1
|
Abstract
Silica consists of one silicon atom and two oxygen atoms (SiO2) and is commonly used in various aspects of daily life. For example, it has been used as glass, insulator, and so on. Nowadays, silica is used as core reagents for fabricating and encapsulating nanoparticles (NPs). In this chapter, the usage of silica in nanotechnology is described. Synthesis and surface modification of silica nanoparticles (SiNPs), including via the Stöber method, reverse microemulsion method, and modified sol-gel method, are illustrated. Then, various NPs with silica encapsulation are explained. At last, the biological applications of those mentioned NPs are described.
Collapse
|
2
|
Caponetti V, Trzcinski JW, Cantelli A, Tavano R, Papini E, Mancin F, Montalti M. Self-Assembled Biocompatible Fluorescent Nanoparticles for Bioimaging. Front Chem 2019; 7:168. [PMID: 30984740 PMCID: PMC6447614 DOI: 10.3389/fchem.2019.00168] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 03/05/2019] [Indexed: 12/31/2022] Open
Abstract
Fluorescence is a powerful tool for mapping biological events in real-time with high spatial resolution. Ultra-bright probes are needed in order to achieve high sensitivity: these probes are typically obtained by gathering a huge number of fluorophores in a single nanoparticle (NP). Unfortunately this assembly produces quenching of the fluorescence because of short-range intermolecular interactions. Here we demonstrate that rational structural modification of a well-known molecular fluorophore N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl) (NBD) produces fluorophores that self-assemble in nanoparticles in the biocompatible environment without any dramatic decrease of the fluorescence quantum yield. Most importantly, the resulting NP show, in an aqueous environment, a brightness which is more than six orders of magnitude higher than the molecular component in the organic solvent. Moreover, the NP are prepared by nanoprecipitation and they are stabilized only via non-covalent interaction, they are surprisingly stable and can be observed as individual bright spots freely diffusing in solution at a concentration as low as 1 nM. The suitability of the NP as biocompatible fluorescent probes was demonstrated in the case of HeLa cells by fluorescence confocal microscopy and MTS assays.
Collapse
Affiliation(s)
- Valeria Caponetti
- Dipartimento di Chimica "Giacomo Ciamician", Università di Bologna, Bologna, Italy
| | - Jakub W Trzcinski
- Dipartimento di Scienze Chimiche, Università di Padova, Padova, Italy
| | - Andrea Cantelli
- Dipartimento di Chimica "Giacomo Ciamician", Università di Bologna, Bologna, Italy
| | - Regina Tavano
- Dipartimento di Scienze Biomediche, Università di Padova, Padova, Italy
| | - Emanuele Papini
- Dipartimento di Scienze Biomediche, Università di Padova, Padova, Italy
| | - Fabrizio Mancin
- Dipartimento di Scienze Chimiche, Università di Padova, Padova, Italy
| | - Marco Montalti
- Dipartimento di Chimica "Giacomo Ciamician", Università di Bologna, Bologna, Italy
| |
Collapse
|
3
|
Mapping heterogeneous polarity in multicompartment nanoparticles. Sci Rep 2018; 8:17095. [PMID: 30459427 PMCID: PMC6244083 DOI: 10.1038/s41598-018-35257-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 10/31/2018] [Indexed: 01/22/2023] Open
Abstract
Understanding polarity gradients inside nanomaterials is essential to capture their potential as nanoreactors, catalysts or in drug delivery applications. We propose here a method to obtain detailed, quantitative information on heterogeneous polarity in multicompartment nanostructures. The method is based on a 2-steps procedure, (i) deconvolution of complex emission spectra of two solvatochromic probes followed by (ii) spectrally resolved analysis of FRET between the same solvatochromic dyes. While the first step yields a list of polarities probed in the nanomaterial suspension, the second step correlates the polarities in space. Colocalization of polarities falling within few nanometer radius is obtained via FRET, a process called here nanopolarity mapping. Here, Prodan and Nile Red are tested to map the polarity of a water-dispersable, multicompartment nanostructure, named PluS nanoparticle (NPs). PluS NPs are uniform core-shell nanoparticles with silica cores (diameter ~10 nm) and Pluronic F127 shell (thickness ~7 nm). The probes report on a wide range of nanopolarities among which the dyes efficiently exchange energy via FRET, demonstrating the coexistence of a rich variety of environments within nanometer distance. Their use as a FRET couple highlights the proximity of strongly hydrophobic sites and hydrated layers, and quantitatively accounts for the emission component related to external water, which remains unaffected by FRET processes. This method is general and applicable to map nanopolarity in a large variety of nanomaterials.
Collapse
|
4
|
Naletova I, Satriano C, Curci A, Margiotta N, Natile G, Arena G, La Mendola D, Nicoletti VG, Rizzarelli E. Cytotoxic phenanthroline derivatives alter metallostasis and redox homeostasis in neuroblastoma cells. Oncotarget 2018; 9:36289-36316. [PMID: 30555630 PMCID: PMC6284747 DOI: 10.18632/oncotarget.26346] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 11/01/2018] [Indexed: 02/06/2023] Open
Abstract
Copper homeostasis is generally investigated focusing on a single component of the metallostasis network. Here we address several of the factors controlling the metallostasis for neuroblastoma cells (SH-SY5Y) upon treatment with 2,9-dimethyl-1,10-phenanthroline-5,6-dione (phendione) and 2,9-dimethyl-1,10-phenanthroline (cuproindione). These compounds bind and transport copper inside cells, exert their cytotoxic activity through the induction of oxidative stress, causing apoptosis and alteration of the cellular redox and copper homeostasis network. The intracellular pathway ensured by copper transporters (Ctr1, ATP7A), chaperones (CCS, ATOX, COX 17, Sco1, Sco2), small molecules (GSH) and transcription factors (p53) is scrutinised.
