1
|
Deepak N, Jain V, Pillai PP. Metal-semiconductor heterojunction accelerates the plasmonically powered photoregeneration of biological cofactors. Photochem Photobiol 2024; 100:1000-1009. [PMID: 38485671 DOI: 10.1111/php.13937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 02/05/2024] [Accepted: 03/03/2024] [Indexed: 07/30/2024]
Abstract
Photocatalysis with plasmonic nanoparticles (NPs) is emerging as an attractive strategy to make and break chemical bonds. However, the fast relaxation dynamics of the photoexcited charge carriers in plasmonic NPs often result in poor yields. The separation and extraction of photoexcited hot-charge carriers should be faster than the thermalization process to overcome the limitation of poor yield. This demands the integration of rationally chosen materials to construct hybrid plasmonic photocatalysts. In this work, the enhanced photocatalytic activity of gold nanoparticle-titanium dioxide metal-semiconductor heterostructure (Au-TiO2) is used for the efficient regeneration of nicotinamide (NADH) cofactors. The modification of plasmonic AuNPs with n-type TiO2 semiconductor enhanced the charge separation process, because of the Schottky barrier formed at the Au-TiO2 heterojunction. This led to a 12-fold increment in the photocatalytic activity of plasmonic AuNP in regenerating NADH cofactor. Detailed mechanistic studies revealed that Au-TiO2 hybrid photocatalyst followed a less-explored light-independent pathway, in comparison to the conventional light-dependent path followed by sole AuNP photocatalyst. NADH regeneration yield reached ~70% in the light-independent pathway, under optimized conditions. Thus, our study emphasizes the rational choice of components in hybrid nanostructures in dictating the photocatalytic activity and the underlying reaction mechanism in plasmon-powered chemical transformations.
Collapse
Affiliation(s)
- Namitha Deepak
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune, India
| | - Vanshika Jain
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune, India
| | - Pramod P Pillai
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune, India
| |
Collapse
|
2
|
Wang Y, Geng Q, Zhang Y, Adler-Abramovich L, Fan X, Mei D, Gazit E, Tao K. Fmoc-diphenylalanine gelating nanoarchitectonics: A simplistic peptide self-assembly to meet complex applications. J Colloid Interface Sci 2023; 636:113-133. [PMID: 36623365 DOI: 10.1016/j.jcis.2022.12.166] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/19/2022] [Accepted: 12/30/2022] [Indexed: 01/05/2023]
Abstract
9-fluorenylmethoxycarbonyl-diphenylalanine (Fmoc-FF), has been has been extensively explored due to its ultrafast self-assembly kinetics, inherent biocompatibility, tunable physicochemical properties, and especially, the capability of forming self-sustained gels under physiological conditions. Consequently, various methodologies to develop Fmoc-FF gels and their corresponding applications in biomedical and industrial fields have been extensively studied. Herein, we systemically summarize the mechanisms underlying Fmoc-FF self-assembly, discuss the preparation methodologies of Fmoc-FF hydrogels, and then deliberate the properties as well as the diverse applications of Fmoc-FF self-assemblies. Finally, the contemporary shortcomings which limit the development of Fmoc-FF self-assembly are raised and the alternative solutions are proposed, along with future research perspectives.
Collapse
Affiliation(s)
- Yunxiao Wang
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China; Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311200, China; Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, Hangzhou 311200, China
| | - Qiang Geng
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China; Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311200, China
| | - Yan Zhang
- Centre for Bioengineering and Biotechnology, College of Chemical Engineering, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao 266580, China
| | - Lihi Adler-Abramovich
- Department of Oral Biology, The Goldschleger School of Dental Medicine, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel; The Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv 6997801, Israel; Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, Hangzhou 311200, China.
| | - Xinyuan Fan
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China; Key Laboratory of Advanced Manufacturing Technology of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China; Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, Hangzhou 311200, China
| | - Deqing Mei
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China; Key Laboratory of Advanced Manufacturing Technology of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
| | - Ehud Gazit
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, 6997801 Tel Aviv, Israel; Department of Materials Science and Engineering, Iby and Aladar Fleischman, Tel Aviv University, 6997801 Tel Aviv, Israel; Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, Hangzhou 311200, China.
| | - Kai Tao
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China; Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311200, China; Key Laboratory of Advanced Manufacturing Technology of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China; Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, Hangzhou 311200, China.
| |
Collapse
|
3
|
Luan L, Ji X, Guo B, Cai J, Dong W, Huang Y, Zhang S. Bioelectrocatalysis for CO 2 reduction: recent advances and challenges to develop a sustainable system for CO 2 utilization. Biotechnol Adv 2023; 63:108098. [PMID: 36649797 DOI: 10.1016/j.biotechadv.2023.108098] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 12/11/2022] [Accepted: 01/11/2023] [Indexed: 01/15/2023]
Abstract
Activation and turning CO2 into value added products is a promising orientation to address environmental issues caused by CO2 emission. Currently, electrocatalysis has a potent well-established role for CO2 reduction with fast electron transfer rate; but it is challenged by the poor selectivity and low faradic efficiency. On the other side, biocatalysis, including enzymes and microbes, has been also employed for CO2 conversion to target Cn products with remarkably high selectivity; however, low solubility of CO2 in the liquid reaction phase seriously affects the catalytic efficiency. Therefore, a new synergistic role in bioelectrocatalysis for CO2 reduction is emerging thanks to its outstanding selectivity, high faradic efficiency, and desirable valuable Cn products under mild condition that are surveyed in this review. Herein, we comprehensively discuss the results already obtained for the integration craft of enzymatic-electrocatalysis and microbial-electrocatalysis technologies. In addition, the intrinsic nature of the combination is highly dependent on the electron transfer. Thus, both direct electron transfer and mediated electron transfer routes are modeled and concluded. We also explore the biocompatibility and synergistic effects of electrode materials, which emerge in combination with tuned enzymes and microbes to improve catalytic performance. The system by integrating solar energy driven photo-electrochemical technics with bio-catalysis is further discussed. We finally highlight the significant findings and perspectives that have provided strong foundations for the remarkable development of green and sustainable bioelectrocatalysis for CO2 reduction, and that offer a blueprint for Cn valuable products originate from CO2 under efficient and mild conditions.
Collapse
Affiliation(s)
- Likun Luan
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; Sino-Danish College, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Xiuling Ji
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Boxia Guo
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; Sino-Danish College, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Jinde Cai
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Wanrong Dong
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Yuhong Huang
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
| | - Suojiang Zhang
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
| |
Collapse
|
4
|
Schreier MR, Pfund B, Steffen DM, Wenger OS. Photocatalytic Regeneration of a Nicotinamide Adenine Nucleotide Mimic with Water-Soluble Iridium(III) Complexes. Inorg Chem 2023; 62:7636-7643. [PMID: 36731131 DOI: 10.1021/acs.inorgchem.2c03100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Nicotinamide adenine nucleotide (NADH) is involved in many biologically relevant redox reactions, and the photochemical regeneration of its oxidized form (NAD+) under physiological conditions is of interest for combined photo- and biocatalysis. Here, we demonstrate that tri-anionic, water-soluble variants of typically very lipophilic iridium(III) complexes can photo-catalyze the reduction of an NAD+ mimic in a comparatively efficient manner. In combination with a well-known rhodium co-catalyst to facilitate regioselective reactions, these iridium(III) photo-reductants outcompete the commonly used [Ru(bpy)3]2+ (bpy = 2,2'-bipyridine) photosensitizer in water by up to 1 order of magnitude in turnover frequency. This improved reactivity is attributable to the strong excited-state electron donor properties and the good chemical robustness of the tri-anionic iridium(III) sensitizers, combined with their favorable Coulombic interaction with the di-cationic rhodium co-catalyst. Our findings seem relevant in the greater context of photobiocatalysis, for which access to strong, efficient, and robust photoreductants with good water solubility can be essential.
Collapse
Affiliation(s)
- Mirjam R Schreier
- Department of Chemistry, University of Basel, Street Johanns-Ring 19, 4056 Basel, Switzerland.,National Competence Center in Research, Molecular Systems Engineering, 4002 Basel, Switzerland
| | - Björn Pfund
- Department of Chemistry, University of Basel, Street Johanns-Ring 19, 4056 Basel, Switzerland
| | - Debora M Steffen
- Department of Chemistry, University of Basel, Street Johanns-Ring 19, 4056 Basel, Switzerland
| | - Oliver S Wenger
- Department of Chemistry, University of Basel, Street Johanns-Ring 19, 4056 Basel, Switzerland.,National Competence Center in Research, Molecular Systems Engineering, 4002 Basel, Switzerland
| |
Collapse
|
5
|
Li S, Shi J, Liu S, Li W, Chen Y, Shan H, Cheng Y, Wu H, Jiang Z. Molecule-electron-proton transfer in enzyme-photo-coupled catalytic system. CHINESE JOURNAL OF CATALYSIS 2023. [DOI: 10.1016/s1872-2067(22)64154-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
6
|
Liu F, Ding C, Tian S, Lu SM, Feng C, Tu D, Liu Y, Wang W, Li C. Electrocatalytic NAD + reduction via hydrogen atom-coupled electron transfer. Chem Sci 2022; 13:13361-13367. [PMID: 36507184 PMCID: PMC9682901 DOI: 10.1039/d2sc02691k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 10/24/2022] [Indexed: 12/15/2022] Open
Abstract
Nicotinamide adenine dinucleotide cofactor (NAD(P)H) is regarded as an important energy carrier and charge transfer mediator. Enzyme-catalyzed NADPH production in natural photosynthesis proceeds via a hydride transfer mechanism. Selective and effective regeneration of NAD(P)H from its oxidized form by artificial catalysts remains challenging due to the formation of byproducts. Herein, electrocatalytic NADH regeneration and the reaction mechanism on metal and carbon electrodes are studied. We find that the selectivity of bioactive 1,4-NADH is relatively high on Cu, Fe, and Co electrodes without forming commonly reported NAD2 byproducts. In contrast, more NAD2 side product is formed with the carbon electrode. ADP-ribose is confirmed to be a side product caused by the fragmentation reaction of NAD+. Based on H/D isotope effects and electron paramagnetic resonance analysis, it is proposed that the formation of NADH on these metal electrodes proceeds via a hydrogen atom-coupled electron transfer (HadCET) mechanism, in contrast to the direct electron-transfer and NAD˙ radical pathway on carbon electrodes, which leads to more by-product, NAD2. This work sheds light on the mechanism of electrocatalytic NADH regeneration, which is different from biocatalysis.
