1
|
Wu X, Deng Y, Wang R, Kim H, Kim G, Xu Y, Hong KT, Lee JS, Hu JJ, Liang G, Yoon J. Rational Design of an Activatable Near-Infrared Fluorogenic Platform for In Vivo Orthotopic Tumor Imaging and Resection. Angew Chem Int Ed Engl 2024:e202416877. [PMID: 39449191 DOI: 10.1002/anie.202416877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/21/2024] [Accepted: 10/24/2024] [Indexed: 10/26/2024]
Abstract
Rational and effective design of a universal near-infrared (NIR) light-absorbed platform employed to prepare diverse activatable NIR fluorogenic probes for in vivo imaging and the imaging-guided tumor resection remains less exploited but highly meaningful. Herein, mandelic acid with a core structure of 4-hydroxylbenzyl alcohol to link recognition unit, a fluorophore and a quencher was employed to prepare activatable probes. We exemplified ester as carboxylesterase (CE)-recognized unit, ferrocene as quencher and phenothiazinium as NIR fluorophore to afford fluorogenic probes termed NBS-Fe-CE and NBS-C-Fe-CE. These probes enabled the conversion toward CE with significant fluorescence increases and successfully discriminate CE activity in cells. NIR light enhances the tumor penetration and enable imaging-guided orthotopic tumor resection. This specific case demonstrated that this platform can be effectively used to construct diverse NIR probes for imaging analytes in biological systems.
Collapse
Affiliation(s)
- Xiaofeng Wu
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Yu Deng
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Rui Wang
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, 03706, Republic of Korea
| | - Heejeong Kim
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, 03706, Republic of Korea
| | - Gyoungmi Kim
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, 03706, Republic of Korea
| | - Ying Xu
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Kyung Tae Hong
- Bio-Med Program, KIST-School UST, Hwarang-ro 14 gil 5, Seongbuk-gu, Seoul, 02792, Republic of Korea
| | - Jun-Seok Lee
- Department of Pharmacology, Korea University College of Medicine, 73 Goryeodae-ro, Seongbuk-gu, Seoul, 02841, Korea
| | - Jing-Jing Hu
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Gaolin Liang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Juyoung Yoon
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, 03706, Republic of Korea
| |
Collapse
|
2
|
Lang W, Shu D, Liu S, Sun C, Liu H, Huang Q, Mao G, Yang S, Xing B. Enzyme-Responsive Fluorescent Labeling Strategy for In Vivo Imaging of Gut Bacteria. J Org Chem 2024; 89:14641-14649. [PMID: 38607989 DOI: 10.1021/acs.joc.3c02848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2024]
Abstract
Myrosinase (Myr), as a unique β-thioglucosidase enzyme capable of converting natural and gut bacterial metabolite glucosinolates into bioactive agents, has recently attracted a great deal of attention because of its essential functions in exerting homeostasis dynamics and promoting human health. Such nutraceutical and biomedical significance demands unique and reliable strategies for specific identification of Myr enzymes of gut bacterial origin in living systems, whereas the dearth of methods for bacterial Myr detection and visualization remains a challenging concern. Herein, we present a series of unique molecular probes for specific identification and imaging of Myr-expressing gut bacterial strains. Typically, an artificial glucosinolate with an azide group in aglycone was synthesized and sequentially linked with the probe moieties of versatile channels through simple click conjugation. Upon gut bacterial enzymatic cleavage, the as-prepared probe molecules could be converted into reactive isothiocyanate forms, which can further act as reactive electrophiles for the covalent labeling of gut bacteria, thus realizing their localized fluorescent imaging within a wide range of wavelength channels in live bacterial strains and animal models. Overall, our proposed method presents a novel technology for selective gut bacterial Myr enzyme labeling in vitro and in vivo. We envision that such a rational probe design would serve as a promising solution for chemoprevention assessment, microflora metabolic mechanistic study, and gut bacterium-mediated physiopathological exploration.
Collapse
Affiliation(s)
- Wenchao Lang
- School of Chemistry, Chemical Engineering & Biotechnology, Nanyang Technological University, Singapore 637371
| | - Dunji Shu
- College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Songhan Liu
- School of Chemistry, Chemical Engineering & Biotechnology, Nanyang Technological University, Singapore 637371
| | - Caixia Sun
- School of Chemistry, Chemical Engineering & Biotechnology, Nanyang Technological University, Singapore 637371
| | - Huihong Liu
- College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Qianqian Huang
- School of Chemistry, Chemical Engineering & Biotechnology, Nanyang Technological University, Singapore 637371
| | - Guojiang Mao
- Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Sheng Yang
- College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Bengang Xing
- School of Chemistry, Chemical Engineering & Biotechnology, Nanyang Technological University, Singapore 637371
| |
Collapse
|
3
|
Canabal R, González-Bello C. Chemical sensors for the early diagnosis of bacterial resistance to β-lactam antibiotics. Bioorg Chem 2024; 150:107528. [PMID: 38852309 DOI: 10.1016/j.bioorg.2024.107528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 05/30/2024] [Accepted: 06/03/2024] [Indexed: 06/11/2024]
Abstract
β-Lactamases are bacterial enzymes that inactivate β-lactam antibiotics and, as such, are the most prevalent cause of antibiotic resistance in Gram-negative bacteria. The ever-increasing production and worldwide dissemination of bacterial strains producing carbapenemases is currently a global health concern. These enzymes catalyze the hydrolysis of carbapenems - the β-lactam antibiotics with the broadest spectrum of activity that are often considered as drugs of last resort. The incidence of carbapenem-resistant pathogens such as Pseudomonas aeruginosa, Acinetobacter baumannii and carbapenemase or extended spectrum beta-lactamase (ESBL)-producing Enterobacterales, which are frequent in clinical settings, is worrisome since, in some cases, no therapies are available. These include all metallo-β-lactamases (VIM, IMP, NDM, SMP, and L1), and serine-carbapenemases of classes A (KPC, SME, IMI, and GES), and of classes D (OXA-23, OXA-24/40, OXA-48 and OXA-58). Consequently, the early diagnosis of bacterial strains harboring carbapenemases is a pivotal task in clinical microbiology in order to track antibiotic bacterial resistance and to improve the worldwide management of infectious diseases. Recent research efforts on the development of chromogenic and fluorescent chemical sensors for the specific and sensitive detection and quantification of β-lactamase production in multidrug-resistant pathogens are summarized herein. Studies to circumvent the main limitations of the phenotypic and molecular methods are discussed. Recently reported chromogenic and fluorogenic cephalosporin- and carbapenem-based β-lactamase substrates will be reviewed as alternative options to the currently available nitrocefin and related compounds, a chromogenic cephalosporin-based reagent widely used in clinical microbiology laboratories. The scope of these new chemical sensors, along with the synthetic approaches to synthesize them, is also summarized.
Collapse
Affiliation(s)
- Rafael Canabal
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, Jenaro de la Fuente s/n, 15782 Santiago de Compostela, Spain
| | - Concepción González-Bello
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, Jenaro de la Fuente s/n, 15782 Santiago de Compostela, Spain.
| |
Collapse
|
4
|
Miao Y, Yu ZQ, Xu S, Yan M. Quinone Methide Based Self-Immobilizing Molecular Fluorescent Probes for In Situ Imaging of Enzymes. Chem Asian J 2024; 19:e202400189. [PMID: 38514393 DOI: 10.1002/asia.202400189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/20/2024] [Accepted: 03/21/2024] [Indexed: 03/23/2024]
Abstract
Enzymes play important roles not only in normal physiological processes but in the development of many diseases. In situ imaging of enzymes with high-resolution in living systems would helpful for clinical diagnosis and treatment. However, many molecular fluorescent probes suffer from the drawback of diffusing away from the reaction site of enzymes even out of the cells, losing the in situ information and resulting in poor imaging resolution. Quinone methide (QM) based self-immobilizing probes allow the fluorescent signal to be immobilized near the target for an extended period without deactivating the target enzymes, ensuring that it will provide amplified signals and in situ information of the target with high resolution. In this review, we summarized the recent progress of QM-based self-immobilizing probes including their design strategies, working mechanisms, classifications and applications in in situ enzyme imaging. This review calls for the development of more activatable QM-based probe with the advantages of high stability in the absence of the target but very high labeling efficiency after activation.
Collapse
Affiliation(s)
- Yeru Miao
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, People's Republic of China
| | - Zhen-Qing Yu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, People's Republic of China
| | - Shuai Xu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, People's Republic of China
| | - Mei Yan
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, People's Republic of China
| |
Collapse
|
5
|
Li W, Li J, Xu H, Gao H, Liu D. Rapid and visual identification of β-lactamase subtypes for precision antibiotic therapy. Nat Commun 2024; 15:719. [PMID: 38267434 PMCID: PMC10808423 DOI: 10.1038/s41467-024-44984-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 01/09/2024] [Indexed: 01/26/2024] Open
Abstract
The abuse of antibiotics urgently requires rapid identification of drug-resistant bacteria at the point of care (POC). Here we report a visual paper sensor that allows rapid (0.25-3 h) discrimination of the subtypes of β-lactamase (the major cause of bacterial resistance) for precision antibiotic therapy. The sensor exhibits high performance in identifying antibiotic-resistant bacteria with 100 real samples from patients with diverse bacterial infections, demonstrating 100% clinical sensitivity and specificity. Further, this sensor can enhance the accuracy of antibiotic use from 48% empirically to 83%, and further from 50.6% to 97.6% after eliminating fungal infection cases. Our work provides a POC testing platform for guiding effective management of bacterial infections in both hospital and community settings.
