1
|
Kasbaji M, Mennani M, Barhoumi S, Esshouba Y, Oubenali M, Ablouh EH, Kassab Z, Moubarik A, El Achaby M. Synergy of Magnetic Nanoparticles and Sodium Alginate-Coated Lignin for Effective Pollutant Remediation, Simple Recovery, and Cost-Effective Regeneration. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:20657-20678. [PMID: 39303155 DOI: 10.1021/acs.langmuir.4c02734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
In the pursuit of sustainable materials for environmental remediation, this study presents the development and comprehensive characterization of cobalt ferrite nanoparticles (CFNPs) incorporated in lignocellulosic-derived sodium alginate (CFNPs@LCG-SA) biocomposite beads. These biobased beads exhibit exceptional adsorption capabilities, particularly for methylene blue (MB) dyes, rendering them promising candidates for wastewater treatment. Using a comprehensive range of analytical techniques, including Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), thermogravimetric analysis-derivative thermogravimetry (TGA/DTG), scanning electron microscopy (SEM), energy-dispersive X-ray (EDX), etc., we elucidated their structural, physicochemical, and thermal properties. Their multifunctional nature, derived from lignin and sodium alginate components, provides ample active sites for both physical interactions and chemical bonding with contaminants apart from the magnetic character attributed by the CFNPs. With a freeze-drying approach, the optimal adsorption capacity and removal rate of MB reached 97 mg/g and 99%, respectively, and no meaningful decline in their activity was noted even after six cycles. The CFNPs@LCG-SA biocomposite beads emerge as a cost-efficient and sustainable remedy for environmental cleanup, offering valuable perspectives in environmental preservation and advancing green energy technologies.
Collapse
Affiliation(s)
- Meriem Kasbaji
- Materials Science, Energy and Nanoengineering (MSN) Department, Mohammed VI Polytechnic University, Lot 660-Hay Moulay Rachid, 43150 Ben Guerir, Morocco
- Laboratory of Chemical Processes and Applied Materials, Polydesciplinary Faculty, Sultan Moulay Slimane University, BP 592, 23000 Beni-Mellal, Morocco
- Laboratory of Engineering in Chemistry and Physics of Matter, Faculty of Science and Technologies, Sultan Moulay Slimane University, BP 523, 23000 Beni-Mellal, Morocco
| | - Mehdi Mennani
- Materials Science, Energy and Nanoengineering (MSN) Department, Mohammed VI Polytechnic University, Lot 660-Hay Moulay Rachid, 43150 Ben Guerir, Morocco
| | - Soufiane Barhoumi
- Materials Science, Energy and Nanoengineering (MSN) Department, Mohammed VI Polytechnic University, Lot 660-Hay Moulay Rachid, 43150 Ben Guerir, Morocco
| | - Youssef Esshouba
- Materials Science, Energy and Nanoengineering (MSN) Department, Mohammed VI Polytechnic University, Lot 660-Hay Moulay Rachid, 43150 Ben Guerir, Morocco
| | - Mustapha Oubenali
- Laboratory of Engineering in Chemistry and Physics of Matter, Faculty of Science and Technologies, Sultan Moulay Slimane University, BP 523, 23000 Beni-Mellal, Morocco
| | - El-Houssaine Ablouh
- Materials Science, Energy and Nanoengineering (MSN) Department, Mohammed VI Polytechnic University, Lot 660-Hay Moulay Rachid, 43150 Ben Guerir, Morocco
| | - Zineb Kassab
- Materials Science, Energy and Nanoengineering (MSN) Department, Mohammed VI Polytechnic University, Lot 660-Hay Moulay Rachid, 43150 Ben Guerir, Morocco
| | - Amine Moubarik
- Laboratory of Chemical Processes and Applied Materials, Polydesciplinary Faculty, Sultan Moulay Slimane University, BP 592, 23000 Beni-Mellal, Morocco
| | - Mounir El Achaby
- Materials Science, Energy and Nanoengineering (MSN) Department, Mohammed VI Polytechnic University, Lot 660-Hay Moulay Rachid, 43150 Ben Guerir, Morocco
| |
Collapse
|
2
|
Vidal M, Pandey J, Navarro-Ruiz J, Langlois J, Tison Y, Yoshii T, Wakabayashi K, Nishihara H, Frenkel AI, Stavitski E, Urrutigoïty M, Campos CH, Godard C, Placke T, Del Rosal I, Gerber IC, Petkov V, Serp P. Probing Basal and Prismatic Planes of Graphitic Materials for Metal Single Atom and Subnanometer Cluster Stabilization. Chemistry 2024; 30:e202400669. [PMID: 38924194 DOI: 10.1002/chem.202400669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 06/28/2024]
Abstract
Supported metal single atom catalysis is a dynamic research area in catalysis science combining the advantages of homogeneous and heterogeneous catalysis. Understanding the interactions between metal single atoms and the support constitutes a challenge facing the development of such catalysts, since these interactions are essential in optimizing the catalytic performance. For conventional carbon supports, two types of surfaces can contribute to single atom stabilization: the basal planes and the prismatic surface; both of which can be decorated by defects and surface oxygen groups. To date, most studies on carbon-supported single atom catalysts focused on nitrogen-doped carbons, which, unlike classic carbon materials, have a fairly well-defined chemical environment. Herein we report the synthesis, characterization and modeling of rhodium single atom catalysts supported on carbon materials presenting distinct concentrations of surface oxygen groups and basal/prismatic surface area. The influence of these parameters on the speciation of the Rh species, their coordination and ultimately on their catalytic performance in hydrogenation and hydroformylation reactions is analyzed. The results obtained show that catalysis itself is an interesting tool for the fine characterization of these materials, for which the detection of small quantities of metal clusters remains a challenge, even when combining several cutting-edge analytical methods.
Collapse
Affiliation(s)
- Mathieu Vidal
- Laboratoire de Chimie de Coordination (LCC) UPR 8241 CNRS, Toulouse INP Université de Toulouse LCC, composante ENSIACET, 4 allée Emile Monso, F-31030, Toulouse, France
| | - Jyoti Pandey
- Department of Physics, Central Michigan University, Dow Hall 203, MI 48859, Mount Pleasant, USA
| | - Javier Navarro-Ruiz
- LPCNO, INSA-CNRS-UPS Université de Toulouse, 135 Avenue de Rangueil, F-31077, Toulouse, France
| | - Joris Langlois
- Laboratoire de Chimie de Coordination (LCC) UPR 8241 CNRS, Toulouse INP Université de Toulouse LCC, composante ENSIACET, 4 allée Emile Monso, F-31030, Toulouse, France
- Departament de Química Física i Inorgánica, Universitat Rovira i Virgili, Carrer de Marcel⋅lí Domingo 1, 43007, Tarragona, Spain
| | - Yann Tison
- Université de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, 64000, Pau, France
| | - Takeharu Yoshii
- Advanced Institute for Materials Research/Institute of Multidisciplinary Research for Advanced Materials Tohoku University, 2-1-1 Katahira, Aoba Ward, 980-8577, Sendai Miyagi, Japan
| | - Keigo Wakabayashi
- Advanced Institute for Materials Research/Institute of Multidisciplinary Research for Advanced Materials Tohoku University, 2-1-1 Katahira, Aoba Ward, 980-8577, Sendai Miyagi, Japan
| | - Hirotomo Nishihara
- Advanced Institute for Materials Research/Institute of Multidisciplinary Research for Advanced Materials Tohoku University, 2-1-1 Katahira, Aoba Ward, 980-8577, Sendai Miyagi, Japan
| | - Anatoly I Frenkel
- Department of Materials Science and Chemical Engineering Stony Brook, University Stony Brook, 11794, New York, USA
- National Synchrotron Light Source (E. Stavitski) and Chemistry Division (A. I. Frenkel), Brookhaven National Laboratory, 11973, New York, USA
| | - Eli Stavitski
- National Synchrotron Light Source (E. Stavitski) and Chemistry Division (A. I. Frenkel), Brookhaven National Laboratory, 11973, New York, USA
| | - Martine Urrutigoïty
- Laboratoire de Chimie de Coordination (LCC) UPR 8241 CNRS, Toulouse INP Université de Toulouse LCC, composante ENSIACET, 4 allée Emile Monso, F-31030, Toulouse, France
| | - Cristian H Campos
- Departamento de Físico-Química Facultad de Ciencias Químicas, Universidad de Concepción, Edmundo Larenas 129, Casilla 160-C, Concepción, Chile
| | - Cyril Godard
- Departament de Química Física i Inorgánica, Universitat Rovira i Virgili, Carrer de Marcel⋅lí Domingo 1, 43007, Tarragona, Spain
| | - Tobias Placke
- MEET Battery Research Center, University of Münster, Corrensstraße 46, 48149, Münster, Germany
| | - Iker Del Rosal
- LPCNO, INSA-CNRS-UPS Université de Toulouse, 135 Avenue de Rangueil, F-31077, Toulouse, France
| | - Iann C Gerber
- LPCNO, INSA-CNRS-UPS Université de Toulouse, 135 Avenue de Rangueil, F-31077, Toulouse, France
| | - Valeri Petkov
- Department of Physics, Central Michigan University, Dow Hall 203, MI 48859, Mount Pleasant, USA
| | - Philippe Serp
- Laboratoire de Chimie de Coordination (LCC) UPR 8241 CNRS, Toulouse INP Université de Toulouse LCC, composante ENSIACET, 4 allée Emile Monso, F-31030, Toulouse, France
| |
Collapse
|
3
|
Zhao G, Chen T, Tang A, Yang H. Roles of Oxygen-Containing Functional Groups in Carbon for Electrocatalytic Two-Electron Oxygen Reduction Reaction. Chemistry 2024; 30:e202304065. [PMID: 38487973 DOI: 10.1002/chem.202304065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Indexed: 04/05/2024]
Abstract
Recent years have witnessed great research interests in developing high-performance electrocatalysts for the two-electron (2e-) oxygen reduction reaction (ORR) that enables the sustainable and flexible synthesis of H2O2. Carbon-based electrocatalysts exhibit attractive catalytic performance for the 2e- ORR, where oxygen-containing functional groups (OFGs) play a decisive role. However, current understanding is far from adequate, and the contribution of OFGs to the catalytic performance remains controversial. Therefore, a critical overview on OFGs in carbon-based electrocatalysts toward the 2e- ORR is highly desirable. Herein, we go over the methods for constructing OFGs in carbon including chemical oxidation, electrochemical oxidation, and precursor inheritance. Then we review the roles of OFGs in activating carbon toward the 2e- ORR, focusing on the intrinsic activity of different OFGs and the interplay between OFGs and metal species or defects. At last, we discuss the reasons for inconsistencies among different studies, and personal perspectives on the future development in this field are provided. The results provide insights into the origin of high catalytic activity and selectivity of carbon-based electrocatalysts toward the 2e- ORR and would provide theoretical foundations for the future development in this field.
