1
|
Fu F, Crespy D, Landfester K, Jiang S. In situ characterization techniques of protein corona around nanomaterials. Chem Soc Rev 2024. [PMID: 39291461 DOI: 10.1039/d4cs00507d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Nanoparticles (NPs) inevitably interact with proteins upon exposure to biological fluids, leading to the formation of an adsorption layer known as the "protein corona". This corona imparts NPs with a new biological identity, directly influencing their interactions with living systems and dictating their fates in vivo. Thus, gaining a comprehensive understanding of the dynamic interplay between NPs and proteins in biological fluids is crucial for predicting therapeutic effects and advancing the clinical translation of nanomedicines. Numerous methods have been established to decode the protein corona fingerprints. However, these methods primarily rely on prior isolation of NP-protein complex from the surrounding medium by centrifugation, resulting in the loss of outer-layer proteins that directly interact with the biological system and determine the in vivo fate of NPs. We discuss here separation techniques as well as in situ characterization methods tailored for comprehensively unraveling the inherent complexities of NP-protein interactions, highlighting the challenges of in situ protein corona characterization and its significance for nanomedicine development and clinical translation.
Collapse
Affiliation(s)
- Fangqin Fu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Daniel Crespy
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong 21210, Thailand
| | | | - Shuai Jiang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| |
Collapse
|
2
|
Nele V, D'Aria F, Campani V, Silvestri T, Biondi M, Giancola C, De Rosa G. Unravelling the role of lipid composition on liposome-protein interactions. J Liposome Res 2024; 34:88-96. [PMID: 37337884 DOI: 10.1080/08982104.2023.2224449] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 06/06/2023] [Indexed: 06/21/2023]
Abstract
Upon in vivo administration of nanoparticles, a protein corona forms on their surface and affects their half-life in circulation, biodistribution properties, and stability; in turn, the composition of the protein corona depends on the physico-chemical properties of the nanoparticles. We have previously observed lipid composition-dependent in vitro and in vivo microRNA delivery from lipid nanoparticles. Here, we carried out an extensive physico-chemical characterisation to understand the role of the lipid composition on the in vivo fate of lipid-based nanoparticles. We used a combination of differential scanning calorimetry (DSC), membrane deformability measurements, isothermal titration calorimetry (ITC), and dynamic light scattering (DLS) to probe the interactions between the nanoparticle surface and bovine serum albumin (BSA) as a model protein. The lipid composition influenced membrane deformability, improved lipid intermixing, and affected the formation of lipid domains while BSA binding to the liposome surface was affected by the PEGylated lipid content and the presence of cholesterol. These findings highlight the importance of the lipid composition on the protein-liposome interaction and provide important insights for the design of lipid-based nanoparticles for drug delivery applications.
Collapse
Affiliation(s)
- Valeria Nele
- BioNanoMed Drug Delivery Group, Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Federica D'Aria
- Biophysics Laboratory, Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Virginia Campani
- BioNanoMed Drug Delivery Group, Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Teresa Silvestri
- BioNanoMed Drug Delivery Group, Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Marco Biondi
- BioNanoMed Drug Delivery Group, Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Concetta Giancola
- Biophysics Laboratory, Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Giuseppe De Rosa
- BioNanoMed Drug Delivery Group, Department of Pharmacy, University of Naples Federico II, Naples, Italy
| |
Collapse
|
3
|
Zhang S, Liu P, Li L, Liu Z, Qian X, Jiang X, Sun W, Wang L, Akkaya EU. Upconverting Nanoparticle-Based Photoactive Probes for Highly Efficient Labeling and Isolation of Target Proteins. ACS APPLIED MATERIALS & INTERFACES 2023; 15:40280-40291. [PMID: 37585283 DOI: 10.1021/acsami.3c08397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
Photoaffinity labeling (PAL) has blossomed into a powerful and versatile tool for capture and identification of biomolecular targets. However, low labeling efficiency for specific targets such as lectins, the tedious process for protein purification, inevitable cellular photodamage, and less tissue penetration of UV light are significant challenges. Herein, we reported a near-infrared (NIR) light-driven photoaffinity labeling approach using upconverting nanoparticle (UCNP)-based photoactive probes, which were constructed by assembling photoactive groups and ligands onto NaYF4:Yb,Tm nanoparticles. The novel probes were easily prepared and functionalized, and the labeled proteins can be isolated and purified through simple centrifugation and washing. The advantages of this approach were demonstrated by labeling and isolation of peanut agglutinin (PNA), asialoglycoprotein receptor (ASGPR), and human carbonic anhydrase II (hCAII) from mixed proteins or cell lysates with good selectivity and efficiency, especially for PNA and ASGPR, two lectins that showed low binding affinity to their ligands. More importantly, successful labeling of PNA through pork tissues and ASGPR in mice strongly proved the good tissue penetrating capacity of NIR light and the application potential of UCNP-based photoactive probes for protein labeling in vivo. Biosafety of this approach was experimentally validated by enzyme, cell, and animal work, and we demonstrated that NIR light caused minimal photodamage to enzyme activity compared to UV light, and the UCNP-based photoactive probe presents good biosafety both in vitro and in vivo. We believe that this novel PAL approach will provide a promising tool for study of ligand-protein interactions and identification of biomolecular targets.
Collapse
Affiliation(s)
- Shengli Zhang
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, 116024 Dalian, China
| | - Peng Liu
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, 116024 Dalian, China
| | - Li Li
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, 116024 Dalian, China
| | - Ziang Liu
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, 116024 Dalian, China
| | - Xiao Qian
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, 116024 Dalian, China
| | - Xueying Jiang
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, 116024 Dalian, China
| | - Wen Sun
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, 116024 Dalian, China
| | - Lei Wang
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, 116024 Dalian, China
| | - Engin U Akkaya
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, 116024 Dalian, China
| |
Collapse
|
4
|
Wang T, Jimmidi R, Roubinet B, Landemarre L, Vincent SP. Glycofullerene-AuNPs as multivalent ligands of DC-SIGN and bacterial lectin FimH: tuning nanoparticle size and ligand density. NANOSCALE 2023. [PMID: 37378654 DOI: 10.1039/d3nr01611k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
Glycoclusters have been extensively investigated for their inhibition of multivalent carbohydrate-protein interactions, which is often the first step for bacterial and viral pathogens to selectively bind their host cells. Glycoclusters may thus prevent infections by blocking the microbe attachment onto the host cell surface. The potency of multivalent carbohydrate-protein interactions is largely derived from the spatial arrangement of the ligand and the nature and flexibility of the linker. The size of the glycocluster may also have a dramatic impact on the multivalent effect. The main objective of this study is to provide a systematic comparison of gold nanoparticles of three representative sizes and ligand densities at their surface. Therefore, AuNPs with diameters of 20, 60, and 100 nm were coupled either to a monomeric D-mannoside or a decameric glycofullerene. Lectin DC-SIGN and lectin FimH were selected as representative models of viral and bacterial infections, respectively. We also report the synthesis of a hetero-cluster built from 20 nm AuNPs and a mannose-derived glycofullerene and monomeric fucosides. All final glycoAuNPs were evaluated as ligands of DC-SIGN- and FimH using the GlycoDiag LectProfile technology. This investigation revealed that the 20 nm AuNPs bearing glycofullerenes with short linker are the most potent binders of both DC-SIGN and FimH. Moreover, the hetero-glycoAuNPs showed an enhanced selectivity and inhibitory ability towards DC-SIGN. Hemagglutination inhibition assays using uropathogenic E. coli corroborated the in vitro assays. Overall, these results showed smaller glycofullerene-AuNPs (20 nm) exhibited the best potential as anti-adhesive materials for a variety of bacterial and viral pathogens.
Collapse
Affiliation(s)
- Tao Wang
- University of Namur (UNamur, Institut Narilis), Laboratoire de Chimie Bio-Organique, rue de Bruxelles 61, B-5000 Namur, Belgium.
| | - Ravikumar Jimmidi
- University of Namur (UNamur, Institut Narilis), Laboratoire de Chimie Bio-Organique, rue de Bruxelles 61, B-5000 Namur, Belgium.
| | | | | | - Stéphane P Vincent
- University of Namur (UNamur, Institut Narilis), Laboratoire de Chimie Bio-Organique, rue de Bruxelles 61, B-5000 Namur, Belgium.
| |
Collapse
|
5
|
Yang ML, Huang YJ, Lin YC, Lin YH, Hung TT, Shiau AL, Cheng HC, Wu CL. Multivalent dipeptidyl peptidase IV fragment-nanogold complex inhibits cancer metastasis by blocking pericellular fibronectin. BIOMATERIALS ADVANCES 2023; 148:213357. [PMID: 36871348 DOI: 10.1016/j.bioadv.2023.213357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 02/14/2023] [Accepted: 02/21/2023] [Indexed: 03/06/2023]
Abstract
Inhibition of cancer metastasis is a fundamental challenge in cancer treatment. We have previously shown that metastasis of cancer cells in the lung is critically promoted by the interaction between the superficial dipeptidyl peptidase IV (DPP IV) expressed on lung endothelial cells and the pericellular polymeric fibronectin (polyFN) of circulating cancer cells. In the present study, we aimed to search for DPP IV fragments with high avidity to polyFN and develop FN-targeted gold nanoparticles (AuNPs) conjugated with DPP IV fragments for treating cancer metastasis. We first identified a DPP IV fragment encompassing amino acids 29-130 of DPP IV, designated DP4A, which contained FN-binding sites and could specifically bind to FN immobilized on gelatin agarose beads. Furthermore, we conjugated maltose binding protein (MBP)-fused DP4A proteins to AuNPs for fabricating a DP4A-AuNP complex and evaluated its FN-targeted activity in vitro and anti-metastatic efficacy in vivo. Our results show that DP4A-AuNP exhibited higher binding avidity to polyFN than DP4A by 9 folds. Furthermore, DP4A-AuNP was more potent than DP4A in inhibiting DPP IV binding to polyFN. In terms of polyFN-targeted effect, DP4A-AuNP interacted with FN-overexpressing cancer cells and was endocytosed into cells 10 to 100 times more efficiently than untargeted MBP-AuNP or PEG-AuNP with no noticeable cytotoxicity. Furthermore, DP4A-AuNP was superior to DP4A in competitive inhibition of cancer cell adhesion to DPP IV. Confocal microscopy analysis revealed that binding of DP4A-AuNP to pericellular FN induced FN clustering without altering its surface expression on cancer cells. Notably, intravenous treatment with DP4A-AuNP significantly reduced metastatic lung tumor nodules and prolonged the survival in the experimental metastatic 4T1 tumor model. Collectively, our findings suggest that the DP4A-AuNP complex with potent FN-targeted effects may have therapeutic potential for prevention and treatment of tumor metastasis to the lung.