Collapse
Affiliation(s)
- Wenshuai Li
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Centers for Cell Responses and New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071, China
- Tianjin Key Laboratory of Molecular Recognition and Biosensing, Nankai University, Tianjin, 300071, China
| | - Jingqi Li
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Centers for Cell Responses and New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071, China
- Tianjin Key Laboratory of Molecular Recognition and Biosensing, Nankai University, Tianjin, 300071, China
| | - Hua Xu
- Department of Intensive Care Unit, Key Laboratory for Critical Care Medicine of the Ministry of Health, Emergency Medicine Research Institute, Tianjin First Center Hospital, School of Medicine, Nankai University, Tianjin, 300071, China
| | - Hongmei Gao
- Department of Intensive Care Unit, Key Laboratory for Critical Care Medicine of the Ministry of Health, Emergency Medicine Research Institute, Tianjin First Center Hospital, School of Medicine, Nankai University, Tianjin, 300071, China
| | - Dingbin Liu
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Centers for Cell Responses and New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071, China.
- Tianjin Key Laboratory of Molecular Recognition and Biosensing, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
6
|
Yamin D, Uskoković V, Wakil AM, Goni MD, Shamsuddin SH, Mustafa FH, Alfouzan WA, Alissa M, Alshengeti A, Almaghrabi RH, Fares MAA, Garout M, Al Kaabi NA, Alshehri AA, Ali HM, Rabaan AA, Aldubisi FA, Yean CY, Yusof NY. Current and Future Technologies for the Detection of Antibiotic-Resistant Bacteria. Diagnostics (Basel) 2023; 13:3246. [PMID: 37892067 PMCID: PMC10606640 DOI: 10.3390/diagnostics13203246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 10/14/2023] [Accepted: 10/15/2023] [Indexed: 10/29/2023] Open
Abstract
Antibiotic resistance is a global public health concern, posing a significant threat to the effectiveness of antibiotics in treating bacterial infections. The accurate and timely detection of antibiotic-resistant bacteria is crucial for implementing appropriate treatment strategies and preventing the spread of resistant strains. This manuscript provides an overview of the current and emerging technologies used for the detection of antibiotic-resistant bacteria. We discuss traditional culture-based methods, molecular techniques, and innovative approaches, highlighting their advantages, limitations, and potential future applications. By understanding the strengths and limitations of these technologies, researchers and healthcare professionals can make informed decisions in combating antibiotic resistance and improving patient outcomes.
Collapse
Affiliation(s)
- Dina Yamin
- Al-Karak Public Hospital, Karak 61210, Jordan;
- Institute for Research in Molecular Medicine, University Sains Malaysia, Health Campus, Kubang Kerian 16150, Kelantan, Malaysia
- Department of Veterinary Clinical Studies, Faculty of Veterinary Medicine, University Malaysia Kelantan, Kota Bharu 16100, Kelantan, Malaysia;
| | - Vuk Uskoković
- TardigradeNano LLC., Irvine, CA 92604, USA;
- Department of Mechanical Engineering, San Diego State University, San Diego, CA 92182, USA
| | - Abubakar Muhammad Wakil
- Department of Veterinary Clinical Studies, Faculty of Veterinary Medicine, University Malaysia Kelantan, Kota Bharu 16100, Kelantan, Malaysia;
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Maiduguri, Maiduguri 600104, Borno, Nigeria
| | - Mohammed Dauda Goni
- Public Health and Zoonoses Research Group, Faculty of Veterinary Medicine, University Malaysia Kelantan, Pengkalan Chepa 16100, Kelantan, Malaysia;
| | - Shazana Hilda Shamsuddin
- Department of Pathology, School of Medical Sciences, University Sains Malaysia, Health Campus, Kubang Kerian 16150, Kelantan, Malaysia;
| | - Fatin Hamimi Mustafa
- Department of Electronic & Computer Engineering, Faculty of Electrical Engineering, University Teknologi Malaysia, Johor Bharu 81310, Johor, Malaysia;
| | - Wadha A. Alfouzan
- Department of Microbiology, Faculty of Medicine, Kuwait University, Safat 13110, Kuwait;
- Microbiology Unit, Department of Laboratories, Farwania Hospital, Farwania 85000, Kuwait
| | - Mohammed Alissa
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia;
| | - Amer Alshengeti
- Department of Pediatrics, College of Medicine, Taibah University, Al-Madinah 41491, Saudi Arabia;
- Department of Infection Prevention and Control, Prince Mohammad Bin Abdulaziz Hospital, National Guard Health Affairs, Al-Madinah 41491, Saudi Arabia
| | - Rana H. Almaghrabi
- Pediatric Department, Prince Sultan Medical Military City, Riyadh 12233, Saudi Arabia;
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia;
| | - Mona A. Al Fares
- Department of Internal Medicine, King Abdulaziz University Hospital, Jeddah 21589, Saudi Arabia;
| | - Mohammed Garout
- Department of Community Medicine and Health Care for Pilgrims, Faculty of Medicine, Umm Al-Qura University, Makkah 21955, Saudi Arabia;
| | - Nawal A. Al Kaabi
- College of Medicine and Health Science, Khalifa University, Abu Dhabi 127788, United Arab Emirates;
- Sheikh Khalifa Medical City, Abu Dhabi Health Services Company (SEHA), Abu Dhabi 51900, United Arab Emirates
| | - Ahmad A. Alshehri
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Najran University, Najran 61441, Saudi Arabia;
| | - Hamza M. Ali
- Department of Medical Laboratories Technology, College of Applied Medical Sciences, Taibah University, Madinah 41411, Saudi Arabia;
| | - Ali A. Rabaan
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia;
- Molecular Diagnostic Laboratory, Johns Hopkins Aramco Healthcare, Dhahran 31311, Saudi Arabia
- Department of Public Health and Nutrition, The University of Haripur, Haripur 22610, Pakistan
| | | | - Chan Yean Yean
- Department of Medical Microbiology & Parasitology, School of Medical Sciences, University Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| | - Nik Yusnoraini Yusof
- Institute for Research in Molecular Medicine, University Sains Malaysia, Health Campus, Kubang Kerian 16150, Kelantan, Malaysia
| |
Collapse
|
7
|
Wang C, Tang B, Wu J, Jin X, Ke S, Yang H, Liu Y. Detection of mcr-1-harbouring Escherichia coli by quantum dot labelling of synthetic small peptides mimicking lipopolysaccharide receptors. Int J Antimicrob Agents 2023; 62:106898. [PMID: 37343806 DOI: 10.1016/j.ijantimicag.2023.106898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 06/05/2023] [Accepted: 06/16/2023] [Indexed: 06/23/2023]
Abstract
Overuse of antibiotics and the emergence of multidrug-resistant bacteria has made colistin the last line of defence against complex infections. In previous studies, MCR-1-mediated colistin resistance was mainly detected through PCR or antimicrobial susceptibility testing. However, intuitive detection methods for phenotype are rarely reported. In this study, two small peptide antibodies were constructed for immunofluorescence detection of mcr-1-harbouring Escherichia coli: one was a small peptide labelled with a quantum dot antibody; and the other was a small peptide labelled with a fluorescein isothiocyanate (FITC) antibody. Whether using FITC or quantum dots, colistin-resistant bacteria in the sample could be qualitatively detected. The assembled antibodies achieved the desired goals in terms of sensitivity, specificity, precision and repeatability. The non-specific problem of sandwich antigen recognition of lipid A binding to small peptides in modified lipopolysaccharide (LPS) was resolved, and this relatively developed immunofluorescence technique standardised the detection process. Together, in addition to PCR, both fluorescent antibodies can be used for immunofluorescent detection of mcr-1-harbouring E. coli.