Collapse
Affiliation(s)
- Guoqiang Zhao
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan, 430074, China
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
- Laboratory of Advanced Mineral Materials, China University of Geosciences, Wuhan, 430074, China
| | - Tianci Chen
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan, 430074, China
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Aidong Tang
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan, 430074, China
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
- Laboratory of Advanced Mineral Materials, China University of Geosciences, Wuhan, 430074, China
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Huaming Yang
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan, 430074, China
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
- Laboratory of Advanced Mineral Materials, China University of Geosciences, Wuhan, 430074, China
- Hunan Key Laboratory of Mineral Materials and Application, School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China
| |
Collapse
|
4
|
Hsiao YW, Nguyen DK, Yu K, Zheng W, Dimitrakellis P, Vlachos DG. Enhanced Catalytic Hydrodeoxygenation of Activated Carbon-Supported Metal Catalysts via Rapid Plasma Surface Functionalization. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37216677 DOI: 10.1021/acsami.3c03447] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
We employ a nonthermal, He/O2 atmospheric plasma as an efficient surface functionalization method of activated carbons. We show that plasma treatment rapidly increases the surface oxygen content from 4.1 to 23.4% on a polymer-based spherical activated carbon in 10 min. Plasma treatment is 3 orders of magnitude faster than acidic oxidation and introduces a diverse range of carbonyl (C═O) and carboxyl (O-C═O) functionalities that were not found with acidic oxidation. The increased oxygen functionalities reduce the particle size of a high 20 wt % loading Cu catalyst by >44% and suppress the formation of large agglomerates. Increased metal dispersion exposes additional active sites and improves the yield of hydrodeoxygenation of 5-hydroxymethyl furfural to 2,5-dimethyl furan, an essential compound for biofuel replacement, by 47%. Surface functionalization via plasma can advance catalysis synthesis while being rapid and sustainable.
Collapse
Affiliation(s)
- Yung Wei Hsiao
- Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy Street, Newark, Delaware 19716, United States
- RAPID Manufacturing Institute, Delaware Energy Institute (DEI), University of Delaware, 221 Academy Street, Newark, Delaware 19716, United States
| | - Darien K Nguyen
- Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy Street, Newark, Delaware 19716, United States
- RAPID Manufacturing Institute, Delaware Energy Institute (DEI), University of Delaware, 221 Academy Street, Newark, Delaware 19716, United States
| | - Kewei Yu
- Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy Street, Newark, Delaware 19716, United States
- RAPID Manufacturing Institute, Delaware Energy Institute (DEI), University of Delaware, 221 Academy Street, Newark, Delaware 19716, United States
- Catalysis Center for Energy Innovation, University of Delaware, Newark, Delaware 19716, United States
| | - Weiqing Zheng
- RAPID Manufacturing Institute, Delaware Energy Institute (DEI), University of Delaware, 221 Academy Street, Newark, Delaware 19716, United States
- Catalysis Center for Energy Innovation, University of Delaware, Newark, Delaware 19716, United States
| | - Panagiotis Dimitrakellis
- RAPID Manufacturing Institute, Delaware Energy Institute (DEI), University of Delaware, 221 Academy Street, Newark, Delaware 19716, United States
- Catalysis Center for Energy Innovation, University of Delaware, Newark, Delaware 19716, United States
| | - Dionisios G Vlachos
- Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy Street, Newark, Delaware 19716, United States
- RAPID Manufacturing Institute, Delaware Energy Institute (DEI), University of Delaware, 221 Academy Street, Newark, Delaware 19716, United States
- Catalysis Center for Energy Innovation, University of Delaware, Newark, Delaware 19716, United States
| |
Collapse
|
5
|
Zhou J, Yang P, Kots PA, Cohen M, Chen Y, Quinn CM, de Mello MD, Anibal Boscoboinik J, Shaw WJ, Caratzoulas S, Zheng W, Vlachos DG. Tuning the reactivity of carbon surfaces with oxygen-containing functional groups. Nat Commun 2023; 14:2293. [PMID: 37085515 PMCID: PMC10121666 DOI: 10.1038/s41467-023-37962-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 04/07/2023] [Indexed: 04/23/2023] Open
Abstract
Oxygen-containing carbons are promising supports and metal-free catalysts for many reactions. However, distinguishing the role of various oxygen functional groups and quantifying and tuning each functionality is still difficult. Here we investigate the role of Brønsted acidic oxygen-containing functional groups by synthesizing a diverse library of materials. By combining acid-catalyzed elimination probe chemistry, comprehensive surface characterizations, 15N isotopically labeled acetonitrile adsorption coupled with magic-angle spinning nuclear magnetic resonance, machine learning, and density-functional theory calculations, we demonstrate that phenolic is the main acid site in gas-phase chemistries and unexpectedly carboxylic groups are much less acidic than phenolic groups in the graphitized mesoporous carbon due to electron density delocalization induced by the aromatic rings of graphitic carbon. The methodology can identify acidic sites in oxygenated carbon materials in solid acid catalyst-driven chemistry.
Collapse
Affiliation(s)
- Jiahua Zhou
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, 19716, USA
- Catalysis Center for Energy Innovation, University of Delaware, Newark, DE, 19716, USA
| | - Piaoping Yang
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, 19716, USA
- Catalysis Center for Energy Innovation, University of Delaware, Newark, DE, 19716, USA
| | - Pavel A Kots
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, 19716, USA
| | - Maximilian Cohen
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, 19716, USA
| | - Ying Chen
- Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Caitlin M Quinn
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, 19716, USA
| | - Matheus Dorneles de Mello
- Catalysis Center for Energy Innovation, University of Delaware, Newark, DE, 19716, USA
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - J Anibal Boscoboinik
- Catalysis Center for Energy Innovation, University of Delaware, Newark, DE, 19716, USA
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - Wendy J Shaw
- Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Stavros Caratzoulas
- Catalysis Center for Energy Innovation, University of Delaware, Newark, DE, 19716, USA
| | - Weiqing Zheng
- Catalysis Center for Energy Innovation, University of Delaware, Newark, DE, 19716, USA.
| | - Dionisios G Vlachos
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, 19716, USA.