Collapse
Affiliation(s)
- Mei-Lin Yang
- Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi City, Taiwan; Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yen-Jang Huang
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yu-Chuan Lin
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ying-Hsiu Lin
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ting-Ting Hung
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ai-Li Shiau
- Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi City, Taiwan; Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| | - Hung-Chi Cheng
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| | - Chao-Liang Wu
- Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi City, Taiwan; Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
6
|
Pesenti T, Domingo-Lopez D, Gillon E, Ibrahim N, Messaoudi S, Imberty A, Nicolas J. Degradable Glycopolyester-like Nanoparticles by Radical Ring-Opening Polymerization. Biomacromolecules 2022; 23:4015-4028. [PMID: 35971824 DOI: 10.1021/acs.biomac.2c00851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A small library of degradable polyester-like glycopolymers was successfully prepared by the combination of radical ring-opening copolymerization of 2-methylene-1,3-dioxepane as a cyclic ketene acetal (CKA) with vinyl ether (VE) derivatives and a Pd-catalyzed thioglycoconjugation. The resulting thioglycopolymers were formulated into self-stabilized thioglyconanoparticles, which were stable up to 4 months and were enzymatically degraded. Nanoparticles and their degradation products exhibited a good cytocompatibility on two healthy cell lines. Interactions between thioglyconanoparticles and lectins were investigated and highlighted the presence of both specific carbohydrate/lectin interactions and nonspecific hydrophobic interactions. Fluorescent thioglyconanoparticles were also prepared either by encapsulation of Nile red or by the functionalization of the polymer backbone with rhodamine B. Such nanoparticles were used to prove the cell internalization of the thioglyconanoparticles by lung adenocarcinoma (A549) cells, which underlined the great potential of P(CKA-co-VE) copolymers for biomedical applications.
Collapse
Affiliation(s)
- Théo Pesenti
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 92296 Châtenay-Malabry, France
| | - Daniel Domingo-Lopez
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 92296 Châtenay-Malabry, France
| | - Emilie Gillon
- Université Grenoble Alpes, CNRS, CERMAV, 38000 Grenoble, France
| | - Nada Ibrahim
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 92296 Châtenay-Malabry, France
| | - Samir Messaoudi
- Université Paris-Saclay, CNRS, BioCIS, 92296 Châtenay-Malabry, France
| | - Anne Imberty
- Université Grenoble Alpes, CNRS, CERMAV, 38000 Grenoble, France
| | - Julien Nicolas
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 92296 Châtenay-Malabry, France
| |
Collapse
|
7
|
Wojtczak K, Byrne JP. Structural Considerations for Building Synthetic Glycoconjugates as Inhibitors for Pseudomonas aeruginosa Lectins. ChemMedChem 2022; 17:e202200081. [PMID: 35426976 PMCID: PMC9321714 DOI: 10.1002/cmdc.202200081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 04/13/2022] [Indexed: 11/16/2022]
Abstract
Pseudomonas aeruginosa is a pathogenic bacterium, responsible for a large portion of nosocomial infections globally and designated as critical priority by the World Health Organisation. Its characteristic carbohydrate-binding proteins LecA and LecB, which play a role in biofilm-formation and lung-infection, can be targeted by glycoconjugates. Here we review the wide range of inhibitors for these proteins (136 references), highlighting structural features and which impact binding affinity and/or therapeutic effects, including carbohydrate selection; linker length and rigidity; and scaffold topology, particularly for multivalent candidates. We also discuss emerging therapeutic strategies, which build on targeting of LecA and LecB, such as anti-biofilm activity, anti-adhesion and drug-delivery, with promising prospects for medicinal chemistry.
Collapse
Affiliation(s)
- Karolina Wojtczak
- School of Biological and Chemical SciencesNational University of Ireland GalwayUniversity RoadGalwayIreland
| | - Joseph P. Byrne
- School of Biological and Chemical SciencesNational University of Ireland GalwayUniversity RoadGalwayIreland
| |
Collapse
|
8
|
Barchi JJ. Glycoconjugate Nanoparticle-Based Systems in Cancer Immunotherapy: Novel Designs and Recent Updates. Front Immunol 2022; 13:852147. [PMID: 35432351 PMCID: PMC9006936 DOI: 10.3389/fimmu.2022.852147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 03/04/2022] [Indexed: 11/15/2022] Open
Abstract
For many years, cell-surface glycans (in particular, Tumor-Associated Carbohydrate Antigens, TACAs) have been the target of both passive and active anticancer immunotherapeutic design. Recent advances in immunotherapy as a treatment for a variety of malignancies has revolutionized anti-tumor treatment regimens. Checkpoint inhibitors, Chimeric Antigen Receptor T-cells, Oncolytic virus therapy, monoclonal antibodies and vaccines have been developed and many approvals have led to remarkable outcomes in a subset of patients. However, many of these therapies are very selective for specific patient populations and hence the search for improved therapeutics and refinement of techniques for delivery are ongoing and fervent research areas. Most of these agents are directed at protein/peptide epitopes, but glycans-based targets are gaining in popularity, and a handful of approved immunotherapies owe their activity to oligosaccharide targets. In addition, nanotechnology and nanoparticle-derived systems can help improve the delivery of these agents to specific organs and cell types based on tumor-selective approaches. This review will first outline some of the historical beginnings of this research area and subsequently concentrate on the last 5 years of work. Based on the progress in therapeutic design, predictions can be made as to what the future holds for increasing the percentage of positive patient outcomes for optimized systems.
Collapse
Affiliation(s)
- Joseph J. Barchi
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, United States
| |
Collapse
|
9
|
Fleming A, Cursi L, Behan JA, Yan Y, Xie Z, Adumeau L, Dawson KA. Designing Functional Bionanoconstructs for Effective In Vivo Targeting. Bioconjug Chem 2022; 33:429-443. [PMID: 35167255 PMCID: PMC8931723 DOI: 10.1021/acs.bioconjchem.1c00546] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
![]()
The progress achieved
over the last three decades in the field
of bioconjugation has enabled the preparation of sophisticated nanomaterial–biomolecule
conjugates, referred to herein as bionanoconstructs, for a multitude
of applications including biosensing, diagnostics, and therapeutics.
However, the development of bionanoconstructs for the active targeting
of cells and cellular compartments, both in vitro and in vivo, is challenged by the lack of understanding
of the mechanisms governing nanoscale recognition. In this review,
we highlight fundamental obstacles in designing a successful bionanoconstruct,
considering findings in the field of bionanointeractions. We argue
that the biological recognition of bionanoconstructs is modulated
not only by their molecular composition but also by the collective
architecture presented upon their surface, and we discuss fundamental
aspects of this surface architecture that are central to successful
recognition, such as the mode of biomolecule conjugation and nanomaterial
passivation. We also emphasize the need for thorough characterization
of engineered bionanoconstructs and highlight the significance of
population heterogeneity, which too presents a significant challenge
in the interpretation of in vitro and in
vivo results. Consideration of such issues together will
better define the arena in which bioconjugation, in the future, will
deliver functional and clinically relevant bionanoconstructs.
Collapse
Affiliation(s)
- Aisling Fleming
- Centre for BioNano Interactions, School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland
| | - Lorenzo Cursi
- Centre for BioNano Interactions, School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland
| | - James A Behan
- Centre for BioNano Interactions, School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland
| | - Yan Yan
- UCD Conway Institute of Biomolecular and Biomedical Research, School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Zengchun Xie
- Centre for BioNano Interactions, School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland
| | - Laurent Adumeau
- Centre for BioNano Interactions, School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland
| | - Kenneth A Dawson
- Centre for BioNano Interactions, School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
10
|
Wang J, Zhang Y, Lu Q, Xing D, Zhang R. Exploring Carbohydrates for Therapeutics: A Review on Future Directions. Front Pharmacol 2021; 12:756724. [PMID: 34867374 PMCID: PMC8634948 DOI: 10.3389/fphar.2021.756724] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 10/08/2021] [Indexed: 12/02/2022] Open
Abstract
Carbohydrates are important components of foods and essential biomolecules performing various biological functions in living systems. A variety of biological activities besides providing fuel have been explored and reported for carbohydrates. Some carbohydrates have been approved for the treatment of various diseases; however, carbohydrate-containing drugs represent only a small portion of all of the drugs on the market. This review summarizes several potential development directions of carbohydrate-containing therapeutics, with the hope of promoting the application of carbohydrates in drug development.
Collapse
Affiliation(s)
- Jie Wang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China.,Cancer Institute, Qingdao University, Qingdao, China
| | - Yukun Zhang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China.,Cancer Institute, Qingdao University, Qingdao, China
| | - Qi Lu
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China.,Cancer Institute, Qingdao University, Qingdao, China
| | - Dongming Xing
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China.,Cancer Institute, Qingdao University, Qingdao, China.,School of Life Sciences, Tsinghua University, Beijing, China
| | - Renshuai Zhang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China.,Cancer Institute, Qingdao University, Qingdao, China
| |
Collapse
|
11
|
Das R, Mukhopadhyay B. A brief insight to the role of glyconanotechnology in modern day diagnostics and therapeutics. Carbohydr Res 2021; 507:108394. [PMID: 34265516 DOI: 10.1016/j.carres.2021.108394] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 06/28/2021] [Accepted: 06/30/2021] [Indexed: 12/17/2022]
Abstract
Carbohydrate-protein and carbohydrate-carbohydrate interactions are very important for various biological processes. Although the magnitude of these interactions is low compared to that of protein-protein interaction, the magnitude can be boosted by multivalent approach known as glycocluster effect. Nanoparticle platform is one of the best ways to present diverse glycoforms in multivalent manner and thus, the field of glyconanotechnology has emerged as an important field of research considering their potential applications in diagnostics and therapeutics. Considerable advances in the field have been achieved through development of novel techniques, use of diverse metallic and non-metallic cores for better efficacy and application of ever-increasing number of carbohydrate ligands for site-specific interaction. The present review encompasses the recent developments in the area of glyconanotechnology and their future promise as diagnostic and therapeutic tools.