Collapse
Affiliation(s)
- Chenghao Wang
- Zhejiang key Laboratory of Experimental Animal's & Nonclinical Laboratory Studies, Hangzhou Medical College, Hangzhou 310013, China; School of Clinical Medicine, Hangzhou Medical College, Hangzhou 310053, China; Engineering Research Center of Novel Vaccine of Zhejiang Province, Hangzhou Medical College, Hangzhou 310013, China
| | - Biao Tang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products & Institute of Agro-product Safety and Nutrition; Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China
| | - Jiusheng Wu
- College of Animal Science, Zhejiang University, Hangzhou 310058, China
| | - Xi Jin
- Zhejiang key Laboratory of Experimental Animal's & Nonclinical Laboratory Studies, Hangzhou Medical College, Hangzhou 310013, China; Engineering Research Center of Novel Vaccine of Zhejiang Province, Hangzhou Medical College, Hangzhou 310013, China
| | - Shuwen Ke
- Zhejiang key Laboratory of Experimental Animal's & Nonclinical Laboratory Studies, Hangzhou Medical College, Hangzhou 310013, China; School of Clinical Medicine, Hangzhou Medical College, Hangzhou 310053, China; Engineering Research Center of Novel Vaccine of Zhejiang Province, Hangzhou Medical College, Hangzhou 310013, China
| | - Hua Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products & Institute of Agro-product Safety and Nutrition; Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China.
| | - Yuehuan Liu
- Zhejiang key Laboratory of Experimental Animal's & Nonclinical Laboratory Studies, Hangzhou Medical College, Hangzhou 310013, China; Engineering Research Center of Novel Vaccine of Zhejiang Province, Hangzhou Medical College, Hangzhou 310013, China.
| |
Collapse
|
8
|
Li W, Wang J, Li C, Zong Z, Zhao J, Gao H, Liu D. Achieving Ultrasensitive Chromogenic Probes for Rapid, Direct Detection of Carbapenemase-Producing Bacteria in Sputum. JACS AU 2023; 3:227-238. [PMID: 36711106 PMCID: PMC9875220 DOI: 10.1021/jacsau.2c00607] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/12/2022] [Accepted: 12/16/2022] [Indexed: 06/18/2023]
Abstract
Carbapenemase-producing bacteria (CPB) stand as the most dangerous "superbugs" in the clinic. Rapid point-of-care (POC) detection of CPB in clinical samples is key to timely and effective infection management. We herein report the first ultrasensitive chromogenic probe that allows direct POC detection of CPB in clinical sputum samples at a sample-to-result time of less than 15 min. This chromogenic probe is modularly designed by conjugating the carbapenem core with a benzene derivative bearing an electronegativity-tunable substituent. Unexpectedly high sensitivity was achieved simply by choosing strong electron-withdrawing substituents, such as -N+(CH3)3, without resorting to complex molecular design. Through integrating the probes with a portable paper chip, 24 out of 80 clinical sputum samples from sepsis patients with lung infections were quickly diagnosed as CPB-positive, exhibiting 100% clinical sensitivity and specificity. This low-cost paper chip assay can be readily performed on-site, breaking through the dilemma of rapid CPB detection, especially in resource-limited settings.
Collapse
Affiliation(s)
- Wenshuai Li
- State
Key Laboratory of Medicinal Chemical Biology, Research Center for
Analytical Sciences, and Tianjin Key Laboratory of Molecular Recognition
and Biosensing, Frontiers Science Center for New Organic Matter, College
of Chemistry, Nankai University, Tianjin300071, China
| | - Jingjing Wang
- Department
of Intensive Care Unit, Key Laboratory for Critical Care Medicine
of the Ministry of Health, Emergency Medicine Research Institute,
Tianjin First Center Hospital, School of Medicine, Nankai University, Tianjin300071, China
| | - Chen Li
- College
of Arts and Sciences, Shanxi Agricultural
University, Taigu030801, China
| | - Zhiyou Zong
- State
Key Laboratory of Medicinal Chemical Biology, Research Center for
Analytical Sciences, and Tianjin Key Laboratory of Molecular Recognition
and Biosensing, Frontiers Science Center for New Organic Matter, College
of Chemistry, Nankai University, Tianjin300071, China
| | - Jinzhong Zhao
- College
of Arts and Sciences, Shanxi Agricultural
University, Taigu030801, China
| | - Hongmei Gao
- Department
of Intensive Care Unit, Key Laboratory for Critical Care Medicine
of the Ministry of Health, Emergency Medicine Research Institute,
Tianjin First Center Hospital, School of Medicine, Nankai University, Tianjin300071, China
| | - Dingbin Liu
- State
Key Laboratory of Medicinal Chemical Biology, Research Center for
Analytical Sciences, and Tianjin Key Laboratory of Molecular Recognition
and Biosensing, Frontiers Science Center for New Organic Matter, College
of Chemistry, Nankai University, Tianjin300071, China
| |
Collapse
|
9
|
Cole MS, Hegde PV, Aldrich CC. β-Lactamase-Mediated Fragmentation: Historical Perspectives and Recent Advances in Diagnostics, Imaging, and Antibacterial Design. ACS Infect Dis 2022; 8:1992-2018. [PMID: 36048623 DOI: 10.1021/acsinfecdis.2c00315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The discovery of β-lactam (BL) antibiotics in the early 20th century represented a remarkable advancement in human medicine, allowing for the widespread treatment of infectious diseases that had plagued humanity throughout history. Yet, this triumph was followed closely by the emergence of β-lactamase (BLase), a bacterial weapon to destroy BLs. BLase production is a primary mechanism of resistance to BL antibiotics, and the spread of new homologues with expanded hydrolytic activity represents a pressing threat to global health. Nonetheless, researchers have developed strategies that take advantage of this defense mechanism, exploiting BLase activity in the creation of probes, diagnostic tools, and even novel antibiotics selective for resistant organisms. Early discoveries in the 1960s and 1970s demonstrating that certain BLs expel a leaving group upon BLase cleavage have spawned an entire field dedicated to employing this selective release mechanism, termed BLase-mediated fragmentation. Chemical probes have been developed for imaging and studying BLase-expressing organisms in the laboratory and diagnosing BL-resistant infections in the clinic. Perhaps most promising, new antibiotics have been developed that use BLase-mediated fragmentation to selectively release cytotoxic chemical "warheads" at the site of infection, reducing off-target effects and allowing for the repurposing of putative antibiotics against resistant organisms. This Review will provide some historical background to the emergence of this field and highlight some exciting recent reports that demonstrate the promise of this unique release mechanism.
Collapse
Affiliation(s)
- Malcolm S Cole
- Department of Medicinal Chemistry, University of Minnesota, 308 Harvard St SE, Minneapolis, Minnesota 55455, United States
| | - Pooja V Hegde
- Department of Medicinal Chemistry, University of Minnesota, 308 Harvard St SE, Minneapolis, Minnesota 55455, United States
| | - Courtney C Aldrich
- Department of Medicinal Chemistry, University of Minnesota, 308 Harvard St SE, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
10
|
Wu X, Wang R, Kwon N, Ma H, Yoon J. Activatable fluorescent probes for in situ imaging of enzymes. Chem Soc Rev 2021; 51:450-463. [PMID: 34951429 DOI: 10.1039/d1cs00543j] [Citation(s) in RCA: 134] [Impact Index Per Article: 44.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
As the main biomarkers of most diseases, enzymes play fundamental but extremely critical roles in biosystems. High-resolution studies of enzymes using activatable in situ fluorescence imaging may help to better elucidate their dynamics in living systems. Currently, most activatable probes can realize changeable imaging of enzymes but inevitably tend to diffuse away from the original active site of the enzyme and even translocate out of cells, seriously impairing in situ high-resolution observation of the enzymes. In situ fluorescence imaging of enzymes can be realized by labelling probes or antibodies with always-on signals that fail to enable activatable imaging of enzymes. Thus, fluorescent probes with both "activatable" and "in situ" properties will enable high-resolution studies of enzymes in living systems. In this tutorial review, we summarize the existing methods ranging from design strategies to bioimaging applications that could be used to develop activatable fluorescent probes for in situ imaging of enzymes. It is expected that this tutorial review will promote the new methods generated to design such probes for better deciphering enzymes in complex biosystems and further extend the application of these methods to other fields of enzymes.
Collapse
Affiliation(s)
- Xiaofeng Wu
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Korea.
| | - Rui Wang
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Korea.
| | - Nahyun Kwon
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Korea.
| | - Huimin Ma
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Juyoung Yoon
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Korea.
| |
Collapse
|
11
|
Wang Z, Xing B. Small-molecule fluorescent probes: big future for specific bacterial labeling and infection detection. Chem Commun (Camb) 2021; 58:155-170. [PMID: 34882159 DOI: 10.1039/d1cc05531c] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Bacterial infections remain a global healthcare problem that is particularly attributed to the spread of antibiotic resistance and the evolving pathogenicity. Accurate and swift approaches for infection diagnosis are urgently needed to facilitate antibiotic stewardship and effective medical treatment. Direct optical imaging for specific bacterial labeling and infection detection offers an attractive prospect of precisely monitoring the infectious disease status and therapeutic response in real time. This feature article focuses on the recent advances of small-molecule probes developed for fluorescent imaging of bacteria and infection, which covers the probe design, responsive mechanisms and representative applications. In addition, the perspective and challenges to advance small-molecule fluorescent probes in the field of rapid drug-resistant bacterial detection and clinical diagnosis of bacterial infections are discussed. We envision that the continuous advancement and clinical translations of such a technique will have a strong impact on future anti-infective medicine.
Collapse
Affiliation(s)
- Zhimin Wang
- Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing 100081, China.
| | - Bengang Xing
- Division of Chemistry and Biological Chemistry, School of Physical & Mathematical Sciences, Nanyang Technological University, 637371, Singapore. .,School of Chemical & Biomedical Engineering, Nanyang Technological University, Singapore, 637459, Singapore
| |
Collapse
|
12
|
Xie J, Mu R, Fang M, Cheng Y, Senchyna F, Moreno A, Banaei N, Rao J. A dual-caged resorufin probe for rapid screening of infections resistant to lactam antibiotics. Chem Sci 2021; 12:9153-9161. [PMID: 34276945 PMCID: PMC8261730 DOI: 10.1039/d1sc01471d] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 05/19/2021] [Indexed: 12/04/2022] Open
Abstract
The alarming increase of antimicrobial resistance urges rapid diagnosis and pathogen specific infection management. This work reports a rapid screening assay for pathogenic bacteria resistant to lactam antibiotics. We designed a fluorogenic N-cephalosporin caged 3,7-diesterphenoxazine probe CDA that requires sequential activations to become fluorescent resorufin. A series of studies with recombinant β-lactamases and clinically prevalent pathogens including Escherichia coli, Klebsiella pneumoniae, Enterobacter cloacae and Serratia marcescens demonstrated that CDA possessed superior sensitivity in reporting the activity of β-lactamases including cephalosporinases and carbapenemases. After a simple filtration, lactam-resistant bacteria in urine samples could be detected at 103 colony-forming units per milliliter within 2 hours.