Collapse
Affiliation(s)
- Irina Naletova
- Department of Chemical Sciences, University of Catania, Catania, Italy
- Consorzio Interuniversitario di Ricerca in Chimica dei Metalli nei Sistemi Biologici (CIRCMSB), Bari, Italy
| | - Cristina Satriano
- Department of Chemical Sciences, University of Catania, Catania, Italy
- Consorzio Interuniversitario di Ricerca in Chimica dei Metalli nei Sistemi Biologici (CIRCMSB), Bari, Italy
| | - Alessandra Curci
- Consorzio Interuniversitario di Ricerca in Chimica dei Metalli nei Sistemi Biologici (CIRCMSB), Bari, Italy
- Department of Chemistry, University of Bari ‘Aldo Moro’, Bari, Italy
| | - Nicola Margiotta
- Consorzio Interuniversitario di Ricerca in Chimica dei Metalli nei Sistemi Biologici (CIRCMSB), Bari, Italy
- Department of Chemistry, University of Bari ‘Aldo Moro’, Bari, Italy
| | - Giovanni Natile
- Consorzio Interuniversitario di Ricerca in Chimica dei Metalli nei Sistemi Biologici (CIRCMSB), Bari, Italy
- Department of Chemistry, University of Bari ‘Aldo Moro’, Bari, Italy
| | - Giuseppe Arena
- Department of Chemical Sciences, University of Catania, Catania, Italy
- Consorzio Interuniversitario di Ricerca in Chimica dei Metalli nei Sistemi Biologici (CIRCMSB), Bari, Italy
| | - Diego La Mendola
- Consorzio Interuniversitario di Ricerca in Chimica dei Metalli nei Sistemi Biologici (CIRCMSB), Bari, Italy
- Department of Pharmacy, University of Pisa, Pisa, Italy
| | - Vincenzo Giuseppe Nicoletti
- Consorzio Interuniversitario di Ricerca in Chimica dei Metalli nei Sistemi Biologici (CIRCMSB), Bari, Italy
- Section of Medical Biochemistry, Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, Catania, Italy
| | - Enrico Rizzarelli
- Department of Chemical Sciences, University of Catania, Catania, Italy
- Consorzio Interuniversitario di Ricerca in Chimica dei Metalli nei Sistemi Biologici (CIRCMSB), Bari, Italy
| |
Collapse
|
5
|
Rampazzo E, Bonacchi S, Juris R, Genovese D, Prodi L, Zaccheroni N, Montalti M. Dual-Mode, Anisotropy-Encoded, Ratiometric Fluorescent Nanosensors: Towards Multiplexed Detection. Chemistry 2018; 24:16743-16746. [PMID: 30256465 DOI: 10.1002/chem.201803461] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Indexed: 12/15/2022]
Abstract
A nanosensor with dual-mode fluorescence response to pH and an encoded identification signal, was developed by exploiting excitation energy transfer and tailored control of molecular organization in core-shell nanoparticles. Multiple signals were acquired in a simple single-excitation dual-emission channels set-up.
Collapse
Affiliation(s)
- Enrico Rampazzo
- Department of Chemistry "Giacomo Ciamician", University of Bologna, Via Selmi 2, 40126, Bologna, Italy
| | - Sara Bonacchi
- Department of Chemistry "Giacomo Ciamician", University of Bologna, Via Selmi 2, 40126, Bologna, Italy
| | - Riccardo Juris
- Department of Chemistry "Giacomo Ciamician", University of Bologna, Via Selmi 2, 40126, Bologna, Italy
| | - Damiano Genovese
- Department of Chemistry "Giacomo Ciamician", University of Bologna, Via Selmi 2, 40126, Bologna, Italy
| | - Luca Prodi
- Department of Chemistry "Giacomo Ciamician", University of Bologna, Via Selmi 2, 40126, Bologna, Italy
| | - Nelsi Zaccheroni
- Department of Chemistry "Giacomo Ciamician", University of Bologna, Via Selmi 2, 40126, Bologna, Italy
| | - Marco Montalti
- Department of Chemistry "Giacomo Ciamician", University of Bologna, Via Selmi 2, 40126, Bologna, Italy
| |
Collapse
|
6
|
Hydrogen bond-induced bright enhancement of fluorescent silica cross-linked micellar nanoparticles. J Colloid Interface Sci 2018; 519:224-231. [DOI: 10.1016/j.jcis.2018.02.064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 02/22/2018] [Accepted: 02/22/2018] [Indexed: 11/20/2022]
|
7
|
Epelde-Elezcano N, Prieto-Montero R, Martínez-Martínez V, Ortiz MJ, Prieto-Castañeda A, Peña-Cabrera E, Belmonte-Vázquez JL, López-Arbeloa I, Brown R, Lacombe S. Adapting BODIPYs to singlet oxygen production on silica nanoparticles. Phys Chem Chem Phys 2018; 19:13746-13755. [PMID: 28503687 DOI: 10.1039/c7cp01333g] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
A modified Stöber method is used to synthesize spherical core-shell silica nanoparticles (NPs) with an external surface functionalized by amino groups and with an average size around 50 nm. Fluorescent dyes and photosensitizers of singlet oxygen were fixed, either separately or conjointly, respectively in the core or in the shell. Rhodamines were encapsulated in the core with relatively high fluorescence quantum yields (Φfl ≥ 0.3), allowing fluorescence tracking of the particles. Various photosensitizers of singlet oxygen (PS) were covalenty coupled to the shell, allowing singlet oxygen production. The stability of NP suspensions strongly deteriorated upon grafting the PS, affecting their apparent singlet oxygen quantum yields. Agglomeration of NPs depends both on the type and on the amount of grafted photosensitizer. New, lab-made, halogenated 4,4-difluoro-4-bora-3a,4a-diaza-s-indacenes (BODIPY) grafted to the NPs achieved higher singlet oxygen quantum yields (ΦΔ ∼ 0.35-0.40) than Rose Bengal (RB) grafted NPs (ΦΔ ∼ 0.10-0.27). Finally, we combined both fluorescence and PS functions in the same NP, namely a rhodamine in the silica core and a BODIPY or RB grafted in the shell, achieving the performance Φfl ∼ 0.10-0.20, ΦΔ ∼ 0.16-0.25 with a single excitation wavelength. Thus, proper choice of the dyes, of their concentrations inside and on the NPs and the grafting method enables fine-tuning of singlet oxygen production and fluorescence emission.
