1
|
Krömer M, Poštová Slavětínská L, Hocek M. Glyco-DNA: Enzymatic Synthesis of Base-Modified and Hypermodified DNA Displaying up to Four Different Monosaccharide Units in the Major Groove. Chemistry 2024; 30:e202402318. [PMID: 38896019 DOI: 10.1002/chem.202402318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 06/19/2024] [Accepted: 06/19/2024] [Indexed: 06/21/2024]
Abstract
A portfolio of six modified 2'-deoxyribonucleoside triphosphate (dNTP) derivatives derived from 5-substituted pyrimidine or 7-substituted 7-deazapurine bearing different carbohydrate units (d-glucose, d-galactose, d-mannose, l-fucose, sialic acid and N-Ac-d-galactosamine) tethered through propargyl-glycoside linker was designed and synthesized via the Sonogashira reactions of halogenated dNTPs with the corresponding propargyl-glycosides. The nucleotides were found to be good substrates for DNA polymerases in enzymatic primer extension and PCR synthesis of modified and hypermodified DNA displaying up to four different sugars. Proof of concept binding study of sugar-modified oligonucleotides with concanavalin A showed positive effect of avidity and sugar units count.
Collapse
Affiliation(s)
- Matouš Krömer
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, 16000, Prague 6, Czech Republic
- Department of Organic Chemistry, Faculty of Science, Charles University, Hlavova 8, 12843, Prague 2, Czech Republic
| | - Lenka Poštová Slavětínská
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, 16000, Prague 6, Czech Republic
| | - Michal Hocek
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, 16000, Prague 6, Czech Republic
- Department of Organic Chemistry, Faculty of Science, Charles University, Hlavova 8, 12843, Prague 2, Czech Republic
| |
Collapse
|
2
|
Chavda J, Rajwar A, Bhatia D, Gupta I. Synthesis of novel zinc porphyrins with bioisosteric replacement of Sorafenib: Efficient theranostic agents for anti-cancer application. J Inorg Biochem 2023; 249:112384. [PMID: 37776828 DOI: 10.1016/j.jinorgbio.2023.112384] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/11/2023] [Accepted: 09/20/2023] [Indexed: 10/02/2023]
Abstract
Novel zinc porphyrins (trans-A2B2 and A3B type) are reported containing pharmacophoric groups derived from Sorafenib at the meso-positions. The pharmacophoric and bioisosteric modification of Sorafenib was done with 2-methyl-4-nitro-N-phenylaniline. The in-vitro photo-cytotoxicity studies of zinc porphyrins on HeLa cells revealed excellent PDT based autophagy inhibition of cancer cells, with IC50 values between 6.2 to 15.4 μM. The trans-A2B2 type zinc porphyrin with two bioisosteric groups gave better cytotoxicity than A3B type. Molecular docking studies revealed excellent binding with mTOR protein kinase of the designed porphyrins. The confocal studies indicated significant ER localization of trans-A2B2 type zinc porphyrin in HeLa cells along with ROS generation. trans-A2B2 type zinc porphyrin induced ER stress in cancer cells, thereby causing elevation of Ca+2 ions in cytoplasm, which led to cancer cell death via autophagy pathway. The studies suggested that trans-A2B2 and A3B type zinc porphyrins can be developed as theranostic agents for anti-cancer applications.
Collapse
Affiliation(s)
- Jaydeepsinh Chavda
- Department of Chemistry, Indian Institute of Technology Gandhinagar, Palaj Campus, Gandhinagar, Gujarat 382355, India
| | - Anjali Rajwar
- Department of Biological Engineering, IIT Gandhinagar, Palaj Campus, Gandhinagar, Gujarat 382355, India
| | - Dhiraj Bhatia
- Department of Biological Engineering, IIT Gandhinagar, Palaj Campus, Gandhinagar, Gujarat 382355, India
| | - Iti Gupta
- Department of Chemistry, Indian Institute of Technology Gandhinagar, Palaj Campus, Gandhinagar, Gujarat 382355, India.
| |
Collapse
|
3
|
Forsythe N, Liu L, Kashiwagi GA, Demchenko AV. Activation of thioglycosides under mild alkylation conditions. Carbohydr Res 2023; 531:108872. [PMID: 37348387 PMCID: PMC10528260 DOI: 10.1016/j.carres.2023.108872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/08/2023] [Accepted: 06/09/2023] [Indexed: 06/24/2023]
Abstract
Reported herein is the development of a novel method for the activation of thioglycosides and thioimidates using benzyl trichloroacetimidate in the presence of catalytic triflic acid. Excellent yields have been achieved with reactive substrates, whereas efficiency of reactions with unreactive glycosyl donors and/or acceptors was modest.
Collapse
Affiliation(s)
- Nicholas Forsythe
- Department of Chemistry, Saint Louis University, 3501 Laclede Ave, St. Louis, Missouri, 63103, USA
| | - Leah Liu
- Department of Chemistry, Saint Louis University, 3501 Laclede Ave, St. Louis, Missouri, 63103, USA
| | - Gustavo A Kashiwagi
- Department of Chemistry, Saint Louis University, 3501 Laclede Ave, St. Louis, Missouri, 63103, USA
| | - Alexei V Demchenko
- Department of Chemistry, Saint Louis University, 3501 Laclede Ave, St. Louis, Missouri, 63103, USA.
| |
Collapse
|
4
|
Lin CL, Sojitra M, Carpenter EJ, Hayhoe ES, Sarkar S, Volker EA, Wang C, Bui DT, Yang L, Klassen JS, Wu P, Macauley MS, Lowary TL, Derda R. Chemoenzymatic synthesis of genetically-encoded multivalent liquid N-glycan arrays. Nat Commun 2023; 14:5237. [PMID: 37640713 PMCID: PMC10462762 DOI: 10.1038/s41467-023-40900-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 08/09/2023] [Indexed: 08/31/2023] Open
Abstract
Cellular glycosylation is characterized by chemical complexity and heterogeneity, which is challenging to reproduce synthetically. Here we show chemoenzymatic synthesis on phage to produce a genetically-encoded liquid glycan array (LiGA) of complex type N-glycans. Implementing the approach involved by ligating an azide-containing sialylglycosyl-asparagine to phage functionalized with 50-1000 copies of dibenzocyclooctyne. The resulting intermediate can be trimmed by glycosidases and extended by glycosyltransferases yielding a phage library with different N-glycans. Post-reaction analysis by MALDI-TOF MS allows rigorous characterization of N-glycan structure and mean density, which are both encoded in the phage DNA. Use of this LiGA with fifteen glycan-binding proteins, including CD22 or DC-SIGN on cells, reveals optimal structure/density combinations for recognition. Injection of the LiGA into mice identifies glycoconjugates with structures and avidity necessary for enrichment in specific organs. This work provides a quantitative evaluation of the interaction of complex N-glycans with GBPs in vitro and in vivo.
Collapse
Affiliation(s)
- Chih-Lan Lin
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada
| | - Mirat Sojitra
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada
| | - Eric J Carpenter
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada
| | - Ellen S Hayhoe
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada
| | - Susmita Sarkar
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada
| | - Elizabeth A Volker
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada
| | - Chao Wang
- Department of Molecular Medicine, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Duong T Bui
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada
| | - Loretta Yang
- Lectenz Bio, 111 Riverbend Rd, Athens, GA, 30602, USA
| | - John S Klassen
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada
| | - Peng Wu
- Department of Molecular Medicine, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Matthew S Macauley
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, T6G 2E1, Canada
| | - Todd L Lowary
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
- Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan
| | - Ratmir Derda
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada.
| |
Collapse
|
5
|
George A, Jayaraman N. Anthracenemethyl Glycosides as Supramolecular Synthons for Chiral Self-Assembly and as Probes in Cell Imaging. ACS OMEGA 2023; 8:16927-16934. [PMID: 37214669 PMCID: PMC10193555 DOI: 10.1021/acsomega.3c00767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 03/27/2023] [Indexed: 05/24/2023]
Abstract
Chiral self-assembly of molecules warrants optimal structural features of synthons that promote formation of such self-assembled structures. A polyaromatic moiety coupled with hydrophilic, chiral-rich carbohydrates leads to segmentation of the regions and the self-assembly to supramolecular structures. Thermodynamic stability is augmented further through chiral self-assembly of the molecules, and formation of the desired chiral supramolecular structures is achieved. In the present study, we develop anthracene glycosides as efficient synthons that, in aqueous solutions, undergo facile self-assembly and lead to chiral supramolecular structures. Anthracenemethyl O-glycosides, installed with mono- and disaccharides, are studied for their self-assembly properties. Emerging chiral structures follow the configuration of the attached sugar moiety. Monosaccharide d- and l-glycopyranoside-containing derivatives alternate between left- and right-handed chiral structures, respectively. Disaccharide-containing derivatives do not exhibit chirality, even when self-assembly occurred. Photochemical [4π + 4π] cycloaddition occurs in the self-assembled structure in aqueous solution. Cell viability assay using HeLa cells shows above 80% viable cells at a concentration of 50 μM. Bioimaging assays reveal a significant imaging of HeLa cells for anthracenemethyl d-glucopyranoside; bright imaging was observed at the perinuclear region of the cells, suggestive of an active transport of the molecules through the cell membrane. d-Galactopyranoside and l-glucopyranoside-containing derivatives show weak imaging potencies.