Collapse
Affiliation(s)
- Rituparna Das
- Sweet Lab, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, 741246, India.
| | - Balaram Mukhopadhyay
- Sweet Lab, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, 741246, India.
| |
Collapse
|
12
|
Kim D, Rahhal N, Rademacher C. Elucidating Carbohydrate-Protein Interactions Using Nanoparticle-Based Approaches. Front Chem 2021; 9:669969. [PMID: 34046397 PMCID: PMC8144316 DOI: 10.3389/fchem.2021.669969] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 04/06/2021] [Indexed: 12/12/2022] Open
Abstract
Carbohydrates are present on every living cell and coordinate important processes such as self/non-self discrimination. They are amongst the first molecular determinants to be encountered when cellular interactions are initiated. In particular, they resemble essential molecular fingerprints such as pathogen-, danger-, and self-associated molecular patterns guiding key decision-making in cellular immunology. Therefore, a deeper understanding of how cellular receptors of the immune system recognize incoming particles, based on their carbohydrate signature and how this information is translated into a biological response, will enable us to surgically manipulate them and holds promise for novel therapies. One approach to elucidate these early recognition events of carbohydrate interactions at cellular surfaces is the use of nanoparticles coated with defined carbohydrate structures. These particles are captured by carbohydrate receptors and initiate a cellular cytokine response. In the case of endocytic receptors, the capturing enables the engulfment of exogenous particles. Thereafter, the particles are sorted and degraded during their passage in the endolysosomal pathway. Overall, these processes are dependent on the nature of the endocytic carbohydrate receptors and consequently reflect upon the carbohydrate patterns on the exogenous particle surface. This interplay is still an under-studied subject. In this review, we summarize the application of nanoparticles as a promising tool to monitor complex carbohydrate-protein interactions in a cellular context and their application in areas of biomedicine.
Collapse
Affiliation(s)
- Dongyoon Kim
- Department of Pharmaceutical Sciences, University of Vienna, Vienna, Austria
| | - Nowras Rahhal
- Department of Pharmaceutical Sciences, University of Vienna, Vienna, Austria
- Max F. Perutz Laboratories, Department of Microbiology and Immunobiology, Vienna, Austria
| | - Christoph Rademacher
- Department of Pharmaceutical Sciences, University of Vienna, Vienna, Austria
- Max F. Perutz Laboratories, Department of Microbiology and Immunobiology, Vienna, Austria
| |
Collapse
|
13
|
O'Reilly C, Blasco S, Parekh B, Collins H, Cooke G, Gunnlaugsson T, Byrne JP. Ruthenium-centred btp glycoclusters as inhibitors for Pseudomonas aeruginosa biofilm formation. RSC Adv 2021; 11:16318-16325. [PMID: 35479152 PMCID: PMC9030604 DOI: 10.1039/d0ra05107a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 04/26/2021] [Indexed: 11/21/2022] Open
Abstract
Carbohydrate-decorated clusters (glycoclusters) centred on a Ru(ii) ion were synthesised and tested for their activity against Pseudomonas aeruginosa biofilm formation. These clusters were designed by conjugating a range of carbohydrate motifs (galactose, glucose, mannose and lactose, as well as galactose with a triethylene glycol spacer) to a btp (2,6-bis(1,2,3-triazol-4-yl)pyridine) scaffold. This scaffold, which possesses a C2 symmetry, is an excellent ligand for d-metal ions, and thus the formation of the Ru(ii)-centred glycoclusters 7 and 8Gal was achieved from 5 and 6Gal; each possessing four deprotected carbohydrates. Glycocluster 8Gal, which has a flexible spacer between the btp and galactose moieties, showed significant inhibition of P. aeruginosa bacterial biofilm formation. By contrast, glycocluster 7, which lacked the flexible linker, didn't show significant antimicrobial effects and neither does the ligand 6Gal alone. These results are proposed to arise from carbohydrate–lectin interactions with LecA, which are possible for the flexible metal-centred multivalent glycocluster. Metal-centred glycoclusters present a structurally versatile class of antimicrobial agent for P. aeruginosa, of which this is, to the best of our knowledge, the first example. Ruthenium-centred glycoclusters based on carbohydrate-functionalised bis(triazolyl)pyridine ligands show Pseudomonas aeruginosa biofilm inhibition, with activity that is dependent on ligand structure.![]()
Collapse
Affiliation(s)
- Ciaran O'Reilly
- School of Chemistry, Trinity Biomedical Sciences Institute, Trinity College Dublin Ireland.,School of Medicine, University College Dublin Belfield Dublin 4 Ireland
| | - Salvador Blasco
- School of Chemistry, Trinity Biomedical Sciences Institute, Trinity College Dublin Ireland
| | - Bina Parekh
- School of Medicine, University College Dublin Belfield Dublin 4 Ireland
| | - Helen Collins
- Department of Applied Science, Tallaght Campus, Technological University Dublin Ireland
| | - Gordon Cooke
- School of Medicine, University College Dublin Belfield Dublin 4 Ireland.,Department of Applied Science, Tallaght Campus, Technological University Dublin Ireland
| | | | - Joseph P Byrne
- School of Chemistry, National University of Ireland Galway University Road Galway Ireland
| |
Collapse
|
14
|
Thodikayil AT, Sharma S, Saha S. Engineering Carbohydrate-Based Particles for Biomedical Applications: Strategies to Construct and Modify. ACS APPLIED BIO MATERIALS 2021; 4:2907-2940. [PMID: 35014384 DOI: 10.1021/acsabm.0c01656] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Carbohydrate-based micro/nanoparticles have gained significant attention for various biomedical applications such as targeted/triggered/controlled drug delivery, bioimaging, biosensing, etc., because of their prominent characteristics like biocompatibility, biodegradability, hydrophilicity, and nontoxicity as well as nonimmunogenicity. Most importantly, the ability of the nanoparticles to recognize specific cell sites by targeting cell surface receptors makes them a promising candidate for designing a targeted drug delivery system. These particles may either comprise polysaccharides/glycopolymers or be integrated with various polymeric/inorganic nanoparticles such as gold, silver, silica, iron, etc., to reduce the toxicity of the inorganic nanoparticles and thus facilitate their cellular insertion. Various synthetic methods have been developed to fabricate carbohydrate-based or carbohydrate-conjugated inorganic/polymeric nanoparticles. In this review, we have highlighted the recently developed synthetic approaches to afford carbohydrate-based particles along with their significance in various biomedical applications.
Collapse
Affiliation(s)
| | - Shivangi Sharma
- Department of Materials Science and Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Sampa Saha
- Department of Materials Science and Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
| |
Collapse
|
15
|
Liyanage SH, Yan M. Quantification of binding affinity of glyconanomaterials with lectins. Chem Commun (Camb) 2020; 56:13491-13505. [PMID: 33057503 PMCID: PMC7644678 DOI: 10.1039/d0cc05899h] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Carbohydrate-mediated interactions are involved in many cellular activities including immune responses and infections. These interactions are relatively weak, and as such, cells employ multivalency, i.e., the presentation of multiple monovalent carbohydrate ligands within a close proximity, for cooperative binding thus drastically enhanced binding affinity. In the past two decades, the field of glyconanomaterials has emerged where nanomaterials are used as multivalent scaffolds to present multiple copies of carbohydrate ligands on the nanomaterial surface. At the core of glyconanomaterial research is the ability to control and modulate multivalency through ligand display. For the quantitative evaluation of multivalency, the binding affinity must be determined. Quantification of the binding parameters provides insights for not only the fundamental glyconanomaterial-lectin interactions, but also the rational design of effective diagnostics and therapeutics. Several methods have been developed to determine the binding affinity of glyconanomaterials with lectins, including fluorescence competitive assays in solution or on microarrays, Förster resonance energy transfer, fluorescence quenching, isothermal titration calorimetry, surface plasmon resonance spectroscopy, quartz crystal microbalance and dynamic light scattering. This Feature Article discusses each of these techniques, as well as how each technique is applied to determine the binding affinity of glyconanomaterials with lectins, and the data analysis. Although the results differed depending on the specific method used, collectively, they showed that nanomaterials as multivalent scaffolds could amplify the binding affinity of carbohydrate-lectin interactions by several orders of magnitude, the extent of which depending on the structure of the carbohydrate ligand, the ligand density, the linker length and the particle size.
Collapse
Affiliation(s)
- Sajani H Liyanage
- Department of Chemistry, University of Massachusetts Lowell, 1 University Ave., Lowell, Massachusetts 01854, USA.
| | | |
Collapse
|
16
|
Glyco-nanoparticles: New drug delivery systems in cancer therapy. Semin Cancer Biol 2019; 69:24-42. [PMID: 31870939 DOI: 10.1016/j.semcancer.2019.12.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 11/28/2019] [Accepted: 12/02/2019] [Indexed: 12/24/2022]
Abstract
Cancer is known as one of the most common diseases that are associated with high mobility and mortality in the world. Despite several efforts, current cancer treatment modalities often are highly toxic and lack efficacy and specificity. However, the application of nanotechnology has led to the development of effective nanosized drug delivery systems which are highly selective for tumors and allow a slow release of active anticancer agents. Different Nanoparticles (NPs) such as the silicon-based nano-materials, polymers, liposomes and metal NPs have been designed to deliver anti-cancer drugs to tumor sites. Among different drug delivery systems, carbohydrate-functionalized nanomaterials, specially based on their multi-valent binding capacities and desirable bio-compatibility, have attracted considerable attention as an excellent candidate for controlled release of therapeutic agents. In addition, these carbohydrate functionalized nano-carriers are more compatible with construction of the intracellular delivery platforms like the carbohydrate-modified metal NPs, quantum dots, and magnetic nano-materials. In this review, we discuss recent research in the field of multifunctional glycol-nanoparticles (GNPs) intended for cancer drug delivery applications.
Collapse
|
17
|
Prozeller D, Morsbach S, Landfester K. Isothermal titration calorimetry as a complementary method for investigating nanoparticle-protein interactions. NANOSCALE 2019; 11:19265-19273. [PMID: 31549702 DOI: 10.1039/c9nr05790k] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Isothermal titration calorimetry (ITC) is a complementary technique that can be used for investigations of protein adsorption on nanomaterials, as it quantifies the thermodynamic parameters of intermolecular interactions in situ. As soon as nanomaterials enter biological media, a corona of proteins forms around the nanomaterials, which influences the surface properties and therefore the behavior of nanomaterials tremendously. ITC enhances our understanding of nanoparticle-protein interactions, as it provides information on binding affinity (in form of association constant Ka), interaction mechanism (in form of binding enthalpy ΔH, binding entropy ΔS and Gibbs free energy ΔG) and binding stoichiometry n. Therefore, as a complementary method, ITC enhances our mechanistic understanding of the protein corona. In this minireview, the information obtained from a multitude of ITC studies regarding different nanomaterials and proteins are gathered and relations between nanomaterials' properties and their resulting interactions undergone with proteins are deduced. Nanomaterials formed of a hydrophilic material without strongly charged surface and steric stabilization experience the weakest interactions with proteins. As a result, such nanomaterials undergo the least unspecific protein-interactions and are most promising for allowing an engineering of the protein corona.