Collapse
Affiliation(s)
- Nerea Epelde-Elezcano
- Departamento de Química Física, Universidad del País Vasco-EHU, Apartado 644, 48080, Bilbao, Spain.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Pandini G, Satriano C, Pietropaolo A, Gianì F, Travaglia A, La Mendola D, Nicoletti VG, Rizzarelli E. The Inorganic Side of NGF: Copper(II) and Zinc(II) Affect the NGF Mimicking Signaling of the N-Terminus Peptides Encompassing the Recognition Domain of TrkA Receptor. Front Neurosci 2016; 10:569. [PMID: 28090201 PMCID: PMC5201159 DOI: 10.3389/fnins.2016.00569] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 11/25/2016] [Indexed: 12/31/2022] Open
Abstract
The nerve growth factor (NGF) N-terminus peptide, NGF(1–14), and its acetylated form, Ac-NGF(1–14), were investigated to scrutinize the ability of this neurotrophin domain to mimic the whole protein. Theoretical calculations demonstrated that non-covalent forces assist the molecular recognition of TrkA receptor by both peptides. Combined parallel tempering/docking simulations discriminated the effect of the N-terminal acetylation on the recognition of NGF(1–14) by the domain 5 of TrkA (TrkA-D5). Experimental findings demonstrated that both NGF(1–14) and Ac-NGF(1–14) activate TrkA signaling pathways essential for neuronal survival. The NGF-induced TrkA internalization was slightly inhibited in the presence of Cu2+ and Zn2+ ions, whereas the metal ions elicited the NGF(1–14)-induced internalization of TrkA and no significant differences were found in the weak Ac-NGF(1–14)-induced receptor internalization. The crucial role of the metals was confirmed by experiments with the metal-chelator bathocuproine disulfonic acid, which showed different inhibitory effects in the signaling cascade, due to different metal affinity of NGF, NGF(1–14) and Ac-NGF(1–14). The NGF signaling cascade, activated by the two peptides, induced CREB phosphorylation, but the copper addition further stimulated the Akt, ERK and CREB phosphorylation in the presence of NGF and NGF(1–14) only. A dynamic and quick influx of both peptides into PC12 cells was tracked by live cell imaging with confocal microscopy. A significant role of copper ions was found in the modulation of peptide sub-cellular localization, especially at the nuclear level. Furthermore, a strong copper ionophoric ability of NGF(1–14) was measured. The Ac-NGF(1–14) peptide, which binds copper ions with a lower stability constant than NGF(1–14), exhibited a lower nuclear localization with respect to the total cellular uptake. These findings were correlated to the metal-induced increase of CREB and BDNF expression caused by NGF(1–14) stimulation. In summary, we here validated NGF(1–14) and Ac-NGF(1–14) as first examples of monomer and linear peptides able to activate the NGF-TrkA signaling cascade. Metal ions modulated the activity of both NGF protein and the NGF-mimicking peptides. Such findings demonstrated that NGF(1–14) sequence can reproduce the signal transduction of whole protein, therefore representing a very promising drug candidate for further pre-clinical studies.