Collapse
|
6
|
Agrahari AK, Kumar S, Pandey MD, Rajkhowa S, Jaiswal MK, Tiwari VK. Click Chemistry ‐ Inspired Synthesis of Porphyrin Hybrid Glycodendrimers as Fluorescent Sensor for Cu(II) Ions. ChemistrySelect 2022. [DOI: 10.1002/slct.202202273] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Anand K. Agrahari
- Department of Chemistry Institute of Science Banaras Hindu University Varanasi UP-221005 INDIA
- Department of Chemistry University of California-Davis Davis CA 95616 U.S.A
| | - Sunil Kumar
- Department of Chemistry Institute of Science Banaras Hindu University Varanasi UP-221005 INDIA
| | - Mrituanjay D. Pandey
- Department of Chemistry Institute of Science Banaras Hindu University Varanasi UP-221005 INDIA
| | - Sanchayita Rajkhowa
- Department of Chemistry The Assam Royal Global University Guwahati Assam 781035 INDIA
| | - Manoj K. Jaiswal
- Department of Chemistry Institute of Science Banaras Hindu University Varanasi UP-221005 INDIA
| | - Vinod K. Tiwari
- Department of Chemistry Institute of Science Banaras Hindu University Varanasi UP-221005 INDIA
| |
Collapse
|
7
|
Godlewski B, Baran D, de Robichon M, Ferry A, Ostrowski S, Malinowski M. Sonogashira cross-coupling as a key step in the synthesis of new glycoporphyrins. Org Chem Front 2022. [DOI: 10.1039/d1qo01909k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Palladium catalysis is reported as an efficient tool to afford unique glycoporphyrins via Sonogashira cross-coupling.
Collapse
Affiliation(s)
- Bartosz Godlewski
- Faculty of Chemistry, Warsaw University of Technology, ul. Noakowskiego 3, 00-664 Warsaw, Poland
| | - Dariusz Baran
- Faculty of Chemistry, Warsaw University of Technology, ul. Noakowskiego 3, 00-664 Warsaw, Poland
| | - Morgane de Robichon
- CY Cergy-Paris Université, BioCIS, CNRS, 5 mail Gay-Lussac, 95000 Cergy-Pontoise cedex, France
- Université Paris-Saclay, BioCIS, CNRS, 5, rue J-B Clément, 92296 Châtenay-Malabry cedex, France
| | - Angélique Ferry
- CY Cergy-Paris Université, BioCIS, CNRS, 5 mail Gay-Lussac, 95000 Cergy-Pontoise cedex, France
- Université Paris-Saclay, BioCIS, CNRS, 5, rue J-B Clément, 92296 Châtenay-Malabry cedex, France
| | - Stanisław Ostrowski
- Faculty of Chemistry, Warsaw University of Technology, ul. Noakowskiego 3, 00-664 Warsaw, Poland
| | - Maciej Malinowski
- Faculty of Chemistry, Warsaw University of Technology, ul. Noakowskiego 3, 00-664 Warsaw, Poland
| |
Collapse
|
8
|
Calatrava-Pérez E, Marchetti LA, McManus GJ, Lynch DM, Elmes RBP, Williams DC, Gunnlaugsson T, Scanlan EM. Real-Time Multi-Photon Tracking and Bioimaging of Glycosylated Theranostic Prodrugs upon Specific Enzyme Triggered Release. Chemistry 2021; 28:e202103858. [PMID: 34820925 DOI: 10.1002/chem.202103858] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Indexed: 01/22/2023]
Abstract
Real-time tracking of prodrug uptake, delivery and activation in vivo represents a major challenge for prodrug development. Herein, we demonstrate the use of novel glycosylated theranostics of the cancer pharmacophore Amonafide in highly-selective, enzymatic triggered release. We show that the use of endogenous enzymes for activated release of the therapeutic component can be observed, in real time, and monitored using one and two-photon bioimaging, offering unique insight into the prodrug pharmacokinetic profile. Furthermore, we demonstrate that the potent cytotoxicity of Amonafide is preserved using this targeted approach.
Collapse
Affiliation(s)
- Elena Calatrava-Pérez
- School of Chemistry Trinity Biomedical Sciences Institute (TBSI) Trinity College Dublin, The University of Dublin, D02 R590, Dublin 2, Ireland
| | - Luke A Marchetti
- Chemistry Department, Science Building Maynooth University, National University of Ireland, Maynooth, Co. Kildare, Ireland.,Maynooth University Human Health Research Institute Maynooth University, National University of Ireland, Maynooth, Co. Kildare, Ireland
| | - Gavin J McManus
- School of Biochemistry and Immunology and Trinity Biomedical Sciences Institute (TBSI) Trinity College Dublin, The University of Dublin, D02 R590, Dublin 2, Ireland
| | - Dylan M Lynch
- School of Chemistry Trinity Biomedical Sciences Institute (TBSI) Trinity College Dublin, The University of Dublin, D02 R590, Dublin 2, Ireland
| | - Robert B P Elmes
- Chemistry Department, Science Building Maynooth University, National University of Ireland, Maynooth, Co. Kildare, Ireland.,Maynooth University Human Health Research Institute Maynooth University, National University of Ireland, Maynooth, Co. Kildare, Ireland
| | - D Clive Williams
- School of Biochemistry and Immunology and Trinity Biomedical Sciences Institute (TBSI) Trinity College Dublin, The University of Dublin, D02 R590, Dublin 2, Ireland
| | - Thorfinnur Gunnlaugsson
- School of Chemistry Trinity Biomedical Sciences Institute (TBSI) Trinity College Dublin, The University of Dublin, D02 R590, Dublin 2, Ireland
| | - Eoin M Scanlan
- School of Chemistry Trinity Biomedical Sciences Institute (TBSI) Trinity College Dublin, The University of Dublin, D02 R590, Dublin 2, Ireland
| |
Collapse
|
9
|
Single-molecule imaging of glycan-lectin interactions on cells with Glyco-PAINT. Nat Chem Biol 2021; 17:1281-1288. [PMID: 34764473 DOI: 10.1038/s41589-021-00896-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 09/10/2021] [Indexed: 11/08/2022]
Abstract
Most lectins bind carbohydrate ligands with relatively low affinity, making the identification of optimal ligands challenging. Here we introduce a point accumulation in nanoscale topography (PAINT) super-resolution microscopy method to capture weak glycan-lectin interactions at the single-molecule level in living cells (Glyco-PAINT). Glyco-PAINT exploits weak and reversible sugar binding to directly achieve single-molecule detection and quantification in cells and is used to establish the relative kon and koff rates of a synthesized library of carbohydrate-based probes, as well as the diffusion coefficient of the receptor-sugar complex. Uptake of ligands correlates with their binding affinity and residence time to establish structure-function relations for various synthetic glycans. We reveal how sugar multivalency and presentation geometry can be optimized for binding and internalization. Overall, Glyco-PAINT represents a powerful approach to study weak glycan-lectin interactions on the surface of living cells, one that can be potentially extended to a variety of lectin-sugar interactions.
Collapse
|
10
|
Liu J, Wang D. ABO(H) and Lewis blood group substances and disease treatment. Transfus Med 2021; 32:187-192. [PMID: 34569102 DOI: 10.1111/tme.12820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 08/16/2021] [Accepted: 09/07/2021] [Indexed: 11/29/2022]
Abstract
Since the early 20th century, scientists have determined that blood group antigens can be inherited. With more and more studies have been devoted to finding the relationship between blood groups and diseases, the relationship of ABO(H) and Lewis blood groups and the development of human diseases have been summarised. In addition, many studies have shown that blood group substances, such as blood group antigen or related antibody, play an important role in disease prevention and treatment. This review focuses on the advances of ABO(H), Lewis blood group substances in the treatment of diseases, which has important significance for the development of novel therapeutic methods.
Collapse
Affiliation(s)
- Junting Liu
- Department of Transfusion Medicine, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Deqing Wang
- Department of Transfusion Medicine, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
11
|
Sollert C, Kocsi D, Jane RT, Orthaber A, Borbas KE. C-glycosylated pyrroles and their application in dipyrromethane and porphyrin synthesis. J PORPHYR PHTHALOCYA 2021. [DOI: 10.1142/s1088424621500723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Pyrrole C-glycosylated in either the 2- or the 3-position could be prepared by the acid-catalyzed reaction between trichloroacetimidate glycosyl donors and pyrrole, or [Formula: see text]-phenyl-tri?uoroacetimidate glucosyl donor and [Formula: see text]-TIPS pyrrole, respectively. Pyrroles carrying glucose, mannose, galactose and lactose in the 2-position, and glucose in the 3-position were obtained. The configurations of the products could be assigned using a combination of 1D and 2D NMR spectroscopy. A number of undesired background reactions yielding a variety of stereo- and regioisomers were identified; in several cases these could be eliminated. Glycosylpyrroles could be incorporated into mono- and diglycosylated dipyrromethanes, a diglycosylated BODIPY dye, and a monoglycosylated Zn(II) porphyrin without damaging the sugar unit.