Collapse
Affiliation(s)
- Fengyuan Liu
- Zhang Dayu School of Chemistry, Dalian University of Technology Dalian 116024 Liaoning China
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy Dalian 116023 China
| | - Chunmei Ding
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy Dalian 116023 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Shujie Tian
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy Dalian 116023 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Sheng-Mei Lu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy Dalian 116023 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Chengcheng Feng
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy Dalian 116023 China
- School of Chemistry and Materials Science, University of Science and Technology of China Hefei 230026 China
| | - Dandan Tu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy Dalian 116023 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Yan Liu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy Dalian 116023 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Wangyin Wang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy Dalian 116023 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Can Li
- Zhang Dayu School of Chemistry, Dalian University of Technology Dalian 116024 Liaoning China
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy Dalian 116023 China
- University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
7
|
Zhang Y, Liu J. Bioinspired Photocatalytic NADH Regeneration by Covalently Metalated Carbon Nitride for Enhanced CO 2 Reduction. Chemistry 2022; 28:e202201430. [PMID: 35758216 DOI: 10.1002/chem.202201430] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Indexed: 12/29/2022]
Abstract
Natural photosynthesis is a highly unified biocatalytic system, which coupled cofactor (NAD(P)H) regeneration and enzymatic CO2 reduction efficiently for solar energy conversion. Mimicking nature, a novel system with Rh complex covalently grafted onto NH2 -functionalized polymeric carbon nitride (NH2 -PCN) was constructed. The integrated connection of the light-harvesting and electron mediation modules as Rhm3 -N-PCN could promote the efficient NAD+ reduction to NADH. As a result, the integrated system exhibited a conversion of ∼66 % within 20 minutes. By further coupling in situ generated NADH with formate dehydrogenase (FDH), a photoenzymatic production of formic acid (HCOOH) from CO2 was accomplished. Moreover, by immobilizing FDH onto a hydrophobic membrane, an enhanced HCOOH production of ∼5.0 mM can be obtained due to the concentrated CO2 on the gas-liquid-solid three-phase interface. Our work herein provides an integrated strategy for coupling the anchored electron mediator with immobilized enzyme for enhanced artificial photosynthesis.
Collapse
Affiliation(s)
- Yuanyuan Zhang
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China) E-mail: l.qust.edu.cn.,Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Shandong Energy Institute, Qingdao, 266101, P. R. China
| | - Jian Liu
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China) E-mail: l.qust.edu.cn.,Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Shandong Energy Institute, Qingdao, 266101, P. R. China
| |
Collapse
|
8
|
Zhang Y, Kan X, Zou Y, Liu J. Non-covalent metalation of carbon nitride for photocatalytic NADH regeneration and enzymatic CO 2 reduction. Chem Commun (Camb) 2022; 58:10997-11000. [PMID: 36093800 DOI: 10.1039/d2cc04276b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An artificial photocatalyst with a Rh complex immobilized onto polymeric carbon nitride (CN) through non-covalent interaction was constructed for photocatalytic NADH regeneration. DFT calculations verified the adsorption of the bipyridine ligand onto the CN photocatalyst. By further coupling the in situ formed NADH with FDH immobilized on a hydrophobic membrane, an enhanced HCOOH production (3.1 mM) from CO2 could be realized on the gas-liquid-solid three-phase interface. This work provides an alternative and efficient strategy for promoting artificial photosynthesis.
Collapse
Affiliation(s)
- Yuanyuan Zhang
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China.,Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Shandong Energy Institute, Qingdao, 266101, P. R. China.
| | - Xiaonan Kan
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Yutai Zou
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Jian Liu
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China.,Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Shandong Energy Institute, Qingdao, 266101, P. R. China.
| |
Collapse
|
9
|
Wang Z, Hu Y, Zhang S, Sun Y. Artificial photosynthesis systems for solar energy conversion and storage: platforms and their realities. Chem Soc Rev 2022; 51:6704-6737. [PMID: 35815740 DOI: 10.1039/d1cs01008e] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In natural photosynthesis, photosynthetic organisms such as green plants realize efficient solar energy conversion and storage by integrating photosynthetic components on the thylakoid membrane of chloroplasts. Inspired by natural photosynthesis, researchers have developed many artificial photosynthesis systems (APS's) that integrate various photocatalysts and biocatalysts to convert and store solar energy in the fields of resource, environment, food, and energy. To improve the system efficiency and reduce the operation cost, reaction platforms are introduced in APS's since they allow for great stability and continuous processing. A systematic understanding of how a reaction platform affects the performance of artificial photosynthesis is conducive for designing an APS with superb solar energy utilization. In this review, we discuss the recent APS's researches, especially those confined on/in platforms. The importance of different platforms and their influences on APS's performance are emphasized. Generally, confined platforms can enhance the stability and repeatability of both photocatalysts and biocatalysts in APS's as well as improve the photosynthetic performance due to the proximity effect. For functional platforms that can participate in the artificial photosynthesis reactions as active parts, a high integration of APS's components on/in these platforms can lead to efficient electron transfer, enhanced light-harvesting, or synergistic catalysis, resulting in superior photosynthesis performance. Therefore, the integration of APS's components is beneficial for the transfer of substrates and photoexcited electrons in artificial photosynthesis. We finally summarize the current challenges of APS's development and further efforts on the improvement of APS's.
Collapse
Affiliation(s)
- Zhenfu Wang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology and Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, China.
| | - Yang Hu
- Department of Biochemical Engineering, School of Chemical Engineering and Technology and Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, China.
| | - Songping Zhang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Yan Sun
- Department of Biochemical Engineering, School of Chemical Engineering and Technology and Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, China.
| |
Collapse
|
10
|
Wang L, Huang Z, Yang X, Rogée L, Huang X, Zhang X, Lau SP. Review on optofluidic microreactors for photocatalysis. REV CHEM ENG 2022. [DOI: 10.1515/revce-2021-0068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Four interrelated issues have been arising with the development of modern industry, namely environmental pollution, the energy crisis, the greenhouse effect and the global food crisis. Photocatalysis is one of the most promising methods to solve them in the future. To promote high photocatalytic reaction efficiency and utilize solar energy to its fullest, a well-designed photoreactor is vital. Photocatalytic optofluidic microreactors, a promising technology that brings the merits of microfluidics to photocatalysis, offer the advantages of a large surface-to-volume ratio, a short molecular diffusion length and high reaction efficiency, providing a potential method for mitigating the aforementioned crises in the future. Although various photocatalytic optofluidic microreactors have been reported, a comprehensive review of microreactors applied to these four fields is still lacking. In this paper, we review the typical design and development of photocatalytic microreactors in the fields of water purification, water splitting, CO2 fixation and coenzyme regeneration in the past few years. As the most promising tool for solar energy utilization, we believe that the increasing innovation of photocatalytic optofluidic microreactors will drive rapid development of related fields in the future.
Collapse
Affiliation(s)
- Lei Wang
- Department of Bioengineering , State Key Laboratory of Biobased Material and Green Papermaking, School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences) , Jinan 250353 , China
| | - Ziyu Huang
- Department of Bioengineering , State Key Laboratory of Biobased Material and Green Papermaking, School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences) , Jinan 250353 , China
| | - Xiaohui Yang
- Department of Bioengineering , State Key Laboratory of Biobased Material and Green Papermaking, School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences) , Jinan 250353 , China
| | - Lukas Rogée
- Department of Applied Physics , The Hong Kong Polytechnic University , Hong Kong , P.R. China
| | - Xiaowen Huang
- Department of Bioengineering , State Key Laboratory of Biobased Material and Green Papermaking, School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences) , Jinan 250353 , China
| | - Xuming Zhang
- Department of Applied Physics , The Hong Kong Polytechnic University , Hong Kong , P.R. China
| | - Shu Ping Lau
- Department of Applied Physics , The Hong Kong Polytechnic University , Hong Kong , P.R. China
| |
Collapse
|
11
|
Casadevall C, Pascual D, Aragón J, Call A, Casitas A, Casademont-Reig I, Lloret-Fillol J. Light-driven reduction of aromatic olefins in aqueous media catalysed by aminopyridine cobalt complexes. Chem Sci 2022; 13:4270-4282. [PMID: 35509462 PMCID: PMC9006965 DOI: 10.1039/d1sc06608k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 03/09/2022] [Indexed: 12/15/2022] Open
Abstract
A catalytic system based on earth-abundant elements that efficiently hydrogenates aryl olefins using visible light as the driving-force and H2O as the sole hydrogen atom source is reported. The catalytic system involves a robust and well-defined aminopyridine cobalt complex and a heteroleptic Cu photoredox catalyst. The system shows the reduction of styrene in aqueous media with a remarkable selectivity (>20 000) versus water reduction (WR). Reactivity and mechanistic studies support the formation of a [Co–H] intermediate, which reacts with the olefin via a hydrogen atom transfer (HAT). Synthetically useful deuterium-labelled compounds can be straightforwardly obtained by replacing H2O with D2O. Moreover, the dual photocatalytic system and the photocatalytic conditions can be rationally designed to tune the selectivity for aryl olefin vs. aryl ketone reduction; not only by changing the structural and electronic properties of the cobalt catalysts, but also by modifying the reduction properties of the photoredox catalyst. A dual catalytic system based on earth-abundant elements reduces aryl olefins to alkanes in aqueous media under visible light. Mechanistic studies allow for rational tunning of the system for the selective reduction of aryl olefins vs ketones and vice versa.![]()
Collapse
Affiliation(s)
- Carla Casadevall
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology Avinguda Països Catalans 16 43007 Tarragona Spain
| | - David Pascual
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology Avinguda Països Catalans 16 43007 Tarragona Spain
| | - Jordi Aragón
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology Avinguda Països Catalans 16 43007 Tarragona Spain
| | - Arnau Call
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology Avinguda Països Catalans 16 43007 Tarragona Spain
| | - Alicia Casitas
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology Avinguda Països Catalans 16 43007 Tarragona Spain
| | - Irene Casademont-Reig
- Donostia International Physics Center (DIPC), Polimero eta Material Aurreratuak: Fisika, Kimika eta Teknologia, Kimika Fakultatea, Euskal Herriko Unibertsitatea UPV/EHU P.K. 1072 20080 Donostia Euskadi Spain
| | - Julio Lloret-Fillol
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology Avinguda Països Catalans 16 43007 Tarragona Spain .,Catalan Institution for Research and Advanced Studies (ICREA) Passeig Lluïs Companys, 23 08010 Barcelona Spain
| |
Collapse
|
12
|
Peng Y, Chen Z, Xu J, Wu Q. Recent Advances in Photobiocatalysis for Selective Organic Synthesis. Org Process Res Dev 2022. [DOI: 10.1021/acs.oprd.1c00413] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Yongzhen Peng
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310027, P.R. China
| | - Zhichun Chen
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310027, P.R. China
| | - Jian Xu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, P.R. China
| | - Qi Wu
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310027, P.R. China
| |
Collapse
|
13
|
Lin H, Liu Y, Yang C, Zhao G, Song J, Zhang T, Huang X. Microfluidic artificial photosynthetic system for continuous NADH regeneration and l-glutamate synthesis. Catal Sci Technol 2022. [DOI: 10.1039/d2cy00466f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Artificial photosynthesis coenzyme regeneration and photoenzymatic synthesis of l-glutamate by glutamate dehydrogenase.