Collapse
Affiliation(s)
- Jinghang Xie
- Departments of Radiology and Chemistry, Molecular Imaging Program at Stanford, Stanford University School of Medicine Stanford CA 94305 USA
| | - Ran Mu
- Departments of Radiology and Chemistry, Molecular Imaging Program at Stanford, Stanford University School of Medicine Stanford CA 94305 USA
| | - Mingxi Fang
- Departments of Radiology and Chemistry, Molecular Imaging Program at Stanford, Stanford University School of Medicine Stanford CA 94305 USA
| | - Yunfeng Cheng
- Departments of Radiology and Chemistry, Molecular Imaging Program at Stanford, Stanford University School of Medicine Stanford CA 94305 USA
| | - Fiona Senchyna
- Department of Pathology, Stanford University School of Medicine Stanford CA 94305 USA
| | - Angel Moreno
- Department of Pathology, Stanford University School of Medicine Stanford CA 94305 USA
| | - Niaz Banaei
- Department of Pathology, Stanford University School of Medicine Stanford CA 94305 USA
- Clinical Microbiology Laboratory, Stanford University Medical Center Palo Alto CA 94304 USA
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine Stanford CA 94305 USA
| | - Jianghong Rao
- Departments of Radiology and Chemistry, Molecular Imaging Program at Stanford, Stanford University School of Medicine Stanford CA 94305 USA
| |
Collapse
|
13
|
Zhao L, Liu Y, Zhang Z, Wei J, Xie S, Li X. Fibrous testing papers for fluorescence trace sensing and photodynamic destruction of antibiotic-resistant bacteria. J Mater Chem B 2021; 8:2709-2718. [PMID: 32149315 DOI: 10.1039/d0tb00002g] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The increasing prevalence of antibiotic-resistant bacteria needs rapid identification and efficient destruction routes. This study proposes testing paper derived from electrospun fibrous mats and aggregation-induced emission (AIE) probes for trace sensing and simultaneous destruction of antibiotic-resistant E. coli. Aptamers are conjugated on fibers for selective capture of E. coli, and the capture capability can be regenerated via rinsing with salt solution. Hydroxyl tetraphenylethene (TPE) is linked with two cephalosporin molecules to construct TPE-Cep probes, and the fluorescence emission is turned on specifically in the presence of β-lactamase, which is a critical marker for screening resistant bacteria. Fibrous mats are lit up only in the presence of antibiotic-resistant bacteria, and the fluorescence intensity changes could be statistically fitted into an equation for quantitative analysis. Fibrous strips display apparent color changes from blue to green for a visual readout of bacterial levels, and the limit of detection (LOD) is much lower than those of previous paper substrates. In addition, the TPE-Cep probes could produce reactive oxygen species (ROS) under room light illumination to kill the captured bacteria. Thus, the integration of aptamer-grafted electrospun fibers and functional AIE probes provides potential for selective capture, trace imaging and photodynamic destruction of antibiotic-resistant bacteria.
Collapse
Affiliation(s)
- Long Zhao
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, P. R. China. and School of Bioscience and Technology, Chengdu Medical College, Chengdu 610031, P. R. China
| | - Yuan Liu
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, P. R. China.
| | - Zhanlin Zhang
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, P. R. China.
| | - Jiaojun Wei
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, P. R. China.
| | - Songzhi Xie
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, P. R. China.
| | - Xiaohong Li
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, P. R. China.
| |
Collapse
|
14
|
Li Y, Xue C, Fang Z, Xu W, Xie H. In Vivo Visualization of γ-Glutamyl Transpeptidase Activity with an Activatable Self-Immobilizing Near-Infrared Probe. Anal Chem 2020; 92:15017-15024. [DOI: 10.1021/acs.analchem.0c02954] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Yuyao Li
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Chenghong Xue
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Zhijun Fang
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Weipan Xu
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Hexin Xie
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
15
|
Ding Y, Li Z, Xu C, Qin W, Wu Q, Wang X, Cheng X, Li L, Huang W. Fluorogenic Probes/Inhibitors of β-Lactamase and their Applications in Drug-Resistant Bacteria. Angew Chem Int Ed Engl 2020; 60:24-40. [PMID: 32592283 DOI: 10.1002/anie.202006635] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Indexed: 01/08/2023]
Abstract
β-Lactam antibiotics are generally perceived as one of the greatest inventions of the 20th century, and these small molecular compounds have saved millions of lives. However, upon clinical application of antibiotics, the β-lactamase secreted by pathogenic bacteria can lead to the gradual development of drug resistance. β-Lactamase is a hydrolase that can efficiently hydrolyze and destroy β-lactam antibiotics. It develops and spreads rapidly in pathogens, and the drug-resistant bacteria pose a severe threat to human health and development. As a result, detecting and inhibiting the activities of β-lactamase are of great value for the rational use of antibiotics and the treatment of infectious diseases. At present, many specific detection methods and inhibitors of β-lactamase have been developed and applied in clinical practice. In this Minireview, we describe the resistance mechanism of bacteria producing β-lactamase and further summarize the fluorogenic probes, inhibitors of β-lactamase, and their applications in the treatment of infectious diseases. It may be valuable to design fluorogenic probes with improved selectivity, sensitivity, and effectiveness to further identify the inhibitors for β-lactamases and eventually overcome bacterial resistance.
Collapse
Affiliation(s)
- Yang Ding
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211816, P. R. China
| | - Zheng Li
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211816, P. R. China
| | - Chenchen Xu
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211816, P. R. China
| | - Wenjing Qin
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211816, P. R. China
| | - Qiong Wu
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211816, P. R. China
| | - Xuchun Wang
- College of Chemistry and Material Engineering, University of Science and Technology of Anhui, Bengbu, 233000, P. R. China
| | - Xiamin Cheng
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University (NanjingTech), Nanjing, 211816, P. R. China
| | - Lin Li
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211816, P. R. China
| | - Wei Huang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211816, P. R. China.,Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE) & Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU), Xi'an, 710072, P. R. China
| |
Collapse
|
16
|
Ding Y, Li Z, Xu C, Qin W, Wu Q, Wang X, Cheng X, Li L, Huang W. Fluorogenic Probes/Inhibitors of β‐Lactamase and their Applications in Drug‐Resistant Bacteria. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202006635] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Yang Ding
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM) Nanjing Tech University (NanjingTech) Nanjing 211816 P. R. China
| | - Zheng Li
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM) Nanjing Tech University (NanjingTech) Nanjing 211816 P. R. China
| | - Chenchen Xu
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM) Nanjing Tech University (NanjingTech) Nanjing 211816 P. R. China
| | - Wenjing Qin
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM) Nanjing Tech University (NanjingTech) Nanjing 211816 P. R. China
| | - Qiong Wu
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM) Nanjing Tech University (NanjingTech) Nanjing 211816 P. R. China
| | - Xuchun Wang
- College of Chemistry and Material Engineering University of Science and Technology of Anhui Bengbu 233000 P. R. China
| | - Xiamin Cheng
- Institute of Advanced Synthesis School of Chemistry and Molecular Engineering Nanjing Tech University (NanjingTech) Nanjing 211816 P. R. China
| | - Lin Li
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM) Nanjing Tech University (NanjingTech) Nanjing 211816 P. R. China
| | - Wei Huang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM) Nanjing Tech University (NanjingTech) Nanjing 211816 P. R. China
- Frontiers Science Center for Flexible Electronics (FSCFE) Shaanxi Institute of Flexible Electronics (SIFE) & Shaanxi Institute of Biomedical Materials and Engineering (SIBME) Northwestern Polytechnical University (NPU) Xi'an 710072 P. R. China
| |
Collapse
|
17
|
Yu P, Yang JN, Yan JW, Meng ZZ, Hong WD, Roberts AP, Ward SA, Zhang L, Li S. A novel fluorescent probe for the detection of AmpC beta-lactamase and the application in screening beta-lactamase inhibitors. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 234:118257. [PMID: 32208355 DOI: 10.1016/j.saa.2020.118257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 03/01/2020] [Accepted: 03/13/2020] [Indexed: 06/10/2023]
Abstract
The rapid detection of β-lactamases (Blas) and effective screening of Bla inhibitors are critically important and urgent for solving antibiotic resistance and improving precision medicine. Here a novel fluorescent probe CDC-559 was designed and synthesized, which can be used for the selective and direct detection of AmpC Blas. More importantly, it can realize screening the Bla inhibitors with sulbactam sodium and tazobactam as model compounds, and the half-maximal inhibitory concentration are 0.279 μM and 0.053 μM, respectively. CDC-559 can be applied not only to examine the resistance of bacterial strains, but also to categorize its mode of action specifically, which is consistent with the essential result of the Blas. The research suggests that CDC-559 probe has tremendous potential in the rapid detection of AmpC Blas as well as the strains with AmpC-encoded gene, which is instructive in promoting better antibiotic stewardship practices and developments.