Collapse
Affiliation(s)
- Carina Sollert
- Department of Chemistry, Ångström Laboratory, Box 523, Uppsala University, 75120 Uppsala, Sweden
| | - Daniel Kocsi
- Department of Chemistry, Ångström Laboratory, Box 523, Uppsala University, 75120 Uppsala, Sweden
| | - Reuben T. Jane
- Department of Chemistry, Ångström Laboratory, Box 523, Uppsala University, 75120 Uppsala, Sweden
| | - Andreas Orthaber
- Department of Chemistry, Ångström Laboratory, Box 523, Uppsala University, 75120 Uppsala, Sweden
| | - K. Eszter Borbas
- Department of Chemistry, Ångström Laboratory, Box 523, Uppsala University, 75120 Uppsala, Sweden
| |
Collapse
|
12
|
Agrahari AK, Bose P, Jaiswal MK, Rajkhowa S, Singh AS, Hotha S, Mishra N, Tiwari VK. Cu(I)-Catalyzed Click Chemistry in Glycoscience and Their Diverse Applications. Chem Rev 2021; 121:7638-7956. [PMID: 34165284 DOI: 10.1021/acs.chemrev.0c00920] [Citation(s) in RCA: 169] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Copper(I)-catalyzed 1,3-dipolar cycloaddition between organic azides and terminal alkynes, commonly known as CuAAC or click chemistry, has been identified as one of the most successful, versatile, reliable, and modular strategies for the rapid and regioselective construction of 1,4-disubstituted 1,2,3-triazoles as diversely functionalized molecules. Carbohydrates, an integral part of living cells, have several fascinating features, including their structural diversity, biocompatibility, bioavailability, hydrophilicity, and superior ADME properties with minimal toxicity, which support increased demand to explore them as versatile scaffolds for easy access to diverse glycohybrids and well-defined glycoconjugates for complete chemical, biochemical, and pharmacological investigations. This review highlights the successful development of CuAAC or click chemistry in emerging areas of glycoscience, including the synthesis of triazole appended carbohydrate-containing molecular architectures (mainly glycohybrids, glycoconjugates, glycopolymers, glycopeptides, glycoproteins, glycolipids, glycoclusters, and glycodendrimers through regioselective triazole forming modular and bio-orthogonal coupling protocols). It discusses the widespread applications of these glycoproducts as enzyme inhibitors in drug discovery and development, sensing, gelation, chelation, glycosylation, and catalysis. This review also covers the impact of click chemistry and provides future perspectives on its role in various emerging disciplines of science and technology.
Collapse
Affiliation(s)
- Anand K Agrahari
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Priyanka Bose
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Manoj K Jaiswal
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Sanchayita Rajkhowa
- Department of Chemistry, Jorhat Institute of Science and Technology (JIST), Jorhat, Assam 785010, India
| | - Anoop S Singh
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Srinivas Hotha
- Department of Chemistry, Indian Institute of Science and Engineering Research (IISER), Pune, Maharashtra 411021, India
| | - Nidhi Mishra
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Vinod K Tiwari
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| |
Collapse
|
13
|
Pandey V, Raza MK, Joshi P, Gupta I. Synthesis of Water-Soluble Thioglycosylated trans-A 2B 2 Type Porphyrins: Cellular Uptake Studies and Photodynamic Efficiency. J Org Chem 2020; 85:6309-6322. [PMID: 32320242 DOI: 10.1021/acs.joc.9b03491] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The synthesis of water-soluble thioglycosylated A2B2 type porphyrins and their zinc(II) complexes is reported. The water-soluble trans-A2B2 porphyrins were synthesized in two steps, via [2+2] condensation between thioglycosylated dipyrromethanes and aromatic aldehydes in 15-21% yields. The thioglycosylated trans-A2B2 porphyrins showed decent in vitro singlet oxygen generation, which was supported by the intracellular DCFDA study. The in vitro cellular investigations of thioglycosylated A2B2 porphyrins were carried out in lung cancer cells (A549) to test their photodynamic therapeutic (PDT) activity. The PDT study revealed significant cytotoxicities of porphyrins with IC50 values between 23.3 and 44.2 μM in the dark, whereas, after visible light exposure, the photosensitizers exhibited IC50 values around 11.1-23.8 μM. The water-soluble thioglycosylated zinc(II) porphyrins having two meso-N-butylcarbazole groups exhibited an excellent degree of photocytotoxicity (IC50 = 4.6-8.8 μM). The flow cytometry analysis revealed that cellular uptake and ROS (reactive oxygen species) generation efficiency of water-soluble thioglycosylated zinc(II) porphyrins were considerably higher than nonmetalated porphyrins. Confocal microscopy images displayed substantial distribution in the endoplasmic reticulum with partial colocalization in mitochondria and lysosomes of water-soluble thioglycosylated zinc(II) porphyrins in A549 cells.
Collapse
Affiliation(s)
- Vijayalakshmi Pandey
- Indian Institute of Technology Gandhinagar, Palaj Campus, Gandhinagar, Gujarat 382355, India
| | - Md Kausar Raza
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Pooja Joshi
- Indian Institute of Technology Gandhinagar, Palaj Campus, Gandhinagar, Gujarat 382355, India
| | - Iti Gupta
- Indian Institute of Technology Gandhinagar, Palaj Campus, Gandhinagar, Gujarat 382355, India
| |
Collapse
|
14
|
Design, synthesis and biological evaluation of acridone glycosides as selective BChE inhibitors. Carbohydr Res 2020; 491:107977. [DOI: 10.1016/j.carres.2020.107977] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 02/25/2020] [Accepted: 03/03/2020] [Indexed: 12/19/2022]
|
15
|
Synthesis, Characterization and Photodynamic Activity against Bladder Cancer Cells of Novel Triazole-Porphyrin Derivatives. Molecules 2020; 25:molecules25071607. [PMID: 32244514 PMCID: PMC7180931 DOI: 10.3390/molecules25071607] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 03/26/2020] [Accepted: 03/29/2020] [Indexed: 11/16/2022] Open
Abstract
Novel triazole-porphyrin derivatives (TZ-PORs) were synthesized through the Heck reaction and then incorporated into polyvinylpyrrolidone (PVP) micelles. After verifying that this incorporation did not compromise the photophysical and chemical features of TZ-PORs as photosensitizers, the phototoxicity of the formulations towards cancer cells was screened. Biological studies show high photodynamic activity of all PVP-TZ-POR formulations against a bladder cancer cell line with a particular highlight to PVP-TZ-POR 7e and 7f that are able to significantly reduce HT-1376 cell viability, while they had no effect on control ARPE-19 cells.
Collapse
|
16
|
Franconetti A, López Ó, Fernandez-Bolanos JG. Carbohydrates: Potential Sweet Tools Against Cancer. Curr Med Chem 2020; 27:1206-1242. [DOI: 10.2174/0929867325666180719114150] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 04/25/2018] [Accepted: 06/28/2018] [Indexed: 12/13/2022]
Abstract
:Cancer, one of the most devastating degenerative diseases nowadays, is one of the main targets in Medicinal Chemistry and Pharmaceutical industry. Due to the significant increase in the incidence of cancer within world population, together with the complexity of such disease, featured with a multifactorial nature, access to new drugs targeting different biological targets connected to cancer is highly necessary.:Among the vast arsenal of compounds exhibiting antitumor activities, this review will cover the use of carbohydrate derivatives as privileged scaffolds. Their hydrophilic nature, together with their capacity of establishing selective interactions with biological receptors located on cell surface, involved in cell-to-cell communication processes, has allowed the development of an ample number of new templates useful in cancer treatment.:Their intrinsic water solubility has allowed their use as of pro-drug carriers for accessing more efficiently the pharmaceutical targets. The preparation of glycoconjugates in which the carbohydrate is tethered to a pharmacophore has also allowed a better permeation of the drug through cellular membranes, in which selective interactions with the carbohydrate motifs are involved. In this context, the design of multivalent structures (e.g. gold nanoparticles) has been demonstrated to enhance crucial interactions with biological receptors like lectins, glycoproteins that can be involved in cancer progression.:Moreover, the modification of the carbohydrate structural motif, by incorporation of metal complexes, or by replacing their endocyclic oxygen, or carbon atoms with heteroatoms has led to new antitumor agents.:Such diversity of sugar-based templates with relevant antitumor activity will be covered in this review.
Collapse
Affiliation(s)
- Antonio Franconetti
- Departamento de Quimica Organica, Facultad de Quimica, Universidad de Sevilla, Sevilla, Spain
| | - Óscar López
- Departamento de Quimica Organica, Facultad de Quimica, Universidad de Sevilla, Sevilla, Spain
| | | |
Collapse
|
17
|
Bennion MC, Burch MA, Dennis DG, Lech ME, Neuhaus K, Fendler NL, Parris MR, Cuadra JE, Dixon CF, Mukosera GT, Blauch DN, Hartmann L, Snyder NL, Ruppel JV. Synthesis of Porphyrin and Bacteriochlorin Glycoconjugates through CuAAC Reaction Tuning. European J Org Chem 2019; 2019:6496-6503. [PMID: 33041648 PMCID: PMC7546392 DOI: 10.1002/ejoc.201901128] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Indexed: 02/06/2023]
Abstract
Rapid and reproducible access to a series of unique porphyrin and bacteriochlorin glycoconjugates, including meso-glycosylated porphyrins and bacteriochlorins, and beta-glycosylated porphyrins, via copper catalyzed azide-alkyne 1,3-dipolar cycloaddition (CuAAC) is reported for the first time. The work presented highlights the system-dependent reaction conditions required for glycosylation to porphyrins and bacteriochlorins based on the unique electronic properties of each ring system. Attenuated reaction conditions were used to synthesize fifteen new glycosylated porphyrin and bacteriochlorin analogs in 74 - 99% yield, and were extended to solid support to produce the first oligo(amidoamine)-based porphyrin glycoconjugate. These compounds hold significant potential as next generation water soluble catalysts and photodynamic therapy/photodynamic inactivation (PDT/PDI) agents.