- Catalysis Center for Energy Innovation, University of Delaware, Newark, DE, 19716, USA.
| |
Collapse
|
6
|
Kasbaji M, Mennani M, Grimi N, Oubenali M, Mbarki M, Zakhem HEL, Moubarik A. Adsorption of cationic and anionic dyes onto coffee grounds cellulose/sodium alginate double-network hydrogel beads: Isotherm analysis and recyclability performance. Int J Biol Macromol 2023; 239:124288. [PMID: 37023876 DOI: 10.1016/j.ijbiomac.2023.124288] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 03/19/2023] [Accepted: 03/29/2023] [Indexed: 04/08/2023]
Abstract
This work describes the preparation of new eco-friendly adsorbents with a simple method. Gel beads of coffee grounds cellulose (CGC) and sodium alginate (SA) were prepared for wastewater treatment. Upon their synthesis, the physicochemical properties, performances and efficiency were analyzed by means of various structural and morphological characterizations. Kinetic and thermodynamic adsorption approaches evaluated the removal capacity of these beads which reached equilibrium in 20 min for Methylene Blue (MB) and Congo Red (CR). Also, the kinetics shows that the results can be explained by the pseudo-second-order model (PSO). Furthermore, the isotherm assessments showed that Langmuir-Freundlich can fit the adsorption data of both contaminants. Accordingly, the maximum adsorption capacities reached by the Langmuir-Freundlich model are 400.50 and 411.45 mg/g for MB and CR, respectively. It is interesting to note that the bio-adsorption capabilities of MB and CR on bead hydrogels decreased with temperature. Besides, the results of the thermodynamic study evidenced that the bio-adsorption processes are favorable, spontaneous and exothermic. The CGC/SA gel beads are therefore outstanding bio-adsorbents, offering a great adsorptive performance and regenerative abilities.
Collapse
Affiliation(s)
- Meriem Kasbaji
- Laboratory of Chemical Processes and Applied Materials, Polydisciplinary Faculty, Sultan Moulay Slimane University, BP 592, Beni-Mellal, Morocco; Laboratory of Engineering in Chemistry and Physics of Matter, Faculty of Science and Technologies, Sultan Moulay Slimane University, BP 523, Beni-Mellal, Morocco; Materials Science, Energy and Nanoengineering (MSN) Department, Mohammed VI Polytechnic University, Lot 660-Hay Moulay Rachid, 43150 Ben Guerir, Morocco
| | - Mehdi Mennani
- Laboratory of Chemical Processes and Applied Materials, Polydisciplinary Faculty, Sultan Moulay Slimane University, BP 592, Beni-Mellal, Morocco
| | - Nabil Grimi
- Sorbonne University, University of Technology of Compiegne, Integrated Transformations of Renewable Matter Laboratory (UTC/ESCOM, EA 4297 TIMR), Royally Research Centre, CS 60 319, 60 203 Compiegne Cedex, France
| | - Mustapha Oubenali
- Laboratory of Engineering in Chemistry and Physics of Matter, Faculty of Science and Technologies, Sultan Moulay Slimane University, BP 523, Beni-Mellal, Morocco
| | - Mohamed Mbarki
- Laboratory of Engineering in Chemistry and Physics of Matter, Faculty of Science and Technologies, Sultan Moulay Slimane University, BP 523, Beni-Mellal, Morocco
| | - Henri E L Zakhem
- Chemical Engineering Department, University of Balamand, POBox 33, Amioun EL KOURA, Lebanon
| | - Amine Moubarik
- Laboratory of Chemical Processes and Applied Materials, Polydisciplinary Faculty, Sultan Moulay Slimane University, BP 592, Beni-Mellal, Morocco.
| |
Collapse
|
7
|
Tang Y, Dou J, Lu Z, Xu J, He Y. Accelerating Fe 2+/Fe 3+ cycle via biochar to improve catalytic degradation efficiency of the Fe 3+/persulfate oxidation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 316:120669. [PMID: 36395909 DOI: 10.1016/j.envpol.2022.120669] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/30/2022] [Accepted: 11/13/2022] [Indexed: 06/16/2023]
Abstract
The sluggish Fe3+/Fe2+ cycle was the rate-limiting step in the Fenton-like reaction, and metal-free carbonaceous materials are considered as emerging alternatives to solve this problem. However, the effect of carbon material properties on the distribution of reactive species remains poorly understood. This study investigated the possibility and mechanism of using biochar to accelerate the Fe3+/Fe2+ cycle to overcome the low efficiency of Fe3+/persulfate (PS) catalytic oxidation of phenanthrene. More importantly, the contribution of reactive species in the reaction systems with the variation of biochar pyrolysis temperatures was quantitatively studied. The results showed that medium-temperature derived biochar (BC500) had the greatest ability to enhance the Fenton-like system compared to the low- and high-temperature (BC350/700), and the first-order rate constant achieved 5.2 and 35.7-fold increase against the biochar/PS and Fe3+/PS systems, respectively. Using electrochemical evidence, sulfoxide probe tests, and steady-state concentration calculations, radicals yields were found to rise and then reduce with decreasing pyrolysis temperature, while the nonradical contribution of Fe(IV) increased to 56.3%. Electron paramagnetic resonance, Boehm titration, and Raman spectroscopy unraveled that the enhanced effect of biochar resulted from itself persistent free radicals, phenolic-OH, and edge defects, which enabled electron transfer between Fe3+ and biochar. Fe2+ was thus continuously generated and effectively activated the PS. This work enables a better understanding of the Fe3+-mediated Fenton-like reaction in the presence of biochar and provides a sustainable green strategy for Fenton chemistry with potential applications.
Collapse
Affiliation(s)
- Yao Tang
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jibo Dou
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Zhijiang Lu
- Department of Environmental Science and Geology, Wayne State University, Detroit, MI, 48201, United States
| | - Jianming Xu
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yan He
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China; Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, Hangzhou, 310058, China.
| |
Collapse
|
8
|
De S, Nuli KC, Fulmali AO, Behera P, Prusty RK. Elevated‐temperature mechanical performance of
GFRP
composite with functionalized hybrid nanofiller. J Appl Polym Sci 2022. [DOI: 10.1002/app.53223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Soubhik De
- FRP Composites Laboratory, Department of Metallurgical and Materials Engineering National Institute of Technology, Rourkela Rourkela Odisha India
| | - Krishna Chaitanya Nuli
- FRP Composites Laboratory, Department of Metallurgical and Materials Engineering National Institute of Technology, Rourkela Rourkela Odisha India
| | - Abhinav Omprakash Fulmali
- FRP Composites Laboratory, Department of Metallurgical and Materials Engineering National Institute of Technology, Rourkela Rourkela Odisha India
| | - Priyadarhi Behera
- Department of Mining & Materials Engineering McGill University Montreal Quebec Canada
| | - Rajesh Kumar Prusty
- FRP Composites Laboratory, Department of Metallurgical and Materials Engineering National Institute of Technology, Rourkela Rourkela Odisha India
- Center for Nanomaterials National Institute of Technology, Rourkela Rourkela Odisha India
| |
Collapse
|
9
|
Zhang C, Liu G, Long Q, Wu C, Wang L. Tailoring surface carboxyl groups of mesoporous carbon boosts electrochemical H 2O 2 production. J Colloid Interface Sci 2022; 622:849-859. [PMID: 35561605 DOI: 10.1016/j.jcis.2022.04.140] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 04/21/2022] [Accepted: 04/24/2022] [Indexed: 11/26/2022]
Abstract
Oxygen-doped porous carbon materials have been shown promising performance for electrochemical two-electron oxygen reduction reaction (2e- ORR), an efficient approach for the safe and continuous on-site generation of H2O2. The regulation and mechanism understanding of active oxygen-containing functional groups (OFGs) remain great challenges. Here, OFGs modified porous carbon were prepared by thermal oxidation (MC-12-Air), HNO3 oxidation (MC-12-HNO3) and H2O2 solution hydrothermal treatment (MC-12-H2O2), respectively. Structural characterization showed that the oxygen doping content of three catalysts reached about 20%, with the almost completely maintained specific surface area (exception of MC-12- HNO3). Spectroscopic characterization further revealed that hydroxyl groups are mainly introduced into MC-12-Air, while carboxyl groups are mainly introduced into MC-12- HNO3 and MC-12- H2O2. Compared with the pristine catalyst, three oxygen-functionalized catalysts showed enhanced activity and H2O2 selectivity in 2e- ORR. Among them, MC-12-H2O2 exhibited the highest catalytic activity and selectivity of 94 %, as well as a considerable HO2- accumulation of 46.2 mmol L-1 and excellent stability in an extended test over 36 h in a H-cell. Electrochemical characterization demonstrated the promotion of OFGs on ORR kinetics and the greater contribution of carboxyl groups to the intrinsically catalytic activity. DFT calculations confirmed that the electrons are transferred from carboxyl groups to adjacent carbon and the enhanced adsorption strength toward *OOH intermediate, leading to a lower energy barrier for forming *OOH on carboxyl terminated carbon atoms.