Collapse
Affiliation(s)
- Pan Yu
- MOE Joint International Research Laboratory of Synthesis Biology and Medicine, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, PR China
| | - Jia-Ning Yang
- MOE Joint International Research Laboratory of Synthesis Biology and Medicine, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, PR China
| | - Jin-Wu Yan
- MOE Joint International Research Laboratory of Synthesis Biology and Medicine, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, PR China
| | - Zhi-Zhong Meng
- MOE Joint International Research Laboratory of Synthesis Biology and Medicine, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, PR China
| | - W David Hong
- Department of Chemistry, University of Liverpool, Liverpool L69 7ZD, United Kingdom
| | - Adam P Roberts
- Centre for Drugs and Diagnostics, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool L3 5QA, United Kingdom
| | - Stephen A Ward
- Centre for Drugs and Diagnostics, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool L3 5QA, United Kingdom
| | - Lei Zhang
- MOE Joint International Research Laboratory of Synthesis Biology and Medicine, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, PR China; Guangdong Provincial Engineering and Technological Centre for Biopharmaceuticals, South China University of Technology, Guangzhou 510006, PR China.
| | - Shan Li
- MOE Joint International Research Laboratory of Synthesis Biology and Medicine, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, PR China.
| |
Collapse
|
18
|
Wang J, Xu W, Xue S, Yu T, Xie H. A minor structure modification serendipitously leads to a highly carbapenemase-specific fluorogenic probe. Org Biomol Chem 2020; 18:4029-4033. [PMID: 32432265 DOI: 10.1039/d0ob00114g] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Reported herein is a fluorogenic probe for the detection of carbapenemase activity. This reagent features carbapenem as an enzyme recognition motif and a carbon-carbon double bond between carbapenem and the fluorophore, exhibiting high specificity to all carbapenemases, including metallo carbapenemases and serine carbapenemases, over other β-lactamases.
Collapse
Affiliation(s)
- Jie Wang
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China.
| | | | | | | | | |
Collapse
|
19
|
Das S, Ihssen J, Wick L, Spitz U, Shabat D. Chemiluminescent Carbapenem‐Based Molecular Probe for Detection of Carbapenemase Activity in Live Bacteria. Chemistry 2020; 26:3647-3652. [DOI: 10.1002/chem.202000217] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Indexed: 12/26/2022]
Affiliation(s)
- Sayantan Das
- School of Chemistry, Faculty of Exact SciencesTel Aviv University Tel Aviv 69978 Israel
| | - Julian Ihssen
- BIOSYNTH CARBOSYNTH Rietlistrasse 4, Postfach 125 9422 Staad Switzerland
| | - Lukas Wick
- BIOSYNTH CARBOSYNTH Rietlistrasse 4, Postfach 125 9422 Staad Switzerland
| | - Urs Spitz
- BIOSYNTH CARBOSYNTH Rietlistrasse 4, Postfach 125 9422 Staad Switzerland
| | - Doron Shabat
- School of Chemistry, Faculty of Exact SciencesTel Aviv University Tel Aviv 69978 Israel
| |
Collapse
|
20
|
Jiang J, Tan Q, Zhao S, Song H, Hu L, Xie H. Late-stage difluoromethylation leading to a self-immobilizing fluorogenic probe for the visualization of enzyme activities in live cells. Chem Commun (Camb) 2019; 55:15000-15003. [PMID: 31777880 DOI: 10.1039/c9cc07903c] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Reported herein is a novel p-quinone methide-based self-immobilizing fluorogenic probe for the visualization of β-galactosidase activities in live cells. This easily prepared imaging reagent massively increases the fluorescence intensity and covalently links to the activation site with high efficiency upon enzymatic trigger.
Collapse
Affiliation(s)
- Jialing Jiang
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China.
| | | | | | | | | | | |
Collapse
|
21
|
Song H, Li Y, Chen Y, Xue C, Xie H. Highly Efficient Multiple‐Labeling Probes for the Visualization of Enzyme Activities. Chemistry 2019; 25:13994-14002. [DOI: 10.1002/chem.201903458] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 08/30/2019] [Indexed: 01/19/2023]
Affiliation(s)
- Heng Song
- State Key Laboratory of Bioreactor EngineeringShanghai Key Laboratory of New Drug DesignSchool of PharmacyEast China University of Science and Technology Shanghai 200237 P. R. China
| | - Yuyao Li
- State Key Laboratory of Bioreactor EngineeringShanghai Key Laboratory of New Drug DesignSchool of PharmacyEast China University of Science and Technology Shanghai 200237 P. R. China
| | - Yefeng Chen
- State Key Laboratory of Bioreactor EngineeringShanghai Key Laboratory of New Drug DesignSchool of PharmacyEast China University of Science and Technology Shanghai 200237 P. R. China
| | - Chenghong Xue
- State Key Laboratory of Bioreactor EngineeringShanghai Key Laboratory of New Drug DesignSchool of PharmacyEast China University of Science and Technology Shanghai 200237 P. R. China
| | - Hexin Xie
- State Key Laboratory of Bioreactor EngineeringShanghai Key Laboratory of New Drug DesignSchool of PharmacyEast China University of Science and Technology Shanghai 200237 P. R. China
| |
Collapse
|
22
|
|
23
|
Lian H, He S, Chen C, Yan X. Flow Cytometric Analysis of Nanoscale Biological Particles and Organelles. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2019; 12:389-409. [PMID: 30978294 DOI: 10.1146/annurev-anchem-061318-115042] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Analysis of nanoscale biological particles and organelles (BPOs) at the single-particle level is fundamental to the in-depth study of biosciences. Flow cytometry is a versatile technique that has been well-established for the analysis of eukaryotic cells, yet conventional flow cytometry can hardly meet the sensitivity requirement for nanoscale BPOs. Recent advances in high-sensitivity flow cytometry have made it possible to conduct precise, sensitive, and specific analyses of nanoscale BPOs, with exceptional benefits for bacteria, mitochondria, viruses, and extracellular vesicles (EVs). In this article, we discuss the significance, challenges, and efforts toward sensitivity enhancement, followed by the introduction of flow cytometric analysis of nanoscale BPOs. With the development of the nano-flow cytometer that can detect single viruses and EVs as small as 27 nm and 40 nm, respectively, more exciting applications in nanoscale BPO analysis can be envisioned.
Collapse
Affiliation(s)
| | | | - Chaoxiang Chen
- MOE Key Laboratory of Spectrochemical Analysis and Instrumentation; Key Laboratory for Chemical Biology of Fujian Province; Collaborative Innovation Center of Chemistry for Energy Material; and Department of Chemical Biology, College of Chemistry and Engineering, Xiamen University, Xiamen, Fujian 361005, China;
| | - Xiaomei Yan
- MOE Key Laboratory of Spectrochemical Analysis and Instrumentation; Key Laboratory for Chemical Biology of Fujian Province; Collaborative Innovation Center of Chemistry for Energy Material; and Department of Chemical Biology, College of Chemistry and Engineering, Xiamen University, Xiamen, Fujian 361005, China;
| |
Collapse
|
24
|
Chen Y, Xu M, Xu W, Song H, Hu L, Xue S, Zhang S, Qian X, Xie H. Highly selective and wash-free visualization of resistant bacteria with a relebactam-derived fluorogenic probe. Chem Commun (Camb) 2019; 55:9919-9922. [DOI: 10.1039/c9cc04533c] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An unprecedented relebactam-based fluorogenic probe is reported for the wash-free imaging of resistant bacteria.