Collapse
Affiliation(s)
- Huichao Lin
- State Key Laboratory of Biobased Material and Green Papermaking, Department of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250300, China
| | - Yang Liu
- State Key Laboratory of Biobased Material and Green Papermaking, Department of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250300, China
| | - Chonghui Yang
- State Key Laboratory of Biobased Material and Green Papermaking, Department of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250300, China
| | - Gaozhen Zhao
- State Key Laboratory of Biobased Material and Green Papermaking, Department of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250300, China
| | - Jiaao Song
- State Key Laboratory of Biobased Material and Green Papermaking, Department of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250300, China
| | - Taiyi Zhang
- State Key Laboratory of Biobased Material and Green Papermaking, Department of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250300, China
| | - Xiaowen Huang
- State Key Laboratory of Biobased Material and Green Papermaking, Department of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250300, China
| |
Collapse
|
14
|
Singh P, Srivastava R. Utilization of bio-inspired catalyst for CO2 reduction into green fuels: Recent advancement and future perspectives. J CO2 UTIL 2021. [DOI: 10.1016/j.jcou.2021.101748] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
15
|
Weliwatte NS, Grattieri M, Minteer SD. Rational design of artificial redox-mediating systems toward upgrading photobioelectrocatalysis. Photochem Photobiol Sci 2021; 20:1333-1356. [PMID: 34550560 PMCID: PMC8455808 DOI: 10.1007/s43630-021-00099-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 09/03/2021] [Indexed: 12/23/2022]
Abstract
Photobioelectrocatalysis has recently attracted particular research interest owing to the possibility to achieve sunlight-driven biosynthesis, biosensing, power generation, and other niche applications. However, physiological incompatibilities between biohybrid components lead to poor electrical contact at the biotic-biotic and biotic-abiotic interfaces. Establishing an electrochemical communication between these different interfaces, particularly the biocatalyst-electrode interface, is critical for the performance of the photobioelectrocatalytic system. While different artificial redox mediating approaches spanning across interdisciplinary research fields have been developed in order to electrically wire biohybrid components during bioelectrocatalysis, a systematic understanding on physicochemical modulation of artificial redox mediators is further required. Herein, we review and discuss the use of diffusible redox mediators and redox polymer-based approaches in artificial redox-mediating systems, with a focus on photobioelectrocatalysis. The future possibilities of artificial redox mediator system designs are also discussed within the purview of present needs and existing research breadth.
Collapse
Affiliation(s)
- N Samali Weliwatte
- Department of Chemistry, University of Utah, Salt Lake City, UT, 84112, USA
| | - Matteo Grattieri
- Dipartimento Di Chimica, Università Degli Studi Di Bari "Aldo Moro", Via E. Orabona 4, 70125, Bari, Italy.
- IPCF-CNR Istituto Per I Processi Chimico Fisici, Consiglio Nazionale Delle Ricerche, Via E. Orabona 4, 70125, Bari, Italy.
| | - Shelley D Minteer
- Department of Chemistry, University of Utah, Salt Lake City, UT, 84112, USA.
| |
Collapse
|
16
|
Li Q, Zhang J, Wang Y, Zhang G, Qi W, You S, Su R, He Z. Self-Assembly of Peptide Hierarchical Helical Arrays with Sequence-Encoded Circularly Polarized Luminescence. NANO LETTERS 2021; 21:6406-6415. [PMID: 34014681 DOI: 10.1021/acs.nanolett.1c00697] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Self-assembled peptide materials with sequence-encoded properties have attracted great interest. Despite their intrinsic chirality, the generation of circularly polarized luminescence (CPL) based on the self-assembly of simple peptides has been rarely reported. Here, we report the self-assembly of peptides into hierarchical helical arrays (HHAs) with controlled supramolecular handedness. The HHAs can emit full-color CPL signals after the incorporation of various achiral fluorescent molecules, and the glum value is 40 times higher than that of the CPL signal from the solutions. By simply changing the amino acid sequence of the peptides, CPL signals with opposite handedness can be generated within the HHAs. The peptide HHAs can provide hydrophobic pockets to accommodate the fluorescent molecules with helical arrangement through strong aromatic stacking interactions, which are responsible for the CPL signals. This work provides a pathway to construct highly ordered chiral materials, which have broad applications in the chiroptical field.
Collapse
Affiliation(s)
- Qing Li
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, P.R. China
| | - Jiaxing Zhang
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, P.R. China
| | - Yuefei Wang
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, P.R. China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University, Tianjin 300072, P.R. China
| | - Gong Zhang
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, P.R. China
| | - Wei Qi
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, P.R. China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, P.R. China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University, Tianjin 300072, P.R. China
| | - Shengping You
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, P.R. China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University, Tianjin 300072, P.R. China
| | - Rongxin Su
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, P.R. China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, P.R. China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University, Tianjin 300072, P.R. China
| | - Zhimin He
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, P.R. China
| |
Collapse
|
17
|
Yang N, Tian Y, Zhang M, Peng X, Li F, Li J, Li Y, Fan B, Wang F, Song H. Photocatalyst-enzyme hybrid systems for light-driven biotransformation. Biotechnol Adv 2021; 54:107808. [PMID: 34324993 DOI: 10.1016/j.biotechadv.2021.107808] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 06/26/2021] [Accepted: 07/21/2021] [Indexed: 11/02/2022]
Abstract
Enzymes catalyse target reactions under mild conditions with high efficiency, as well as excellent regional-, stereo-, and enantiomeric selectivity. Photocatalysis utilises sustainable and environment-friendly light power to realise efficient chemical conversion. By combining the interdisciplinary advantages of photo- and enzymatic catalysis, the photocatalyst-enzyme hybrid systems have proceeded various light-driven biotransformation with high efficiency under environmentally benign conditions, thus, attracting unparalleled focus during the last decades. It has also been regarded as a promising pathway towards green chemistry utilising ubiquitous solar energy. This systematic review gives insight into this research field by classifying the existing photocatalyst-enzyme hybrid systems into three sections based on different hybridizing modes between photo- and enzymatic catalysis. Furthermore, existing challenges and proposed strategies are discussed within this context. The first system summarised is the cofactor-mediated hybrid system, in which natural/artificial cofactors act as reducing equivalents that connect photocatalysts with enzymes for light-driven enzymatic biotransformation. Second, the direct contact-based photocatalyst-enzyme hybrid systems are described, including two different kinds of electron exchange sites on the enzyme molecules. Third, some cases where photocatalysts and enzymes are integrated into a reaction cascade with specific intermediates will be discussed in the following chapter. Finally, we provide perspective concerning the future of this field.
Collapse
Affiliation(s)
- Nan Yang
- Frontier Science Centre for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), Collaborative Innovation Centre of Chemical Science and Engineering (Tianjin), and School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, PR China
| | - Yao Tian
- Frontier Science Centre for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), Collaborative Innovation Centre of Chemical Science and Engineering (Tianjin), and School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, PR China
| | - Mai Zhang
- Frontier Science Centre for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), Collaborative Innovation Centre of Chemical Science and Engineering (Tianjin), and School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, PR China
| | - Xiting Peng
- Frontier Science Centre for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), Collaborative Innovation Centre of Chemical Science and Engineering (Tianjin), and School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, PR China
| | - Feng Li
- Frontier Science Centre for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), Collaborative Innovation Centre of Chemical Science and Engineering (Tianjin), and School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, PR China
| | - Jianxun Li
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100093, PR China
| | - Yi Li
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100093, PR China
| | - Bei Fan
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100093, PR China
| | - Fengzhong Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100093, PR China.
| | - Hao Song
- Frontier Science Centre for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), Collaborative Innovation Centre of Chemical Science and Engineering (Tianjin), and School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, PR China.