Collapse
Affiliation(s)
- Giuseppe Pandini
- Endocrinology, Department of Clinical and Experimental Medicine, Garibaldi-Nesima Medical Center, University of CataniaCatania, Italy; Institute of Biostructures and Bioimages - Catania, National Research CouncilCatania, Italy
| | - Cristina Satriano
- Department of Chemical Sciences, University of CataniaCatania, Italy; Consorzio Interuniversitario di Ricerca in Chimica dei Metalli nei Sistemi BiologiciBari, Italy
| | | | - Fiorenza Gianì
- Endocrinology, Department of Clinical and Experimental Medicine, Garibaldi-Nesima Medical Center, University of CataniaCatania, Italy; Institute of Biostructures and Bioimages - Catania, National Research CouncilCatania, Italy
| | | | - Diego La Mendola
- Consorzio Interuniversitario di Ricerca in Chimica dei Metalli nei Sistemi BiologiciBari, Italy; Department of Pharmacy, University of PisaPisa, Italy
| | - Vincenzo G Nicoletti
- Consorzio Interuniversitario di Ricerca in Chimica dei Metalli nei Sistemi BiologiciBari, Italy; Section of Medical Biochemistry, Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of CataniaCatania, Italy
| | - Enrico Rizzarelli
- Institute of Biostructures and Bioimages - Catania, National Research CouncilCatania, Italy; Department of Chemical Sciences, University of CataniaCatania, Italy; Consorzio Interuniversitario di Ricerca in Chimica dei Metalli nei Sistemi BiologiciBari, Italy
| |
Collapse
|
9
|
Biffi S, Petrizza L, Garrovo C, Rampazzo E, Andolfi L, Giustetto P, Nikolov I, Kurdi G, Danailov MB, Zauli G, Secchiero P, Prodi L. Multimodal near-infrared-emitting PluS Silica nanoparticles with fluorescent, photoacoustic, and photothermal capabilities. Int J Nanomedicine 2016; 11:4865-4874. [PMID: 27703352 PMCID: PMC5036595 DOI: 10.2147/ijn.s107479] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Purpose The aim of the present study was to develop nanoprobes with theranostic features, including – at the same time – photoacoustic, near-infrared (NIR) optical imaging, and photothermal properties, in a versatile and stable core–shell silica-polyethylene glycol (PEG) nanoparticle architecture. Materials and methods We synthesized core–shell silica-PEG nanoparticles by a one-pot direct micelles approach. Fluorescence emission and photoacoustic and photothermal properties were obtained at the same time by appropriate doping with triethoxysilane-derivatized cyanine 5.5 (Cy5.5) and cyanine 7 (Cy7) dyes. The performances of these nanoprobes were measured in vitro, using nanoparticle suspensions in phosphate-buffered saline and blood, dedicated phantoms, and after incubation with MDA-MB-231 cells. Results We obtained core–shell silica-PEG nanoparticles endowed with very high colloidal stability in water and in biological environment, with absorption and fluorescence emission in the NIR field. The presence of Cy5.5 and Cy7 dyes made it possible to reach a more reproducible and higher doping regime, producing fluorescence emission at a single excitation wavelength in two different channels, owing to the energy transfer processes within the nanoparticle. The nanoarchitecture and the presence of both Cy5.5 and Cy7 dyes provided a favorable agreement between fluorescence emission and quenching, to achieve optical imaging and photoacoustic and photothermal properties. Conclusion We obtained rationally designed nanoparticles with outstanding stability in biological environment. At appropriate doping regimes, the presence of Cy5.5 and Cy7 dyes allowed us to tune fluorescence emission in the NIR for optical imaging and to exploit quenching processes for photoacoustic and photothermal capabilities. These nanostructures are promising in vivo theranostic tools for the near future.
Collapse
Affiliation(s)
- Stefania Biffi
- Institute for Maternal and Child Health - IRCCS "Burlo Garofolo", Trieste
| | - Luca Petrizza
- Department of Chemistry "G Ciamician", University of Bologna, Bologna
| | - Chiara Garrovo
- Institute for Maternal and Child Health - IRCCS "Burlo Garofolo", Trieste
| | - Enrico Rampazzo
- Department of Chemistry "G Ciamician", University of Bologna, Bologna
| | | | | | | | | | | | - Giorgio Zauli
- Institute for Maternal and Child Health - IRCCS "Burlo Garofolo", Trieste
| | - Paola Secchiero
- Department of Morphology, Surgery and Experimental Medicine and LTTA Centre, University of Ferrara, Ferrara, Italy
| | - Luca Prodi
- Department of Chemistry "G Ciamician", University of Bologna, Bologna
| |
Collapse
|
10
|
Masseroni D, Biavardi E, Genovese D, Rampazzo E, Prodi L, Dalcanale E. A fluorescent probe for ecstasy. Chem Commun (Camb) 2016; 51:12799-802. [PMID: 26166808 DOI: 10.1039/c5cc04760a] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A nanostructure formed by the insertion in silica nanoparticles of a pyrene-derivatized cavitand, which is able to specifically recognize ecstasy in water, is presented. The absence of effects from interferents and an efficient electron transfer process occurring after complexation of ecstasy, makes this system an efficient fluorescent probe for this popular drug.
Collapse
Affiliation(s)
- D Masseroni
- Dipartimento di Chimica, Università di Parma and INSTM UdR Parma, Parco Area delle Scienze 17/A, 43124 Parma, Italy.
| | | | | | | | | | | |
Collapse
|
11
|
Synthetic fluorescent probes to map metallostasis and intracellular fate of zinc and copper. Coord Chem Rev 2016. [DOI: 10.1016/j.ccr.2015.11.012] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
12
|
Luminescent Silica Nanoparticles Featuring Collective Processes for Optical Imaging. Top Curr Chem (Cham) 2016; 370:1-28. [DOI: 10.1007/978-3-319-22942-3_1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
13
|
Peng HQ, Niu LY, Chen YZ, Wu LZ, Tung CH, Yang QZ. Biological Applications of Supramolecular Assemblies Designed for Excitation Energy Transfer. Chem Rev 2015; 115:7502-42. [DOI: 10.1021/cr5007057] [Citation(s) in RCA: 327] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Hui-Qing Peng
- Key
Laboratory of Photochemical Conversion and Optoelectronic Materials,
Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, People’s Republic of China
| | - Li-Ya Niu
- Key
Laboratory of Photochemical Conversion and Optoelectronic Materials,
Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, People’s Republic of China
- Key
Laboratory of Radiopharmaceuticals, Ministry of Education, College
of Chemistry, Beijing Normal University, Beijing 100875, People’s Republic of China
| | - Yu-Zhe Chen
- Key
Laboratory of Photochemical Conversion and Optoelectronic Materials,
Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, People’s Republic of China
| | - Li-Zhu Wu
- Key
Laboratory of Photochemical Conversion and Optoelectronic Materials,
Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, People’s Republic of China
| | - Chen-Ho Tung
- Key
Laboratory of Photochemical Conversion and Optoelectronic Materials,
Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, People’s Republic of China
- Collaborative
Innovation Center of Functionalized Probes for Chemical Imaging in
Universities of Shandong, Shandong Normal University, Jinan 250014, People’s Republic of China
| | - Qing-Zheng Yang
- Key
Laboratory of Photochemical Conversion and Optoelectronic Materials,
Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, People’s Republic of China
- Key
Laboratory of Radiopharmaceuticals, Ministry of Education, College
of Chemistry, Beijing Normal University, Beijing 100875, People’s Republic of China
| |
Collapse
|
14
|
Korzeniowska B, Raspe M, Wencel D, Woolley R, Jalink K, McDonagh C. Development of organically modified silica nanoparticles for monitoring the intracellular level of oxygen using a frequency-domain FLIM platform. RSC Adv 2015. [DOI: 10.1039/c4ra15742g] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The dynamic quenching of luminescence derived from Ru(dpp3)2+-doped ORMOSIL nanoparticles is used for monitoring of the intracellular oxygen concentration.