Collapse
Affiliation(s)
- Domenik Prozeller
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany.
| | - Svenja Morsbach
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany.
| | - Katharina Landfester
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany.
| |
Collapse
|
18
|
Schmidt S, Paul TJ, Strzelczyk AK. Interactive Polymer Gels as Biomimetic Sensors for Carbohydrate Interactions and Capture–Release Devices for Pathogens. MACROMOL CHEM PHYS 2019. [DOI: 10.1002/macp.201900323] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Stephan Schmidt
- Institute of Organic and Macromolecular ChemistryHeinrich‐Heine‐University Düsseldorf Universitätsstraße 1 40225 Dusseldorf Germany
| | - Tanja Janine Paul
- Institute of Organic and Macromolecular ChemistryHeinrich‐Heine‐University Düsseldorf Universitätsstraße 1 40225 Dusseldorf Germany
| | - Alexander Klaus Strzelczyk
- Institute of Organic and Macromolecular ChemistryHeinrich‐Heine‐University Düsseldorf Universitätsstraße 1 40225 Dusseldorf Germany
| |
Collapse
|
19
|
Yu G, Thies‐Weesie DME, Pieters RJ. TetravalentPseudomonas aeruginosaAdhesion Lectin LecA Inhibitor for Enhanced Biofilm Inhibition. Helv Chim Acta 2019. [DOI: 10.1002/hlca.201900014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Guangyun Yu
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical SciencesUtrecht University P.O.Box 80082 NL-3508 TB Utrecht The Netherlands
| | - Dominique M. E. Thies‐Weesie
- Van't Hoff Laboratory for Physical and Colloid Chemistry, Debye Institute for Nanomaterials ScienceUtrecht University Padualaan 8 NL-3584 CH Utrecht The Netherlands
| | - Roland J. Pieters
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical SciencesUtrecht University P.O.Box 80082 NL-3508 TB Utrecht The Netherlands
| |
Collapse
|
20
|
Yu G, Vicini AC, Pieters RJ. Assembly of Divalent Ligands and Their Effect on Divalent Binding to Pseudomonas aeruginosa Lectin LecA. J Org Chem 2019; 84:2470-2488. [PMID: 30681333 PMCID: PMC6399674 DOI: 10.1021/acs.joc.8b02727] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
![]()
Divalent
ligands were prepared as inhibitors for the adhesion protein
of the problematic Pseudomonas aeruginosa pathogen.
Bridging two binding sites enables simultaneous binding of two galactose
moieties, which strongly enhances binding. An alternating motif of
glucose and triazole and aryl groups was shown to have the right mix
of rigidity, solubility, and ease of synthesis. Spacers were varied
with respect to the core unit as well as the aglycon portions in an
attempt to optimize dynamics and enhance interactions with the protein.
Affinities of the divalent ligands were measured by ITC, and Kd’s as low as 12 nM were determined,
notably for a compounds with either a rigid (phenyl) or flexible (butyl)
unit at the core. Introducing a phenyl aglycon moiety next to the
galactoside ligands on both termini did indeed lead to a higher enthalpy
of binding, which was more than compensated by entropic costs. The
results are discussed in terms of thermodynamics and theoretical calculations
of the expected and observed multivalency effects.
Collapse
Affiliation(s)
- Guangyun Yu
- Department of Chemical Biology & Drug Discovery , Utrecht Institute for Pharmaceutical Sciences, Utrecht University , P.O. Box 80082, 3508 TB Utrecht , The Netherlands
| | - Anna Chiara Vicini
- Department of Chemical Biology & Drug Discovery , Utrecht Institute for Pharmaceutical Sciences, Utrecht University , P.O. Box 80082, 3508 TB Utrecht , The Netherlands
| | - Roland J Pieters
- Department of Chemical Biology & Drug Discovery , Utrecht Institute for Pharmaceutical Sciences, Utrecht University , P.O. Box 80082, 3508 TB Utrecht , The Netherlands
| |
Collapse
|
21
|
Zhao Y, Guo Q, Dai X, Wei X, Yu Y, Chen X, Li C, Cao Z, Zhang X. A Biomimetic Non-Antibiotic Approach to Eradicate Drug-Resistant Infections. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1806024. [PMID: 30589118 PMCID: PMC6634980 DOI: 10.1002/adma.201806024] [Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Revised: 11/26/2018] [Indexed: 05/19/2023]
Abstract
The chronic infections by pathogenic Pseudomonas aeruginosa (P. aeruginosa) remain to be properly addressed. In particular, for drug-resistant strains, limited medication is available. An in vivo pneumonia model induced by a clinically isolated aminoglycoside resistant strain of P. aeruginosa is developed. Tobramycin clinically treating P. aeruginosa infections is found to be ineffective to inhibit or eliminate this drug-resistant strain. Here, a newly developed non-antibiotics based nanoformulation plus near-infrared (NIR) photothermal treatment shows a remarkable antibacterial efficacy in treating this drug-resistant pneumonia. The novel formulation contains 50-100 nm long nanorods decorated with two types of glycomimetic polymers to specifically block bacterial LecA and LecB lectins, respectively, which are essential for bacterial biofilm development. Such a 3D display of heteromultivalent glycomimetics on a large scale is inspired by the natural strengthening mechanism for the carbohydrate-lectin interaction that occurs when bacteria initially infects the host. This novel formulation shows the most efficient bacteria inhabitation and killing against P. aeruginosa infection, through lectin blocking and the near-infrared-light-induced photothermal effect of gold nanorods, respectively. Collectively, the novel biomimetic design combined with the photothermal killing capability is expected to be an alternative treatment strategy against the ever-threatening drug-resistant infectious diseases when known antibiotics have failed.
Collapse
Affiliation(s)
- Yu Zhao
- Key Laboratory of Functional Polymer Materials of Ministry Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Qianqian Guo
- Key Laboratory of Functional Polymer Materials of Ministry Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Xiaomei Dai
- Key Laboratory of Functional Polymer Materials of Ministry Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Xiaosong Wei
- Key Laboratory of Functional Polymer Materials of Ministry Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yunjian Yu
- Key Laboratory of Functional Polymer Materials of Ministry Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Xuelei Chen
- Key Laboratory of Functional Polymer Materials of Ministry Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Chaoxing Li
- Key Laboratory of Functional Polymer Materials of Ministry Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Zhiqiang Cao
- Department of Chemical Engineering and Materials Science, Wayne State University, Detroit, Michigan 48202, USA
| | - Xinge Zhang
- Key Laboratory of Functional Polymer Materials of Ministry Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
22
|
Wang X, Zheng K, Si Y, Guo X, Xu Y. Protein⁻Polyelectrolyte Interaction: Thermodynamic Analysis Based on the Titration Method †. Polymers (Basel) 2019; 11:E82. [PMID: 30960066 PMCID: PMC6402006 DOI: 10.3390/polym11010082] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 12/26/2018] [Accepted: 01/02/2019] [Indexed: 01/05/2023] Open
Abstract
This review discussed the mechanisms including theories and binding stages concerning the protein⁻polyelectrolyte (PE) interaction, as well as the applications for both complexation and coacervation states of protein⁻PE pairs. In particular, this review focused on the applications of titration techniques, that is, turbidimetric titration and isothermal titration calorimetry (ITC), in understanding the protein⁻PE binding process. To be specific, by providing thermodynamic information such as pHc, pHφ, binding constant, entropy, and enthalpy change, titration techniques could shed light on the binding affinity, binding stoichiometry, and driving force of the protein⁻PE interaction, which significantly guide the applications by utilization of these interactions. Recent reports concerning interactions between proteins and different types of polyelectrolytes, that is, linear polyelectrolytes and polyelectrolyte modified nanoparticles, are summarized with their binding differences systematically discussed and compared based on the two major titration techniques. We believe this short review could provide valuable insight in the understanding of the structure⁻property relationship and the design of applied biomedical PE-based systems with optimal performance.
Collapse
Affiliation(s)
- Xiaohan Wang
- State-Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Kai Zheng
- State-Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Yi Si
- Institute of Vascular Surgery, Fudan University, 180 Fenglin road, Shanghai 200032, China.
| | - Xuhong Guo
- State-Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China.
- International Joint Research Center of Green Energy Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China.
- Engineering Research Center of Xinjiang Bingtuan of Materials Chemical Engineering, Shihezi University, Xinjiang 832000, China.
| | - Yisheng Xu
- State-Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China.
- International Joint Research Center of Green Energy Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China.
- Engineering Research Center of Xinjiang Bingtuan of Materials Chemical Engineering, Shihezi University, Xinjiang 832000, China.
| |
Collapse
|
23
|
Mahadevegowda SH, Hou S, Ma J, Keogh D, Zhang J, Mallick A, Liu XW, Duan H, Chan-Park MB. Raman-encoded, multivalent glycan-nanoconjugates for traceable specific binding and killing of bacteria. Biomater Sci 2018; 6:1339-1346. [PMID: 29644358 DOI: 10.1039/c8bm00139a] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Glycan recognition plays key roles in cell-cell and host-pathogen interactions, stimulating widespread interest in developing multivalent glycoconjugates with superior binding affinity for biological and medical uses. Here, we explore the use of Raman-encoded silver coated gold nanorods (GNRs) as scaffolds to form multivalent glycoconjugates. The plasmonic scaffolds afford high-loading of glycan density and their optical properties offer the possibilities of monitoring and quantitative analysis of glycan recognition. Using E. coli strains with tailored on/off of the FimH receptors, we have demonstrated that Raman-encoded GNRs not only allow for real-time imaging and spectroscopic detection of specific binding of the glycan-GNR conjugates with bacteria of interest, but also cause rapid eradication of the bacteria due to the efficient photothermal conversion of GNRs in the near-infrared spectral window. We envision that optically active plasmonic glycoconjugates hold great potential for screening multivalent glycan ligands for therapeutic and diagnostic applications.