Collapse
Affiliation(s)
- Matthew C Bennion
- Division of Natural Sciences and Engineering University of South Carolina Upstate 800 University Way, Spartanburg SC. 29303 USA
| | - Morgan A Burch
- Department of Chemistry Davidson College 102 North Main Street, Davidson, NC 28035 USA
| | - David G Dennis
- Division of Natural Sciences and Engineering University of South Carolina Upstate 800 University Way, Spartanburg SC. 29303 USA
| | - Melissa E Lech
- Division of Natural Sciences and Engineering University of South Carolina Upstate 800 University Way, Spartanburg SC. 29303 USA
| | - Kira Neuhaus
- Department of Chemistry Davidson College 102 North Main Street, Davidson, NC 28035 USA
- Department of Organic and Macromolecular Chemistry Heinrich-Heine-University Düsseldorf Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Nikole L Fendler
- Department of Chemistry Davidson College 102 North Main Street, Davidson, NC 28035 USA
| | - Matthew R Parris
- Division of Natural Sciences and Engineering University of South Carolina Upstate 800 University Way, Spartanburg SC. 29303 USA
| | - Jessica E Cuadra
- Division of Natural Sciences and Engineering University of South Carolina Upstate 800 University Way, Spartanburg SC. 29303 USA
| | - Charlie F Dixon
- Division of Natural Sciences and Engineering University of South Carolina Upstate 800 University Way, Spartanburg SC. 29303 USA
| | - George T Mukosera
- Department of Chemistry Davidson College 102 North Main Street, Davidson, NC 28035 USA
| | - David N Blauch
- Department of Chemistry Davidson College 102 North Main Street, Davidson, NC 28035 USA
| | - Laura Hartmann
- Department of Organic and Macromolecular Chemistry Heinrich-Heine-University Düsseldorf Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Nicole L Snyder
- Department of Chemistry Davidson College 102 North Main Street, Davidson, NC 28035 USA
| | - Joshua V Ruppel
- Division of Natural Sciences and Engineering University of South Carolina Upstate 800 University Way, Spartanburg SC. 29303 USA
| |
Collapse
|
18
|
Li RJE, Hogervorst TP, Achilli S, Bruijns SC, Arnoldus T, Vivès C, Wong CC, Thépaut M, Meeuwenoord NJ, van den Elst H, Overkleeft HS, van der Marel GA, Filippov DV, van Vliet SJ, Fieschi F, Codée JDC, van Kooyk Y. Systematic Dual Targeting of Dendritic Cell C-Type Lectin Receptor DC-SIGN and TLR7 Using a Trifunctional Mannosylated Antigen. Front Chem 2019; 7:650. [PMID: 31637232 PMCID: PMC6787163 DOI: 10.3389/fchem.2019.00650] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 09/11/2019] [Indexed: 01/22/2023] Open
Abstract
Dendritic cells (DCs) are important initiators of adaptive immunity, and they possess a multitude of Pattern Recognition Receptors (PRR) to generate an adequate T cell mediated immunity against invading pathogens. PRR ligands are frequently conjugated to tumor-associated antigens in a vaccination strategy to enhance the immune response toward such antigens. One of these PPRs, DC-SIGN, a member of the C-type lectin receptor (CLR) family, has been extensively targeted with Lewis structures and mannose glycans, often presented in multivalent fashion. We synthesized a library of well-defined mannosides (mono-, di-, and tri-mannosides), based on known "high mannose" structures, that we presented in a systematically increasing number of copies (n = 1, 2, 3, or 6), allowing us to simultaneously study the effect of mannoside configuration and multivalency on DC-SIGN binding via Surface Plasmon Resonance (SPR) and flow cytometry. Hexavalent presentation of the clusters showed the highest binding affinity, with the hexa-α1,2-di-mannoside being the most potent ligand. The four highest binding hexavalent mannoside structures were conjugated to a model melanoma gp100-peptide antigen and further equipped with a Toll-like receptor 7 (TLR7)-agonist as adjuvant for DC maturation, creating a trifunctional vaccine conjugate. Interestingly, DC-SIGN affinity of the mannoside clusters did not directly correlate with antigen presentation enhancing properties and the α1,2-di-mannoside cluster with the highest binding affinity in our library even hampered T cell activation. Overall, this systematic study has demonstrated that multivalent glycan presentation can improve DC-SIGN binding but enhanced binding cannot be directly translated into enhanced antigen presentation and the sole assessment of binding affinity is thus insufficient to determine further functional biological activity. Furthermore, we show that well-defined antigen conjugates combining two different PRR ligands can be generated in a modular fashion to increase the effectiveness of vaccine constructs.
Collapse
Affiliation(s)
- Rui-Jun Eveline Li
- Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam Universitair Medische Centra, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Tim P. Hogervorst
- Department of Bio-organic Synthesis, Faculty of Science, Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands
| | - Silvia Achilli
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, Grenoble, France
| | - Sven C. Bruijns
- Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam Universitair Medische Centra, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Tim Arnoldus
- Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam Universitair Medische Centra, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Corinne Vivès
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, Grenoble, France
| | - Chung C. Wong
- Department of Bio-organic Synthesis, Faculty of Science, Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands
| | - Michel Thépaut
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, Grenoble, France
| | - Nico J. Meeuwenoord
- Department of Bio-organic Synthesis, Faculty of Science, Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands
| | - Hans van den Elst
- Department of Bio-organic Synthesis, Faculty of Science, Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands
| | - Herman S. Overkleeft
- Department of Bio-organic Synthesis, Faculty of Science, Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands
| | - Gijs A. van der Marel
- Department of Bio-organic Synthesis, Faculty of Science, Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands
| | - Dmitri V. Filippov
- Department of Bio-organic Synthesis, Faculty of Science, Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands
| | - Sandra J. van Vliet
- Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam Universitair Medische Centra, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Franck Fieschi
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, Grenoble, France
| | - Jeroen D. C. Codée
- Department of Bio-organic Synthesis, Faculty of Science, Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands
| | - Yvette van Kooyk
- Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam Universitair Medische Centra, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
19
|
Wiehe A, O'Brien JM, Senge MO. Trends and targets in antiviral phototherapy. Photochem Photobiol Sci 2019; 18:2565-2612. [PMID: 31397467 DOI: 10.1039/c9pp00211a] [Citation(s) in RCA: 152] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Photodynamic therapy (PDT) is a well-established treatment option in the treatment of certain cancerous and pre-cancerous lesions. Though best-known for its application in tumor therapy, historically the photodynamic effect was first demonstrated against bacteria at the beginning of the 20th century. Today, in light of spreading antibiotic resistance and the rise of new infections, this photodynamic inactivation (PDI) of microbes, such as bacteria, fungi, and viruses, is gaining considerable attention. This review focuses on the PDI of viruses as an alternative treatment in antiviral therapy, but also as a means of viral decontamination, covering mainly the literature of the last decade. The PDI of viruses shares the general action mechanism of photodynamic applications: the irradiation of a dye with light and the subsequent generation of reactive oxygen species (ROS) which are the effective phototoxic agents damaging virus targets by reacting with viral nucleic acids, lipids and proteins. Interestingly, a light-independent antiviral activity has also been found for some of these dyes. This review covers the compound classes employed in the PDI of viruses and their various areas of use. In the medical area, currently two fields stand out in which the PDI of viruses has found broader application: the purification of blood products and the treatment of human papilloma virus manifestations. However, the PDI of viruses has also found interest in such diverse areas as water and surface decontamination, and biosafety.
Collapse
Affiliation(s)
- Arno Wiehe
- biolitec research GmbH, Otto-Schott-Str. 15, 07745 Jena, Germany. and Institut für Chemie und Biochemie, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany
| | - Jessica M O'Brien
- Medicinal Chemistry, Trinity Translational Medicine Institute, Trinity Centre for Health Sciences, Trinity College Dublin, The University of Dublin, St. James's Hospital, Dublin 8, Ireland.
| | - Mathias O Senge
- Medicinal Chemistry, Trinity Translational Medicine Institute, Trinity Centre for Health Sciences, Trinity College Dublin, The University of Dublin, St. James's Hospital, Dublin 8, Ireland.
| |
Collapse
|
20
|
Khan R, Özkan M, Khaligh A, Tuncel D. Water-dispersible glycosylated poly(2,5'-thienylene)porphyrin-based nanoparticles for antibacterial photodynamic therapy. Photochem Photobiol Sci 2019; 18:1147-1155. [PMID: 30785160 DOI: 10.1039/c8pp00470f] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Here we report the preparation of water-dispersible glycosylated poly(2,5'-thienylene)porphyrin based nanoparticles by a nanoprecipitation method and demonstrate the application of these nanoparticles in antibacterial photodynamic therapy. The diameter of the nanoparticles is in the range of 50-80 nm and the resulting nanoparticles are stable in water without precipitation at least for a month. They have high singlet oxygen efficiency and display light-triggered biocidal activity against both Gram negative bacteria (Escherichia coli, E. coli) and Gram positive bacteria (Bacillus subtilis, B. subtilis). Upon white light irradiation for 10 min with a flux of 22 mW cm-2 of the E. coli suspension incubated with NPs (18 μg mL-1), a killing efficiency of 99% is achieved, whereas in the dark the effect is recorded as only around 8%.