| |
Collapse
|
18
|
Valikhani D, Bolivar JM, Pelletier JN. An Overview of Cytochrome P450 Immobilization Strategies for Drug Metabolism Studies, Biosensing, and Biocatalytic Applications: Challenges and Opportunities. ACS Catal 2021. [DOI: 10.1021/acscatal.1c02017] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Donya Valikhani
- Department of Chemistry, Université de Montréal and Center for Green Chemistry and Catalysis (CGCC), 1375 Thérèse-Lavoie-Roux Ave., Montréal, Quebec H2 V 0B3, Canada
- PROTEO, The Québec Network for Research on Protein Function, Engineering and Applications, Québec City Quebec G1 V 0A6, Canada
| | - Juan M. Bolivar
- Chemical and Materials Engineering Department, Faculty of Chemical Sciences, Complutense University of Madrid, Complutense Ave., 28040 Madrid, Spain
| | - Joelle N. Pelletier
- Department of Chemistry, Université de Montréal and Center for Green Chemistry and Catalysis (CGCC), 1375 Thérèse-Lavoie-Roux Ave., Montréal, Quebec H2 V 0B3, Canada
- PROTEO, The Québec Network for Research on Protein Function, Engineering and Applications, Québec City Quebec G1 V 0A6, Canada
- Department of Biochemistry, Université de Montréal, 2900 Édouard-Montpetit ave, Montréal, Quebec H3T 1J4, Canada
| |
Collapse
|
19
|
Recent advance of chemoenzymatic catalysis for the synthesis of chemicals: Scope and challenge. Chin J Chem Eng 2021. [DOI: 10.1016/j.cjche.2020.12.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
20
|
Tao K, Xue B, Han S, Aizen R, Shimon LJW, Xu Z, Cao Y, Mei D, Wang W, Gazit E. Bioinspired Suprahelical Frameworks as Scaffolds for Artificial Photosynthesis. ACS APPLIED MATERIALS & INTERFACES 2020; 12:45192-45201. [PMID: 32924412 PMCID: PMC7549093 DOI: 10.1021/acsami.0c13295] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 09/14/2020] [Indexed: 06/11/2023]
Abstract
Framework materials have shown promising potential in various biological applications. However, the state-of-the-art components show low biocompatibility or mechanical instability, or cannot integrate both optics and electronics, thus severely limiting their extensive applications in biological systems. Herein, we demonstrate that amide-based bioorganic building blocks, including dipeptides and dipeptide nucleic acids, can self-assemble into hydrogen-bonded suprahelix architectures of controllable handedness, which then form suprahelical frameworks with diverse cavities. Especially, the cavities can be tuned to be hydrophilic or hydrophobic, and the shortest diagonal distance can be modulated from 0.5 to 1.8 nm, with the volume proportion in the unit cell changing from 5 to 60%. Furthermore, the hydrogen bonding networks result in high mechanical rigidity and semiconductively optoelectronic properties, which allow the utilization of the suprahelical frameworks as supramolecular scaffolds for artificial photosynthesis. Our findings reveal amide-based suprahelix architectures acting as bioinspired supramolecular frameworks, thus extending the constituents portfolio and increasing the feasibility of using framework materials for biological applications.
Collapse
Affiliation(s)
- Kai Tao
- State
Key Laboratory of Fluid Power and Mechatronic Systems & Key Laboratory
of Advanced Manufacturing Engineering of Zhejiang Province, School
of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
| | - Bin Xue
- National
Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, 22 Hankou Road, Nanjing 210093, Jiangsu, China
| | - Shuyi Han
- China
Petroleum Engineering & Construction Corp. Southwest Company, No. 6th Shenghua Road, High-Tech
Zone, Chengdu 610094, Sichuan, China
| | - Ruth Aizen
- School
of Molecular Cell Biology and Biotechnology, George S. Wise Faculty
of Life Sciences, Tel Aviv University, 6997801 Tel Aviv, Israel
| | - Linda J. W. Shimon
- Department
of Chemical Research Support, Weizmann Institute
of Science, Rehovot 7610001, Israel
| | - Zhengyu Xu
- National
Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, 22 Hankou Road, Nanjing 210093, Jiangsu, China
| | - Yi Cao
- National
Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, 22 Hankou Road, Nanjing 210093, Jiangsu, China
| | - Deqing Mei
- State
Key Laboratory of Fluid Power and Mechatronic Systems & Key Laboratory
of Advanced Manufacturing Engineering of Zhejiang Province, School
of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
| | - Wei Wang
- National
Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, 22 Hankou Road, Nanjing 210093, Jiangsu, China
| | - Ehud Gazit
- School
of Molecular Cell Biology and Biotechnology, George S. Wise Faculty
of Life Sciences, Tel Aviv University, 6997801 Tel Aviv, Israel
| |
Collapse
|
21
|
Basavalingappa V, Xue B, Rencus‐Lazar S, Wang W, Tao K, Cao Y, Gazit E. Self‐Assembled Quadruplex‐Inspired Peptide Nucleic Acid Tetramer for Artificial Photosynthesis. CHEMPHOTOCHEM 2020. [DOI: 10.1002/cptc.202000083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Vasantha Basavalingappa
- Department of Molecular Microbiology and Biotechnology George S. Wise Faculty of Life Sciences Tel Aviv University Tel Aviv 6997801 Israel
| | - Bin Xue
- Collaborative Innovation Centre of Advanced Microstructures National Laboratory of Solid State Microstructure Key Laboratory of Intelligent Optical Sensing and Manipulation Ministry of Education Department of Physics Nanjing University Nanjing 210093 P.R. China
| | - Sigal Rencus‐Lazar
- Department of Molecular Microbiology and Biotechnology George S. Wise Faculty of Life Sciences Tel Aviv University Tel Aviv 6997801 Israel
| | - Wei Wang
- Collaborative Innovation Centre of Advanced Microstructures National Laboratory of Solid State Microstructure Key Laboratory of Intelligent Optical Sensing and Manipulation Ministry of Education Department of Physics Nanjing University Nanjing 210093 P.R. China
| | - Kai Tao
- Department of Molecular Microbiology and Biotechnology George S. Wise Faculty of Life Sciences Tel Aviv University Tel Aviv 6997801 Israel
- State Key Lab of Fluid Power Transmission and Control Department of Mechanical Engineering Zhejiang University Hangzhou Zhejiang 310027 China
| | - Yi Cao
- Collaborative Innovation Centre of Advanced Microstructures National Laboratory of Solid State Microstructure Key Laboratory of Intelligent Optical Sensing and Manipulation Ministry of Education Department of Physics Nanjing University Nanjing 210093 P.R. China
| | - Ehud Gazit
- Department of Molecular Microbiology and Biotechnology George S. Wise Faculty of Life Sciences Tel Aviv University Tel Aviv 6997801 Israel
| |
Collapse
|
22
|
Choi DS, Kim J, Hollmann F, Park CB. Solar‐Assisted eBiorefinery: Photoelectrochemical Pairing of Oxyfunctionalization and Hydrogenation Reactions. Angew Chem Int Ed Engl 2020; 59:15886-15890. [DOI: 10.1002/anie.202006893] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Indexed: 11/09/2022]
Affiliation(s)
- Da Som Choi
- Department of Materials Science and Engineering Korea Advanced Institute of Science and Technology 335 Science Road Daejeon 34141 Republic of Korea
| | - Jinhyun Kim
- Department of Materials Science and Engineering Korea Advanced Institute of Science and Technology 335 Science Road Daejeon 34141 Republic of Korea
| | - Frank Hollmann
- Department of Biotechnology Delft University of Technology Van der Maasweg 9 2629HZ Delft The Netherlands
| | - Chan Beum Park
- Department of Materials Science and Engineering Korea Advanced Institute of Science and Technology 335 Science Road Daejeon 34141 Republic of Korea
| |
Collapse
|
23
|
Choi DS, Kim J, Hollmann F, Park CB. Solar‐Assisted eBiorefinery: Photoelectrochemical Pairing of Oxyfunctionalization and Hydrogenation Reactions. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202006893] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Da Som Choi
- Department of Materials Science and Engineering Korea Advanced Institute of Science and Technology 335 Science Road Daejeon 34141 Republic of Korea
| | - Jinhyun Kim
- Department of Materials Science and Engineering Korea Advanced Institute of Science and Technology 335 Science Road Daejeon 34141 Republic of Korea
| | - Frank Hollmann
- Department of Biotechnology Delft University of Technology Van der Maasweg 9 2629HZ Delft The Netherlands
| | - Chan Beum Park
- Department of Materials Science and Engineering Korea Advanced Institute of Science and Technology 335 Science Road Daejeon 34141 Republic of Korea
| |
Collapse
|
24
|
Recent Developments of Advanced Ti3+-Self-Doped TiO2 for Efficient Visible-Light-Driven Photocatalysis. Catalysts 2020. [DOI: 10.3390/catal10060679] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Research into the development of efficient semiconductor photocatalytic materials is a promising approach to solving environmental and energy problems worldwide. Among these materials, TiO2 photocatalysts are one of the most commonly used due to their efficient photoactivity, high stability, low cost and environmental friendliness. However, since the UV content of sunlight is less than 5%, the development of visible light-activated TiO2-based photocatalysts is essential to increase the solar energy efficiency. Here, we review recent works on advanced visible light-activated Ti3+-self-doped TiO2 (Ti3+–TiO2) photocatalysts with improved electronic band structures for efficient charge separation. We analyze the different methods used to produce Ti3+–TiO2 photocatalysts, where Ti3+ with a high oxygen defect density can be used for energy production from visible light. We categorize advanced modifications in electronic states of Ti3+–TiO2 by improving their photocatalytic activity. Ti3+–TiO2 photocatalysts with large charge separation and low recombination of photogenerated electrons and holes can be practically applied for energy conversion and advanced oxidation processes in natural environments and deserve significant attention.
Collapse
|
25
|
Lanthanide-Doped Upconversion Nanomaterials: Recent Advances and Applications. BIOCHIP JOURNAL 2020. [DOI: 10.1007/s13206-020-4111-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
26
|
Jia C, Hu W, Zhang Y, Teng C, Chen Z, Liu J. Facile assembly of a graphitic carbon nitride film at an air/water interface for photoelectrochemical NADH regeneration. Inorg Chem Front 2020. [DOI: 10.1039/d0qi00182a] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A graphitic carbon nitride film electrode could be assembled at an air/water interface from nanosheets which exhibits improved photoelectrochemical coenzyme regeneration by further coupling with graphene during the interfacial self-assembly.
Collapse
Affiliation(s)
- Changchao Jia
- College of Materials Science and Engineering
- Qingdao University of Science and Technology
- Qingdao
- China
| | - Wenjuan Hu
- College of Materials Science and Engineering
- Qingdao University of Science and Technology
- Qingdao
- China
| | - Yuanyuan Zhang
- College of Materials Science and Engineering
- Qingdao University of Science and Technology
- Qingdao
- China
| | - Chao Teng
- College of Materials Science and Engineering
- Qingdao University of Science and Technology
- Qingdao
- China
| | - Zupeng Chen
- Institute for Chemical and Bioengineering
- Department of Chemistry and Applied Biosciences
- ETH Zürich
- Zürich
- Switzerland
| | - Jian Liu
- College of Materials Science and Engineering
- Qingdao University of Science and Technology
- Qingdao
- China
| |
Collapse
|
27
|
Dalai P, Sahai N. A Model Protometabolic Pathway Across Protocell Membranes Assisted by Photocatalytic Minerals. J Phys Chem B 2019. [PMID: 31869230 DOI: 10.1021/acs.jpcb.9b10127] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Protocell analogs (lipid vesicles) to modern cell membranes have been postulated as compartments that may have been involved in primordial metabolism during the transition from geochemistry to biochemistry on early Earth. The transduction of light energy into chemical energy for metabolism was a key step in the transition from the earliest metabolisms to phototrophy. Photocatalytic minerals may have served the role of enzymes during these transitional stages. Here, we demonstrate a simple photoheterotrophic protometabolism promoted by photocatalytic minerals across a model protocell (vesicle) membrane. These minerals in the extra-vesicular medium utilized light energy to drive a coupled, multi-step transmembrane electron transfer reaction (TMETR), while simultaneously generating a transmembrane pH gradient and reducing nicotinamide adenine dinucleotide (NAD+) to NADH within the vesicle. The proton gradient or chemiosmotic potential could have provided a basis for adenosine triphosphate (ATP) synthesis and NADH could potentially have driven further metabolic chemistry inside the protocells.