Collapse
Affiliation(s)
- Barbara Korzeniowska
- Optical Sensors Laboratory
- School of Physical Sciences
- Biomedical Diagnostics Institute
- Dublin City University
- Dublin 9
| | - Marcel Raspe
- Department of Cell Biology
- The Netherlands Cancer Institute
- 1066CX Amsterdam
- Netherlands
| | - Dorota Wencel
- Optical Sensors Laboratory
- School of Physical Sciences
- Biomedical Diagnostics Institute
- Dublin City University
- Dublin 9
| | - Robert Woolley
- Optical Sensors Laboratory
- School of Physical Sciences
- Biomedical Diagnostics Institute
- Dublin City University
- Dublin 9
| | - Kees Jalink
- Department of Cell Biology
- The Netherlands Cancer Institute
- 1066CX Amsterdam
- Netherlands
| | - Colette McDonagh
- Optical Sensors Laboratory
- School of Physical Sciences
- Biomedical Diagnostics Institute
- Dublin City University
- Dublin 9
| |
Collapse
|
15
|
Hu C, Yue W, Yang M. Nanoparticle-based signal generation and amplification in microfluidic devices for bioanalysis. Analyst 2014; 138:6709-20. [PMID: 24067742 DOI: 10.1039/c3an01321a] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Signal generation and amplification based on nanomaterials and microfluidic techniques have both attracted considerable attention separately due to the demands for ultrasensitive and high-throughput detection of biomolecules. This article reviews the latest development of signal amplification strategies based on nanoparticles for bioanalysis and their integration and applications in microfluidic systems. The applications of nanoparticles in bioanalysis were categorized based on the different approaches of signal amplification, and the microfluidic techniques were summarized based on cell analysis and biomolecule detection with a focus on the integration of nanoparticle-based amplification in microfluidic devices for ultrasensitive bioanalysis. The advantages and limitations of the combination of nanoparticles-based amplification with microfluidic techniques were evaluated, and the possible developments for future research were discussed.
Collapse
Affiliation(s)
- Chong Hu
- Department of Biology and Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, People's Republic of China.
| | | | | |
Collapse
|
16
|
Giuffrida ML, Rizzarelli E, Tomaselli GA, Satriano C, Trusso Sfrazzetto G. A novel fully water-soluble Cu(i) probe for fluorescence live cell imaging. Chem Commun (Camb) 2014; 50:9835-8. [DOI: 10.1039/c4cc02147a] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
17
|
Genovese D, Rampazzo E, Bonacchi S, Montalti M, Zaccheroni N, Prodi L. Energy transfer processes in dye-doped nanostructures yield cooperative and versatile fluorescent probes. NANOSCALE 2014; 6:3022-3036. [PMID: 24531884 DOI: 10.1039/c3nr05599j] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Fast and efficient energy transfer among dyes confined in nanocontainers provides the basis of outstanding functionalities in new-generation luminescent probes. This feature article provides an overview of recent research achievements on luminescent Pluronic-Silica NanoParticles (PluS NPs), a class of extremely monodisperse core-shell nanoparticles whose design can be easily tuned to match specific needs for diverse applications based on luminescence, and that have already been successfully tested in in vivo imaging. An outline of their outstanding properties, such as tuneability, bright and photoswitchable fluorescence and electrochemiluminescence, will be supported by a critical discussion of our recent works in this field. Furthermore, novel data and simulations will be presented to (i) thoroughly examine common issues arising from the inclusion of multiple dyes in a small silica core, and (ii) show the emergence of a cooperative behaviour among embedded dyes. Such cooperative behaviour provides a handle for fine control of brightness, emission colour and self-quenching phenomena in PluS NPs, leading to significantly enhanced signal to noise ratios.
Collapse
Affiliation(s)
- Damiano Genovese
- Dipartimento di Chimica "Giacomo Ciamician", via Selmi 2, Bologna 40126, Bologna, Italy.
| | | | | | | | | | | |
Collapse
|
18
|
Montalti M, Prodi L, Rampazzo E, Zaccheroni N. Dye-doped silica nanoparticles as luminescent organized systems for nanomedicine. Chem Soc Rev 2014; 43:4243-68. [DOI: 10.1039/c3cs60433k] [Citation(s) in RCA: 222] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
This review summarizes developments and applications of luminescent dye doped silica nanoparticles as versatile organized systems for nanomedicine.