Collapse
Affiliation(s)
- Chunyu Zhang
- Key Laboratory for Green Chemical Technology of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Guozhu Liu
- Key Laboratory for Green Chemical Technology of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; Zhejiang Institute of Tianjin University, Ningbo, Zhejiang, 315201, China
| | - Quanfu Long
- Key Laboratory for Green Chemical Technology of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Chan Wu
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China.
| | - Li Wang
- Key Laboratory for Green Chemical Technology of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; Zhejiang Institute of Tianjin University, Ningbo, Zhejiang, 315201, China.
| |
Collapse
|
10
|
Rezaei Z, Alemzadeh I, Vossoughi M. Design and fabrication of an electrochemical‐based nanofibrous immunosensor for detection of prostate cancer biomarker,
PSMA. POLYM ADVAN TECHNOL 2022. [DOI: 10.1002/pat.5658] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Zahra Rezaei
- Chemical and Petroleum Engineering Department Sharif University of Technology Iran
| | - Iran Alemzadeh
- Chemical and Petroleum Engineering Department Sharif University of Technology Iran
| | - Manouchehr Vossoughi
- Chemical and Petroleum Engineering Department Sharif University of Technology Iran
| |
Collapse
|
11
|
Stando G, Han S, Kumanek B, Łukowiec D, Janas D. Tuning wettability and electrical conductivity of single-walled carbon nanotubes by the modified Hummers method. Sci Rep 2022; 12:4358. [PMID: 35288607 PMCID: PMC8921219 DOI: 10.1038/s41598-022-08343-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 03/01/2022] [Indexed: 11/29/2022] Open
Abstract
Partial oxidation of nanocarbon materials is one of the most straightforward methods to improve their compatibility with other materials, which widens its application potential. This work studied how the microstructure and properties of high crystallinity single-walled carbon nanotubes (SWCNTs) can be tailored by applying the modified Hummers method. The influence of temperature (0, 18, 40 °C), reaction time (0 min to 7 h), and the amount of KMnO4 oxidant was monitored. The results showed that depending on the oxidation conditions, the electronic characteristics of the material could be adjusted. After optimizing the parameters, the SWCNTs were much more conductive (1369 ± 84 S/cm with respect to 283 ± 32 S/cm for the untreated material). At the same time, the films made from them exhibited hydrophilic character of the surface (water contact angle changed from 71° to 27°).
Collapse
Affiliation(s)
- Grzegorz Stando
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Faculty of Chemistry, Silesian University of Technology, B. Krzywoustego 4, 44-100, Gliwice, Poland.
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Sujie Han
- School of Materials Science and Chemical Engineering, Ningbo University, 818 Fenghua Road, Ningbo, People's Republic of China
| | - Bogumiła Kumanek
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Faculty of Chemistry, Silesian University of Technology, B. Krzywoustego 4, 44-100, Gliwice, Poland
- Laboratory of Material Engineering and Environment, KOMAG Institute of Mining Technology, 44-101, Gliwice, Poland
| | - Dariusz Łukowiec
- Institute of Engineering Materials and Biomaterials, Faculty of Mechanical Engineering, Silesian University of Technology, Konarskiego 18, 44-100, Gliwice, Poland
| | - Dawid Janas
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Faculty of Chemistry, Silesian University of Technology, B. Krzywoustego 4, 44-100, Gliwice, Poland.
| |
Collapse
|
12
|
Jonathan A, Dastidar RG, Wang C, Dumesic JA, Huber GW. Effect of catalyst support on cobalt catalysts for ethylene oligomerization into linear olefins. Catal Sci Technol 2022. [DOI: 10.1039/d2cy00531j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Here, we show that the oligomerization activity of a carbon-supported cobalt oxide catalyst is nearly twice as high when it is supported on a less oxidized carbon support.
Collapse
Affiliation(s)
- Alvin Jonathan
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Raka G. Dastidar
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Chengrong Wang
- ExxonMobil Research and Engineering, Annandale, NJ, 08801, USA
| | - James A. Dumesic
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - George W. Huber
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA
| |
Collapse
|
13
|
Librando IL, Mahmoud AG, Carabineiro SAC, Guedes da Silva MFC, Geraldes CFGC, Pombeiro AJL. Synthesis of a Novel Series of Cu(I) Complexes Bearing Alkylated 1,3,5-Triaza-7-phosphaadamantane as Homogeneous and Carbon-Supported Catalysts for the Synthesis of 1- and 2-Substituted-1,2,3-triazoles. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2702. [PMID: 34685140 PMCID: PMC8537716 DOI: 10.3390/nano11102702] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/05/2021] [Accepted: 10/09/2021] [Indexed: 11/28/2022]
Abstract
The N-alkylation of 1,3,5-triaza-7-phosphaadamantane (PTA) with ortho-, meta- and para-substituted nitrobenzyl bromide under mild conditions afforded three hydrophilic PTA ammonium salts, which were used to obtain a new set of seven water-soluble copper(I) complexes. The new compounds were fully characterized and their catalytic activity was investigated for the low power microwave assisted one-pot azide-alkyne cycloaddition reaction in homogeneous aqueous medium to obtain disubstituted 1,2,3-triazoles. The most active catalysts were immobilized on activated carbon (AC), multi-walled carbon nanotubes (CNT), as well as surface functionalized AC and CNT, with the most efficient support being the CNT treated with nitric acid and NaOH. In the presence of the immobilized catalyst, several 1,4-disubstituted-1,2,3-triazoles were obtained from the reaction of terminal alkynes, organic halides and sodium azide in moderate yields up to 80%. Furthermore, the catalyzed reaction of terminal alkynes, formaldehyde and sodium azide afforded 2-hydroxymethyl-2H-1,2,3-triazoles in high yields up to 99%. The immobilized catalyst can be recovered and recycled through simple workup steps and reused up to five consecutive cycles without a marked loss in activity. The described catalytic systems proceed with a broad substrate scope, under microwave irradiation in aqueous medium and according to "click rules".
Collapse
Affiliation(s)
- Ivy L. Librando
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; (I.L.L.); (S.A.C.C.); (M.F.C.G.d.S.); (A.J.L.P.)
| | - Abdallah G. Mahmoud
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; (I.L.L.); (S.A.C.C.); (M.F.C.G.d.S.); (A.J.L.P.)
- Department of Chemistry, Faculty of Science, Helwan University, Ain Helwan, Cairo 11795, Egypt
| | - Sónia A. C. Carabineiro
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; (I.L.L.); (S.A.C.C.); (M.F.C.G.d.S.); (A.J.L.P.)
- LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - M. Fátima C. Guedes da Silva
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; (I.L.L.); (S.A.C.C.); (M.F.C.G.d.S.); (A.J.L.P.)
| | - Carlos F. G. C. Geraldes
- Coimbra Chemistry Center, University of Coimbra, Rua Larga Largo D. Dinis, 3004-535 Coimbra, Portugal;
- Department of Life Sciences, Faculty of Science and Technology, Calçada Martim de Freitas, 3000-393 Coimbra, Portugal
| | - Armando J. L. Pombeiro
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; (I.L.L.); (S.A.C.C.); (M.F.C.G.d.S.); (A.J.L.P.)
- Research Institute of Chemistry, Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, 117198 Moscow, Russia
| |
Collapse
|
14
|
Zhu G, Huang Z, Zhao L, Tu Y. Unexpected spontaneous dynamic oxygen migration on carbon nanotubes. NANOSCALE 2021; 13:15231-15237. [PMID: 34553730 DOI: 10.1039/d1nr03251h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Combining density functional theory (DFT) calculations and ab initio molecular dynamics (AIMD) simulations, we show that oxygen functional groups exhibit unexpected spontaneous dynamic behaviors on the interior surface of single-walled carbon nanotubes (SWCNTs). The hydroxyl and epoxy migrations are achieved by the C-O bond breaking/reforming reactions or the proton transfer reaction between the neighboring epoxy and hydroxyl groups. It is demonstrated that the spontaneous dynamic characteristic is attributed to the sharply reduced energy barrier less than or comparable to thermal fluctuations. We also observe a stable intermediate state with a dangling C-O bond, which permits the successive migration of the oxygen functional groups. However, on the exterior surface of SWCNTs, it is difficult for the oxygen groups to migrate spontaneously because there are relatively high energy barriers, and the dangling C-O bond prefers to transform into the more stable epoxy configuration. The spontaneous oxygen migration is further confirmed by the oxygen migration process using DFT calculations and AIMD simulations at room temperature. Our work provides a new understanding of the behavior of oxygen functional groups at interfaces and gives a potential route to design new carbon-based dynamic materials.