Collapse
|
28
|
Sun B, Tao K, Jia Y, Yan X, Zou Q, Gazit E, Li J. Photoactive properties of supramolecular assembled short peptides. Chem Soc Rev 2019; 48:4387-4400. [PMID: 31237282 PMCID: PMC6711403 DOI: 10.1039/c9cs00085b] [Citation(s) in RCA: 126] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Bioinspired nanostructures can be the ideal functional smart materials to bridge the fundamental biology, biomedicine and nanobiotechnology fields. Among them, short peptides are among the most preferred building blocks as they can self-assemble to form versatile supramolecular architectures displaying unique physical and chemical properties, including intriguing optical features. Herein, we discuss the progress made over the past few decades in the design and characterization of optical short peptide nanomaterials, focusing on their intrinsic photoluminescent and waveguiding performances, along with the diverse modulation strategies. We review the complicated optical properties and the advanced applications of photoactive short peptide self-assemblies, including photocatalysis, as well as photothermal and photodynamic therapy. The diverse advantages of photoactive short peptide self-assemblies, such as eco-friendliness, morphological and functional flexibility, and ease of preparation and modification, endow them with the capability to potentially serve as next-generation, bio-organic optical materials, allowing the bridging of the optics world and the nanobiotechnology field.
Collapse
Affiliation(s)
- Bingbing Sun
- Beijing National Laboratory for Molecular Sciences, CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Kai Tao
- Department of Molecular Microbiology and Biotechnology, Tel Aviv University, Tel Aviv 6997801, Israel.
| | - Yi Jia
- Beijing National Laboratory for Molecular Sciences, CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Xuehai Yan
- State Key Laboratory of Biochemical Engineering, Department of Biomolecular, Assembly and Biomaterials, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
| | - Qianli Zou
- State Key Laboratory of Biochemical Engineering, Department of Biomolecular, Assembly and Biomaterials, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
| | - Ehud Gazit
- Department of Molecular Microbiology and Biotechnology, Tel Aviv University, Tel Aviv 6997801, Israel. and Department of Materials Science and Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Junbai Li
- Beijing National Laboratory for Molecular Sciences, CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China. and University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
29
|
Otrin L, Kleineberg C, Caire da Silva L, Landfester K, Ivanov I, Wang M, Bednarz C, Sundmacher K, Vidaković-Koch T. Artificial Organelles for Energy Regeneration. ACTA ACUST UNITED AC 2019; 3:e1800323. [PMID: 32648709 DOI: 10.1002/adbi.201800323] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 02/11/2019] [Indexed: 01/03/2023]
Abstract
One of the critical steps in sustaining life-mimicking processes in synthetic cells is energy, i.e., adenosine triphosphate (ATP) regeneration. Previous studies have shown that the simple addition of ATP or ATP regeneration systems, which do not regenerate ATP directly from ADP and Pi , have no or only limited success due to accumulation of ATP hydrolysis products. In general, ATP regeneration can be achieved by converting light or chemical energy into ATP, which may also involve redox transformations of cofactors. The present contribution provides an overview of the existing ATP regeneration strategies and the related nicotinamide adenine dinucleotide (NAD+ ) redox cycling, with a focus on compartmentalized systems. Special attention is being paid to those approaches where so-called artificial organelles are developed. They comprise a semipermeable membrane functionalized by biological or man-made components and employ external energy in the form of light or nutrients in order to generate a transmembrane proton gradient, which is further utilized for ATP synthesis.
Collapse
Affiliation(s)
- Lado Otrin
- Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstraße 1, 39106, Magdeburg, Germany
| | - Christin Kleineberg
- Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstraße 1, 39106, Magdeburg, Germany
| | - Lucas Caire da Silva
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Katharina Landfester
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Ivan Ivanov
- Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstraße 1, 39106, Magdeburg, Germany
| | - Minhui Wang
- Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstraße 1, 39106, Magdeburg, Germany
| | - Claudia Bednarz
- Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstraße 1, 39106, Magdeburg, Germany
| | - Kai Sundmacher
- Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstraße 1, 39106, Magdeburg, Germany
| | - Tanja Vidaković-Koch
- Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstraße 1, 39106, Magdeburg, Germany
| |
Collapse
|
30
|
Ilichev VA, Silantyeva LI, Grishin ID, Rozhkov AV, Rumyantcev RV, Fukin GK, Bochkarev MN. Cerium( iii) complexes with azolyl-substituted thiophenolate ligands: synthesis, structure and red luminescence. RSC Adv 2019; 9:24110-24116. [PMID: 35527875 PMCID: PMC9069573 DOI: 10.1039/c9ra03199e] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 07/30/2019] [Indexed: 11/21/2022] Open
Abstract
In order to obtain molecular Ce(iii) complexes which emit red light by f–d transitions the azolyl-substituted thiophenolates were used as the ligands. The thiophenolate Ce(iii) complexes were synthesized by the reaction of Ce[N(SiMe3)2]3 with respective thiophenols 2-(2′-mercaptophenyl)benzimidazole (H(NSN)), 2-(2′-mercaptophenyl)benzoxazole (H(OSN)) and 2-(2′-mercaptophenyl)benzothiazole (H(SSN)) in DME media. The structures of the benzimidazolate (Ce(NSN)3(DME)) and benzothiazolate (Ce(SSN)3(DME)) derivatives were determined by X-ray analysis which revealed that the cerium ion in the molecules is coordinated by one DME and three anionic thiophenolate ligands. The lanthanum complex La(OSN)3(DME) has been synthesized similarly and structurally characterized. It was found that the solids of Ce(SSN)3(DME) and Ce(OSN)3(DME) exhibit a broad band photoluminescence peaking at 620 nm which disappears upon solvatation. With an example of OSN derivatives it was proposed that this behaviour is caused by the blue shift of the f–d transition of Ce3+ ions. Novel Ce(iii) complexes with azolyl-substituted thiolate ligands have been synthesized. Some of them exhibit red PL.![]()
Collapse
Affiliation(s)
- Vasily A. Ilichev
- G. A. Razuvaev Institute of Organometallic Chemistry of Russian Academy of Sciences
- 603950 Nizhny Novgorod
- Russian Federation
| | - Liubov I. Silantyeva
- G. A. Razuvaev Institute of Organometallic Chemistry of Russian Academy of Sciences
- 603950 Nizhny Novgorod
- Russian Federation
| | - Ivan D. Grishin
- Nizhny Novgorod State University
- 603950 Nizhny Novgorod
- Russian Federation
| | - Anton V. Rozhkov
- Saint Petersburg State University
- 199034 St Petersburg
- Russian Federation
| | - Roman V. Rumyantcev
- G. A. Razuvaev Institute of Organometallic Chemistry of Russian Academy of Sciences
- 603950 Nizhny Novgorod
- Russian Federation
| | - Georgy K. Fukin
- G. A. Razuvaev Institute of Organometallic Chemistry of Russian Academy of Sciences
- 603950 Nizhny Novgorod
- Russian Federation
| | - Mikhail N. Bochkarev
- G. A. Razuvaev Institute of Organometallic Chemistry of Russian Academy of Sciences
- 603950 Nizhny Novgorod
- Russian Federation
- Nizhny Novgorod State University
- 603950 Nizhny Novgorod
| |
Collapse
|
31
|
Stikane A, Hwang ET, Ainsworth E, Piper SEH, Critchley K, Butt JN, Reisner E, Jeuken LJC. Towards compartmentalized photocatalysis: multihaem proteins as transmembrane molecular electron conduits. Faraday Discuss 2019; 215:26-38. [DOI: 10.1039/c8fd00163d] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
We show a proof-of-concept for using MtrCAB as a lipid membrane-spanning building block for compartmentalised photocatalysis that mimics photosynthesis.