Collapse
Affiliation(s)
- M. Montalti
- Department of Chemistry “G. Ciamician”
- University of Bologna
- 40126 Bologna, Italy
| | - L. Prodi
- Department of Chemistry “G. Ciamician”
- University of Bologna
- 40126 Bologna, Italy
| | - E. Rampazzo
- Department of Chemistry “G. Ciamician”
- University of Bologna
- 40126 Bologna, Italy
| | - N. Zaccheroni
- Department of Chemistry “G. Ciamician”
- University of Bologna
- 40126 Bologna, Italy
| |
Collapse
|
19
|
Gai F, Li X, Zhou T, Zhao X, Lu D, Liu Y, Huo Q. Silica cross-linked nanoparticles encapsulating a phenothiazine-derived Schiff base for selective detection of Fe(iii) in aqueous media. J Mater Chem B 2014; 2:6306-6312. [DOI: 10.1039/c4tb00805g] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This work demonstrates the design and synthesis of an ET-based fluorescence quenching chemosensor using silica cross-linked micellar nanoparticles as scaffolds to encapsulate EDDP for highly selective determination of Fe3+ in aqueous media.
Collapse
Affiliation(s)
- Fangyuan Gai
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry
- College of Chemistry
- Jilin University
- Changchun 130012, China
| | - Xiang Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry
- College of Chemistry
- Jilin University
- Changchun 130012, China
| | - Tianlei Zhou
- State Key Laboratory of Supramolecular Structure and Materials
- College of Chemistry
- Jilin University
- Changchun 130012, China
| | - Xiaogang Zhao
- Alan G. MacDiarmid Institute
- College of Chemistry
- Jilin University
- Changchun 130012, China
| | - Dongdong Lu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry
- College of Chemistry
- Jilin University
- Changchun 130012, China
| | - Yunling Liu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry
- College of Chemistry
- Jilin University
- Changchun 130012, China
| | - Qisheng Huo
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry
- College of Chemistry
- Jilin University
- Changchun 130012, China
| |
Collapse
|
20
|
Biffi S, Petrizza L, Rampazzo E, Voltan R, Sgarzi M, Garrovo C, Prodi L, Andolfi L, Agnoletto C, Zauli G, Secchiero P. Multiple dye-doped NIR-emitting silica nanoparticles for both flow cytometry and in vivo imaging. RSC Adv 2014. [DOI: 10.1039/c4ra01535e] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Dye-doped near infrared-emitting silica nanoparticles (DD-NIRsiNPs) represent a valuable tool in bioimaging, because they provide sufficient brightness, resistance to photobleaching and consist of hydrophilic non-toxic materials.
Collapse
Affiliation(s)
- Stefania Biffi
- Institute for Maternal and Child Health-IRCCS “Burlo Garofolo”
- 34137 Trieste, Italy
| | - Luca Petrizza
- Department of Chemistry “G. Ciamician”
- University of Bologna
- 40126 Bologna, Italy
| | - Enrico Rampazzo
- Department of Chemistry “G. Ciamician”
- University of Bologna
- 40126 Bologna, Italy
| | - Rebecca Voltan
- Department of Morphology, Surgery and Experimental Medicine and LTTA Centre
- University of Ferrara
- 44121 Ferrara, Italy
| | - Massimo Sgarzi
- Department of Chemistry “G. Ciamician”
- University of Bologna
- 40126 Bologna, Italy
| | - Chiara Garrovo
- Institute for Maternal and Child Health-IRCCS “Burlo Garofolo”
- 34137 Trieste, Italy
| | - Luca Prodi
- Department of Chemistry “G. Ciamician”
- University of Bologna
- 40126 Bologna, Italy
| | | | - Chiara Agnoletto
- Department of Morphology, Surgery and Experimental Medicine and LTTA Centre
- University of Ferrara
- 44121 Ferrara, Italy
| | - Giorgio Zauli
- Institute for Maternal and Child Health-IRCCS “Burlo Garofolo”
- 34137 Trieste, Italy
| | - Paola Secchiero
- Department of Morphology, Surgery and Experimental Medicine and LTTA Centre
- University of Ferrara
- 44121 Ferrara, Italy
| |
Collapse
|
21
|
Arca M, Caltagirone C, De Filippo G, Formica M, Fusi V, Giorgi L, Lippolis V, Prodi L, Rampazzo E, Scorciapino MA, Sgarzi M, Zaccheroni N. A fluorescent ratiometric nanosized system for the determination of PdII in water. Chem Commun (Camb) 2014; 50:15259-62. [DOI: 10.1039/c4cc07969h] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
A fluorescent chemosensor, loaded on dye-doped silica nanoparticles, can be used to detect Pd2+ ions in water with high selectivity toward other cations including the platinum group ones.