Collapse
Affiliation(s)
- Rehan Khan
- Department of Chemistry, Bilkent University, 06800 Ankara, Turkey.
| | | | | | | |
Collapse
|
21
|
Castro LC, Jaconiano YR, Evangelista TCS, Ferreira SB, Scarpellini M. Synthesis and characterization of new galactosylated-based N 2O-donors tridentate ligands. SYNTHETIC COMMUN 2019. [DOI: 10.1080/00397911.2019.1599953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Lidiane C. Castro
- Departamento de Química Inorgânica, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Yasmim R. Jaconiano
- Departamento de Química Inorgânica, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Tereza C. S. Evangelista
- Departamento de Química Orgânica, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Sabrina B. Ferreira
- Departamento de Química Orgânica, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marciela Scarpellini
- Departamento de Química Inorgânica, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
22
|
Cauwel M, Sivignon A, Bridot C, Nongbe MC, Deniaud D, Roubinet B, Landemarre L, Felpin FX, Bouckaert J, Barnich N, Gouin SG. Heptylmannose-functionalized cellulose for the binding and specific detection of pathogenic E. coli. Chem Commun (Camb) 2019; 55:10158-10161. [DOI: 10.1039/c9cc05545b] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
We developed a chemical method to covalently functionalize cellulose nanofibers and cellulose paper with mannoside ligands displaying a strong affinity for the FimH adhesin from pathogenic E. coli strains.
Collapse
Affiliation(s)
- Madeleine Cauwel
- Université de Nantes
- CEISAM
- Chimie Et Interdisciplinarité, Synthèse, Analyse, Modélisation
- UMR CNRS 6230
- UFR des Sciences et des Techniques
| | - Adeline Sivignon
- Clermont Université
- UMR 1071 Inserm/Université d’Auvergne
- 63000 Clermont-Ferrand
- France
| | - Clarisse Bridot
- Unité de Glycobiologie Structurale et Fonctionnelle (UGSF)
- UMR8576 CNRS
- Lille 59000
- France
| | - Medy C. Nongbe
- Université de Nantes
- CEISAM
- Chimie Et Interdisciplinarité, Synthèse, Analyse, Modélisation
- UMR CNRS 6230
- UFR des Sciences et des Techniques
| | - David Deniaud
- Université de Nantes
- CEISAM
- Chimie Et Interdisciplinarité, Synthèse, Analyse, Modélisation
- UMR CNRS 6230
- UFR des Sciences et des Techniques
| | - Benoit Roubinet
- Glycodiag, Bâtiment Physique-Chimie
- 45067 Orléans cedex 2
- France
| | | | - François-Xavier Felpin
- Université de Nantes
- CEISAM
- Chimie Et Interdisciplinarité, Synthèse, Analyse, Modélisation
- UMR CNRS 6230
- UFR des Sciences et des Techniques
| | - Julie Bouckaert
- Unité de Glycobiologie Structurale et Fonctionnelle (UGSF)
- UMR8576 CNRS
- Lille 59000
- France
| | - Nicolas Barnich
- Clermont Université
- UMR 1071 Inserm/Université d’Auvergne
- 63000 Clermont-Ferrand
- France
| | - Sébastien G. Gouin
- Université de Nantes
- CEISAM
- Chimie Et Interdisciplinarité, Synthèse, Analyse, Modélisation
- UMR CNRS 6230
- UFR des Sciences et des Techniques
| |
Collapse
|
23
|
Calatrava-Pérez E, Delente JM, Shanmugaraju S, Hawes CS, Williams CD, Gunnlaugsson T, Scanlan EM. Glycosylated naphthalimides and naphthalimide Tröger's bases as fluorescent aggregation probes for Con A. Org Biomol Chem 2019; 17:2116-2125. [DOI: 10.1039/c8ob02980f] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report the synthesis of glycosylated naphthalimide compounds and their application as fluorescent probes for Concanavalin A (Con A) lectin.
Collapse
Affiliation(s)
- Elena Calatrava-Pérez
- School of Chemistry and Trinity Biomedical Sciences Institute (TBSI)
- Trinity College Dublin
- The University of Dublin
- Dublin 2
- Ireland
| | - Jason M. Delente
- School of Chemistry and Trinity Biomedical Sciences Institute (TBSI)
- Trinity College Dublin
- The University of Dublin
- Dublin 2
- Ireland
| | - Sankarasekaran Shanmugaraju
- School of Chemistry and Trinity Biomedical Sciences Institute (TBSI)
- Trinity College Dublin
- The University of Dublin
- Dublin 2
- Ireland
| | - Chris S. Hawes
- School of Chemical and Physical Sciences
- Keele University
- Keele ST5 5BG
- UK
| | - Clive D. Williams
- School of Biochemistry and Immunology and Trinity Biomedical Sciences Institute (TBSI)
- Trinity College Dublin
- The University of Dublin
- Dublin 2
- Ireland
| | - Thorfinnur Gunnlaugsson
- School of Chemistry and Trinity Biomedical Sciences Institute (TBSI)
- Trinity College Dublin
- The University of Dublin
- Dublin 2
- Ireland
| | - Eoin M. Scanlan
- School of Chemistry and Trinity Biomedical Sciences Institute (TBSI)
- Trinity College Dublin
- The University of Dublin
- Dublin 2
- Ireland
| |
Collapse
|
24
|
Alali U, Vallin A, Bil A, Khanchouche T, Mathiron D, Przybylski C, Beaulieu R, Kovensky J, Benazza M, Bonnet V. The uncommon strong inhibition of α-glucosidase by multivalent glycoclusters based on cyclodextrin scaffolds. Org Biomol Chem 2019; 17:7228-7237. [DOI: 10.1039/c9ob01344j] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
New inhibitors of α-glucosidase based on perglycosylated cyclodextrins were synthesized via click-chemistry and compared to acarbose.
Collapse
|
25
|
Ghosh C, Gupta N, Mallick A, Santra MK, Basu S. Self-Assembled Glycosylated Chalcone–Boronic Acid Nanodrug Exhibits Anticancer Activity through Mitochondrial Impairment. ACS APPLIED BIO MATERIALS 2018; 1:347-355. [DOI: 10.1021/acsabm.8b00089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Chandramouli Ghosh
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Pune, Dr. Homi Bhabha Road, Pashan, Pune, Maharashtra, India, 411008
| | - Neha Gupta
- Cancer and Epigenetic Lab, National Center for Cell Science (NCCS) Ganeshkhind, Pune, Maharashtra, India, 411007
| | - Abhik Mallick
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Pune, Dr. Homi Bhabha Road, Pashan, Pune, Maharashtra, India, 411008
| | - Manas Kumar Santra
- Cancer and Epigenetic Lab, National Center for Cell Science (NCCS) Ganeshkhind, Pune, Maharashtra, India, 411007
| | - Sudipta Basu
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Pune, Dr. Homi Bhabha Road, Pashan, Pune, Maharashtra, India, 411008
- Current address: Discipline of Chemistry, Indian Institute of Technology (IIT)-Gandhinagar, Palaj, Gandhinagar, Gujarat, India, 382355
| |
Collapse
|
26
|
Arja K, Elgland M, Appelqvist H, Konradsson P, Lindgren M, Nilsson KPR. Synthesis and Characterization of Novel Fluoro-glycosylated Porphyrins that can be Utilized as Theranostic Agents. ChemistryOpen 2018; 7:495-503. [PMID: 30003003 PMCID: PMC6031858 DOI: 10.1002/open.201800020] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Indexed: 12/21/2022] Open
Abstract
Small molecules with modalities for a variety of imaging techniques as well as therapeutic activity are essential, as such molecules render opportunities to simultaneously conduct diagnosis and targeted therapy, so called theranostics. In this regard, glycoporphyrins have proven useful as theranostic agents towards cancer, as well as noncancerous conditions. Herein, the synthesis and characterization of heterobifunctional glycoconjugated porphyrins with two different sugar moieties, a common monosaccharide at three sites, and a 2-fluoro-2-deoxy glucose (FDG) moiety at the fourth site are presented. The fluoro-glycoconjugated porphyrins exhibit properties for multimodal imaging and photodynamic therapy, as well as specificity towards cancer cells. We foresee that our findings might aid in the chemical design of heterobifunctional glycoconjugated porphyrins that could be utilized as theranostic agents.