Collapse
Affiliation(s)
- Guangdong Zhu
- College of Physical Science and Technology, Yangzhou University, Jiangsu, 225009, China.
| | - Zhijing Huang
- College of Physical Science and Technology, Yangzhou University, Jiangsu, 225009, China.
| | - Liang Zhao
- College of Physical Science and Technology, Yangzhou University, Jiangsu, 225009, China.
| | - Yusong Tu
- College of Physical Science and Technology, Yangzhou University, Jiangsu, 225009, China.
| |
Collapse
|
15
|
Mechanical Properties and Characterization of Epoxy Composites Containing Highly Entangled As-Received and Acid Treated Carbon Nanotubes. NANOMATERIALS 2021; 11:nano11092445. [PMID: 34578761 PMCID: PMC8471663 DOI: 10.3390/nano11092445] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/23/2021] [Accepted: 09/14/2021] [Indexed: 12/03/2022]
Abstract
Huntsman–Merrimack MIRALON® carbon nanotubes (CNTs) are a novel, highly entangled, commercially available, and scalable format of nanotubes. As-received and acid-treated CNTs were added to aerospace grade epoxy (CYCOM® 977-3), and the composites were characterized. The epoxy resin is expected to infiltrate the network of the CNTs and could improve mechanical properties. Epoxy composites were tested for flexural and viscoelastic properties and the as-received and acid treated CNTs were characterized using Field-Emission Scanning and Transmission Electron Microscopy, X-Ray Photoelectron Spectroscopy, and Thermogravimetric Analysis. Composites containing 0.4 wt% as-received CNTs showed an increase in flexural strength, from 136.9 MPa for neat epoxy to 147.5 MPa. In addition, the flexural modulus increased from 3.88 GPa for the neat epoxy to 4.24 GPa and 4.49 GPa for the 2.0 wt% and 3.0 wt% as-received CNT/epoxy composites, respectively. FE-SEM micrographs indicated good dispersion of the CNTs in the as-received CNT/epoxy composites and the 10 M nitric acid 6 h treatment at 120 °C CNT/epoxy composites. CNTs treated with 10 M nitric acid for 6 h at 120 °C added oxygen containing functional groups (C–O, C=O, and O=C–O) and removed iron catalyst present on the as-received CNTs, but the flexural properties were not improved compared to the as-received CNT/epoxy composites.
Collapse
|
16
|
The Catalytic Activity of Carbon-Supported Cu(I)-Phosphine Complexes for the Microwave-Assisted Synthesis of 1,2,3-Triazoles. Catalysts 2021. [DOI: 10.3390/catal11020185] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
A set of Cu(I) complexes with 3,7-diacetyl-1,3,7-triaza-5-phosphabicyclo-[3.3.1]nonane (DAPTA) phosphine ligands viz. [CuX(κP-DAPTA)3] (1: X = Br; 2: X = I) and [Cu(μ-X)(κP-DAPTA)2]2 (3: X = Br; 4: X = I) were immobilized on activated carbon (AC) and multi-walled carbon nanotubes (CNT), as well as on these materials after surface functionalization. The immobilized copper(I) complexes have shown favorable catalytic activity for the one-pot, microwave-assisted synthesis of 1,2,3-triazoles via the azide-alkyne cycloaddition reaction (CuAAC). The heterogenized systems with a copper loading of only 1.5–1.6% (w/w relative to carbon), established quantitative conversions after 15 min, at 80 °C, using 0.5 mol% of catalyst loading (relative to benzyl bromide). The most efficient supports concerning heterogenization were CNT treated with nitric acid and NaOH, and involving complexes 2 and 4 (in the same order, 2_CNT-ox-Na and 4_CNT-ox-Na). The immobilized catalysts can be recovered and recycled by simple workup and reused up to four consecutive cycles although with loss of activity.
Collapse
|
17
|
Abstract
Chloromethanes are a group of volatile organic compounds that are harmful to the environment and human health. Abundant studies have verified that hydrodechlorination might be an effective treatment to remove these chlorinated pollutants. The most outstanding advantages of this technique are the moderate operating conditions used and the possibility of obtaining less hazardous valuable products. This review presents a global analysis of experimental and theoretical studies regarding the hydrodechlorination of chloromethanes. The catalysts used and their synthesis methods are summarized. Their physicochemical properties are analyzed in order to deeply understand their influence on the catalytic performance. Moreover, the main causes of the catalyst deactivation are explained, and prevention and regeneration methods are suggested. The reaction systems used and the effect of the operating conditions on the catalytic activity are also analyzed. Besides, the mechanisms and kinetics of the process at the atomic level are reviewed. Finally, a new perspective for the upgrading of chloromethanes, via hydrodechlorination, to valuable hydrocarbons for industry, such as light olefins, is discussed.
Collapse
|
18
|
Martin-Martinez M, Machado BF, Serp P, Morales-Torres S, Silva AM, Figueiredo JL, Faria JL, Gomes HT. Carbon nanotubes as catalysts for wet peroxide oxidation: The effect of surface chemistry. Catal Today 2020. [DOI: 10.1016/j.cattod.2019.03.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
19
|
Bathellier A, Moreno D, Maron L, Dinoi C, Rosal I. Grafting of Lanthanum Complexes on a Functionalized Graphene Surface: Theoretical Investigation on Ethylene and 1,3‐Butadiene Homo‐ and Co‐Polymerization. Chemistry 2020; 26:13213-13225. [DOI: 10.1002/chem.202001056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Indexed: 11/08/2022]
Affiliation(s)
- Adrien Bathellier
- INSA, UPS, CNRS (UMR 5215), Institut National des, Sciences Appliquées, LPCNO (IRSAMC) Université de Toulouse 135 avenue de Rangueil 31077 Toulouse France
| | - Diego Moreno
- INSA, UPS, CNRS (UMR 5215), Institut National des, Sciences Appliquées, LPCNO (IRSAMC) Université de Toulouse 135 avenue de Rangueil 31077 Toulouse France
| | - Laurent Maron
- INSA, UPS, CNRS (UMR 5215), Institut National des, Sciences Appliquées, LPCNO (IRSAMC) Université de Toulouse 135 avenue de Rangueil 31077 Toulouse France
| | - Chiara Dinoi
- INSA, UPS, CNRS (UMR 5215), Institut National des, Sciences Appliquées, LPCNO (IRSAMC) Université de Toulouse 135 avenue de Rangueil 31077 Toulouse France
| | - Iker Rosal
- INSA, UPS, CNRS (UMR 5215), Institut National des, Sciences Appliquées, LPCNO (IRSAMC) Université de Toulouse 135 avenue de Rangueil 31077 Toulouse France
| |
Collapse
|
20
|
Wang D, Liu W, Xie Z, Tian S, Su D, Qi W. Oxidative dehydrogenation of ethyl lactate over nanocarbon catalysts: Effect of oxygen functionalities and defects. Catal Today 2020. [DOI: 10.1016/j.cattod.2018.06.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
21
|
Gerber IC, Serp P. A Theory/Experience Description of Support Effects in Carbon-Supported Catalysts. Chem Rev 2019; 120:1250-1349. [DOI: 10.1021/acs.chemrev.9b00209] [Citation(s) in RCA: 274] [Impact Index Per Article: 54.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Iann C. Gerber
- LPCNO, Université de Toulouse, CNRS, INSA, UPS, 135 avenue de Rangueil, F-31077 Toulouse, France
| | - Philippe Serp
- LCC-CNRS, Université de Toulouse, UPR 8241 CNRS, INPT, 31400 Toulouse, France
| |
Collapse
|
22
|
Enhancement of vapor flux and salt rejection efficiency induced by low cost-high purity MWCNTs in upscaled PVDF and PVDF-HFP hollow fiber modules for membrane distillation. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2019.04.067] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
23
|
Hu ZP, Yang D, Wang Z, Yuan ZY. State-of-the-art catalysts for direct dehydrogenation of propane to propylene. CHINESE JOURNAL OF CATALYSIS 2019. [DOI: 10.1016/s1872-2067(19)63360-7] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
24
|
Effect of mesoporous carbon support nature and pretreatments on palladium loading, dispersion and apparent catalytic activity in hydrogenation of myrcene. J Catal 2019. [DOI: 10.1016/j.jcat.2019.02.034] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
25
|
Yang Z, Yu A, Shan C, Gao G, Pan B. Enhanced Fe(III)-mediated Fenton oxidation of atrazine in the presence of functionalized multi-walled carbon nanotubes. WATER RESEARCH 2018; 137:37-46. [PMID: 29525426 DOI: 10.1016/j.watres.2018.03.006] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 03/02/2018] [Accepted: 03/03/2018] [Indexed: 05/29/2023]
Abstract
In this study we reported that the presence of functionalized multi-walled carbon nanotubes (FCNT-H) would greatly enhance the degradation of atrazine (ATZ), a model contaminant, in the Fe(III)-mediated Fenton-like system. Efficient ATZ degradation (>90%) was achieved within 30 min in the presence of 20 mg.L-1 FCNT-H, 2.0 mg.L-1 Fe(III), and 170 mg.L-1 H2O2, whereas negligible ATZ degradation occurred in FCNT-H free system. The structure and surface chemistry of FCNT-H and other CNTs were well characterized. The formed active species were determined based on ESR analysis, and the mass balance of Fe species during the reaction was monitored. In particular, a new method based on ferrozine complexation was proposed to track the formed Fe(II). The results indicated that ATZ was mainly degraded by the generated hydroxyl radical (HO·), and Fe(III)/Fe(II) cycling was still the rate-limiting step. Besides a small fraction of Fe(III) reduced by FCNT-H, a new pathway was revealed for fast reduction of most Fe(III), i.e., reaction of FCNT-H-Fe(III) complexes with H2O2. Comparison of different CNTs-mediated Fe(III)/H2O2 systems indicated that such enhanced effect of CNTs mainly resulted from the surface carboxyl group instead of hydroxyl and carbonyl group. Combined with X-ray photoelectron spectroscopy (XPS) analysis, the electron density migration from Fe(III) to FCNT-H possibly resulted in the fast reduction of FCNT-H-Fe(III) complexes by H2O2. This study enables better understanding the enhanced Fe(III)-mediated Fenton-like reaction in the presence of MWCNTs and thus, will shed new light on how to develop more efficient similar Fenton systems via Fe(III) complexation.