Collapse
Affiliation(s)
- Massimiliano Arca
- Department of Chemical and Geological Sciences
- University of Cagliari
- 09042 Monserrato (CA), Italy
| | - Claudia Caltagirone
- Department of Chemical and Geological Sciences
- University of Cagliari
- 09042 Monserrato (CA), Italy
| | - Greta De Filippo
- Department of Chemical and Geological Sciences
- University of Cagliari
- 09042 Monserrato (CA), Italy
| | - Mauro Formica
- Department of Base Sciences and Foundations
- University of Urbino
- I-61029 Urbino, Italy
| | - Vieri Fusi
- Department of Base Sciences and Foundations
- University of Urbino
- I-61029 Urbino, Italy
| | - Luca Giorgi
- Department of Base Sciences and Foundations
- University of Urbino
- I-61029 Urbino, Italy
| | - Vito Lippolis
- Department of Chemical and Geological Sciences
- University of Cagliari
- 09042 Monserrato (CA), Italy
| | - Luca Prodi
- Department of Chemistry “G. Ciamician”
- University of Bologna
- I-40126 Bologna, Italy
| | - Enrico Rampazzo
- Department of Chemistry “G. Ciamician”
- University of Bologna
- I-40126 Bologna, Italy
| | | | - Massimo Sgarzi
- Department of Chemistry “G. Ciamician”
- University of Bologna
- I-40126 Bologna, Italy
| | - Nelsi Zaccheroni
- Department of Chemistry “G. Ciamician”
- University of Bologna
- I-40126 Bologna, Italy
| |
Collapse
|
22
|
Korzeniowska B, Nooney R, Wencel D, McDonagh C. Silica nanoparticles for cell imaging and intracellular sensing. NANOTECHNOLOGY 2013; 24:442002. [PMID: 24113689 DOI: 10.1088/0957-4484/24/44/442002] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
There is increasing interest in the use of nanoparticles (NPs) for biomedical applications. In particular, nanobiophotonic approaches using fluorescence offers the potential of high sensitivity and selectivity in applications such as cell imaging and intracellular sensing. In this review, we focus primarily on the use of fluorescent silica NPs for these applications and, in so doing, aim to enhance and complement the key recent review articles on these topics. We summarize the main synthetic approaches, namely the Stöber and microemulsion processes, and, in this context, we deal with issues in relation to both covalent and physical incorporation of different types of dyes in the particles. The important issue of NP functionalization for conjugation to biomolecules is discussed and strategies published in the recent literature are highlighted and evaluated. We cite recent examples of the use of fluorescent silica NPs for cell imaging in the areas of cancer, stem cell and infectious disease research, and we review the current literature on the use of silica NPs for intracellular sensing of oxygen, pH and ionic species. We include a short final section which seeks to identify the main challenges and obstacles in relation to the potential widespread use of these particles for in vivo diagnostics and therapeutics.
Collapse
Affiliation(s)
- B Korzeniowska
- Optical Sensors Laboratory, School of Physical Sciences, NCSR, Dublin City University, Dublin 9, Ireland
| | | | | | | |
Collapse
|
23
|
Li X, Gao X, Shi W, Ma H. Design strategies for water-soluble small molecular chromogenic and fluorogenic probes. Chem Rev 2013; 114:590-659. [PMID: 24024656 DOI: 10.1021/cr300508p] [Citation(s) in RCA: 1206] [Impact Index Per Article: 100.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Xiaohua Li
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190, China
| | | | | | | |
Collapse
|
24
|
Bazzicalupi C, Caltagirone C, Cao Z, Chen Q, Di Natale C, Garau A, Lippolis V, Lvova L, Liu H, Lundström I, Mostallino MC, Nieddu M, Paolesse R, Prodi L, Sgarzi M, Zaccheroni N. Multimodal Use of New Coumarin-Based Fluorescent Chemosensors: Towards Highly Selective Optical Sensors for Hg2+Probing. Chemistry 2013; 19:14639-53. [DOI: 10.1002/chem.201302090] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Indexed: 01/04/2023]
|
25
|
Rampazzo E, Voltan R, Petrizza L, Zaccheroni N, Prodi L, Casciano F, Zauli G, Secchiero P. Proper design of silica nanoparticles combines high brightness, lack of cytotoxicity and efficient cell endocytosis. NANOSCALE 2013; 5:7897-905. [PMID: 23851463 DOI: 10.1039/c3nr02563b] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Silica-based luminescent nanoparticles (SiNPs) show promising prospects in nanomedicine in light of their chemical properties and versatility. In this study, we have characterized silica core-PEG shell SiNPs derivatized with PEG moieties (NP-PEG), with external amino- (NP-PEG-amino) or carboxy-groups (NP-PEG-carbo), both in cell cultures as well as in animal models. By using different techniques, we could demonstrate that these SiNPs were safe and did not exhibit appreciable cytotoxicity in different relevant cell models, of normal or cancer cell types, growing either in suspension (JVM-2 leukemic cell line and primary normal peripheral blood mononuclear cells) or in adherence (human hepatocarcinoma Huh7 and umbilical vein endothelial cells). Moreover, by multiparametric flow cytometry, we could demonstrate that the highest efficiency of cell uptake and entry was observed with NP-PEG-amino, with a stable persistence of the fluorescence signal associated with SiNPs in the loaded cell populations both in vitro and in vivo settings suggesting this as an innovative method for cell traceability and detection in whole organisms. Finally, experiments performed with the endocytosis inhibitor Genistein clearly suggested the involvement of a caveolae-mediated pathway in SiNP endocytosis. Overall, these data support the safe use of these SiNPs for diagnostic and therapeutic applications.