Collapse
Affiliation(s)
- Katriann Arja
- Division of ChemistryDepartment of Physics, Chemistry and BiologyLinköping University581 83LinköpingSweden
| | - Mathias Elgland
- Division of ChemistryDepartment of Physics, Chemistry and BiologyLinköping University581 83LinköpingSweden
| | - Hanna Appelqvist
- Division of ChemistryDepartment of Physics, Chemistry and BiologyLinköping University581 83LinköpingSweden
| | - Peter Konradsson
- Division of ChemistryDepartment of Physics, Chemistry and BiologyLinköping University581 83LinköpingSweden
| | - Mikael Lindgren
- Department of PhysicsNorwegian University of Science and Technology, NTNU7491TrondheimNorway
| | - K. Peter R. Nilsson
- Division of ChemistryDepartment of Physics, Chemistry and BiologyLinköping University581 83LinköpingSweden
| |
Collapse
|
27
|
Fadlan A, Tanimoto H, Ito T, Aritomi Y, Ueno M, Tokuda M, Hirohara S, Obata M, Morimoto T, Kakiuchi K. Synthesis, photophysical properties, and photodynamic activity of positional isomers of TFPP-glucose conjugates. Bioorg Med Chem 2018; 26:1848-1858. [DOI: 10.1016/j.bmc.2018.02.031] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 02/13/2018] [Accepted: 02/18/2018] [Indexed: 01/22/2023]
|
28
|
Pohlit H, Worm M, Langhanki J, Berger-Nicoletti E, Opatz T, Frey H. Silver Oxide Mediated Monotosylation of Poly(ethylene glycol) (PEG): Heterobifunctional PEG via Polymer Desymmetrization. Macromolecules 2017. [DOI: 10.1021/acs.macromol.7b01787] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Hannah Pohlit
- Department
of Dermatology, University Medical Center Mainz, Langenbeckstr.
1, 55131 Mainz, Germany
- Institute
of Organic Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
- Graduate School
Materials Science in Mainz, Staudinger
Weg 9, 55128 Mainz, Germany
| | - Matthias Worm
- Institute
of Organic Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Jens Langhanki
- Institute
of Organic Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Elena Berger-Nicoletti
- Institute
of Organic Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Till Opatz
- Institute
of Organic Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Holger Frey
- Institute
of Organic Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| |
Collapse
|
29
|
Sardar MYR, Krishnamurthy VR, Park S, Mandhapati AR, Wever WJ, Park D, Cummings RD, Chaikof EL. Synthesis of Lewis X-O-Core-1 threonine: A building block for O-linked Lewis X glycopeptides. Carbohydr Res 2017; 452:47-53. [PMID: 29065342 PMCID: PMC5682196 DOI: 10.1016/j.carres.2017.10.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 10/07/2017] [Accepted: 10/07/2017] [Indexed: 01/05/2023]
Abstract
LewisX (LeX) is a branched trisaccharide Galβ1→4(Fucα1→3)GlcNAc that is expressed on many cell surface glycoproteins and plays critical roles in innate and adaptive immune responses. However, efficient synthesis of glycopeptides bearing LeX remains a major limitation for structure-function studies of the LeX determinant. Here we report a total synthesis of a LeX pentasaccharide 1 using a regioselective 1-benzenesulfinyl piperidine/triflic anhydride promoted [3 + 2] glycosylation. The presence of an Fmoc-threonine amino acid facilitates incorporation of the pentasaccharide in solid phase peptide synthesis, providing a route to diverse O-linked LeX glycopeptides. The described approach is broadly applicable to the synthesis of a variety of complex glycopeptides containing O-linked LeX or sialyl LewisX (sLeX).
Collapse
Affiliation(s)
- Mohammed Y R Sardar
- Department of Surgery, Center for Drug Discovery and Translational Research, Beth Israel Deaconess Medical Center, Harvard Medical School, 110 Francis Street, Suite 9F, Boston, MA 02215, USA; Wyss Institute of Biologically Inspired Engineering, Harvard University, 110 Francis Street, Suite 9F, Boston, MA 02115, USA
| | - Venkata R Krishnamurthy
- Department of Surgery, Center for Drug Discovery and Translational Research, Beth Israel Deaconess Medical Center, Harvard Medical School, 110 Francis Street, Suite 9F, Boston, MA 02215, USA; Wyss Institute of Biologically Inspired Engineering, Harvard University, 110 Francis Street, Suite 9F, Boston, MA 02115, USA
| | - Simon Park
- Department of Surgery, Center for Drug Discovery and Translational Research, Beth Israel Deaconess Medical Center, Harvard Medical School, 110 Francis Street, Suite 9F, Boston, MA 02215, USA; Wyss Institute of Biologically Inspired Engineering, Harvard University, 110 Francis Street, Suite 9F, Boston, MA 02115, USA
| | - Appi Reddy Mandhapati
- Department of Surgery, Center for Drug Discovery and Translational Research, Beth Israel Deaconess Medical Center, Harvard Medical School, 110 Francis Street, Suite 9F, Boston, MA 02215, USA; Wyss Institute of Biologically Inspired Engineering, Harvard University, 110 Francis Street, Suite 9F, Boston, MA 02115, USA
| | - Walter J Wever
- Department of Surgery, Center for Drug Discovery and Translational Research, Beth Israel Deaconess Medical Center, Harvard Medical School, 110 Francis Street, Suite 9F, Boston, MA 02215, USA; Wyss Institute of Biologically Inspired Engineering, Harvard University, 110 Francis Street, Suite 9F, Boston, MA 02115, USA
| | - Dayoung Park
- Department of Surgery, Center for Drug Discovery and Translational Research, Beth Israel Deaconess Medical Center, Harvard Medical School, 110 Francis Street, Suite 9F, Boston, MA 02215, USA; Wyss Institute of Biologically Inspired Engineering, Harvard University, 110 Francis Street, Suite 9F, Boston, MA 02115, USA
| | - Richard D Cummings
- Department of Surgery, Center for Drug Discovery and Translational Research, Beth Israel Deaconess Medical Center, Harvard Medical School, 110 Francis Street, Suite 9F, Boston, MA 02215, USA
| | - Elliot L Chaikof
- Department of Surgery, Center for Drug Discovery and Translational Research, Beth Israel Deaconess Medical Center, Harvard Medical School, 110 Francis Street, Suite 9F, Boston, MA 02215, USA; Wyss Institute of Biologically Inspired Engineering, Harvard University, 110 Francis Street, Suite 9F, Boston, MA 02115, USA; Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
30
|
Ravivarma M, Rajakumar P. Synthesis, Photophysical, Electrochemical Properties and Anticancer, Antimicrobial Activity of N
-n-Hexyl-N
-Phenylanilinochalcone-Capped Dendrimers. ChemistrySelect 2017. [DOI: 10.1002/slct.201701953] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Mahalingam Ravivarma
- Department of Organic Chemistry; University of Madras; Chennai-600 025, Tamil nadu India
| | - Perumal Rajakumar
- Department of Organic Chemistry; University of Madras; Chennai-600 025, Tamil nadu India
| |
Collapse
|
31
|
Lv X, Cao H, Lin B, Wang W, Zhang W, Duan Q, Tao Y, Liu XW, Li X. Synthesis of Sialic Acids, Their Derivatives, and Analogs by Using a Whole-Cell Catalyst. Chemistry 2017; 23:15143-15149. [DOI: 10.1002/chem.201703083] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Indexed: 01/27/2023]
Affiliation(s)
- Xun Lv
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology; Chinese Academy of Sciences (CAS), Chaoyang District; Beijing 100101 P. R. China
| | - Hongzhi Cao
- National Glycoengineering Research Center; Shandong University; Jinan 250012 P. R. China
| | - Baixue Lin
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology; Chinese Academy of Sciences (CAS), Chaoyang District; Beijing 100101 P. R. China
| | - Wei Wang
- School of Materials Science and Engineering; Changchun University of Science and Technology, Weixing Road; Changchun 130022 P. R. China
| | - Wande Zhang
- School of Materials Science and Engineering; Changchun University of Science and Technology, Weixing Road; Changchun 130022 P. R. China
| | - Qian Duan
- School of Materials Science and Engineering; Changchun University of Science and Technology, Weixing Road; Changchun 130022 P. R. China
| | - Yong Tao
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology; Chinese Academy of Sciences (CAS), Chaoyang District; Beijing 100101 P. R. China
| | - Xue-Wei Liu
- School of Physical and Mathematical Sciences; Nanyang Technological University; Singapore 637371 Singapore
| | - Xuebing Li
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology; Chinese Academy of Sciences (CAS), Chaoyang District; Beijing 100101 P. R. China
- Savaid Medical School; University of Chinese Academy of Sciences, Huairou District; Beijing 101408 P. R. China
- Center for Influenza Research and Early Warning (CASCIRE); Chinese Academy of Sciences, Chaoyang District; Beijing 100101 P. R. China
| |
Collapse
|
32
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2011-2012. MASS SPECTROMETRY REVIEWS 2017; 36:255-422. [PMID: 26270629 DOI: 10.1002/mas.21471] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 01/15/2015] [Indexed: 06/04/2023]
Abstract
This review is the seventh update of the original article published in 1999 on the application of MALDI mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2012. General aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, and fragmentation are covered in the first part of the review and applications to various structural types constitute the remainder. The main groups of compound are oligo- and poly-saccharides, glycoproteins, glycolipids, glycosides, and biopharmaceuticals. Much of this material is presented in tabular form. Also discussed are medical and industrial applications of the technique, studies of enzyme reactions, and applications to chemical synthesis. © 2015 Wiley Periodicals, Inc. Mass Spec Rev 36:255-422, 2017.