Collapse
Affiliation(s)
- Surendra H Mahadevegowda
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459, Singapore.
| | - Shuai Hou
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459, Singapore.
| | - Jielin Ma
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459, Singapore.
| | - Damien Keogh
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459, Singapore.
| | - Jianhua Zhang
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459, Singapore.
| | - Asadulla Mallick
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Xue-Wei Liu
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Hongwei Duan
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459, Singapore.
| | - Mary B Chan-Park
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459, Singapore.
| |
Collapse
|
24
|
Mannosyl electrochemical impedance cytosensor for label-free MDA-MB-231 cancer cell detection. Biosens Bioelectron 2018; 116:100-107. [DOI: 10.1016/j.bios.2018.05.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 04/30/2018] [Accepted: 05/02/2018] [Indexed: 12/18/2022]
|
25
|
Worstell NC, Singla A, Saenkham P, Galbadage T, Sule P, Lee D, Mohr A, Kwon JSI, Cirillo JD, Wu HJ. Hetero-Multivalency of Pseudomonas aeruginosa Lectin LecA Binding to Model Membranes. Sci Rep 2018; 8:8419. [PMID: 29849092 PMCID: PMC5976636 DOI: 10.1038/s41598-018-26643-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 05/16/2018] [Indexed: 12/29/2022] Open
Abstract
A single glycan-lectin interaction is often weak and semi-specific. Multiple binding domains in a single lectin can bind with multiple glycan molecules simultaneously, making it difficult for the classic "lock-and-key" model to explain these interactions. We demonstrated that hetero-multivalency, a homo-oligomeric protein simultaneously binding to at least two types of ligands, influences LecA (a Pseudomonas aeruginosa adhesin)-glycolipid recognition. We also observed enhanced binding between P. aeruginosa and mixed glycolipid liposomes. Interestingly, strong ligands could activate weaker binding ligands leading to higher LecA binding capacity. This hetero-multivalency is probably mediated via a simple mechanism, Reduction of Dimensionality (RD). To understand the influence of RD, we also modeled LecA's two-step binding process with membranes using a kinetic Monte Carlo simulation. The simulation identified the frequency of low-affinity ligand encounters with bound LecA and the bound LecA's retention of the low-affinity ligand as essential parameters for triggering hetero-multivalent binding, agreeing with experimental observations. The hetero-multivalency can alter lectin binding properties, including avidities, capacities, and kinetics, and therefore, it likely occurs in various multivalent binding systems. Using hetero-multivalency concept, we also offered a new strategy to design high-affinity drug carriers for targeted drug delivery.
Collapse
Affiliation(s)
- Nolan C Worstell
- Department of Chemical Engineering, Texas A&M University, College Station, Texas, USA
| | - Akshi Singla
- Department of Chemical Engineering, Texas A&M University, College Station, Texas, USA
| | - Panatda Saenkham
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health Science Center, Bryan, Texas, USA
| | - Thushara Galbadage
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health Science Center, Bryan, Texas, USA
| | - Preeti Sule
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health Science Center, Bryan, Texas, USA
| | - Dongheon Lee
- Department of Chemical Engineering, Texas A&M University, College Station, Texas, USA
| | - Alec Mohr
- Department of Chemical Engineering, Texas A&M University, College Station, Texas, USA
| | - Joseph Sang-Il Kwon
- Department of Chemical Engineering, Texas A&M University, College Station, Texas, USA
| | - Jeffrey D Cirillo
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health Science Center, Bryan, Texas, USA
| | - Hung-Jen Wu
- Department of Chemical Engineering, Texas A&M University, College Station, Texas, USA.
| |
Collapse
|
26
|
Bojarová P, Křen V. Sugared biomaterial binding lectins: achievements and perspectives. Biomater Sci 2018; 4:1142-60. [PMID: 27075026 DOI: 10.1039/c6bm00088f] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Lectins, a distinct group of glycan-binding proteins, play a prominent role in the immune system ranging from pathogen recognition and tuning of inflammation to cell adhesion or cellular signalling. The possibilities of their detailed study expanded along with the rapid development of biomaterials in the last decade. The immense knowledge of all aspects of glycan-lectin interactions both in vitro and in vivo may be efficiently used in bioimaging, targeted drug delivery, diagnostic and analytic biological methods. Practically applicable examples comprise photoluminescence and optical biosensors, ingenious three-dimensional carbohydrate microarrays for high-throughput screening, matrices for magnetic resonance imaging, targeted hyperthermal treatment of cancer tissues, selective inhibitors of bacterial toxins and pathogen-recognising lectin receptors, and many others. This review aims to present an up-to-date systematic overview of glycan-decorated biomaterials promising for interactions with lectins, especially those applicable in biology, biotechnology or medicine. The lectins of interest include galectin-1, -3 and -7 participating in tumour progression, bacterial lectins from Pseudomonas aeruginosa (PA-IL), E. coli (Fim-H) and Clostridium botulinum (HA33) or DC-SIGN, receptors of macrophages and dendritic cells. The spectrum of lectin-binding biomaterials covered herein ranges from glycosylated organic structures, calixarene and fullerene cores over glycopeptides and glycoproteins, functionalised carbohydrate scaffolds of cyclodextrin or chitin to self-assembling glycopolymer clusters, gels, micelles and liposomes. Glyconanoparticles, glycan arrays, and other biomaterials with a solid core are described in detail, including inorganic matrices like hydroxyapatite or stainless steel for bioimplants.
Collapse
Affiliation(s)
- P Bojarová
- Laboratory of Biotransformation, Institute of Microbiology, Academy of Sciences of the Czech Republic, Vídeňská 1083, CZ 14220 Prague 4, Czech Republic.
| | - V Křen
- Laboratory of Biotransformation, Institute of Microbiology, Academy of Sciences of the Czech Republic, Vídeňská 1083, CZ 14220 Prague 4, Czech Republic.
| |
Collapse
|
27
|
Reichardt NC, Martín-Lomas M, Penadés S. Opportunities for glyconanomaterials in personalized medicine. Chem Commun (Camb) 2018; 52:13430-13439. [PMID: 27709147 DOI: 10.1039/c6cc04445j] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this feature article we discuss the particular relevance of glycans as components or targets of functionalized nanoparticles (NPs) for potential applications in personalized medicine but we will not enter into descriptions for their preparation. For a more general view covering the preparation and applications of glyconanomaterials the reader is referred to a number of recent reviews. The combination of glyco- and nanotechnology is already providing promising new tools for more personalized solutions to diagnostics and therapy. Current applications relevant to personalized medicine include drug targeting, localized radiation therapy, imaging of glycan expression of cancer cells, point of care diagnostics, cancer vaccines, photodynamic therapy, biosensors, and glycoproteomics.
Collapse
Affiliation(s)
- Niels-Christian Reichardt
- CIC biomaGUNE, Glycotechnology Laboratory, Paseo Miramón 182, 20009 San Sebastian, Spain. and CIBER BBN, Paseo Miramón 182, 20009 San Sebastian, Spain
| | - Manuel Martín-Lomas
- CIC biomaGUNE, Glycotechnology Laboratory, Paseo Miramón 182, 20009 San Sebastian, Spain.
| | - Soledad Penadés
- CIC biomaGUNE, Glycotechnology Laboratory, Paseo Miramón 182, 20009 San Sebastian, Spain.
| |
Collapse
|
28
|
Boden S, Wagner KG, Karg M, Hartmann L. Presenting Precision Glycomacromolecules on Gold Nanoparticles for Increased Lectin Binding. Polymers (Basel) 2017; 9:E716. [PMID: 30966014 PMCID: PMC6418785 DOI: 10.3390/polym9120716] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 11/30/2017] [Accepted: 12/11/2017] [Indexed: 02/08/2023] Open
Abstract
Glyco-functionalized gold nanoparticles have great potential as biosensors and as inhibitors due to their increased binding to carbohydrate-recognizing receptors such as the lectins. Here we apply previously developed solid phase polymer synthesis to obtain a series of precision glycomacromolecules that allows for straightforward variation of their chemical structure as well as functionalization of gold nanoparticles by ligand exchange. A novel building block is introduced allowing for the change of spacer building blocks within the macromolecular scaffold going from an ethylene glycol unit to an aliphatic spacer. Furthermore, the valency and overall length of the glycomacromolecule is varied. All glyco-functionalized gold nanoparticles show high degree of functionalization along with high stability in buffer solution. Therefore, a series of measurements applying UV-Vis spectroscopy, dynamic light scattering (DLS) and surface plasmon resonance (SPR) were performed studying the aggregation behavior of the glyco-functionalized gold nanoparticles in presence of model lectin Concanavalin A. While the multivalent presentation of glycomacromolecules on gold nanoparticles (AuNPs) showed a strong increase in binding compared to the free ligands, we also observed an influence of the chemical structure of the ligand such as its valency or hydrophobicity on the resulting lectin interactions. The straightforward variation of the chemical structure of the precision glycomacromolecule thus gives access to tailor-made glyco-gold nanoparticles (glyco-AuNPs) and fine-tuning of their lectin binding properties.
Collapse
Affiliation(s)
- Sophia Boden
- Institute of Organic Chemistry and Macromolecular Chemistry, Heinrich-Heine-University Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany.
| | - Kristina G Wagner
- Institute of Physical Chemistry, Heinrich-Heine-University Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany.
| | - Matthias Karg
- Institute of Physical Chemistry, Heinrich-Heine-University Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany.
| | - Laura Hartmann
- Institute of Organic Chemistry and Macromolecular Chemistry, Heinrich-Heine-University Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany.
| |
Collapse
|
29
|
Compostella F, Pitirollo O, Silvestri A, Polito L. Glyco-gold nanoparticles: synthesis and applications. Beilstein J Org Chem 2017; 13:1008-1021. [PMID: 28684980 PMCID: PMC5480336 DOI: 10.3762/bjoc.13.100] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 05/05/2017] [Indexed: 01/15/2023] Open
Abstract
Glyco-gold nanoparticles combine in a single entity the peculiar properties of gold nanoparticles with the biological activity of carbohydrates. The result is an exciting nanosystem, able to mimic the natural multivalent presentation of saccharide moieties and to exploit the peculiar optical properties of the metallic core. In this review, we present recent advances on glyco-gold nanoparticle applications in different biological fields, highlighting the key parameters which inspire the glyco nanoparticle design.