Collapse
Affiliation(s)
- Enrico Rampazzo
- Department of Chemistry G. Ciamician, University of Bologna, Via Selmi 2, 40126 Bologna, Italy
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Genovese D, Bonacchi S, Juris R, Montalti M, Prodi L, Rampazzo E, Zaccheroni N. Prevention of Self-Quenching in Fluorescent Silica Nanoparticles by Efficient Energy Transfer. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201301155] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
27
|
Genovese D, Bonacchi S, Juris R, Montalti M, Prodi L, Rampazzo E, Zaccheroni N. Prevention of Self-Quenching in Fluorescent Silica Nanoparticles by Efficient Energy Transfer. Angew Chem Int Ed Engl 2013; 52:5965-8. [DOI: 10.1002/anie.201301155] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Indexed: 01/07/2023]
|
28
|
Chen G, Song F, Xiong X, Peng X. Fluorescent Nanosensors Based on Fluorescence Resonance Energy Transfer (FRET). Ind Eng Chem Res 2013. [DOI: 10.1021/ie303485n] [Citation(s) in RCA: 204] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Gengwen Chen
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Hi-tech
Zone, Dalian 116024, People’s Republic of China
| | - Fengling Song
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Hi-tech
Zone, Dalian 116024, People’s Republic of China
| | - Xiaoqing Xiong
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Hi-tech
Zone, Dalian 116024, People’s Republic of China
| | - Xiaojun Peng
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Hi-tech
Zone, Dalian 116024, People’s Republic of China
| |
Collapse
|
29
|
Pedone A, Gambuzzi E, Barone V, Bonacchi S, Genovese D, Rampazzo E, Prodi L, Montalti M. Understanding the photophysical properties of coumarin-based Pluronic–silica (PluS) nanoparticles by means of time-resolved emission spectroscopy and accurate TDDFT/stochastic calculations. Phys Chem Chem Phys 2013; 15:12360-72. [DOI: 10.1039/c3cp51943k] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
30
|
Li DM, Chen YC, Zhang C, Song S, Zheng YS. Different morphologies of silica synthesized using organic templates from the same class of chiral compounds. J Mater Chem B 2013; 1:1622-1627. [DOI: 10.1039/c3tb00146f] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
31
|
Grasso GI, Gentile S, Giuffrida ML, Satriano C, Sgarlata C, Sgarzi M, Tomaselli G, Arena G, Prodi L. Ratiometric fluorescence sensing and cellular imaging of Cu2+ by a new water soluble trehalose-naphthalimide based chemosensor. RSC Adv 2013. [DOI: 10.1039/c3ra43988g] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
|
32
|
Montalti M, Rampazzo E, Zaccheroni N, Prodi L. Luminescent chemosensors based on silicananoparticles for the detection of ionic species. NEW J CHEM 2013. [DOI: 10.1039/c2nj40673j] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
33
|
Pei X, Xu Z, Zhang J, Liu Z, Tian J. Sensitive electrochemical immunoassay of IgG1 based on poly(amido amine) dendrimer-encapsulated CdS quantum dots. RSC Adv 2013. [DOI: 10.1039/c3ra41665h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
|
34
|
Satriano C, Sfrazzetto GT, Amato ME, Ballistreri FP, Copani A, Giuffrida ML, Grasso G, Pappalardo A, Rizzarelli E, Tomaselli GA, Toscano RM. A ratiometric naphthalimide sensor for live cell imaging of copper(i). Chem Commun (Camb) 2013; 49:5565-7. [DOI: 10.1039/c3cc42069h] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
35
|
Florian A, Mayoral MJ, Stepanenko V, Fernández G. Alternated Stacks of Nonpolar Oligo(p-phenyleneethynylene)-BODIPY Systems. Chemistry 2012; 18:14957-61. [DOI: 10.1002/chem.201203279] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Indexed: 12/21/2022]
|
36
|
Gai F, Zhou T, Zhang L, Li X, Hou W, Yang X, Li Y, Zhao X, Xu D, Liu Y, Huo Q. Silica cross-linked nanoparticles encapsulating fluorescent conjugated dyes for energy transfer-based white light emission and porphyrin sensing. NANOSCALE 2012; 4:6041-6049. [PMID: 22930394 DOI: 10.1039/c2nr31194a] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
This work demonstrated that water-soluble fluorescent hybrid materials can be successfully synthesized by use of silica cross-linked micellar nanoparticles (SCMNPs) as scaffolds to encapsulate fluorescent conjugated dyes for pH sensing, porphyrin sensing and tunable colour emission. Three dyes were separately encapsulated inside SCMNPs (short to dye-SCMNPs). Each of the dye-SCMNPs indicated longer lifetime in water than that of free dye dissolved in organic solvent. The 7-(hexadecyloxy) coumarin-3-ethylformate (HCE) encapsulated inside SCMNPs (HCE-SCMNPs) exhibited fluorescence quenching by pH change in aqueous media. Furthermore, it was confirmed that the radiative and nonradiative energy transfer processes both occurred between HCE-SCMNPs and tetraphenyl-porphyrin (TPP), which were used to synthesize the water-soluble TPP sensor. Significantly, HCE-SCMNPs doped with 5,12-dicotyl-quinacridone (8CQA) and TPP showed water-soluble white light emission (CIE (0.29, 0.34)) upon singlet excitation of 376 nm due to colour adjustment of 8CQA and energy transfer from HCE (donor) to TPP (acceptor).
Collapse
Affiliation(s)
- Fangyuan Gai
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Rampazzo E, Boschi F, Bonacchi S, Juris R, Montalti M, Zaccheroni N, Prodi L, Calderan L, Rossi B, Becchi S, Sbarbati A. Multicolor core/shell silica nanoparticles for in vivo and ex vivo imaging. NANOSCALE 2012; 4:824-30. [PMID: 22159192 DOI: 10.1039/c1nr11401h] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Biocompatible highly bright silica nanoparticles were designed, prepared and tested in small living organisms for both in vivo and ex vivo imaging. The results that we report here demonstrate that they are suitable for optical imaging applications as a possible alternative to commercially available fluorescent materials including quantum dots. Moreover, the tunability of their photophysical properties, which was enhanced by the use of different dyes as doping agents, constitutes a very important added value in the field of medical diagnostics.
Collapse
Affiliation(s)
- Enrico Rampazzo
- Department of Chemistry G. Ciamician, University of Bologna, Via Selmi 2, 40126, Bologna, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Valenti G, Rampazzo E, Bonacchi S, Khajvand T, Juris R, Montalti M, Marcaccio M, Paolucci F, Prodi L. A versatile strategy for tuning the color of electrochemiluminescence using silica nanoparticles. Chem Commun (Camb) 2012; 48:4187-9. [DOI: 10.1039/c2cc30612c] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|