Collapse
Affiliation(s)
- David J Harvey
- Department of Biochemistry, Oxford Glycobiology Institute, University of Oxford, Oxford, OX1 3QU, UK
| |
Collapse
|
33
|
Hiroto S, Miyake Y, Shinokubo H. Synthesis and Functionalization of Porphyrins through Organometallic Methodologies. Chem Rev 2016; 117:2910-3043. [PMID: 27709907 DOI: 10.1021/acs.chemrev.6b00427] [Citation(s) in RCA: 287] [Impact Index Per Article: 31.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
This review focuses on the postfunctionalization of porphyrins and related compounds through catalytic and stoichiometric organometallic methodologies. The employment of organometallic reactions has become common in porphyrin synthesis. Palladium-catalyzed cross-coupling reactions are now standard techniques for constructing carbon-carbon bonds in porphyrin synthesis. In addition, iridium- or palladium-catalyzed direct C-H functionalization of porphyrins is emerging as an efficient way to install various substituents onto porphyrins. Furthermore, the copper-mediated Huisgen cycloaddition reaction has become a frequent strategy to incorporate porphyrin units into functional molecules. The use of these organometallic techniques, along with the traditional porphyrin synthesis, now allows chemists to construct a wide range of highly elaborated and complex porphyrin architectures.
Collapse
Affiliation(s)
- Satoru Hiroto
- Department of Applied Chemistry, Graduate School of Engineering, Nagoya University , Nagoya 464-8603, Japan
| | - Yoshihiro Miyake
- Department of Applied Chemistry, Graduate School of Engineering, Nagoya University , Nagoya 464-8603, Japan
| | - Hiroshi Shinokubo
- Department of Applied Chemistry, Graduate School of Engineering, Nagoya University , Nagoya 464-8603, Japan
| |
Collapse
|
34
|
Calatrava-Pérez E, Bright SA, Achermann S, Moylan C, Senge MO, Veale EB, Williams DC, Gunnlaugsson T, Scanlan EM. Glycosidase activated release of fluorescent 1,8-naphthalimide probes for tumor cell imaging from glycosylated 'pro-probes'. Chem Commun (Camb) 2016; 52:13086-13089. [PMID: 27722254 DOI: 10.1039/c6cc06451e] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Glycosylated 4-amino-1,8-naphthalimide derivatives possess a native glycosidic linkage that can be selectively hydrolysed in situ by glycosidase enzymes to release the naphthalimide as a fluorescent imaging or therapeutic agent. In vitro studies using a variety of cancer cell lines demonstrated that the naphthalimides only get taken up into cells upon enzymatic cleavage from the glycan unit; a mechanism that offers a novel approach for the targeted delivery of probes/drugs.
Collapse
Affiliation(s)
- Elena Calatrava-Pérez
- School of Chemistry and Trinity Biomedical Sciences Institute (TBSI), Trinity College Dublin, The University of Dublin, Dublin 2, Ireland.
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
He XP, Zeng YL, Zang Y, Li J, Field RA, Chen GR. Carbohydrate CuAAC click chemistry for therapy and diagnosis. Carbohydr Res 2016; 429:1-22. [DOI: 10.1016/j.carres.2016.03.022] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 03/22/2016] [Accepted: 03/23/2016] [Indexed: 12/12/2022]
|
36
|
Jadhav S, Yim CB, Rajander J, Grönroos TJ, Solin O, Virta P. Solid-Supported Porphyrins Useful for the Synthesis of Conjugates with Oligomeric Biomolecules. Bioconjug Chem 2016; 27:1023-9. [PMID: 26898631 DOI: 10.1021/acs.bioconjchem.6b00051] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
meso-Tris(pyridin-4-yl)(4-carboxyphenyl)porphyrin and 2-(1-hexyloxyethyl)-2-devinyl pyropheophorbide-a (Photochlor, HPPH) were amide-coupled to 1R,2S,3R,4R-2,3-dihydroxy-4-(hydromethyl)-1-aminocyclopentane and immobilized via an ester linkage to long chain alkyl amine-derivatized controlled pore glass (LCAA-CPG). The applicability of these supports (5 and 6) for the synthesis of porphyrin conjugates with oligomeric biomolecules was demonstrated using an automated phosphoramidite coupling chemistry. Cleavage from the support with concentrated ammonia gave the products, viz., porphyrin conjugates of oligonucleotides (7-9) and dendritic glycoclusters (10-13) and a cyclooctyne derivative (14) in 23-58% yield. In addition, the synthesized cyclooctyne derivative of meso-tris(pyridin-4-yl)(4-carboxyphenyl)porphyrin (14) was conjugated with an azidopropyl-modified hyaluronic acid (19). The hyaluronic acid-porphyrin conjugate (15) was radiolabeled with (64)Cu and its (15[(64)Cu]) receptor binding affinity to CD44-expressing tumor cells was evaluated.
Collapse
Affiliation(s)
- Satish Jadhav
- Department of Chemistry, University of Turku , FI-20014 Turku, Finland
| | - Cheng-Bin Yim
- Turku PET Centre, Åbo Akademi University , FI-20520 Turku, Finland
| | - Johan Rajander
- Turku PET Centre, Åbo Akademi University , FI-20520 Turku, Finland
| | - Tove J Grönroos
- Turku PET Centre, University of Turku , FI-20520 Turku, Finland.,Medicity Research Laboratory, University of Turku , FI-20520 Turku, Finland
| | - Olof Solin
- Department of Chemistry, University of Turku , FI-20014 Turku, Finland.,Turku PET Centre, University of Turku , FI-20520 Turku, Finland
| | - Pasi Virta
- Department of Chemistry, University of Turku , FI-20014 Turku, Finland
| |
Collapse
|
37
|
Tiwari VK, Mishra BB, Mishra KB, Mishra N, Singh AS, Chen X. Cu-Catalyzed Click Reaction in Carbohydrate Chemistry. Chem Rev 2016; 116:3086-240. [PMID: 26796328 DOI: 10.1021/acs.chemrev.5b00408] [Citation(s) in RCA: 540] [Impact Index Per Article: 60.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Cu(I)-catalyzed azide-alkyne 1,3-dipolar cycloaddition (CuAAC), popularly known as the "click reaction", serves as the most potent and highly dependable tool for facile construction of simple to complex architectures at the molecular level. Click-knitted threads of two exclusively different molecular entities have created some really interesting structures for more than 15 years with a broad spectrum of applicability, including in the fascinating fields of synthetic chemistry, medicinal science, biochemistry, pharmacology, material science, and catalysis. The unique properties of the carbohydrate moiety and the advantages of highly chemo- and regioselective click chemistry, such as mild reaction conditions, efficient performance with a wide range of solvents, and compatibility with different functionalities, together produce miraculous neoglycoconjugates and neoglycopolymers with various synthetic, biological, and pharmaceutical applications. In this review we highlight the successful advancement of Cu(I)-catalyzed click chemistry in glycoscience and its applications as well as future scope in different streams of applied sciences.
Collapse
Affiliation(s)
- Vinod K Tiwari
- Department of Chemistry, Centre of Advanced Study, Institute of Science, Banaras Hindu University , Varanasi, Uttar Pradesh-221005, India
| | - Bhuwan B Mishra
- Department of Chemistry, Centre of Advanced Study, Institute of Science, Banaras Hindu University , Varanasi, Uttar Pradesh-221005, India
| | - Kunj B Mishra
- Department of Chemistry, Centre of Advanced Study, Institute of Science, Banaras Hindu University , Varanasi, Uttar Pradesh-221005, India
| | - Nidhi Mishra
- Department of Chemistry, Centre of Advanced Study, Institute of Science, Banaras Hindu University , Varanasi, Uttar Pradesh-221005, India
| | - Anoop S Singh
- Department of Chemistry, Centre of Advanced Study, Institute of Science, Banaras Hindu University , Varanasi, Uttar Pradesh-221005, India
| | - Xi Chen
- Department of Chemistry, One Shields Avenue, University of California-Davis , Davis, California 95616, United States
| |
Collapse
|
38
|
Ladomenou K, Nikolaou V, Charalambidis G, Coutsolelos AG. “Click”-reaction: An alternative tool for new architectures of porphyrin based derivatives. Coord Chem Rev 2016. [DOI: 10.1016/j.ccr.2015.06.002] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
39
|
Staegemann MH, Gräfe S, Haag R, Wiehe A. A toolset of functionalized porphyrins with different linker strategies for application in bioconjugation. Org Biomol Chem 2016; 14:9114-9132. [DOI: 10.1039/c6ob01551d] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Polar, functionalized A3B-porphyrins are conjugated to hyperbranched polyglycerol (hPG) as an example of a biocompatible carrier system for photodynamic therapy.