Collapse
Affiliation(s)
- Federica Compostella
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Via Saldini 50, 20133 Milan, Italy
| | - Olimpia Pitirollo
- Department of Chemistry, University of Milan, Via C. Golgi 19, 20133 Milan, Italy
| | - Alessandro Silvestri
- Department of Chemistry, University of Milan, Via C. Golgi 19, 20133 Milan, Italy
- CNR – ISTM, Nanotechnology Lab., Via G. Fantoli 16/15, 20138 Milan, Italy
| | - Laura Polito
- CNR – ISTM, Nanotechnology Lab., Via G. Fantoli 16/15, 20138 Milan, Italy
| |
Collapse
|
30
|
Falconer RJ. Applications of isothermal titration calorimetry - the research and technical developments from 2011 to 2015. J Mol Recognit 2016; 29:504-15. [PMID: 27221459 DOI: 10.1002/jmr.2550] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 04/05/2016] [Accepted: 04/14/2016] [Indexed: 12/12/2022]
Abstract
Isothermal titration calorimetry is a widely used biophysical technique for studying the formation or dissociation of molecular complexes. Over the last 5 years, much work has been published on the interpretation of isothermal titration calorimetry (ITC) data for single binding and multiple binding sites. As over 80% of ITC papers are on macromolecules of biological origin, this interpretation is challenging. Some researchers have attempted to link the thermodynamics constants to events at the molecular level. This review highlights work carried out using binding sites characterized using x-ray crystallography techniques that allow speculation about individual bond formation and the displacement of individual water molecules during ligand binding and link these events to the thermodynamic constants for binding. The review also considers research conducted with synthetic binding partners where specific binding events like anion-π and π-π interactions were studied. The revival of assays that enable both thermodynamic and kinetic information to be collected from ITC data is highlighted. Lastly, published criticism of ITC research from a physical chemistry perspective is appraised and practical advice provided for researchers unfamiliar with thermodynamics and its interpretation. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Robert J Falconer
- Department of Chemical and Biological Engineering, ChELSI Institute, University of Sheffield, Sheffield, S1 3JD, UK.
| |
Collapse
|
31
|
Huang ML, Fisher CJ, Godula K. Glycomaterials for probing host-pathogen interactions and the immune response. Exp Biol Med (Maywood) 2016; 241:1042-53. [PMID: 27190259 DOI: 10.1177/1535370216647811] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The initial engagement of host cells by pathogens is often mediated by glycan structures presented on the cell surface. Various components of the glycocalyx can be targeted by pathogens for adhesion to facilitate infection. Glycans also play integral roles in the modulation of the host immune response to infection. Therefore, understanding the parameters that define glycan interactions with both pathogens and the various components of the host immune system can aid in the development of strategies to prevent, interrupt, or manage infection. Glycomaterials provide a unique and powerful tool with which to interrogate the compositional and functional complexity of the glycocalyx. The objective of this review is to highlight some key contributions from this area of research in deciphering the mechanisms of pathogenesis and the associated host response.
Collapse
Affiliation(s)
- Mia L Huang
- Department of Chemistry and Biochemistry, University of California-San Diego, La Jolla, CA 92093, USA
| | - Christopher J Fisher
- Department of Chemistry and Biochemistry, University of California-San Diego, La Jolla, CA 92093, USA
| | - Kamil Godula
- Department of Chemistry and Biochemistry, University of California-San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
32
|
Ligeour C, Vidal O, Dupin L, Casoni F, Gillon E, Meyer A, Vidal S, Vergoten G, Lacroix JM, Souteyrand E, Imberty A, Vasseur JJ, Chevolot Y, Morvan F. Mannose-centered aromatic galactoclusters inhibit the biofilm formation of Pseudomonas aeruginosa. Org Biomol Chem 2016; 13:8433-44. [PMID: 26090586 DOI: 10.1039/c5ob00948k] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Pseudomonas aeruginosa (PA) is a major public health care issue due to its ability to develop antibiotic resistance mainly through adhesion and biofilm formation. Therefore, targeting the bacterial molecular arsenal involved in its adhesion and the formation of its biofilm appears as a promising tool against this pathogen. The galactose-binding LecA (or PA-IL) has been described as one of the PA virulence factors involved in these processes. Herein, the affinity of three tetravalent mannose-centered galactoclusters toward LecA was evaluated with five different bioanalytical methods: HIA, ELLA, SPR, ITC and DNA-based glycoarray. Inhibitory potential towards biofilms was then assessed for the two glycoclusters with highest affinity towards LecA (Kd values of 157 and 194 nM from ITC measurements). An inhibition of biofilm formation of 40% was found for these galactoclusters at 10 μM concentration. Applications of these macromolecules in anti-bacterial therapy are therefore possible through an anti-adhesive strategy.
Collapse
Affiliation(s)
- Caroline Ligeour
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247 CNRS, Université de Montpellier, ENSCM, place Eugène Bataillon, CC1704, 34095 Montpellier Cedex 5, France.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Biomolecule–nanoparticle interactions: Elucidation of the thermodynamics by isothermal titration calorimetry. Biochim Biophys Acta Gen Subj 2016; 1860:945-956. [DOI: 10.1016/j.bbagen.2016.01.027] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 01/29/2016] [Accepted: 01/30/2016] [Indexed: 12/18/2022]
|
34
|
Hao N, Neranon K, Ramström O, Yan M. Glyconanomaterials for biosensing applications. Biosens Bioelectron 2016; 76:113-30. [PMID: 26212205 PMCID: PMC4637221 DOI: 10.1016/j.bios.2015.07.031] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 07/11/2015] [Accepted: 07/14/2015] [Indexed: 02/08/2023]
Abstract
Nanomaterials constitute a class of structures that have unique physiochemical properties and are excellent scaffolds for presenting carbohydrates, important biomolecules that mediate a wide variety of important biological events. The fabrication of carbohydrate-presenting nanomaterials, glyconanomaterials, is of high interest and utility, combining the features of nanoscale objects with biomolecular recognition. The structures can also produce strong multivalent effects, where the nanomaterial scaffold greatly enhances the relatively weak affinities of single carbohydrate ligands to the corresponding receptors, and effectively amplifies the carbohydrate-mediated interactions. Glyconanomaterials are thus an appealing platform for biosensing applications. In this review, we discuss the chemistry for conjugation of carbohydrates to nanomaterials, summarize strategies, and tabulate examples of applying glyconanomaterials in in vitro and in vivo sensing applications of proteins, microbes, and cells. The limitations and future perspectives of these emerging glyconanomaterials sensing systems are furthermore discussed.
Collapse
Affiliation(s)
- Nanjing Hao
- Department of Chemistry, University of Massachusetts Lowell, 1 University Avenue, Lowell, MA 01854, USA
| | - Kitjanit Neranon
- Department of Chemistry, KTH-Royal Institute of Technology, Teknikringen 30, S-10044 Stockholm, Sweden
| | - Olof Ramström
- Department of Chemistry, KTH-Royal Institute of Technology, Teknikringen 30, S-10044 Stockholm, Sweden.
| | - Mingdi Yan
- Department of Chemistry, University of Massachusetts Lowell, 1 University Avenue, Lowell, MA 01854, USA; Department of Chemistry, KTH-Royal Institute of Technology, Teknikringen 30, S-10044 Stockholm, Sweden.
| |
Collapse
|
35
|
Loka RS, McConnell MS, Nguyen HM. Studies of Highly-Ordered Heterodiantennary Mannose/Glucose-Functionalized Polymers and Concanavalin A Protein Interactions Using Isothermal Titration Calorimetry. Biomacromolecules 2015; 16:4013-4021. [PMID: 26580410 DOI: 10.1021/acs.biomac.5b01380] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Preparations of the highly ordered monoantennary, homofunctional diantennary, and heterofunctional diantennary neoglycopolymers of α-d-mannose and β-d-glucose residues were achieved via ring-opening metathesis polymerization. Isothermal titration calorimetry measurements of these synthetic neoglycopolymers with Concanavalin A (Con A), revealed that heterofunctional diantennary architectures bearing both α-mannose and nonbinding β-glucose units, poly(Man-Glc), binds to Con A (Ka = 16.1 × 10(6) M(-1)) comparably to homofunctional diantennary neoglycopolymer (Ka = 30 × 10(6) M(-1)) bearing only α-mannose unit, poly(Man-Man). In addition, poly(Man-Glc) neoglycopolymer shows a nearly 5-fold increasing in binding affinity compared to monoantennary neoglycopolymer, poly(Man). Although the exact mechanism for the high binding affinity of poly(Man-Glc) to Con A is unclear, we hypothesize that the α-mannose bound to Con A might facilitate interaction of β-glucose with the extended binding site of Con A due to the close proximity of β-glucose to α-mannose residues in the designed polymerizable scaffold.
Collapse
Affiliation(s)
- Ravi S Loka
- Department of Chemistry, University of Iowa, Iowa 52242, United States
| | | | - Hien M Nguyen
- Department of Chemistry, University of Iowa, Iowa 52242, United States
| |
Collapse
|
36
|
Shinchi H, Yuki N, Ishida H, Hirata K, Wakao M, Suda Y. Visual Detection of Human Antibodies Using Sugar Chain-Immobilized Fluorescent Nanoparticles: Application as a Point of Care Diagnostic Tool for Guillain-Barré Syndrome. PLoS One 2015; 10:e0137966. [PMID: 26378448 PMCID: PMC4574945 DOI: 10.1371/journal.pone.0137966] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 08/25/2015] [Indexed: 11/18/2022] Open
Abstract
Sugar chain binding antibodies have gained substantial attention as biomarkers due to their crucial roles in various disorders. In this study, we developed simple and quick detection method of anti-sugar chain antibodies in sera using our previously developed sugar chain-immobilized fluorescent nanoparticles (SFNPs) for the point-of-care diagnostics. Sugar chain structure on SFNPs was modified with the sugar moieties of the GM1 ganglioside via our original linker molecule to detect anti-GM1 antibodies. The structures and densities of the sugar moieties immobilized on the nanoparticles were evaluated in detail using lectins and sera containing anti-GM1 antibodies from patients with Guillain-Barré syndrome, a neurological disorder, as an example of disease involving anti-sugar chain antibodies. When optimized SFNPs were added to sera from patients with Guillain-Barré syndrome, fluorescent aggregates were able to visually detect under UV light in three hours. The sensitivity of the detection method was equivalent to that of the current ELISA method used for the diagnosis of Guillain-Barré syndrome. These results suggest that our method using SFNPs is suitable for the point-of-care diagnostics of diseases involving anti-sugar chain antibodies.