Collapse
Affiliation(s)
- Zhichao Yang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Anqing Yu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Chao Shan
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China; Research Center for Environmental Nanotechnology (ReCENT), Nanjing University, Nanjing 210023, China
| | - Guandao Gao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China; Research Center for Environmental Nanotechnology (ReCENT), Nanjing University, Nanjing 210023, China
| | - Bingcai Pan
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China; Research Center for Environmental Nanotechnology (ReCENT), Nanjing University, Nanjing 210023, China.
| |
Collapse
|
26
|
Wang H, Li P, Yu D, Zhang Y, Wang Z, Liu C, Qiu H, Liu Z, Ren J, Qu X. Unraveling the Enzymatic Activity of Oxygenated Carbon Nanotubes and Their Application in the Treatment of Bacterial Infections. NANO LETTERS 2018; 18:3344-3351. [PMID: 29763562 DOI: 10.1021/acs.nanolett.7b05095] [Citation(s) in RCA: 137] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Carbon nanotubes (CNTs) and their derivatives have emerged as a series of efficient biocatalysts to mimic the function of natural enzymes in recent years. However, the unsatisfiable enzymatic efficiency usually limits their practical usage ranging from materials science to biotechnology. Here, for the first time, we present the synthesis of several oxygenated-group-enriched carbon nanotubes (o-CNTs) via a facile but green approach, as well as their usage as high-performance peroxidase mimics for biocatalytic reaction. Exhaustive characterizations of the enzymatic activity of o-CNTs have been provided by exploring the accurate effect of various oxygenated groups on their surface including carbonyl, carboxyl, and hydroxyl groups. Because of the "competitive inhibition" effect among all of these oxygenated groups, the catalytic efficiency of o-CNTs is significantly enhanced by weakening the presence of noncatalytic sites. Furthermore, the admirable enzymatic activity of these o-CNTs has been successfully applied in the treatment of bacterial infections, and the results of both in vitro and in vivo nanozyme-mediated bacterial clearance clearly demonstrate the feasibility of o-CNTs as robust peroxidase mimics to effectively decrease the bacterial viability under physiological conditions. We believe that the present study will not only facilitate the construction of novel efficient nanozymes by rationally adjusting the degree of the "competitive inhibition" effect, but also broaden the biological usage of o-CNT-based nanomaterials via their satisfactory enzymatic activity.
Collapse
Affiliation(s)
- Huan Wang
- State Key Laboratory of Rare Earth Resources Utilization and Laboratory of Chemical Biology , Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022 , P. R. China
- University of Science and Technology of China , Hefei 230029 , P. R. China
| | - Penghui Li
- MOE Key Laboratory of Green Chemistry, College of Chemistry , Sichuan University , Chengdu 610064 , P. R. China
| | - Dongqin Yu
- State Key Laboratory of Rare Earth Resources Utilization and Laboratory of Chemical Biology , Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022 , P. R. China
- University of Science and Technology of China , Hefei 230029 , P. R. China
| | - Yan Zhang
- State Key Laboratory of Rare Earth Resources Utilization and Laboratory of Chemical Biology , Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022 , P. R. China
- Graduate School of the Chinese Academy of Sciences , Beijing 100039 , P. R. China
| | - Zhenzhen Wang
- State Key Laboratory of Rare Earth Resources Utilization and Laboratory of Chemical Biology , Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022 , P. R. China
- Graduate School of the Chinese Academy of Sciences , Beijing 100039 , P. R. China
| | - Chaoqun Liu
- State Key Laboratory of Rare Earth Resources Utilization and Laboratory of Chemical Biology , Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022 , P. R. China
- Graduate School of the Chinese Academy of Sciences , Beijing 100039 , P. R. China
| | - Hao Qiu
- State Key Laboratory of Rare Earth Resources Utilization and Laboratory of Chemical Biology , Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022 , P. R. China
- University of Science and Technology of China , Hefei 230029 , P. R. China
| | - Zhen Liu
- State Key Laboratory of Rare Earth Resources Utilization and Laboratory of Chemical Biology , Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022 , P. R. China
| | - Jinsong Ren
- State Key Laboratory of Rare Earth Resources Utilization and Laboratory of Chemical Biology , Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022 , P. R. China
| | - Xiaogang Qu
- State Key Laboratory of Rare Earth Resources Utilization and Laboratory of Chemical Biology , Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022 , P. R. China
| |
Collapse
|
27
|
Non-isothermal crystallization kinetics of Poly(Butylene succinate) (PBS) nanocomposites with different modified carbon nanotubes. POLYMER 2018. [DOI: 10.1016/j.polymer.2018.05.060] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
28
|
Sequential catalytic growth of sulfur-doped carbon nanotubes and their use as catalyst support. CATAL COMMUN 2018. [DOI: 10.1016/j.catcom.2018.02.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
|
29
|
Sun X, Han P, Li B, Mao S, Liu T, Ali S, Lian Z, Su D. Oxidative dehydrogenation reaction of short alkanes on nanostructured carbon catalysts: a computational account. Chem Commun (Camb) 2018; 54:864-875. [DOI: 10.1039/c7cc06941c] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
We aim to provide an overview of the current status and recent achievements of computational studies of the ODH reaction on nanostructured carbon catalysts.
Collapse
Affiliation(s)
- XiaoYing Sun
- Institute of Catalysis for Energy and Environment
- College of Chemistry and Chemical Engineering
- Shenyang Normal University
- Shenyang 110034
- China
| | - Peng Han
- Institute of Catalysis for Energy and Environment
- College of Chemistry and Chemical Engineering
- Shenyang Normal University
- Shenyang 110034
- China
| | - Bo Li
- Shenyang National Laboratory for Materials Science
- Institute of Metal Research
- Chinese Academy of Sciences
- Shenyang 110016
- China
| | - ShanJun Mao
- Shenyang National Laboratory for Materials Science
- Institute of Metal Research
- Chinese Academy of Sciences
- Shenyang 110016
- China
| | - TianFu Liu
- Shenyang National Laboratory for Materials Science
- Institute of Metal Research
- Chinese Academy of Sciences
- Shenyang 110016
- China
| | - Sajjad Ali
- Shenyang National Laboratory for Materials Science
- Institute of Metal Research
- Chinese Academy of Sciences
- Shenyang 110016
- China
| | - Zan Lian
- Shenyang National Laboratory for Materials Science
- Institute of Metal Research
- Chinese Academy of Sciences
- Shenyang 110016
- China
| | - DangSheng Su
- Shenyang National Laboratory for Materials Science
- Institute of Metal Research
- Chinese Academy of Sciences
- Shenyang 110016
- China
| |
Collapse
|
30
|
Li J, Yu P, Xie J, Liu J, Wang Z, Wu C, Rong J, Liu H, Su D. Improving the Alkene Selectivity of Nanocarbon-Catalyzed Oxidative Dehydrogenation of n-Butane by Refinement of Oxygen Species. ACS Catal 2017. [DOI: 10.1021/acscatal.7b02282] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Jiaquan Li
- Research
Institute of Petroleum Processing, Sinopec, No. 18, Xueyuan Road, Haidian District, Beijing 100083, China
| | - Peng Yu
- Research
Institute of Petroleum Processing, Sinopec, No. 18, Xueyuan Road, Haidian District, Beijing 100083, China
| | - Jingxin Xie
- Research
Institute of Petroleum Processing, Sinopec, No. 18, Xueyuan Road, Haidian District, Beijing 100083, China
| | - Jie Liu
- Research
Institute of Petroleum Processing, Sinopec, No. 18, Xueyuan Road, Haidian District, Beijing 100083, China
| | - Zehua Wang
- Research
Institute of Petroleum Processing, Sinopec, No. 18, Xueyuan Road, Haidian District, Beijing 100083, China
| | - Chongchong Wu
- Research
Institute of Petroleum Processing, Sinopec, No. 18, Xueyuan Road, Haidian District, Beijing 100083, China
| | - Junfeng Rong
- Research
Institute of Petroleum Processing, Sinopec, No. 18, Xueyuan Road, Haidian District, Beijing 100083, China
| | - Hongyang Liu
- Shenyang
National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Wenhua Road 72, Shenyang 110016, China
| | - Dangsheng Su
- Dalian
National Laboratory for Clean Energy, Dalian Institute of Chemical
Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| |
Collapse
|
31
|
Nardecchia S, Serrano MC, García-Argüelles S, Maia Da Costa MEH, Ferrer ML, Gutiérrez MC. Ice as a Green-Structure-Directing Agent in the Synthesis of Macroporous MWCNTs and Chondroitin Sulphate Composites. MATERIALS (BASEL, SWITZERLAND) 2017; 10:E355. [PMID: 28772715 PMCID: PMC5506963 DOI: 10.3390/ma10040355] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 03/21/2017] [Accepted: 03/24/2017] [Indexed: 11/16/2022]
Abstract
The incorporation of multi-walled carbon nanotubes (MWCNTs) into chondroitin sulphate-based scaffolds and the effect on the structural, mechanical, conductive, and thermal properties of the resulting scaffolds is investigated. Three-dimensional hierarchical materials are prepared upon the application of the ice segregation-induced self-assembly (ISISA) process. The use of ice as structure-directing agents avoids chemicals typically used for this purpose (e.g., surfactants, block copolymers, etc.), hence, emphasising the green features of this soft-templating approach. We determine the critical parameters that control the morphology of the scaffolds formed upon ice-templating (i.e., MWCNTs type, freezing conditions, polymer and MWCNT concentration). MWCNTs are surface functionalized by acidic treatment. MWCNT functionalization is characterized by Raman, Fourier transfer infrared (FTIR) and X-ray Photoelectron (XPS) spectroscopies. Scanning electron microscopy (SEM) analysis and porosity studies reveal that MWCNT content modifies the morphology of the macroporous structure, which decreases by increasing MWCNT concentration. Differences in scaffold morphology should be translated into their conductivity and mechanical properties. As a general trend, the Young's modulus and the electrical conductivity of the scaffolds increase with the MWCNT content. Preliminary biocompatibility tests with human osteoblast-like cells also reveal the capability of these structures to support cell growth.