Collapse
Affiliation(s)
- Yefeng Chen
- State Key Laboratory of Bioreactor Engineering
- Shanghai Key Laboratory of New Drug Design
- School of Pharmacy
- East China University of Science and Technology
- Shanghai 200237
| | - Minqiu Xu
- State Key Laboratory of Bioreactor Engineering
- Shanghai Key Laboratory of New Drug Design
- School of Pharmacy
- East China University of Science and Technology
- Shanghai 200237
| | - Weipan Xu
- State Key Laboratory of Bioreactor Engineering
- Shanghai Key Laboratory of New Drug Design
- School of Pharmacy
- East China University of Science and Technology
- Shanghai 200237
| | - Heng Song
- State Key Laboratory of Bioreactor Engineering
- Shanghai Key Laboratory of New Drug Design
- School of Pharmacy
- East China University of Science and Technology
- Shanghai 200237
| | - Liqiang Hu
- State Key Laboratory of Bioreactor Engineering
- Shanghai Key Laboratory of New Drug Design
- School of Pharmacy
- East China University of Science and Technology
- Shanghai 200237
| | - Shuyuan Xue
- State Key Laboratory of Bioreactor Engineering
- Shanghai Key Laboratory of New Drug Design
- School of Pharmacy
- East China University of Science and Technology
- Shanghai 200237
| | - Shuangzhan Zhang
- State Key Laboratory of Bioreactor Engineering
- Shanghai Key Laboratory of New Drug Design
- School of Pharmacy
- East China University of Science and Technology
- Shanghai 200237
| | - Xiana Qian
- State Key Laboratory of Bioreactor Engineering
- Shanghai Key Laboratory of New Drug Design
- School of Pharmacy
- East China University of Science and Technology
- Shanghai 200237
| | - Hexin Xie
- State Key Laboratory of Bioreactor Engineering
- Shanghai Key Laboratory of New Drug Design
- School of Pharmacy
- East China University of Science and Technology
- Shanghai 200237
| |
Collapse
|
25
|
Qian X, Zhang S, Xue S, Mao W, Xu M, Xu W, Xie H. A carbapenem-based fluorescence assay for the screening of metallo-β-lactamase inhibitors. Bioorg Med Chem Lett 2019; 29:322-325. [DOI: 10.1016/j.bmcl.2018.11.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 11/05/2018] [Accepted: 11/09/2018] [Indexed: 10/27/2022]
|
26
|
Chan HL, Lyu L, Aw J, Zhang W, Li J, Yang HH, Hayashi H, Chiba S, Xing B. Unique Fluorescent Imaging Probe for Bacterial Surface Localization and Resistant Enzyme Imaging. ACS Chem Biol 2018; 13:1890-1896. [PMID: 29595947 DOI: 10.1021/acschembio.8b00172] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Emergence of antibiotic bacterial resistance has caused serious clinical issues worldwide due to increasingly difficult treatment. Development of a specific approach for selective visualization of resistant bacteria will be highly significant for clinical investigations to promote timely diagnosis and treatment of bacterial infections. In this article, we present an effective method that not only is able to selectively recognize drug resistant AmpC β-lactamases enzyme but, more importantly, is able to interact with bacterial cell wall components, resulting in a desired localization effect on the bacterial surface. A unique and specific enzyme-responsive cephalosporin probe (DFD-1) has been developed for the selective recognition of resistance bacteria AmpC β-lactamase, by employing fluorescence resonance energy transfer with an "off-on" bioimaging. To achieve the desired localization, a lipid-azide conjugate (LA-12) was utilized to facilitate its penetration into the bacterial surface, followed by copper-free click chemistry. This enables the probe DFD-1 to be anchored onto the cell surface. In the presence of AmpC enzymes, the cephalosporin β-lactam ring on DFD-1 will be hydrolyzed, leading to the quencher release, thus generating fluorescence for real-time resistant bacterial screening. More importantly, the bulky dibenzocyclooctyne group in DFD-1 allowed selective recognition toward the AmpC bacterial enzyme instead of its counterpart ( e.g., TEM-1 β-lactamase). Both live cell imaging and cell cytometry assays showed the great selectivity of DFD-1 to drug resistant bacterial pathogens containing the AmpC enzyme with significant fluorescence enhancement (∼67-fold). This probe presented promising capability to selectively localize and screen for AmpC resistance bacteria, providing great promise for clinical microbiological applications.
Collapse
Affiliation(s)
- Hui Ling Chan
- Division of Chemistry and Biological Chemistry, School of Physical & Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
| | - Linna Lyu
- Division of Chemistry and Biological Chemistry, School of Physical & Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
| | - Junxin Aw
- Division of Chemistry and Biological Chemistry, School of Physical & Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
| | - Wenmin Zhang
- Division of Chemistry and Biological Chemistry, School of Physical & Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Juan Li
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Huang-Hao Yang
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Hirohito Hayashi
- Division of Chemistry and Biological Chemistry, School of Physical & Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
| | - Shunsuke Chiba
- Division of Chemistry and Biological Chemistry, School of Physical & Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
| | - Bengang Xing
- Division of Chemistry and Biological Chemistry, School of Physical & Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| |
Collapse
|
27
|
Mao W, Wang Y, Qian X, Xia L, Xie H. A Carbapenem‐Based Off–On Fluorescent Probe for Specific Detection of Metallo‐β‐Lactamase Activities. Chembiochem 2018; 20:511-515. [DOI: 10.1002/cbic.201800126] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Indexed: 12/14/2022]
Affiliation(s)
- Wuyu Mao
- State Key Laboratory of Bioreactor EngineeringShanghai Key Laboratory of New Drug DesignSchool of PharmacyEast China University of Science and Technology Shanghai 200237 P.R. China
| | - Yaqun Wang
- State Key Laboratory of Bioreactor EngineeringShanghai Key Laboratory of New Drug DesignSchool of PharmacyEast China University of Science and Technology Shanghai 200237 P.R. China
| | - Xiana Qian
- State Key Laboratory of Bioreactor EngineeringShanghai Key Laboratory of New Drug DesignSchool of PharmacyEast China University of Science and Technology Shanghai 200237 P.R. China
| | - Lingying Xia
- State Key Laboratory of Bioreactor EngineeringShanghai Key Laboratory of New Drug DesignSchool of PharmacyEast China University of Science and Technology Shanghai 200237 P.R. China
| | - Hexin Xie
- State Key Laboratory of Bioreactor EngineeringShanghai Key Laboratory of New Drug DesignSchool of PharmacyEast China University of Science and Technology Shanghai 200237 P.R. China
| |
Collapse
|
28
|
Sharan R, Yang HJ, Sule P, Cirillo JD. Imaging Mycobacterium tuberculosis in Mice with Reporter Enzyme Fluorescence. J Vis Exp 2018:56801. [PMID: 29553533 PMCID: PMC5931367 DOI: 10.3791/56801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Reporter enzyme fluorescence (REF) utilizes substrates that are specific for enzymes present in target organisms of interest for imaging or detection by fluorescence or bioluminescence. We utilize BlaC, an enzyme expressed constitutively by all M. tuberculosis strains. REF allows rapid quantification of bacteria in lungs of infected mice. The same group of mice can be imaged at many time points, greatly reducing costs, enumerating bacteria more quickly, allowing novel observations in host-pathogen interactions, and increasing statistical power, since more animals per group are readily maintained. REF is extremely sensitive due to the catalytic nature of the BlaC enzymatic reporter and specific due to the custom flourescence resonance energy transfer (FRET) or fluorogenic substrates used. REF does not require recombinant strains, ensuring normal host-pathogen interactions. We describe the imaging of M. tuberculosis infection using a FRET substrate with maximal emission at 800 nm. The wavelength of the substrate allows sensitive deep tissue imaging in mammals. We will outline aerosol infection of mice with M. tuberculosis, anesthesia of mice, administration of the REF substrate, and optical imaging. This method has been successfully applied to evaluating host-pathogen interactions and efficacy of antibiotics targeting M. tuberculosis.
Collapse
Affiliation(s)
- Riti Sharan
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health Science Center
| | - Hee-Jeong Yang
- Tuberculosis Research Section, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health
| | - Preeti Sule
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health Science Center
| | - Jeffrey D Cirillo
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health Science Center;
| |
Collapse
|
29
|
Peng L, Xiao L, Ding Y, Xiang Y, Tong A. A simple design of fluorescent probes for indirect detection of β-lactamase based on AIE and ESIPT processes. J Mater Chem B 2018; 6:3922-3926. [DOI: 10.1039/c8tb00414e] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A fluorescent probe with both AIE and ESIPT characteristics has been developed for β-lactamase based on an indirect approach.
Collapse
Affiliation(s)
- Lu Peng
- Department of Chemistry
- Beijing Key Laboratory for Analytical Methods and Instrumentation
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology
- Tsinghua University
- Beijing 100084
| | - Lu Xiao
- Department of Chemistry
- Beijing Key Laboratory for Analytical Methods and Instrumentation
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology
- Tsinghua University
- Beijing 100084
| | - Yiwen Ding
- Department of Chemistry
- Beijing Key Laboratory for Analytical Methods and Instrumentation
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology
- Tsinghua University
- Beijing 100084
| | - Yu Xiang
- Department of Chemistry
- Beijing Key Laboratory for Analytical Methods and Instrumentation
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology
- Tsinghua University
- Beijing 100084
| | - Aijun Tong
- Department of Chemistry
- Beijing Key Laboratory for Analytical Methods and Instrumentation
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology
- Tsinghua University
- Beijing 100084
| |
Collapse
|
30
|
Zhang Z, Han X, Wang Z, Yang Z, Zhang W, Li J, Yang H, Ling XY, Xing B. A live bacteria SERS platform for the in situ monitoring of nitric oxide release from a single MRSA. Chem Commun (Camb) 2018; 54:7022-7025. [DOI: 10.1039/c8cc02855a] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A live bacteria SERS platform is developed for the precise and sensitive monitoring of nitric oxide release from a single MRSA.