Collapse
Affiliation(s)
- Hiroyuki Shinchi
- Department of Chemistry, Biotechnology and Chemical Engineering, Kagoshima University, 1-21-40 Kohrimoto, Kagoshima 890–0065, Japan
| | - Nobuhiro Yuki
- Department of Neurology, Dokkyo Medical University, Tochigi 321–0293, Japan
- Brain & Mind Research Institute, University of Sydney, Level 7, Building F, 94 Mallett Street, Camperdown, NSW 2050, Australia
| | - Hideharu Ishida
- Department of Applied Bioorganic Chemistry, Gifu University, Gifu 501–1193, Japan
| | - Koichi Hirata
- Department of Neurology, Dokkyo Medical University, Tochigi 321–0293, Japan
| | - Masahiro Wakao
- Department of Chemistry, Biotechnology and Chemical Engineering, Kagoshima University, 1-21-40 Kohrimoto, Kagoshima 890–0065, Japan
| | - Yasuo Suda
- Department of Chemistry, Biotechnology and Chemical Engineering, Kagoshima University, 1-21-40 Kohrimoto, Kagoshima 890–0065, Japan
- SUDx-Biotec Corporation, 1-42-1 Shiroyama, Kagoshima 890–0013, Japan
- * E-mail:
| |
Collapse
|
37
|
Sleiman MH, Csonka R, Arbez-Gindre C, Heropoulos GA, Calogeropoulou T, Signorelli M, Schiraldi A, Steele BR, Fessas D, Micha-Screttas M. Binding and stabilisation effects of glycodendritic compounds with peanut agglutinin. Int J Biol Macromol 2015. [DOI: 10.1016/j.ijbiomac.2015.07.036] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
38
|
Abstract
The article reviews the significant contributions to, and the present status of, applications of computational methods for the characterization and prediction of protein-carbohydrate interactions. After a presentation of the specific features of carbohydrate modeling, along with a brief description of the experimental data and general features of carbohydrate-protein interactions, the survey provides a thorough coverage of the available computational methods and tools. At the quantum-mechanical level, the use of both molecular orbitals and density-functional theory is critically assessed. These are followed by a presentation and critical evaluation of the applications of semiempirical and empirical methods: QM/MM, molecular dynamics, free-energy calculations, metadynamics, molecular robotics, and others. The usefulness of molecular docking in structural glycobiology is evaluated by considering recent docking- validation studies on a range of protein targets. The range of applications of these theoretical methods provides insights into the structural, energetic, and mechanistic facets that occur in the course of the recognition processes. Selected examples are provided to exemplify the usefulness and the present limitations of these computational methods in their ability to assist in elucidation of the structural basis underlying the diverse function and biological roles of carbohydrates in their dialogue with proteins. These test cases cover the field of both carbohydrate biosynthesis and glycosyltransferases, as well as glycoside hydrolases. The phenomenon of (macro)molecular recognition is illustrated for the interactions of carbohydrates with such proteins as lectins, monoclonal antibodies, GAG-binding proteins, porins, and viruses.
Collapse
Affiliation(s)
- Serge Pérez
- Department of Molecular Pharmacochemistry, CNRS, University Grenoble-Alpes, Grenoble, France.
| | - Igor Tvaroška
- Department of Chemistry, Slovak Academy of Sciences, Bratislava, Slovak Republic; Department of Chemistry, Faculty of Natural Sciences, Constantine The Philosopher University, Nitra, Slovak Republic.
| |
Collapse
|
39
|
Conde J, Tian F, Hernandez Y, Bao C, Baptista PV, Cui D, Stoeger T, de la Fuente JM. RNAi-based glyconanoparticles trigger apoptotic pathways for in vitro and in vivo enhanced cancer-cell killing. NANOSCALE 2015; 7:9083-91. [PMID: 25924183 DOI: 10.1039/c4nr05742b] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
Gold glyconanoparticles (GlycoNPs) are full of promise in areas like biomedicine, biotechnology and materials science due to their amazing physical, chemical and biological properties. Here, siRNA GlycoNPs (AuNP@PEG@Glucose@siRNA) in comparison with PEGylated GlycoNPs (AuNP@PEG@Glucose) were applied in vitro to a luciferase-CMT/167 adenocarcinoma cancer cell line and in vivo via intratracheal instillation directly into the lungs of B6 albino mice grafted with luciferase-CMT/167 adenocarcinoma cells. siRNA GlycoNPs but not PEGylated GlycoNPs induced the expression of pro-apoptotic proteins such as Fas/CD95 and caspases 3 and 9 in CMT/167 adenocarcinoma cells in a dose dependent manner, independent of the inflammatory response, evaluated by bronchoalveolar lavage cell counting. Moreover, in vivo pulmonary delivered siRNA GlycoNPs were capable of targeting c-Myc gene expression (a crucial regulator of cell proliferation and apoptosis) via in vivo RNAi in tumour tissue, leading to an ∼80% reduction in tumour size without associated inflammation.
Collapse
Affiliation(s)
- João Conde
- Massachusetts Institute of Technology, Institute for Medical Engineering and Science, Harvard-MIT Division for Health Sciences and Technology, E25-449 Cambridge, Massachusetts, USA
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Adak AK, Li BY, Lin CC. Advances in multifunctional glycosylated nanomaterials: preparation and applications in glycoscience. Carbohydr Res 2015; 405:2-12. [DOI: 10.1016/j.carres.2014.07.026] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Revised: 07/30/2014] [Accepted: 07/31/2014] [Indexed: 01/13/2023]
|
41
|
Riekel C, Di Cola E, Reynolds M, Burghammer M, Rosenthal M, Doblas D, Ivanov DA. Thermal transformations of self-assembled gold glyconanoparticles probed by combined nanocalorimetry and X-ray nanobeam scattering. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:529-534. [PMID: 25526765 DOI: 10.1021/la504015e] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Noble metal nanoparticles with ligand shells are of interest for applications in catalysis, thermo-plasmonics, and others, involving heating processes. To gain insight into the structure-formation processes in such systems, self-assembly of carbohydrate-functionalized gold nanoparticles during precipitation from solution and during further heating to ca. 340 °C was explored by in situ combination of nanobeam SAXS/WAXS and nanocalorimetry. Upon precipitation from solution, X-ray scattering reveals the appearance of small 2D domains of close-packed nanoparticles. During heating, increasing interpenetration of the nanoparticle soft shells in the domains is observed up to ca. 81 °C, followed by cluster formation at ca. 125 °C, which transform into crystalline gold nuclei at around 160 °C. Above ca. 200 °C, one observes the onset of coalescence and grain growth resulting in gold crystallites of average size of about 100 nm. The observed microstructural changes are in agreement with the in situ heat capacity measurements with nanocalorimetry.
Collapse
Affiliation(s)
- Christian Riekel
- ESRF-The European Synchrotron, CS40220, 38043 Grenoble Cedex 9, France
| | | | | | | | | | | | | |
Collapse
|
42
|
Buffet K, Gillon E, Holler M, Nierengarten JF, Imberty A, Vincent SP. Fucofullerenes as tight ligands of RSL and LecB, two bacterial lectins. Org Biomol Chem 2015; 13:6482-92. [DOI: 10.1039/c5ob00689a] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A series of water-soluble glycofullerenes containing up to 24 fucose residues were tested against the two bacterial lectins LecB and RSL, and C60(E)12 bearing 24 fucose residues appeared to be the best known inhibitor of both lectins to date.
Collapse
Affiliation(s)
- Kevin Buffet
- University of Namur (UNamur)
- Académie Louvain
- Département de Chimie
- Laboratoire de Chimie Bio-Organique
- B-5000 Namur
| | - Emilie Gillon
- CERMAV - CNRS (affiliated to Université Grenoble Alpes and ICMG)
- Grenoble
- France
| | - Michel Holler
- Laboratoire de Chimie des Matériaux Moléculaires
- Université de Strasbourg et CNRS (UMR 7509)
- Ecole Européenne de Chimie
- Polymères et Matériaux (ECPM)
- 67087 Strasbourg Cedex 2
| | - Jean-François Nierengarten
- Laboratoire de Chimie des Matériaux Moléculaires
- Université de Strasbourg et CNRS (UMR 7509)
- Ecole Européenne de Chimie
- Polymères et Matériaux (ECPM)
- 67087 Strasbourg Cedex 2
| | - Anne Imberty
- CERMAV - CNRS (affiliated to Université Grenoble Alpes and ICMG)
- Grenoble
- France
| | - Stéphane P. Vincent
- University of Namur (UNamur)
- Académie Louvain
- Département de Chimie
- Laboratoire de Chimie Bio-Organique
- B-5000 Namur
| |
Collapse
|
43
|
Cecioni S, Imberty A, Vidal S. Glycomimetics versus Multivalent Glycoconjugates for the Design of High Affinity Lectin Ligands. Chem Rev 2014; 115:525-61. [DOI: 10.1021/cr500303t] [Citation(s) in RCA: 381] [Impact Index Per Article: 38.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Samy Cecioni
- CERMAV, Université Grenoble Alpes and CNRS, BP 53, F-38041 Grenoble Cedex 9, France
- Institut
de Chimie et Biochimie Moléculaires et Supramoléculaires,
Laboratoire de Chimie Organique 2 - Glycochimie, UMR 5246, Université Lyon 1 and CNRS, 43 Boulevard du 11 Novembre 1918, F-69622, Villeurbanne, France
| | - Anne Imberty
- CERMAV, Université Grenoble Alpes and CNRS, BP 53, F-38041 Grenoble Cedex 9, France
| | - Sébastien Vidal
- Institut
de Chimie et Biochimie Moléculaires et Supramoléculaires,
Laboratoire de Chimie Organique 2 - Glycochimie, UMR 5246, Université Lyon 1 and CNRS, 43 Boulevard du 11 Novembre 1918, F-69622, Villeurbanne, France
| |
Collapse
|
44
|
Marinaro G, Accardo A, De Angelis F, Dane T, Weinhausen B, Burghammer M, Riekel C. A superhydrophobic chip based on SU-8 photoresist pillars suspended on a silicon nitride membrane. LAB ON A CHIP 2014; 14:3705-3709. [PMID: 25111677 DOI: 10.1039/c4lc00750f] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
We developed a new generation of superhydrophobic chips optimized for probing ultrasmall sample quantities by X-ray scattering and fluorescence techniques. The chips are based on thin Si3N4 membranes with a tailored pattern of SU-8 photoresist pillars. Indeed, aqueous solution droplets can be evaporated and concentrated at predefined positions using a non-periodic pillar pattern. We demonstrated quantitatively the deposition and aggregation of gold glyconanoparticles from the evaporation of a nanomolar droplet in a small spot by raster X-ray nanofluorescence. Further, raster nanocrystallography of biological objects such as rod-like tobacco mosaic virus nanoparticles reveals crystalline macro-domain formation composed of highly oriented nanorods.