Collapse
Affiliation(s)
- Anna Stikane
- School of Biomedical Sciences
- University of Leeds
- Leeds
- UK
- The Astbury Centre for Structural Molecular Biology
| | - Ee Taek Hwang
- School of Biomedical Sciences
- University of Leeds
- Leeds
- UK
- The Astbury Centre for Structural Molecular Biology
| | - Emma V. Ainsworth
- Centre for Molecular and Structural Biochemistry
- School of Chemistry and School of Biological Sciences
- University of East Anglia
- Norwich
- UK
| | - Samuel E. H. Piper
- Centre for Molecular and Structural Biochemistry
- School of Chemistry and School of Biological Sciences
- University of East Anglia
- Norwich
- UK
| | - Kevin Critchley
- The Astbury Centre for Structural Molecular Biology
- University of Leeds
- Leeds
- UK
- School of Physics and Astronomy
| | - Julea N. Butt
- Centre for Molecular and Structural Biochemistry
- School of Chemistry and School of Biological Sciences
- University of East Anglia
- Norwich
- UK
| | - Erwin Reisner
- Department of Chemistry
- University of Cambridge
- Cambridge
- UK
| | - Lars J. C. Jeuken
- School of Biomedical Sciences
- University of Leeds
- Leeds
- UK
- The Astbury Centre for Structural Molecular Biology
| |
Collapse
|
32
|
Ji X, Wang J, Kang Y, Mei L, Su Z, Wang S, Ma G, Shi J, Zhang S. Enhanced Solar Energy Harvest and Electron Transfer through Intra- and Intermolecular Dual Channels in Chlorosome-Mimicking Supramolecular Self-Assemblies. ACS Catal 2018. [DOI: 10.1021/acscatal.8b03105] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Xiaoyuan Ji
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, People’s Republic of China
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou 510275, People’s Republic of China
- Center for Nanomedicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Jie Wang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, People’s Republic of China
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, People’s Republic of China
| | - Yong Kang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, People’s Republic of China
| | - Lin Mei
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou 510275, People’s Republic of China
| | - Zhiguo Su
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, People’s Republic of China
| | - Shaomin Wang
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, People’s Republic of China
| | - Guanghui Ma
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, People’s Republic of China
| | - Jinjun Shi
- Center for Nanomedicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Songping Zhang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, People’s Republic of China
| |
Collapse
|
33
|
Son G, Lee SH, Wang D, Park CB. Thioflavin T-Amyloid Hybrid Nanostructure for Biocatalytic Photosynthesis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1801396. [PMID: 30198161 DOI: 10.1002/smll.201801396] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 08/15/2018] [Indexed: 06/08/2023]
Abstract
Amyloidogenic peptides can self-assemble into highly ordered nanostructures consisting of cross β-sheet-rich networks that exhibit unique physicochemical properties and high stability. Light-harvesting amyloid nanofibrils are constructed by employing insulin as a building block and thioflavin T (ThT) as a amyloid-specific photosensitizer. The ability of the self-assembled amyloid scaffold to accommodate and align ThT in high density on its surface allows for efficient energy transfer from the chromophores to the catalytic units in a similar way to natural photosystems. Insulin nanofibrils significantly enhance the photoactivity of ThT by inhibiting nonradiative conformational relaxation around the central CC bonds and narrowing the distance between ThT molecules that are bound to the β-sheet-rich amyloid structure. It is demonstrated that the ThT-amyloid hybrid nanostructure is suitable for biocatalytic solar-to-chemical conversion by integrating the light-harvesting amyloid module (for nicotinamide cofactor regeneration) with a redox biocatalytic module (for enzymatic reduction).
Collapse
Affiliation(s)
- Giyeong Son
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 335 Science Road, Yuseong-gu, Daejeon, 305-701, Republic of Korea
| | - Sahng Ha Lee
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 335 Science Road, Yuseong-gu, Daejeon, 305-701, Republic of Korea
| | - Ding Wang
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 335 Science Road, Yuseong-gu, Daejeon, 305-701, Republic of Korea
| | - Chan Beum Park
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 335 Science Road, Yuseong-gu, Daejeon, 305-701, Republic of Korea
| |
Collapse
|
34
|
Chen H, Huang R, Kim EJ, Zhang YHPJ. Building a Thermostable Metabolon for Facilitating Coenzyme Transport and In Vitro Hydrogen Production at Elevated Temperature. CHEMSUSCHEM 2018; 11:3120-3130. [PMID: 30014617 DOI: 10.1002/cssc.201801141] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 07/12/2018] [Indexed: 06/08/2023]
Abstract
To facilitate coenzyme transport and in vitro enzymatic hydrogen production, a multi-enzyme metabolon comprising a miniscaffoldin containing three cohesins, a dockerin-containing mutant dehydrogenase, a dockerin-containing diaphorase, and a Histidine-tagged (His-tagged) NiFe hydrogenase was constructed. As the NiFe hydrogenase has very complicated structure and cannot be fused directly with a dockerin, a bifunctional peptide was designed. The bifunctional peptide, in which one terminus contains a modified dockerin binding the cohesin of the miniscaffoldin and the other, after chemical modification, binds the His-tag of NiFe hydrogenase, enabled His-tagged proteins to be integrated into the cohesin-dockerin-based metabolon. The metabolon exhibited an initial reaction rate 4.5 times that of the enzyme cocktail at the same enzyme loading, which indicated enhanced coenzyme transport of the metabolon. However, this metabolon was unstable owing to the degradation of the miniscaffoldin at elevated temperature. Glutaraldehyde was used to cross-link the metabolon for locking its spatial organization. The cross-linked metabolon not only exhibited 2.5 times the reaction rate of the enzyme cocktail, but also retained its stability at 70 °C. The amount of hydrogen production catalyzed by the cross-linked metabolon was nearly twice that of the metabolon without glutaraldehyde cross-linking and four times that of the enzyme cocktail at 70 °C after 22 h of reaction.
Collapse
Affiliation(s)
- Hui Chen
- Biological Systems Engineering Department, Virginia Tech, 304 Seitz Hall, Blacksburg, Virginia, 24061, USA
| | - Rui Huang
- Biological Systems Engineering Department, Virginia Tech, 304 Seitz Hall, Blacksburg, Virginia, 24061, USA
| | - Eui-Jin Kim
- Biological Systems Engineering Department, Virginia Tech, 304 Seitz Hall, Blacksburg, Virginia, 24061, USA
| | - Yi-Heng P Job Zhang
- Biological Systems Engineering Department, Virginia Tech, 304 Seitz Hall, Blacksburg, Virginia, 24061, USA
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, P. R. China
| |
Collapse
|
35
|
Kim J, Lee SH, Tieves F, Choi DS, Hollmann F, Paul CE, Park CB. Biocatalytic C=C Bond Reduction through Carbon Nanodot-Sensitized Regeneration of NADH Analogues. Angew Chem Int Ed Engl 2018; 57:13825-13828. [PMID: 30062834 DOI: 10.1002/anie.201804409] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Revised: 06/20/2018] [Indexed: 12/12/2022]
Abstract
Light-driven activation of redox enzymes is an emerging route for sustainable chemical synthesis. Among redox enzymes, the family of Old Yellow Enzyme (OYE) dependent on the nicotinamide adenine dinucleotide cofactor (NADH) catalyzes the stereoselective reduction of α,β-unsaturated hydrocarbons. Here, we report OYE-catalyzed asymmetric hydrogenation through light-driven regeneration of NADH and its analogues (mNADHs) by N-doped carbon nanodots (N-CDs), a zero-dimensional photocatalyst. Our spectroscopic and photoelectrochemical analyses verified the transfer of photo-induced electrons from N-CDs to an organometallic electron mediator (M) for highly regioselective regeneration of cofactors. Light triggered the reduction of NAD+ and mNAD+ s with the cooperation of N-CDs and M, and the reduction behaviors of cofactors were dependent on their own reduction peak potentials. The regenerated cofactors subsequently delivered hydrides to OYE for stereoselective conversions of a broad range of substrates with excellent biocatalytic efficiencies.
Collapse
Affiliation(s)
- Jinhyun Kim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 335 Science Road, Daejeon, 305-701, Republic of Korea
| | - Sahng Ha Lee
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 335 Science Road, Daejeon, 305-701, Republic of Korea
| | - Florian Tieves
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands
| | - Da Som Choi
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 335 Science Road, Daejeon, 305-701, Republic of Korea
| | - Frank Hollmann
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands
| | - Caroline E Paul
- Laboratory of Organic Chemistry, Wageningen University & Research, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| | - Chan Beum Park
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 335 Science Road, Daejeon, 305-701, Republic of Korea
| |
Collapse
|
36
|
Kim J, Lee SH, Tieves F, Choi DS, Hollmann F, Paul CE, Park CB. Biocatalytic C=C Bond Reduction through Carbon Nanodot‐Sensitized Regeneration of NADH Analogues. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201804409] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jinhyun Kim
- Department of Materials Science and EngineeringKorea Advanced Institute of Science and Technology (KAIST) 335 Science Road Daejeon 305–701 Republic of Korea
| | - Sahng Ha Lee
- Department of Materials Science and EngineeringKorea Advanced Institute of Science and Technology (KAIST) 335 Science Road Daejeon 305–701 Republic of Korea
| | - Florian Tieves
- Department of BiotechnologyDelft University of Technology Van der Maasweg 9 2629 HZ Delft The Netherlands
| | - Da Som Choi
- Department of Materials Science and EngineeringKorea Advanced Institute of Science and Technology (KAIST) 335 Science Road Daejeon 305–701 Republic of Korea
| | - Frank Hollmann
- Department of BiotechnologyDelft University of Technology Van der Maasweg 9 2629 HZ Delft The Netherlands
| | - Caroline E. Paul
- Laboratory of Organic ChemistryWageningen University & Research Stippeneng 4 6708 WE Wageningen The Netherlands
| | - Chan Beum Park
- Department of Materials Science and EngineeringKorea Advanced Institute of Science and Technology (KAIST) 335 Science Road Daejeon 305–701 Republic of Korea
| |
Collapse
|
37
|
Lee SH, Choi DS, Kuk SK, Park CB. Photobiokatalyse: Aktivierung von Redoxenzymen durch direkten oder indirekten Transfer photoinduzierter Elektronen. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201710070] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Sahng Ha Lee
- Department of Materials Science and EngineeringKorea Advanced Institute of Science and Technology (KAIST) 335 Science Road Daejeon 305-701 Republik Korea
| | - Da Som Choi
- Department of Materials Science and EngineeringKorea Advanced Institute of Science and Technology (KAIST) 335 Science Road Daejeon 305-701 Republik Korea
| | - Su Keun Kuk
- Department of Materials Science and EngineeringKorea Advanced Institute of Science and Technology (KAIST) 335 Science Road Daejeon 305-701 Republik Korea
| | - Chan Beum Park
- Department of Materials Science and EngineeringKorea Advanced Institute of Science and Technology (KAIST) 335 Science Road Daejeon 305-701 Republik Korea
| |
Collapse
|
38
|
Lee SH, Choi DS, Kuk SK, Park CB. Photobiocatalysis: Activating Redox Enzymes by Direct or Indirect Transfer of Photoinduced Electrons. Angew Chem Int Ed Engl 2018; 57:7958-7985. [PMID: 29194901 DOI: 10.1002/anie.201710070] [Citation(s) in RCA: 190] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 11/21/2017] [Indexed: 01/01/2023]
Abstract
Biocatalytic transformation has received increasing attention in the green synthesis of chemicals because of the diversity of enzymes, their high catalytic activities and specificities, and mild reaction conditions. The idea of solar energy utilization in chemical synthesis through the combination of photocatalysis and biocatalysis provides an opportunity to make the "green" process greener. Oxidoreductases catalyze redox transformation of substrates by exchanging electrons at the enzyme's active site, often with the aid of electron mediator(s) as a counterpart. Recent progress indicates that photoinduced electron transfer using organic (or inorganic) photosensitizers can activate a wide spectrum of redox enzymes to catalyze fuel-forming reactions (e.g., H2 evolution, CO2 reduction) and synthetically useful reductions (e.g., asymmetric reduction, oxygenation, hydroxylation, epoxidation, Baeyer-Villiger oxidation). This Review provides an overview of recent advances in light-driven activation of redox enzymes through direct or indirect transfer of photoinduced electrons.
