ortho-nitration of anilide derivatives. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2020.152223] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
39
|
Yu K, Zhang H, Sheng Y, Zhu Y. Visible-light-promoted aerobic oxidative hydroxylation of arylboronic acids in water by hydrophilic organic semiconductor. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2020.152010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
40
|
Synthesis of Phenols via Metal-Free Hydroxylation of Aryl Boronic Acids with Aqueous TBHP. J CHEM-NY 2020. [DOI: 10.1155/2020/1543081] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
An alternate procedure for oxidative hydroxylation of aryl boronic acids with aqueous TBHP to access phenols is described. The protocol tolerated various functional groups substituted with aromatic rings. The reaction was performed in water and free from transition metal oxidants.
Collapse
|
41
|
Oeschger R, Su B, Yu I, Ehinger C, Romero E, He S, Hartwig J. Diverse functionalization of strong alkyl C-H bonds by undirected borylation. Science 2020; 368:736-741. [PMID: 32409470 DOI: 10.1126/science.aba6146] [Citation(s) in RCA: 117] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 04/05/2020] [Indexed: 12/21/2022]
Abstract
The selective functionalization of strong, typically inert carbon-hydrogen (C-H) bonds in organic molecules is changing synthetic chemistry. However, the undirected functionalization of primary C-H bonds without competing functionalization of secondary C-H bonds is rare. The borylation of alkyl C-H bonds has occurred previously with this selectivity, but slow rates required the substrate to be the solvent or in large excess. We report an iridium catalyst ligated by 2-methylphenanthroline with activity that enables, with the substrate as limiting reagent, undirected borylation of primary C-H bonds and, when primary C-H bonds are absent or blocked, borylation of strong secondary C-H bonds. Reactions at the resulting carbon-boron bond show how these borylations can lead to the installation of a wide range of carbon-carbon and carbon-heteroatom bonds at previously inaccessible positions of organic molecules.
Collapse
Affiliation(s)
- Raphael Oeschger
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Bo Su
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Isaac Yu
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Christian Ehinger
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Erik Romero
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Sam He
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA
| | - John Hartwig
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
42
|
Chang J, Fang F, Zhang J, Chen X. Hydrosilylation of Aldehydes and Ketones Catalysed by Bis(phosphinite) Pincer Platinum Hydride Complexes. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000166] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Jiarui Chang
- Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical EngineeringHenan Normal University Xinxiang Henan 453007 People's Republic of China
| | - Fei Fang
- Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical EngineeringHenan Normal University Xinxiang Henan 453007 People's Republic of China
| | - Jie Zhang
- Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical EngineeringHenan Normal University Xinxiang Henan 453007 People's Republic of China
| | - Xuenian Chen
- Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical EngineeringHenan Normal University Xinxiang Henan 453007 People's Republic of China
- College of Chemistry and Molecular EngineeringZhengzhou University Zhengzhou Henan 450001 People's Republic of China
| |
Collapse
|
43
|
Qu Y, Wen H, Ge R, Xu Y, Gao H, Shi X, Wang J, Cui W, Su W, Yang H, Kuai L, Satz AL, Peng X. Copper-Mediated DNA-Compatible One-Pot Click Reactions of Alkynes with Aryl Borates and TMS-N3. Org Lett 2020; 22:4146-4150. [DOI: 10.1021/acs.orglett.0c01219] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yi Qu
- HitS Business Unit, WuXi AppTec, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Huanan Wen
- HitS Business Unit, WuXi AppTec, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Rui Ge
- HitS Business Unit, WuXi AppTec, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Yanfen Xu
- HitS Business Unit, WuXi AppTec, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Hong Gao
- HitS Business Unit, WuXi AppTec, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Xiaodong Shi
- HitS Business Unit, WuXi AppTec, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Jiangong Wang
- HitS Business Unit, WuXi AppTec, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Weiren Cui
- HitS Business Unit, WuXi AppTec, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Wenji Su
- HitS Business Unit, WuXi AppTec, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Hongfang Yang
- HitS Business Unit, WuXi AppTec, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Letian Kuai
- HitS Business Unit, WuXi AppTec, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Alexander L. Satz
- HitS Business Unit, WuXi AppTec, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Xuanjia Peng
- HitS Business Unit, WuXi AppTec, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| |