Collapse
Affiliation(s)
- Giovanni Marinaro
- European Synchrotron Radiation Facility, B.P.220, F-38043 Grenoble Cedex, France.
| | | | | | | | | | | | | |
Collapse
|
45
|
Casoni F, Dupin L, Vergoten G, Meyer A, Ligeour C, Géhin T, Vidal O, Souteyrand E, Vasseur JJ, Chevolot Y, Morvan F. The influence of the aromatic aglycon of galactoclusters on the binding of LecA: a case study with O-phenyl, S-phenyl, O-benzyl, S-benzyl, O-biphenyl and O-naphthyl aglycons. Org Biomol Chem 2014; 12:9166-79. [DOI: 10.1039/c4ob01599a] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
46
|
Smadhi M, de Bentzmann S, Imberty A, Gingras M, Abderrahim R, Goekjian PG. Expeditive synthesis of trithiotriazine-cored glycoclusters and inhibition of Pseudomonas aeruginosa biofilm formation. Beilstein J Org Chem 2014; 10:1981-90. [PMID: 25246957 PMCID: PMC4168900 DOI: 10.3762/bjoc.10.206] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 07/30/2014] [Indexed: 12/13/2022] Open
Abstract
Readily accessible, low-valency glycoclusters based on a triazine core bearing D-galactose and L-fucose epitopes are able to inhibit biofilm formation by Pseudomonas aeruginosa. These multivalent ligands are simple to synthesize, are highly soluble, and can be either homofunctional or heterofunctional. The galactose-decorated cluster shows good affinity for Pseudomonas aeruginosa lectin lecA. They are convenient biological probes for investigating the roles of lecA and lecB in biofilm formation.
Collapse
Affiliation(s)
- Meriem Smadhi
- Laboratoire Chimie Organique 2 Glycochimie, Université de Lyon, ICBMS, UMR 5246 - CNRS, Université Claude Bernard Lyon 1, Bat. 308 -CPE Lyon, 43 Bd. du 11 Novembre 1918, 69622 Villeurbanne, France. ; Tel: +33-4-72448183 ; Université de Carthage, Faculté des sciences Bizerte, Tunisie
| | - Sophie de Bentzmann
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires, Institut de Biologie Structurale et Microbiologie, CNRS-Aix Marseille University, UMR7255, 31 Chemin Joseph Aiguier, 13402 Marseille Cedex 20, France
| | - Anne Imberty
- Centre de Recherches sur les Macromolécules Végétales (CERMAV), UPR 5301 CNRS et Université Grenoble Alpes, BP53, 38041 Grenoble, France
| | - Marc Gingras
- Aix-Marseille Université, CNRS, CINaM UMR 7325, 163 Avenue de Luminy 13288 Marseille, France
| | | | - Peter G Goekjian
- Laboratoire Chimie Organique 2 Glycochimie, Université de Lyon, ICBMS, UMR 5246 - CNRS, Université Claude Bernard Lyon 1, Bat. 308 -CPE Lyon, 43 Bd. du 11 Novembre 1918, 69622 Villeurbanne, France. ; Tel: +33-4-72448183
| |
Collapse
|
47
|
Conde J, Dias JT, Grazú V, Moros M, Baptista PV, de la Fuente JM. Revisiting 30 years of biofunctionalization and surface chemistry of inorganic nanoparticles for nanomedicine. Front Chem 2014; 2:48. [PMID: 25077142 PMCID: PMC4097105 DOI: 10.3389/fchem.2014.00048] [Citation(s) in RCA: 225] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Accepted: 06/24/2014] [Indexed: 01/04/2023] Open
Abstract
In the last 30 years we have assisted to a massive advance of nanomaterials in material science. Nanomaterials and structures, in addition to their small size, have properties that differ from those of larger bulk materials, making them ideal for a host of novel applications. The spread of nanotechnology in the last years has been due to the improvement of synthesis and characterization methods on the nanoscale, a field rich in new physical phenomena and synthetic opportunities. In fact, the development of functional nanoparticles has progressed exponentially over the past two decades. This work aims to extensively review 30 years of different strategies of surface modification and functionalization of noble metal (gold) nanoparticles, magnetic nanocrystals and semiconductor nanoparticles, such as quantum dots. The aim of this review is not only to provide in-depth insights into the different biofunctionalization and characterization methods, but also to give an overview of possibilities and limitations of the available nanoparticles.
Collapse
Affiliation(s)
- João Conde
- Harvard-MIT Division for Health Sciences and Technology, Institute for Medical Engineering and Science, Massachusetts Institute of TechnologyCambridge, MA, USA
| | - Jorge T. Dias
- Nanotherapy and Nanodiagnostics Group, Instituto de Nanociencia de Aragon, Universidad de ZaragozaZaragoza, Spain
| | - Valeria Grazú
- Nanotherapy and Nanodiagnostics Group, Instituto de Nanociencia de Aragon, Universidad de ZaragozaZaragoza, Spain
| | - Maria Moros
- Nanotherapy and Nanodiagnostics Group, Instituto de Nanociencia de Aragon, Universidad de ZaragozaZaragoza, Spain
| | - Pedro V. Baptista
- CIGMH, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de LisboaCaparica, Portugal
| | - Jesus M. de la Fuente
- Nanotherapy and Nanodiagnostics Group, Instituto de Nanociencia de Aragon, Universidad de ZaragozaZaragoza, Spain
- Fundacion ARAIDZaragoza, Spain
- Key Laboratory for Thin Film and Microfabrication Technology of the Ministry of Education, Department of Bio-Nano Science and Engineering, Institute of Nano Biomedicine and Engineering, Research Institute of Translation Medicine, Shanghai Jiao Tong UniversityShanghai, China
| |
Collapse
|
48
|
Murray RA, Qiu Y, Chiodo F, Marradi M, Penadés S, Moya SE. A quantitative study of the intracellular dynamics of fluorescently labelled glyco-gold nanoparticles via fluorescence correlation spectroscopy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2014; 10:2602-2610. [PMID: 24639360 DOI: 10.1002/smll.201303604] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Revised: 01/24/2014] [Indexed: 06/03/2023]
Abstract
The dynamic behaviour of gold nanoparticles functionalised with glucose (Glc-Au NPs) has been studied here by means of fluorescence correlation spectroscopy (FCS). Meaningful data on the state of aggregation and dynamics of Glc-Au NPs fluorescently-labelled with HiLyte Fluor647 (Glc-Au-Hi NPs) in the intracellular environment were obtained. Moreover, the work presented here shows that FCS can be used to visualise the presence of single NPs or NP aggregates following uptake and to estimate, locally, NP concentrations within the cell. FCS measurements become possible after applying a "prebleaching" methodology, when the immobile NP fraction has been effectively removed and thus significant FCS data has been recorded. In this study, Glc-Au-Hi NPs have been incubated with HepG2 cells and their diffusion time in the intracellular environment has been measured and compared with their diffusion value in water and cell media.
Collapse
Affiliation(s)
- Richard A Murray
- Biosurfaces Unit, Laboratory 1, CIC biomaGUNE, Paseo Miramón 182 C, San Sebastián, 20009, Spain
| | | | | | | | | | | |
Collapse
|
49
|
Ghirardello M, Öberg K, Staderini S, Renaudet O, Berthet N, Dumy P, Hed Y, Marra A, Malkoch M, Dondoni A. Thiol-ene and thiol-yne-based synthesis of glycodendrimers as nanomolar inhibitors of wheat germ agglutinin. ACTA ACUST UNITED AC 2014. [DOI: 10.1002/pola.27262] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Mattia Ghirardello
- Dipartimento di Scienze Chimiche e Farmaceutiche; Università di Ferrara; Via Fossato di Mortara 17 44121 Ferrara Italy
| | - Kim Öberg
- Division of Coating Technology; KTH The Royal Institute of Technology, School of Chemical Science and Engineering; Teknikringen 56-58 SE-10044 Stockholm Sweden
| | - Samuele Staderini
- Dipartimento di Scienze Chimiche e Farmaceutiche; Università di Ferrara; Via Fossato di Mortara 17 44121 Ferrara Italy
| | - Olivier Renaudet
- Département de Chimie Moléculaire; UMR CNRS 5250, Université Joseph Fourier, 570 Rue de la chimie, BP 53; 38041 Grenoble cedex 9 France
| | - Nathalie Berthet
- Département de Chimie Moléculaire; UMR CNRS 5250, Université Joseph Fourier, 570 Rue de la chimie, BP 53; 38041 Grenoble cedex 9 France
| | - Pascal Dumy
- Institut des Biomolécules Max Mousseron (IBMM); UMR 5247, Université Montpellier 2, Ecole Nationale Supérieure de Chimie de Montpellier, 8 Rue de l'Ecole Normale; 34296 Montpellier cedex 5 France
| | - Yvonne Hed
- Division of Coating Technology; KTH The Royal Institute of Technology, School of Chemical Science and Engineering; Teknikringen 56-58 SE-10044 Stockholm Sweden
| | - Alberto Marra
- Institut des Biomolécules Max Mousseron (IBMM); UMR 5247, Université Montpellier 2, Ecole Nationale Supérieure de Chimie de Montpellier, 8 Rue de l'Ecole Normale; 34296 Montpellier cedex 5 France
| | - Michael Malkoch
- Division of Coating Technology; KTH The Royal Institute of Technology, School of Chemical Science and Engineering; Teknikringen 56-58 SE-10044 Stockholm Sweden
| | - Alessandro Dondoni
- Interdisciplinary Center for the Study of Inflammation, Università di Ferrara; Via Borsari 46 44100 Ferrara Italy
| |
Collapse
|
50
|
Rodrigue J, Ganne G, Blanchard B, Saucier C, Giguère D, Shiao TC, Varrot A, Imberty A, Roy R. Aromatic thioglycoside inhibitors against the virulence factor LecA from Pseudomonas aeruginosa. Org Biomol Chem 2014; 11:6906-18. [PMID: 24057051 DOI: 10.1039/c3ob41422a] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Three small families of hydrolytically stable thioaryl glycosides were prepared as inhibitors of the LecA (PA-IL) virulence factor corresponding to the carbohydrate binding lectin from the bacterial pathogen Pseudomonas aeruginosa. The monosaccharidic arylthio β-d-galactopyranosides served as a common template for the major series that was also substituted at the O-3 position. Arylthio disaccharides from lactose and from melibiose constituted the other two series members. In spite of the fact that the natural ligand for LecA is a glycolipid of the globotriaosylceramide having an α-d-galactopyranoside epitope, this study illustrated that the β-d-galactopyranoside configuration having a hydrophobic aglycon could override the requirement toward the anomeric configuration of the natural sugar. The enzyme linked lectin assay together with isothermal titration microcalorimetry established that naphthyl 1-thio-β-d-galactopyranoside () gave the best inhibition with an IC50 twenty-three times better than that of the reference methyl α-d-galactopyranoside. In addition it showed a KD of 6.3 μM which was ten times better than that of the reference compound. The X-ray crystal structure of LecA with was also obtained.
Collapse
Affiliation(s)
- Jacques Rodrigue
- PharmaQAM - Department of Chemistry, Université du Québec à Montréal, P.O. Box 8888, Succ. Centre-ville, Montréal, Québec, Canada H3C 3P8.
| | | | | | | | | | | | | | | | | |
Collapse
|