Collapse
Affiliation(s)
- Sahng Ha Lee
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 335 Science Road, Daejeon, 305-701, Republic of Korea
| | - Da Som Choi
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 335 Science Road, Daejeon, 305-701, Republic of Korea
| | - Su Keun Kuk
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 335 Science Road, Daejeon, 305-701, Republic of Korea
| | - Chan Beum Park
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 335 Science Road, Daejeon, 305-701, Republic of Korea
| |
Collapse
|
39
|
Tseng TW, Mendiratta S, Luo TT, Chen TW, Lee YP. A new route to constructing rhenium(I)-based 8-hydroxyquinolate complexes: Synthesis, structures and luminescent properties. Inorganica Chim Acta 2018. [DOI: 10.1016/j.ica.2018.02.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
40
|
An unusual diphosphatase from the PhnP family cleaves reactive FAD photoproducts. Biochem J 2018; 475:261-272. [PMID: 29229761 DOI: 10.1042/bcj20170817] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 12/02/2017] [Accepted: 12/07/2017] [Indexed: 12/12/2022]
Abstract
Flavins are notoriously photolabile, but while the photoproducts derived from the iso-alloxazine ring are well known the other photoproducts are not. In the case of FAD, typically the main cellular flavin, the other photoproducts are predicted to include four- and five-carbon sugars linked to ADP. These FAD photoproducts were shown to be potent glycating agents, more so than ADP-ribose. Such toxic compounds would require disposal via an ADP-sugar diphosphatase or other route. Comparative analysis of bacterial genomes uncovered a candidate disposal gene that is chromosomally clustered with genes for FAD synthesis or transport and is predicted to encode a protein of the PhnP cyclic phosphodiesterase family. The representative PhnP family enzyme from Koribacter versatilis (here named Fpd, FAD photoproduct diphosphatase) was found to have high, Mn2+-dependent diphosphatase activity against FAD photoproducts, FAD, and ADP-ribose, but almost no phosphodiesterase activity against riboflavin 4',5'-cyclic phosphate, a chemical breakdown product of FAD. To provide a structural basis of the unique Fpd activity, the crystal structure of K. versatilis Fpd was determined. The results place Fpd in the broad metallo-β-lactamase-like family of hydrolases, a diverse family commonly using two metals for hydrolytic catalysis. The active site of Fpd contains two Mn2+ ions and a bound phosphate, consistent with a diphosphatase mechanism. Our results characterize the first PhnP family member that is a diphosphatase rather than a cyclic phosphodiesterase and suggest its involvement in a cellular damage-control system that efficiently hydrolyzes the reactive, ADP-ribose-like products of FAD photodegradation.
Collapse
|
41
|
Rudroff F, Mihovilovic MD, Gröger H, Snajdrova R, Iding H, Bornscheuer UT. Opportunities and challenges for combining chemo- and biocatalysis. Nat Catal 2018. [DOI: 10.1038/s41929-017-0010-4] [Citation(s) in RCA: 371] [Impact Index Per Article: 61.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
42
|
Huang X, Wang J, Li T, Wang J, Xu M, Yu W, El Abed A, Zhang X. Review on optofluidic microreactors for artificial photosynthesis. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2018; 9:30-41. [PMID: 29379698 PMCID: PMC5769083 DOI: 10.3762/bjnano.9.5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 12/06/2017] [Indexed: 05/23/2023]
Abstract
Artificial photosynthesis (APS) mimics natural photosynthesis (NPS) to store solar energy in chemical compounds for applications such as water splitting, CO2 fixation and coenzyme regeneration. NPS is naturally an optofluidic system since the cells (typical size 10 to 100 µm) of green plants, algae, and cyanobacteria enable light capture, biochemical and enzymatic reactions and the related material transport in a microscale, aqueous environment. The long history of evolution has equipped NPS with the remarkable merits of a large surface-area-to-volume ratio, fast small molecule diffusion and precise control of mass transfer. APS is expected to share many of the same advantages of NPS and could even provide more functionality if optofluidic technology is introduced. Recently, many studies have reported on optofluidic APS systems, but there is still a lack of an in-depth review. This article will start with a brief introduction of the physical mechanisms and will then review recent progresses in water splitting, CO2 fixation and coenzyme regeneration in optofluidic APS systems, followed by discussions on pending problems for real applications.
Collapse
Affiliation(s)
- Xiaowen Huang
- Energy Research Institute, Shandong Academy of Sciences, Jinan, Shandong 250014, China
- Department of Applied Physics, The Hong Kong Polytechnic University, Hong Kong, China
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, China
| | - Jianchun Wang
- Energy Research Institute, Shandong Academy of Sciences, Jinan, Shandong 250014, China
| | - Tenghao Li
- Department of Applied Physics, The Hong Kong Polytechnic University, Hong Kong, China
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, China
| | - Jianmei Wang
- Energy Research Institute, Shandong Academy of Sciences, Jinan, Shandong 250014, China
| | - Min Xu
- Energy Research Institute, Shandong Academy of Sciences, Jinan, Shandong 250014, China
| | - Weixing Yu
- Key Laboratory of Spectral Imaging Technology, Xi’an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi’an, Shaanxi 710119, China
| | - Abdel El Abed
- Laboratoire de Photonique Quantique et Moléculaire, UMR 8537, Ecole Normale Supérieure de Cachan, CentraleSupélec, CNRS, Université Paris-Saclay, 61 avenue du Président Wilson, 94235 Cachan, France
| | - Xuming Zhang
- Department of Applied Physics, The Hong Kong Polytechnic University, Hong Kong, China
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, China
| |
Collapse
|
43
|
Call A, Lloret-Fillol J. Enhancement and control of the selectivity in light-driven ketone versus water reduction using aminopyridine cobalt complexes. Chem Commun (Camb) 2018; 54:9643-9646. [DOI: 10.1039/c8cc04239j] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A highly selective light-driven reduction of aromatic ketones versus water reduction could be achieved by ligand design.
Collapse
Affiliation(s)
- Arnau Call
- Institute of Chemical Research of Catalonia (ICIQ)
- The Barcelona Institute of Science and Technology
- Avinguda Països Catalans 16
- 43007 Tarragona
- Spain
| | - Julio Lloret-Fillol
- Institute of Chemical Research of Catalonia (ICIQ)
- The Barcelona Institute of Science and Technology
- Avinguda Països Catalans 16
- 43007 Tarragona
- Spain
| |
Collapse
|
44
|
Wang Y, Sun J, Zhang H, Zhao Z, Liu W. Tetra(4-carboxyphenyl)porphyrin for efficient cofactor regeneration under visible light and its immobilization. Catal Sci Technol 2018. [DOI: 10.1039/c8cy00320c] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
TCPP was successfully used for visible light-driven NADH regeneration with a high yield of 81.5% and its immobilization was attempted.
Collapse
Affiliation(s)
- Yanzi Wang
- School of Chemistry and Chemical Engineering
- Beijing Institute of Technology
- Beijing 102488
- China
| | - Jing Sun
- School of Chemistry and Chemical Engineering
- Beijing Institute of Technology
- Beijing 102488
- China
| | - Haohai Zhang
- School of Chemistry and Chemical Engineering
- Beijing Institute of Technology
- Beijing 102488
- China
| | - Zhiping Zhao
- School of Chemistry and Chemical Engineering
- Beijing Institute of Technology
- Beijing 102488
- China
| | - Wenfang Liu
- School of Chemistry and Chemical Engineering
- Beijing Institute of Technology
- Beijing 102488
- China
| |
Collapse
|
45
|
Ko JW, Choi WS, Kim J, Kuk SK, Lee SH, Park CB. Self-Assembled Peptide-Carbon Nitride Hydrogel as a Light-Responsive Scaffold Material. Biomacromolecules 2017; 18:3551-3556. [DOI: 10.1021/acs.biomac.7b00889] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Jong Wan Ko
- Department of Materials Science
and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Daejeon 34141, Republic of Korea
| | - Woo Seok Choi
- Department of Materials Science
and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Daejeon 34141, Republic of Korea
| | - Jinhyun Kim
- Department of Materials Science
and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Daejeon 34141, Republic of Korea
| | - Su Keun Kuk
- Department of Materials Science
and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Daejeon 34141, Republic of Korea
| | - Sahng Ha Lee
- Department of Materials Science
and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Daejeon 34141, Republic of Korea
| | - Chan Beum Park
- Department of Materials Science
and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Daejeon 34141, Republic of Korea
| |
Collapse
|
46
|
Hwang ET, Orchard KL, Hojo D, Beton J, Lockwood CWJ, Adschiri T, Butt JN, Reisner E, Jeuken LJC. Exploring Step-by-Step Assembly of Nanoparticle:Cytochrome Biohybrid Photoanodes. ChemElectroChem 2017; 4:1959-1968. [PMID: 28920010 PMCID: PMC5573906 DOI: 10.1002/celc.201700030] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Indexed: 11/07/2022]
Abstract
Coupling light-harvesting semiconducting nanoparticles (NPs) with redox enzymes has been shown to create artificial photosynthetic systems that hold promise for the synthesis of solar fuels. High quantum yields require efficient electron transfer from the nanoparticle to the redox protein, a property that can be difficult to control. Here, we have compared binding and electron transfer between dye-sensitized TiO2 nanocrystals or CdS quantum dots and two decaheme cytochromes on photoanodes. The effect of NP surface chemistry was assessed by preparing NPs capped with amine or carboxylic acid functionalities. For the TiO2 nanocrystals, binding to the cytochromes was optimal when capped with a carboxylic acid ligand, whereas for the CdS QDs, better adhesion was observed for amine capped ligand shells. When using TiO2 nanocrystals, dye-sensitized with a phosphonated bipyridine Ru(II) dye, photocurrents are observed that are dependent on the redox state of the decaheme, confirming that electrons are transferred from the TiO2 nanocrystals to the surface via the decaheme conduit. In contrast, when CdS NPs are used, photocurrents are not dependent on the redox state of the decaheme, consistent with a model in which electron transfer from CdS to the photoanode bypasses the decaheme protein. These results illustrate that although the organic shell of NPs nanoparticles crucially affects coupling with proteinaceous material, the coupling can be difficult to predict or engineer.