Collapse
Affiliation(s)
- Zhijun Zhang
- Division of Chemistry and Biological Chemistry
- School of Physical & Mathematical Sciences
- Nanyang Technological University
- Singapore
- Singapore
| | - Xuemei Han
- Division of Chemistry and Biological Chemistry
- School of Physical & Mathematical Sciences
- Nanyang Technological University
- Singapore
- Singapore
| | - Zhimin Wang
- Division of Chemistry and Biological Chemistry
- School of Physical & Mathematical Sciences
- Nanyang Technological University
- Singapore
- Singapore
| | - Zhe Yang
- Division of Chemistry and Biological Chemistry
- School of Physical & Mathematical Sciences
- Nanyang Technological University
- Singapore
- Singapore
| | - Wenmin Zhang
- Division of Chemistry and Biological Chemistry
- School of Physical & Mathematical Sciences
- Nanyang Technological University
- Singapore
- Singapore
| | - Juan Li
- College of Chemistry
- Fuzhou University
- Fuzhou
- China
| | | | - Xing Yi Ling
- Division of Chemistry and Biological Chemistry
- School of Physical & Mathematical Sciences
- Nanyang Technological University
- Singapore
- Singapore
| | - Bengang Xing
- Division of Chemistry and Biological Chemistry
- School of Physical & Mathematical Sciences
- Nanyang Technological University
- Singapore
- Singapore
| |
Collapse
|
31
|
Wang Y, An R, Luo Z, Ye D. Firefly Luciferin-Inspired Biocompatible Chemistry for Protein Labeling and In Vivo Imaging. Chemistry 2017; 24:5707-5722. [PMID: 29068109 DOI: 10.1002/chem.201704349] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Indexed: 12/27/2022]
Abstract
Biocompatible reactions have emerged as versatile tools to build various molecular imaging probes that hold great promise for the detection of biological processes in vitro and/or in vivo. In this Minireview, we describe the recent advances in the development of a firefly luciferin-inspired biocompatible reaction between cyanobenzothiazole (CBT) and cysteine (Cys), and highlight its versatility to label proteins and build multimodality molecular imaging probes. The review starts from the general introduction of biocompatible reactions, which is followed by briefly describing the development of the firefly luciferin-inspired biocompatible chemistry. We then discuss its applications for the specific protein labeling and for the development of multimodality imaging probes (fluorescence, bioluminescence, MRI, PET, photoacoustic, etc.) that enable high sensitivity and spatial resolution imaging of redox environment, furin and caspase-3/7 activity in living cells and mice. Finally, we offer the conclusions and our perspective on the various and potential applications of this reaction. We hope that this review will contribute to the research of biocompatible reactions for their versatile applications in protein labeling and molecular imaging.
Collapse
Affiliation(s)
- Yuqi Wang
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Ruibing An
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Zhiliang Luo
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Deju Ye
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| |
Collapse
|
32
|
Song A, Cheng Y, Xie J, Banaei N, Rao J. Intramolecular substitution uncages fluorogenic probes for detection of metallo-carbapenemase-expressing bacteria. Chem Sci 2017; 8:7669-7674. [PMID: 29568429 PMCID: PMC5849144 DOI: 10.1039/c7sc02416a] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Accepted: 09/21/2017] [Indexed: 12/18/2022] Open
Abstract
This work reports a novel caging strategy for designing fluorogenic probes to detect the activity of β-lactamases. The caging strategy uses a thiophenyl linker connected to a fluorophore caged by a good leaving group-dinitrophenyl. The uncaging proceeds in two steps through the sulfa-releasing and subsequent intramolecular substitution. The length of the linker has been examined and optimized to maximize the rate of intramolecular reaction and thus the rate of fluorescence activation. Finally based on this strategy, we prepared a green fluorogenic probe CAT-7 and validated its selectivity for detecting metallo-carbapenemases (VIM-27, IMP-1, NDM-1) in carbapenem-resistant Enterobacteriaceae (CRE) lysates.
Collapse
Affiliation(s)
- Aiguo Song
- Molecular Imaging Program at Stanford , Departments of Radiology and Chemistry , Stanford University , 1201 Welch Road , Stanford , CA 94305-5484 , USA .
| | - Yunfeng Cheng
- Molecular Imaging Program at Stanford , Departments of Radiology and Chemistry , Stanford University , 1201 Welch Road , Stanford , CA 94305-5484 , USA .
| | - Jinghang Xie
- Molecular Imaging Program at Stanford , Departments of Radiology and Chemistry , Stanford University , 1201 Welch Road , Stanford , CA 94305-5484 , USA .
| | - Niaz Banaei
- Department of Pathology , Clinical Microbiology Laboratory , Stanford Hospital and Clinics , Palo Alto , CA 94304 , USA
| | - Jianghong Rao
- Molecular Imaging Program at Stanford , Departments of Radiology and Chemistry , Stanford University , 1201 Welch Road , Stanford , CA 94305-5484 , USA .
| |
Collapse
|
33
|
Mao W, Qian X, Zhang J, Xia L, Xie H. Specific Detection of Extended-Spectrum β-Lactamase Activities with a Ratiometric Fluorescent Probe. Chembiochem 2017; 18:1990-1994. [DOI: 10.1002/cbic.201700447] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Indexed: 11/06/2022]
Affiliation(s)
- Wuyu Mao
- State Key Laboratory of Bioreactor Engineering; Shanghai Key Laboratory of New Drug Design; School of Pharmacy East China; University of Science and Technology; Shanghai 200237 P.R. China
| | - Xiana Qian
- State Key Laboratory of Bioreactor Engineering; Shanghai Key Laboratory of New Drug Design; School of Pharmacy East China; University of Science and Technology; Shanghai 200237 P.R. China
| | - Jian Zhang
- State Key Laboratory of Bioreactor Engineering; Shanghai Key Laboratory of New Drug Design; School of Pharmacy East China; University of Science and Technology; Shanghai 200237 P.R. China
| | - Lingying Xia
- State Key Laboratory of Bioreactor Engineering; Shanghai Key Laboratory of New Drug Design; School of Pharmacy East China; University of Science and Technology; Shanghai 200237 P.R. China
| | - Hexin Xie
- State Key Laboratory of Bioreactor Engineering; Shanghai Key Laboratory of New Drug Design; School of Pharmacy East China; University of Science and Technology; Shanghai 200237 P.R. China
| |
Collapse
|
34
|
He S, Hong X, Huang T, Zhang W, Zhou Y, Wu L, Yan X. Rapid quantification of live/dead lactic acid bacteria in probiotic products using high-sensitivity flow cytometry. Methods Appl Fluoresc 2017; 5:024002. [DOI: 10.1088/2050-6120/aa64e4] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
35
|
Mao W, Xia L, Xie H. Detection of Carbapenemase-Producing Organisms with a Carbapenem-Based Fluorogenic Probe. Angew Chem Int Ed Engl 2017; 56:4468-4472. [DOI: 10.1002/anie.201612495] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 01/27/2017] [Indexed: 01/22/2023]
Affiliation(s)
- Wuyu Mao
- State Key Laboratory of Bioreactor Engineering; Shanghai Key Laboratory of New Drug Design; School of Pharmacy; East China University of Science and Technology; Shanghai 200237 P.R. China
| | - Lingying Xia
- State Key Laboratory of Bioreactor Engineering; Shanghai Key Laboratory of New Drug Design; School of Pharmacy; East China University of Science and Technology; Shanghai 200237 P.R. China
| | - Hexin Xie
- State Key Laboratory of Bioreactor Engineering; Shanghai Key Laboratory of New Drug Design; School of Pharmacy; East China University of Science and Technology; Shanghai 200237 P.R. China
| |
Collapse
|
36
|
Mao W, Xia L, Xie H. Detection of Carbapenemase-Producing Organisms with a Carbapenem-Based Fluorogenic Probe. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201612495] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Wuyu Mao
- State Key Laboratory of Bioreactor Engineering; Shanghai Key Laboratory of New Drug Design; School of Pharmacy; East China University of Science and Technology; Shanghai 200237 P.R. China
| | - Lingying Xia
- State Key Laboratory of Bioreactor Engineering; Shanghai Key Laboratory of New Drug Design; School of Pharmacy; East China University of Science and Technology; Shanghai 200237 P.R. China
| | - Hexin Xie
- State Key Laboratory of Bioreactor Engineering; Shanghai Key Laboratory of New Drug Design; School of Pharmacy; East China University of Science and Technology; Shanghai 200237 P.R. China
| |
Collapse
|
37
|
Mao W, Xia L, Wang Y, Xie H. A Self-Immobilizing and Fluorogenic Probe for β-Lactamase Detection. Chem Asian J 2016; 11:3493-3497. [DOI: 10.1002/asia.201601344] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 10/25/2016] [Indexed: 11/12/2022]
Affiliation(s)
- Wuyu Mao
- State Key Laboratory of Bioreactor Engineering; Shanghai Key Laboratory of New Drug Design; School of Pharmacy; East China University of Science and Technology; Shanghai 200237 P.R. China
| | - Lingying Xia
- State Key Laboratory of Bioreactor Engineering; Shanghai Key Laboratory of New Drug Design; School of Pharmacy; East China University of Science and Technology; Shanghai 200237 P.R. China
| | - Yaqun Wang
- State Key Laboratory of Bioreactor Engineering; Shanghai Key Laboratory of New Drug Design; School of Pharmacy; East China University of Science and Technology; Shanghai 200237 P.R. China
| | - Hexin Xie
- State Key Laboratory of Bioreactor Engineering; Shanghai Key Laboratory of New Drug Design; School of Pharmacy; East China University of Science and Technology; Shanghai 200237 P.R. China
| |
Collapse
|
38
|
Chen Y, Xianyu Y, Wu J, Zheng W, Rao J, Jiang X. Point-of-Care Detection of β-Lactamase in Milk with a Universal Fluorogenic Probe. Anal Chem 2016; 88:5605-9. [DOI: 10.1021/acs.analchem.6b01122] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Yiping Chen
- Beijing Engineering Research Center for BioNanotechnology & CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for NanoScience and Technology, 11 BeiYiTiao, ZhongGuanCun, Beijing 100190, China