Collapse
|
44
|
Kwon G, Lim I, Shin US, Kim S. Highly Porous Polycaprolactone Membrane: A Biocompatible Promotor for Oxidative Hydroxylation of Arylboronic Acids. B KOREAN CHEM SOC 2020. [DOI: 10.1002/bkcs.12012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Gyu‐Tae Kwon
- Department of ChemistryDankook University Yongin‐si South Korea
| | - In‐Kyun Lim
- Department of ChemistryDankook University Yongin‐si South Korea
| | - Ueon Sang Shin
- Graduate School of Nanobiomedical ScienceDankook University Cheonan 31116 South Korea
| | - Seung‐Hoi Kim
- Department of ChemistryDankook University Yongin‐si South Korea
| |
Collapse
|
45
|
Zhang K, Budinská A, Passera A, Katayev D. N-Nitroheterocycles: Bench-Stable Organic Reagents for Catalytic Ipso-Nitration of Aryl- and Heteroarylboronic Acids. Org Lett 2020; 22:2714-2719. [DOI: 10.1021/acs.orglett.0c00671] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Kun Zhang
- Department of Chemistry and Biosciences, Swiss Federal Institute of Technology, Vladimir-Prelog-Weg-2, 8093, Zürich, Switzerland
| | - Alena Budinská
- Department of Chemistry and Biosciences, Swiss Federal Institute of Technology, Vladimir-Prelog-Weg-2, 8093, Zürich, Switzerland
| | - Alessandro Passera
- Department of Chemistry and Biosciences, Swiss Federal Institute of Technology, Vladimir-Prelog-Weg-2, 8093, Zürich, Switzerland
| | - Dmitry Katayev
- Department of Chemistry and Biosciences, Swiss Federal Institute of Technology, Vladimir-Prelog-Weg-2, 8093, Zürich, Switzerland
| |
Collapse
|
46
|
Rongalite-promoted metal-free aerobic ipso-hydroxylation of arylboronic acids under sunlight: DFT mechanistic studies. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2019.151539] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
47
|
Mahanty K, Maiti D, De Sarkar S. Regioselective C–H Sulfonylation of 2H-Indazoles by Electrosynthesis. J Org Chem 2020; 85:3699-3708. [PMID: 32003566 DOI: 10.1021/acs.joc.9b03330] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Kingshuk Mahanty
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, West Bengal, India
| | - Debabrata Maiti
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, West Bengal, India
| | - Suman De Sarkar
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, West Bengal, India
| |
Collapse
|
48
|
Fu Z, Hao G, Fu Y, He D, Tuo X, Guo S, Cai H. Transition metal-free electrocatalytic halodeborylation of arylboronic acids with metal halides MX (X = I, Br) to synthesize aryl halides. Org Chem Front 2020. [DOI: 10.1039/c9qo01139k] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An efficient and regioselective ipso-halogenation of diverse arylboronic acids with metal halide salts MX (X = I, Br) has been well established under electrochemical conditions.
Collapse
Affiliation(s)
- Zhengjiang Fu
- College of Chemistry
- Nanchang University
- Nanchang
- China
- State Key Laboratory of Structural Chemistry
| | - Guangguo Hao
- College of Chemistry
- Nanchang University
- Nanchang
- China
| | - Yaping Fu
- College of Chemistry
- Nanchang University
- Nanchang
- China
| | - Dongdong He
- College of Chemistry
- Nanchang University
- Nanchang
- China
| | - Xun Tuo
- College of Chemistry
- Nanchang University
- Nanchang
- China
| | - Shengmei Guo
- College of Chemistry
- Nanchang University
- Nanchang
- China
| | - Hu Cai
- College of Chemistry
- Nanchang University
- Nanchang
- China
| |
Collapse
|
49
|
Albakour M, Zeyrek Ongun M, Topal SZ, Gürek AG. Zn(ii) phthalocyanines tetra substituted by aryl and alkyl azides: design, synthesis and optical detection of H2S. NEW J CHEM 2020. [DOI: 10.1039/d0nj00383b] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Experimental examination of two novel Zn(ii)-phthalocyanines having aryl and alkyl azide functional groups at the peripheral positions that have been designed/synthesized for hydrogen sulfide (H2S) sensing purposes.
Collapse
Affiliation(s)
- Mohamad Albakour
- Department of Chemisytry
- Gebze Technical University
- 41400 Gebze
- Turkey
| | - Merve Zeyrek Ongun
- Chemistry Technology Program
- Izmir Vocational High School
- Dokuz Eylul University
- Izmir
- Turkey
| | | | - Ayşe Gül Gürek
- Department of Chemisytry
- Gebze Technical University
- 41400 Gebze
- Turkey
| |
Collapse
|
50
|
Chen Y, Hu J, Ding A. Aerobic photooxidative hydroxylation of boronic acids catalyzed by anthraquinone-containing polymeric photosensitizer. RSC Adv 2020; 10:7927-7932. [PMID: 35492190 PMCID: PMC9049903 DOI: 10.1039/d0ra00176g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 02/17/2020] [Indexed: 11/21/2022] Open
Abstract
We report herein the synthesis of a polymeric photosensitizer and its application in aerobic photooxidative hydroxylation of boronic acids.
Collapse
Affiliation(s)
- Yang Chen
- State Key Laboratory of Molecular Engineering of Polymers
- Department of Macromolecular Science
- Fudan University
- Shanghai 200438
- PR China
| | - Jianhua Hu
- State Key Laboratory of Molecular Engineering of Polymers
- Department of Macromolecular Science
- Fudan University
- Shanghai 200438
- PR China
| | - Aishun Ding
- Department of Chemistry
- Fudan University
- Shanghai 200438
- PR China
| |
Collapse
|