Collapse
Affiliation(s)
- M. H. Staegemann
- Institut für Chemie und Biochemie
- Freie Universität Berlin
- 14195 Berlin
- Germany
- Biolitec research GmbH
| | - S. Gräfe
- Biolitec research GmbH
- 07745 Jena
- Germany
| | - R. Haag
- Institut für Chemie und Biochemie
- Freie Universität Berlin
- 14195 Berlin
- Germany
| | - A. Wiehe
- Institut für Chemie und Biochemie
- Freie Universität Berlin
- 14195 Berlin
- Germany
- Biolitec research GmbH
| |
Collapse
|
40
|
Singh S, Aggarwal A, Bhupathiraju NVSDK, Arianna G, Tiwari K, Drain CM. Glycosylated Porphyrins, Phthalocyanines, and Other Porphyrinoids for Diagnostics and Therapeutics. Chem Rev 2015; 115:10261-306. [PMID: 26317756 PMCID: PMC6011754 DOI: 10.1021/acs.chemrev.5b00244] [Citation(s) in RCA: 367] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Sunaina Singh
- Department of Natural Sciences, LaGuardia Community College of the City University of New York, Long Island City, New York 11101, United States
| | - Amit Aggarwal
- Department of Natural Sciences, LaGuardia Community College of the City University of New York, Long Island City, New York 11101, United States
| | - N. V. S. Dinesh K. Bhupathiraju
- Department of Chemistry and Biochemistry, Hunter College of the City University of New York, New York, New York 10065, United States
| | - Gianluca Arianna
- Department of Chemistry and Biochemistry, Hunter College of the City University of New York, New York, New York 10065, United States
| | - Kirran Tiwari
- Department of Chemistry and Biochemistry, Hunter College of the City University of New York, New York, New York 10065, United States
| | - Charles Michael Drain
- Department of Chemistry and Biochemistry, Hunter College of the City University of New York, New York, New York 10065, United States
- The Rockefeller University, New York, New York 10065, United States
| |
Collapse
|
41
|
Tseberlidis G, Zardi P, Caselli A, Cancogni D, Fusari M, Lay L, Gallo E. Glycoporphyrin Catalysts for Efficient C–H Bond Aminations by Organic Azides. Organometallics 2015. [DOI: 10.1021/acs.organomet.5b00436] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Giorgio Tseberlidis
- Department of Chemistry, University of Milan, Via Golgi 19, 20133 Milan, Italy
| | - Paolo Zardi
- Department of Chemistry, University of Milan, Via Golgi 19, 20133 Milan, Italy
| | - Alessandro Caselli
- Department of Chemistry, University of Milan, Via Golgi 19, 20133 Milan, Italy
| | - Damiano Cancogni
- Department of Chemistry, University of Milan, Via Golgi 19, 20133 Milan, Italy
| | - Matteo Fusari
- Department of Chemistry, University of Milan, Via Golgi 19, 20133 Milan, Italy
| | - Luigi Lay
- Department of Chemistry, University of Milan, Via Golgi 19, 20133 Milan, Italy
| | - Emma Gallo
- Department of Chemistry, University of Milan, Via Golgi 19, 20133 Milan, Italy
| |
Collapse
|
42
|
Moylan C, Sweed AM, Shaker YM, Scanlan EM, Senge MO. Lead structures for applications in photodynamic therapy 7. Efficient synthesis of amphiphilic glycosylated lipid porphyrin derivatives: refining linker conjugation for potential PDT applications. Tetrahedron 2015. [DOI: 10.1016/j.tet.2015.04.097] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
43
|
Wong CS, Hoogendoorn S, van der Marel GA, Overkleeft HS, Codée JDC. Targeted Delivery of Fluorescent High-Mannose-Type Oligosaccharide Cathepsin Inhibitor Conjugates. Chempluschem 2015; 80:928-937. [PMID: 31973252 DOI: 10.1002/cplu.201500004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Indexed: 12/26/2022]
Abstract
Three fluorescent cathepsin inhibitor glycoconjugates have been designed, synthesized, and evaluated in terms of their cell internalization and cathepsin inhibitory properties. The conjugates are composed of a peptide epoxysuccinate, capable of covalent and irreversible binding to cysteine proteases, coupled to a fluorescent BODIPY dye and functionalized with a mono-, tri-, or heptamannoside. Mannose-receptor-dependent uptake of the probes in live dendritic cells is shown to depend on the type of carbohydrate attached. Where uptake of the monomannoside is poor and mannose-receptor-independent, the intracellular labeling of cathepsins by the probes equipped with a tri- or heptamannoside conjugate appeared concentration- and mannose-receptor-dependent.
Collapse
Affiliation(s)
- Chung S Wong
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden (The Netherlands)
| | - Sascha Hoogendoorn
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden (The Netherlands)
| | - Gijs A van der Marel
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden (The Netherlands)
| | - Herman S Overkleeft
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden (The Netherlands)
| | - Jeroen D C Codée
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden (The Netherlands)
| |
Collapse
|
44
|
Mukosera GT, Adams TP, Rothbarth RF, Langat H, Akanda S, Barkley RG, Dolewski RD, Ruppel JV, Snyder NL. Synthesis of glycosylated zinc (II) 5,15-diphenylporphyrin and zinc (II) 5,10,15,20-tetraphenylporphyrin analogs using Cu-catalyzed azide-alkyne 1,3-dipolar cycloaddition reactions. Tetrahedron Lett 2015. [DOI: 10.1016/j.tetlet.2014.10.117] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
45
|
Nikolaou V, Karikis K, Farré Y, Charalambidis G, Odobel F, Coutsolelos AG. Click made porphyrin–corrole dyad: a system for photo-induced charge separation. Dalton Trans 2015; 44:13473-9. [DOI: 10.1039/c5dt01730k] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The preparation of the first porphyrin–corrole dyad through click chemistry is described.
Collapse
Affiliation(s)
- Vasilis Nikolaou
- Department of Chemistry
- University of Crete
- Laboratory of BioInorg. Chem
- Heraklion
- Greece
| | - Kostas Karikis
- Department of Chemistry
- University of Crete
- Laboratory of BioInorg. Chem
- Heraklion
- Greece
| | - Yoann Farré
- Université LUNAM
- Université de Nantes
- CNRS
- Chimie et Interdisciplinarité: Synthèse
- Analyse
| | | | - Fabrice Odobel
- Université LUNAM
- Université de Nantes
- CNRS
- Chimie et Interdisciplinarité: Synthèse
- Analyse
| | | |
Collapse
|
46
|
Rauthu SR, Shiao TC, André S, Miller MC, Madej É, Mayo KH, Gabius HJ, Roy R. Defining the Potential of Aglycone Modifications for Affinity/Selectivity Enhancement against Medically Relevant Lectins: Synthesis, Activity Screening, and HSQC-Based NMR Analysis. Chembiochem 2014; 16:126-39. [DOI: 10.1002/cbic.201402474] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Indexed: 12/28/2022]
|
47
|
Wu D, Cheung S, Daly R, Burke H, Scanlan EM, O'Shea DF. Synthesis and Glycoconjugation of an Azido-BF2-Azadipyrromethene Near-Infrared Fluorochrome. European J Org Chem 2014. [DOI: 10.1002/ejoc.201402960] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
48
|
|
49
|
Titov DV, Gening ML, Tsvetkov YE, Nifantiev NE. Glycoconjugates of porphyrins with carbohydrates: methods of synthesis and biological activity. RUSSIAN CHEMICAL REVIEWS 2014. [DOI: 10.1070/rc2014v083n06abeh004426] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
50
|
Galactodendritic phthalocyanine targets carbohydrate-binding proteins enhancing photodynamic therapy. PLoS One 2014; 9:e95529. [PMID: 24763311 PMCID: PMC3999036 DOI: 10.1371/journal.pone.0095529] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Accepted: 03/27/2014] [Indexed: 01/18/2023] Open
Abstract
Photosensitizers (PSs) are of crucial importance in the effectiveness of photodynamic therapy (PDT) for cancer. Due to their high reactive oxygen species production and strong absorption in the wavelength range between 650 and 850 nm, where tissue light penetration is rather high, phthalocyanines (Pcs) have been studied as PSs of excellence. In this work, we report the evaluation of a phthalocyanine surrounded by a carbohydrate shell of sixteen galactose units distributed in a dendritic manner (PcGal16) as a new and efficient third generation PSs for PDT against two bladder cancer cell lines, HT-1376 and UM-UC-3. Here, we define the role of galacto-dendritic units in promoting the uptake of a Pc through interaction with GLUT1 and galectin-1. The photoactivation of PcGal16 induces cell death by generating oxidative stress. Although PDT with PcGal16 induces an increase on the activity of antioxidant enzymes immediately after PDT, bladder cancer cells are unable to recover from the PDT-induced damage effects for at least 72 h after treatment. PcGal16 co-localization with galectin-1 and GLUT1 and/or generation of oxidative stress after PcGal16 photoactivation induces changes in the levels of these proteins. Knockdown of galectin-1 and GLUT1, via small interfering RNA (siRNA), in bladder cancer cells decreases intracellular uptake and phototoxicity of PcGal16. The results reported herein show PcGal16 as a promising therapeutic agent for the treatment of bladder cancer, which is the fifth most common type of cancer with the highest rate of recurrence of any cancer.
Collapse
|