Collapse
Affiliation(s)
- Stefania Nardecchia
- Materials Science Factory, Instituto de Ciencia de Materiales de Madrid (ICMM), Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, C/Sor Juana Inés de la Cruz 3, 28049-Madrid, Spain.
- Departamento de Física, Pontificia Universidade Católica do Rio de Janeiro (PUC-Rio), Rua Marquês de São Vicente 225, Gavea 22451-900, Rio de Janeiro, Brazil.
| | - María Concepción Serrano
- Laboratory of Interfaces for Neural Repair, Hospital Nacional de Parapléjicos, Servicio de Salud de Castilla-La Mancha, Finca de la Peraleda s/n, 45071-Toledo, Spain.
| | - Sara García-Argüelles
- Materials Science Factory, Instituto de Ciencia de Materiales de Madrid (ICMM), Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, C/Sor Juana Inés de la Cruz 3, 28049-Madrid, Spain.
- Departamento de Tecnología Química y Energética, Tecnologia Química y Ambiental y Tecnología Mecánica y Química Analítica, Universidad Rey Juan Carlos, 28933-Madrid, Spain.
| | - Marcelo E H Maia Da Costa
- Departamento de Física, Pontificia Universidade Católica do Rio de Janeiro (PUC-Rio), Rua Marquês de São Vicente 225, Gavea 22451-900, Rio de Janeiro, Brazil.
| | - María Luisa Ferrer
- Materials Science Factory, Instituto de Ciencia de Materiales de Madrid (ICMM), Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, C/Sor Juana Inés de la Cruz 3, 28049-Madrid, Spain.
| | - María C Gutiérrez
- Materials Science Factory, Instituto de Ciencia de Materiales de Madrid (ICMM), Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, C/Sor Juana Inés de la Cruz 3, 28049-Madrid, Spain.
| |
Collapse
|
32
|
Porto AB, de Oliveira LFC, Dos Santos HF. Exploring the potential energy surface for reaction of SWCNT with NO2+: A model reaction for oxidation of carbon nanotube in acid solution. COMPUT THEOR CHEM 2016. [DOI: 10.1016/j.comptc.2016.05.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
33
|
Axet M, Dechy-Cabaret O, Durand J, Gouygou M, Serp P. Coordination chemistry on carbon surfaces. Coord Chem Rev 2016. [DOI: 10.1016/j.ccr.2015.06.005] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
34
|
Ramoraswi NO, Ndungu PG. Photo-Catalytic Properties of TiO2 Supported on MWCNTs, SBA-15 and Silica-Coated MWCNTs Nanocomposites. NANOSCALE RESEARCH LETTERS 2015; 10:427. [PMID: 26518026 PMCID: PMC4627977 DOI: 10.1186/s11671-015-1137-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 10/23/2015] [Indexed: 05/26/2023]
Abstract
Mesoporous silica, specifically SBA-15, acid-treated multi-walled carbon nanotubes and a hybrid nanocomposite of SBA-15 coated onto the sidewalls acid-treated multi-walled carbon nanotubes (CNTs) were prepared and used as supports for anatase TiO2. Sol-gel methods were adapted for the synthesis of selected supports and for coating the materials with selected wt% loading of titania. Physical and chemical properties of the supports and catalyst composite materials were investigated by powder X-ray diffraction (XRD), Raman spectroscopy, thermogravimetric analysis, scanning electron microscope (SEM), high-resolution transmission electron microscope (HRTEM), UV-vis diffuse reflectance spectroscopy and fluorescence spectroscopy. The photo-activity of the catalyst composites were evaluated on the decolorisation of methylene blue as a model pollutant. Coating CNTs with SBA-15 improved the thermal stability and textural properties of the nanotubes. All supported titania composites had high surface areas (207-301 m(2)/g), altered band gap energies and reduced TiO2 crystallite sizes. The TiO2/SBA-CNT composite showed enhanced photo-catalytic properties and activity than the TiO2/SBA-15 and TiO2/CNT composites. In addition, an interesting observation was noted with the TiO2/SBA-15 nanocomposites, which had a significantly greater photo-catalytic activity than the TiO2/CNT nanocomposites in spite of the high electron-hole recombination phenomena observed with the photoluminescence results. Discussions in terms of morphological, textural and physical-chemical aspects to account for the result are presented.
Collapse
Affiliation(s)
- Nteseng O Ramoraswi
- School of Chemistry, University of KwaZulu-Natal, Westville Campus, Durban, South Africa
| | - Patrick G Ndungu
- Department of Applied Chemistry, University of Johannesburg, P.O. Box 17011, Doornfontein, Johannesburg, 2028, South Africa.
| |
Collapse
|
35
|
Santangelo S. Controlled surface functionalization of carbon nanotubes by nitric acid vapors generated from sub-azeotropic solution. SURF INTERFACE ANAL 2015. [DOI: 10.1002/sia.5875] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Saveria Santangelo
- Dipartimento di Ingegneria Civile, dell'Energia, dell'Ambiente e dei Materiali (DICEAM); Università ‘Mediterranea’; Reggio Calabria 89122 Italy
| |
Collapse
|
36
|
Agustina E, Goak J, Lee S, Seo Y, Park JY, Lee N. Simple and Precise Quantification of Iron Catalyst Content in Carbon Nanotubes Using UV/Visible Spectroscopy. ChemistryOpen 2015; 4:613-9. [PMID: 26491641 PMCID: PMC4608529 DOI: 10.1002/open.201500096] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Indexed: 11/30/2022] Open
Abstract
Iron catalysts have been used widely for the mass production of carbon nanotubes (CNTs) with high yield. In this study, UV/visible spectroscopy was used to determine the Fe catalyst content in CNTs using a colorimetric technique. Fe ions in solution form red-orange complexes with 1,10-phenanthroline, producing an absorption peak at λ=510 nm, the intensity of which is proportional to the solution Fe concentration. A series of standard Fe solutions were formulated to establish the relationship between optical absorbance and Fe concentration. Many Fe catalysts were microscopically observed to be encased by graphitic layers, thus preventing their extraction. Fe catalyst dissolution from CNTs was investigated with various single and mixed acids, and Fe concentration was found to be highest with CNTs being held at reflux in HClO4/HNO3 and H2SO4/HNO3 mixtures. This novel colorimetric method to measure Fe concentrations by UV/Vis spectroscopy was validated by inductively coupled plasma optical emission spectroscopy, indicating its reliability and applicability to asses Fe content in CNTs.