Collapse
Affiliation(s)
- Ee Taek Hwang
- School of Biomedical Sciences, and The Astbury Centre for Structural Molecular BiologyUniversity of LeedsLeedsLS2 9JTU.K
| | - Katherine L. Orchard
- Department of ChemistryUniversity of CambridgeLensfield RoadCambridgeCB2 1EWU.K.
- Advanced Institute for Materials ResearchTohoku University2-1-1 Katahira Aoba-ku SendaiMiyagi980-8577Japan
| | - Daisuke Hojo
- Advanced Institute for Materials ResearchTohoku University2-1-1 Katahira Aoba-ku SendaiMiyagi980-8577Japan
| | - Joseph Beton
- School of Biomedical Sciences, and The Astbury Centre for Structural Molecular BiologyUniversity of LeedsLeedsLS2 9JTU.K
| | - Colin W. J. Lockwood
- Centre for Molecular and Structural BiochemistrySchool of Chemistry, and School of Biological SciencesUniversity of East AngliaNorwich Research ParkNorwichNR4 7TJUnited Kingdom
| | - Tadafumi Adschiri
- Advanced Institute for Materials ResearchTohoku University2-1-1 Katahira Aoba-ku SendaiMiyagi980-8577Japan
| | - Julea N. Butt
- Centre for Molecular and Structural BiochemistrySchool of Chemistry, and School of Biological SciencesUniversity of East AngliaNorwich Research ParkNorwichNR4 7TJUnited Kingdom
| | - Erwin Reisner
- Department of ChemistryUniversity of CambridgeLensfield RoadCambridgeCB2 1EWU.K.
| | - Lars J. C. Jeuken
- School of Biomedical Sciences, and The Astbury Centre for Structural Molecular BiologyUniversity of LeedsLeedsLS2 9JTU.K
| |
Collapse
|
47
|
Zhang L, Zhang H, Zhang X, Han Y, Zhang H, Zhai Y, Dong S. Expanding light utilization to the near-infrared region for hybrid bio-photoelectrochemical cells. NANOSCALE 2017; 9:9404-9410. [PMID: 28657090 DOI: 10.1039/c7nr02636f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The insatiable energy demand asks for the maximum conversion of green renewable sources. Herein, we propose the first NIR-assisted glucose/air bio-photoelectrochemical (BPEC) cell comprising a rare earth up-conversion microcrystal (UCMC)-based polyterthiophene (pTTh) cathode. Upon irradiation with a 980 nm laser, UCMCs emit robust luminescence in the visible range, which can efficiently excite pTTh, catalyzing the reduction of oxygen and generating photocurrent. Coupling with a glucose oxidation bioanode, this assembled BPEC cell exhibits a maximal output power density of 40.6 μW cm-2 and an open circuit voltage of 0.53 V. This success is an essential conceptual steppingstone towards the comprehensive utilization of whole sunlight and offers alternative solutions for multiple energy conversions.
Collapse
Affiliation(s)
- Lingling Zhang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China.
| | | | | | | | | | | | | |
Collapse
|
48
|
Lee SH, Choi DS, Pesic M, Lee YW, Paul CE, Hollmann F, Park CB. Cofactor-Free, Direct Photoactivation of Enoate Reductases for the Asymmetric Reduction of C=C Bonds. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201702461] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Sahng Ha Lee
- Department of Materials Science and Engineering; Korea Advanced Institute of Science and Technology; 335 Science Road Daejeon 305-701 Republic of Korea
| | - Da Som Choi
- Department of Materials Science and Engineering; Korea Advanced Institute of Science and Technology; 335 Science Road Daejeon 305-701 Republic of Korea
| | - Milja Pesic
- Department of Biotechnology; Delft University of Technology; Van der Maasweg 9 2629 HZ Delft The Netherlands
| | - Yang Woo Lee
- Department of Materials Science and Engineering; Korea Advanced Institute of Science and Technology; 335 Science Road Daejeon 305-701 Republic of Korea
| | - Caroline E. Paul
- Department of Biotechnology; Delft University of Technology; Van der Maasweg 9 2629 HZ Delft The Netherlands
| | - Frank Hollmann
- Department of Biotechnology; Delft University of Technology; Van der Maasweg 9 2629 HZ Delft The Netherlands
| | - Chan Beum Park
- Department of Materials Science and Engineering; Korea Advanced Institute of Science and Technology; 335 Science Road Daejeon 305-701 Republic of Korea
| |
Collapse
|
49
|
Lee SH, Choi DS, Pesic M, Lee YW, Paul CE, Hollmann F, Park CB. Cofactor-Free, Direct Photoactivation of Enoate Reductases for the Asymmetric Reduction of C=C Bonds. Angew Chem Int Ed Engl 2017; 56:8681-8685. [PMID: 28544039 PMCID: PMC5519925 DOI: 10.1002/anie.201702461] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 04/08/2017] [Indexed: 11/10/2022]
Abstract
Enoate reductases from the family of old yellow enzymes (OYEs) can catalyze stereoselective trans-hydrogenation of activated C=C bonds. Their application is limited by the necessity for a continuous supply of redox equivalents such as nicotinamide cofactors [NAD(P)H]. Visible light-driven activation of OYEs through NAD(P)H-free, direct transfer of photoexcited electrons from xanthene dyes to the prosthetic flavin moiety is reported. Spectroscopic and electrochemical analyses verified spontaneous association of rose bengal and its derivatives with OYEs. Illumination of a white light-emitting-diode triggered photoreduction of OYEs by xanthene dyes, which facilitated the enantioselective reduction of C=C bonds in the absence of NADH. The photoenzymatic conversion of 2-methylcyclohexenone resulted in enantiopure (ee>99 %) (R)-2-methylcyclohexanone with conversion yields as high as 80-90 %. The turnover frequency was significantly affected by the substitution of halogen atoms in xanthene dyes.
Collapse
Affiliation(s)
- Sahng Ha Lee
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, 335 Science Road, Daejeon, 305-701, Republic of Korea
| | - Da Som Choi
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, 335 Science Road, Daejeon, 305-701, Republic of Korea
| | - Milja Pesic
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands
| | - Yang Woo Lee
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, 335 Science Road, Daejeon, 305-701, Republic of Korea
| | - Caroline E Paul
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands
| | - Frank Hollmann
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands
| | - Chan Beum Park
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, 335 Science Road, Daejeon, 305-701, Republic of Korea
| |
Collapse
|
50
|
Call A, Casadevall C, Acuña-Parés F, Casitas A, Lloret-Fillol J. Dual cobalt-copper light-driven catalytic reduction of aldehydes and aromatic ketones in aqueous media. Chem Sci 2017; 8:4739-4749. [PMID: 30155221 PMCID: PMC6100254 DOI: 10.1039/c7sc01276d] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 05/04/2017] [Indexed: 12/11/2022] Open
Abstract
A dual catalytic system based on earth-abundant elements reduces aromatic ketones and aldehydes to alcohols in aqueous media under visible light. An unprecedented selectivity for the reduction of aromatic ketones versus aliphatic aldehydes is reported.
We present an efficient, general, fast, and robust light-driven methodology based on earth-abundant elements to reduce aryl ketones, and both aryl and aliphatic aldehydes (up to 1400 TON). The catalytic system consists of a robust and well-defined aminopyridyl cobalt complex active for photocatalytic water reduction and the [Cu(bathocuproine)(Xantphos)](PF6) photoredox catalyst. The dual cobalt–copper system uses visible light as the driving-force and H2O and an electron donor (Et3N or iPr2EtN) as the hydride source. The catalytic system operates in aqueous mixtures (80–60% water) with high selectivity towards the reduction of organic substrates (>2000) vs. water reduction, and tolerates O2. High selectivity towards the hydrogenation of aryl ketones is observed in the presence of terminal olefins, aliphatic ketones, and alkynes. Remarkably, the catalytic system also shows unique selectivity for the reduction of acetophenone in the presence of aliphatic aldehydes. The catalytic system provides a simple and convenient method to obtain α,β-deuterated alcohols. Both the observed reactivity and the DFT modelling support a common cobalt hydride intermediate. The DFT modelled energy profile for the [Co–H] nucleophilic attack to acetophenone and water rationalises the competence of [CoII–H] to reduce acetophenone in the presence of water. Mechanistic studies suggest alternative mechanisms depending on the redox potential of the substrate. These results show the potential of the water reduction catalyst [Co(OTf)(Py2Tstacn)](OTf) (1), (Py2Tstacn = 1,4-di(picolyl)-7-(p-toluenesulfonyl)-1,4,7-triazacyclononane, OTf = trifluoromethanesulfonate anion) to develop light-driven selective organic transformations and fine solar chemicals.
Collapse
Affiliation(s)
- Arnau Call
- Institute of Chemical Research of Catalonia (ICIQ) , The Barcelona Institute of Science and Technology , Avinguda Països Catalans 16 , 43007 Tarragona , Spain .
| | - Carla Casadevall
- Institute of Chemical Research of Catalonia (ICIQ) , The Barcelona Institute of Science and Technology , Avinguda Països Catalans 16 , 43007 Tarragona , Spain .
| | - Ferran Acuña-Parés
- Institute of Chemical Research of Catalonia (ICIQ) , The Barcelona Institute of Science and Technology , Avinguda Països Catalans 16 , 43007 Tarragona , Spain .
| | - Alicia Casitas
- Institute of Chemical Research of Catalonia (ICIQ) , The Barcelona Institute of Science and Technology , Avinguda Països Catalans 16 , 43007 Tarragona , Spain .
| | - Julio Lloret-Fillol
- Institute of Chemical Research of Catalonia (ICIQ) , The Barcelona Institute of Science and Technology , Avinguda Països Catalans 16 , 43007 Tarragona , Spain . .,Catalan Institution for Research and Advanced Studies (ICREA) , Passeig Lluïs Companys, 23 , 08010 , Barcelona , Spain
| |
Collapse
|