Collapse
Affiliation(s)
- Elsye Agustina
- Hybrid Materials Center, HMC), Department of Nanotechnology and Advanced Materials Engineering, Sejong University209 Neungdong-ro, Gwangjin-gu, Seoul, 143-747, Republic of Korea
| | - Jeungchoon Goak
- Hybrid Materials Center, HMC), Department of Nanotechnology and Advanced Materials Engineering, Sejong University209 Neungdong-ro, Gwangjin-gu, Seoul, 143-747, Republic of Korea
| | - Suntae Lee
- Hybrid Materials Center, HMC), Department of Nanotechnology and Advanced Materials Engineering, Sejong University209 Neungdong-ro, Gwangjin-gu, Seoul, 143-747, Republic of Korea
| | - Youngho Seo
- Hybrid Materials Center, HMC), Department of Nanotechnology and Advanced Materials Engineering, Sejong University209 Neungdong-ro, Gwangjin-gu, Seoul, 143-747, Republic of Korea
| | - Jun-Young Park
- Hybrid Materials Center, HMC), Department of Nanotechnology and Advanced Materials Engineering, Sejong University209 Neungdong-ro, Gwangjin-gu, Seoul, 143-747, Republic of Korea
| | - Naesung Lee
- Hybrid Materials Center, HMC), Department of Nanotechnology and Advanced Materials Engineering, Sejong University209 Neungdong-ro, Gwangjin-gu, Seoul, 143-747, Republic of Korea
| |
Collapse
|
37
|
Characterization of functional groups on oxidized multi-wall carbon nanotubes by potentiometric titration. Catal Today 2015. [DOI: 10.1016/j.cattod.2014.12.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
38
|
Phan CH, Jaafar M, Koh YH. Mild functionalization of carbon nanotubes filled epoxy composites: Effect on electromagnetic interferences shielding effectiveness. J Appl Polym Sci 2015. [DOI: 10.1002/app.42557] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Chee Hong Phan
- School of Materials and Mineral Resources Engineering; Universiti Sains Malaysia; Nibong Tebal Penang Malaysia
| | - Mariatti Jaafar
- School of Materials and Mineral Resources Engineering; Universiti Sains Malaysia; Nibong Tebal Penang Malaysia
| | - Yin Hsian Koh
- Motorola Solutions Malaysia Sdn. Bhd., Bayan Lepas Technoplex Industrial Park; Penang Malaysia
| |
Collapse
|
39
|
Gheorghiu CC, Machado BF, Salinas-Martínez de Lecea C, Gouygou M, Román-Martínez MC, Serp P. Chiral rhodium complexes covalently anchored on carbon nanotubes for enantioselective hydrogenation. Dalton Trans 2015; 43:7455-63. [PMID: 24590206 DOI: 10.1039/c3dt53301h] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Chiral rhodium hybrid nanocatalysts have been prepared by covalent anchorage of pyrrolidine-based diphosphine ligands onto functionalized CNTs. This work constitutes the first attempt at covalent anchoring of homogeneous chiral catalysts on CNTs. The catalysts, prepared with two different chiral phosphines, were characterized by ICP, XPS, N2 adsorption and TEM, and have been tested in the asymmetric hydrogenation of two different substrates: methyl 2-acetamidoacrylate and α-acetamidocinnamic acid. The hybrid nanocatalysts have shown to be active and enantioselective in the hydrogenation of α-acetamidocinnamic acid. A good recyclability of the catalysts with low leaching and without loss of activity and enantioselectivity was observed.
Collapse
Affiliation(s)
- C C Gheorghiu
- Department of Inorganic Chemistry and Materials Institute, University of Alicante, ctra San Vicente del Raspeig s/n., 03690 Alicante, Spain.
| | | | | | | | | | | |
Collapse
|
40
|
Zhang K, Li X, Liang J, Zhu Y, Hu L, Cheng Q, Guo C, Lin N, Qian Y. Nitrogen-doped porous interconnected double-shelled hollow carbon spheres with high capacity for lithium ion batteries and sodium ion batteries. Electrochim Acta 2015. [DOI: 10.1016/j.electacta.2014.12.108] [Citation(s) in RCA: 132] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
41
|
Frielinghaus R, Besson C, Houben L, Saelhoff AK, Schneider CM, Meyer C. Controlled covalent binding of antiferromagnetic tetramanganese complexes to carbon nanotubes. RSC Adv 2015. [DOI: 10.1039/c5ra14983e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Tetramanganese complexes are covalently attached to carbon nanotubes such, that the magnetic properties of the antiferromagnetic molecules are preserved.
Collapse
Affiliation(s)
- R. Frielinghaus
- Peter Grünberg Institute (PGI-6)
- Forschungszentrum Jülich
- JARA-Fundamentals of Future Information Technologies
- 52425 Jülich
- Germany
| | - C. Besson
- Institute of Inorganic Chemistry
- RWTH Aachen University
- JARA-Fundamentals of Future Information Technologies
- Aachen
- Germany
| | - L. Houben
- Peter Grünberg Institute (PGI-5) and Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons
- Forschungszentrum Jülich
- 52425 Jülich
- Germany
| | - A.-K. Saelhoff
- Peter Grünberg Institute (PGI-6)
- Forschungszentrum Jülich
- JARA-Fundamentals of Future Information Technologies
- 52425 Jülich
- Germany
| | - C. M. Schneider
- Peter Grünberg Institute (PGI-6)
- Forschungszentrum Jülich
- JARA-Fundamentals of Future Information Technologies
- 52425 Jülich
- Germany
| | - C. Meyer
- Peter Grünberg Institute (PGI-6)
- Forschungszentrum Jülich
- JARA-Fundamentals of Future Information Technologies
- 52425 Jülich
- Germany
| |
Collapse
|
42
|
Machado BF, Oubenali M, Rosa Axet M, Trang NGuyen T, Tunckol M, Girleanu M, Ersen O, Gerber IC, Serp P. Understanding the surface chemistry of carbon nanotubes: Toward a rational design of Ru nanocatalysts. J Catal 2014. [DOI: 10.1016/j.jcat.2013.09.016] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
43
|
Li Y, Lan G, Feng G, Jiang W, Han W, Tang H, Liu H. Activation of a Carbon Support Through a Two-Step Wet Oxidation and Highly Active Ruthenium-Activated Carbon Catalysts for the Hydrogenation of Benzene. ChemCatChem 2013. [DOI: 10.1002/cctc.201300873] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
44
|
|
45
|
Nguyen TT, Ersen O, Serp P. Selective Confinement of Ruthenium Nanoparticles in Silica Nanotubes. Eur J Inorg Chem 2013. [DOI: 10.1002/ejic.201300909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- T. Trang Nguyen
- Laboratoire de Chimie de Coordination UPR CNRS 8241, composante ENSIACET, Université de Toulouse UPS‐INP‐LCC 4 allée Emile Monso, BP 44362, 31030 Toulouse Cedex 4, France, http://www.lcc‐toulouse.fr/lcc/spip.php?article265
| | - Ovidiu Ersen
- IPCMS – Groupe Surfaces et Interfaces, CNRS – ULP UMR 7504, 23 Rue du Loess, BP 43, 67034 Strasbourg, France
| | - Philippe Serp
- Laboratoire de Chimie de Coordination UPR CNRS 8241, composante ENSIACET, Université de Toulouse UPS‐INP‐LCC 4 allée Emile Monso, BP 44362, 31030 Toulouse Cedex 4, France, http://www.lcc‐toulouse.fr/lcc/spip.php?article265
| |
Collapse
|
46
|
Qi W, Liu W, Zhang B, Gu X, Guo X, Su D. Oxidative Dehydrogenation on Nanocarbon: Identification and Quantification of Active Sites by Chemical Titration. Angew Chem Int Ed Engl 2013; 52:14224-8. [DOI: 10.1002/anie.201306825] [Citation(s) in RCA: 204] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2013] [Indexed: 11/10/2022]
|
47
|
Qi W, Liu W, Zhang B, Gu X, Guo X, Su D. Oxidative Dehydrierung an Nanokohlenstoff: Identifizierung und Quantifizierung aktiver Zentren durch chemische Titration. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201306825] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
48
|
|
49
|
Martins LMDRS, de Almeida MP, Carabineiro SAC, Figueiredo JL, Pombeiro AJL. Heterogenisation of a C-Scorpionate FeIIComplex on Carbon Materials for Cyclohexane Oxidation with Hydrogen Peroxide. ChemCatChem 2013. [DOI: 10.1002/cctc.201300432] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
50
|
Da Silva AM, Dos Santos HF, Giannozzi P. Carbonyl group generation on single-wall carbon nanotubes with nitric acid: A theoretical description. Chem Phys Lett 2013. [DOI: 10.1016/j.cplett.2013.07.058] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|