| | - Yunlei Xianyu
- Beijing Engineering Research Center for BioNanotechnology & CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for NanoScience and Technology, 11 BeiYiTiao, ZhongGuanCun, Beijing 100190, China
| | - Jing Wu
- Beijing Engineering Research Center for BioNanotechnology & CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for NanoScience and Technology, 11 BeiYiTiao, ZhongGuanCun, Beijing 100190, China
| | - Wenfu Zheng
- Beijing Engineering Research Center for BioNanotechnology & CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for NanoScience and Technology, 11 BeiYiTiao, ZhongGuanCun, Beijing 100190, China
| | - Jianghong Rao
- Molecular
Imaging Program at Stanford, Departments of Radiology and Chemistry, Stanford University, 1201 Welch Road, Stanford, California 94305-5484,United States
| | - Xingyu Jiang
- Beijing Engineering Research Center for BioNanotechnology & CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for NanoScience and Technology, 11 BeiYiTiao, ZhongGuanCun, Beijing 100190, China
| |
Collapse
|
39
|
A fluorogenic substrate of beta-lactamases and its potential as a probe to detect the bacteria resistant to the third-generation oxyimino-cephalosporins. Biosens Bioelectron 2016; 77:1026-31. [DOI: 10.1016/j.bios.2015.10.081] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2015] [Revised: 10/24/2015] [Accepted: 10/28/2015] [Indexed: 11/19/2022]
|
40
|
Huang T, Zheng Y, Yan Y, Yang L, Yao Y, Zheng J, Wu L, Wang X, Chen Y, Xing J, Yan X. Probing minority population of antibiotic-resistant bacteria. Biosens Bioelectron 2016; 80:323-330. [PMID: 26852201 DOI: 10.1016/j.bios.2016.01.054] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Revised: 01/14/2016] [Accepted: 01/21/2016] [Indexed: 02/06/2023]
Abstract
The evolution and spread of antibiotic-resistant pathogens has become a major threat to public health. Advanced tools are urgently needed to quickly diagnose antibiotic-resistant infections to initiate appropriate treatment. Here we report the development of a highly sensitive flow cytometric method to probe minority population of antibiotic-resistant bacteria via single cell detection. Monoclonal antibody against TEM-1 β-lactamase and Alexa Fluor 488-conjugated secondary antibody were used to selectively label resistant bacteria green, and nucleic acid dye SYTO 62 was used to stain all the bacteria red. A laboratory-built high sensitivity flow cytometer (HSFCM) was applied to simultaneously detect the side scatter and dual-color fluorescence signals of single bacteria. By using E. coli JM109/pUC19 and E. coli JM109 as the model systems for antibiotic-resistant and antibiotic-susceptible bacteria, respectively, as low as 0.1% of antibiotic-resistant bacteria were accurately quantified. By monitoring the dynamic population change of a bacterial culture with the administration of antibiotics, we confirmed that under the antimicrobial pressure, the original low population of antibiotic-resistant bacteria outcompeted susceptible strains and became the dominant population after 5hours of growth. Detection of antibiotic-resistant infection in clinical urine samples was achieved without cultivation, and the bacterial load of susceptible and resistant strains can be faithfully quantified. Overall, the HSFCM-based quantitative method provides a powerful tool for the fundamental studies of antibiotic resistance and holds the potential to provide rapid and precise guidance in clinical therapies.
Collapse
Affiliation(s)
- Tianxun Huang
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory for Chemical Biology of Fujian Province, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, P.R. China
| | - Yan Zheng
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory for Chemical Biology of Fujian Province, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, P.R. China
| | - Ya Yan
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory for Chemical Biology of Fujian Province, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, P.R. China
| | - Lingling Yang
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory for Chemical Biology of Fujian Province, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, P.R. China
| | - Yihui Yao
- Zhongshan Hospital, Xiamen University, Xiamen, Fujian 361005, P.R. China
| | - Jiaxin Zheng
- The First Affiliated Hospital of Xiamen University, Xiamen, Fujian 361005,P.R. China
| | - Lina Wu
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory for Chemical Biology of Fujian Province, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, P.R. China
| | - Xu Wang
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory for Chemical Biology of Fujian Province, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, P.R. China
| | - Yuqing Chen
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory for Chemical Biology of Fujian Province, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, P.R. China
| | - Jinchun Xing
- The First Affiliated Hospital of Xiamen University, Xiamen, Fujian 361005,P.R. China
| | - Xiaomei Yan
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory for Chemical Biology of Fujian Province, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, P.R. China.
| |
Collapse
|
41
|
Polaske NW, Kelly BD, Ashworth-Sharpe J, Bieniarz C. Quinone Methide Signal Amplification: Covalent Reporter Labeling of Cancer Epitopes using Alkaline Phosphatase Substrates. Bioconjug Chem 2016; 27:660-6. [DOI: 10.1021/acs.bioconjchem.5b00652] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Nathan W. Polaske
- Ventana Medical Systems, Inc., 1910 East Innovation
Park Drive, Tucson, Arizona 85755, United States
| | - Brian D. Kelly
- Ventana Medical Systems, Inc., 1910 East Innovation
Park Drive, Tucson, Arizona 85755, United States
| | - Julia Ashworth-Sharpe
- Ventana Medical Systems, Inc., 1910 East Innovation
Park Drive, Tucson, Arizona 85755, United States
| | - Christopher Bieniarz
- Ventana Medical Systems, Inc., 1910 East Innovation
Park Drive, Tucson, Arizona 85755, United States
| |
Collapse
|
42
|
|
43
|
Chen Y, Xie M. A magnetic relaxation switching immunosensor for one-step detection of salbutamol based on gold nanoparticle–streptavidin conjugate. RSC Adv 2015. [DOI: 10.1039/c5ra19126b] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A magnetic relaxation switching immunosensor based on gold nanoparticles–streptavidin conjugate for the detection of salbutamol.
Collapse
Affiliation(s)
- Yiping Chen
- CAS Key Lab for Biological Effects of Nanomaterials and Nanosafety
- National Center for NanoScience and Technology
- Beijing 100190
- China
| | - Mengxia Xie
- Analytical & Testing Center of Beijing Normal University
- Beijing 100875
- China
| |
Collapse
|
44
|
Chen X, Huang X, Zheng C, Liu Y, Xu T, Liu J. Preparation of different sized nano-silver loaded on functionalized graphene oxide with highly effective antibacterial properties. J Mater Chem B 2015; 3:7020-7029. [DOI: 10.1039/c5tb00280j] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The synthesis of GO@PEG@AgNPs composites: step 1, synthesis of single-layer GO, step 2, the amidation reaction between carboxylic groups of GO and amine group of PEG to synthesize GO@PEG, step 3, GO@PEG in the presence the silver nitrate produces a GO@PEG@AgNPs composites.
Collapse
Affiliation(s)
- Xu Chen
- Department of Chemistry
- Jinan University
- Guangzhou 510632
- China
| | - Xiaoquan Huang
- Department of Chemistry
- Jinan University
- Guangzhou 510632
- China
| | - Chuping Zheng
- Department of Chemistry
- Jinan University
- Guangzhou 510632
- China
| | - Yanan Liu
- Department of Chemistry
- Jinan University
- Guangzhou 510632
- China
- Department of Applied Biology & Chemical Technology
| | - Taoyuan Xu
- Department of Chemistry
- Jinan University
- Guangzhou 510632
- China
| | - Jie Liu
- Department of Chemistry
- Jinan University
- Guangzhou 510632
- China
| |
Collapse
|
45
|
Emerging rapid resistance testing methods for clinical microbiology laboratories and their potential impact on patient management. BIOMED RESEARCH INTERNATIONAL 2014; 2014:375681. [PMID: 25343142 PMCID: PMC4197867 DOI: 10.1155/2014/375681] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 08/22/2014] [Accepted: 08/28/2014] [Indexed: 12/25/2022]
Abstract
Atypical and multidrug resistance, especially ESBL and carbapenemase expressing Enterobacteriaceae, is globally spreading. Therefore, it becomes increasingly difficult to achieve therapeutic success by calculated antibiotic therapy. Consequently, rapid antibiotic resistance testing is essential. Various molecular and mass spectrometry-based approaches have been introduced in diagnostic microbiology to speed up the providing of reliable resistance data. PCR- and sequencing-based approaches are the most expensive but the most frequently applied modes of testing, suitable for the detection of resistance genes even from primary material. Next generation sequencing, based either on assessment of allelic single nucleotide polymorphisms or on the detection of nonubiquitous resistance mechanisms might allow for sequence-based bacterial resistance testing comparable to viral resistance testing on the long term. Fluorescence in situ hybridization (FISH), based on specific binding of fluorescence-labeled oligonucleotide probes, provides a less expensive molecular bridging technique. It is particularly useful for detection of resistance mechanisms based on mutations in ribosomal RNA. Approaches based on MALDI-TOF-MS, alone or in combination with molecular techniques, like PCR/electrospray ionization MS or minisequencing provide the fastest resistance results from pure colonies or even primary samples with a growing number of protocols. This review details the various approaches of rapid resistance testing, their pros and cons, and their potential use for the diagnostic laboratory.
Collapse
|
46
|
Applications of flow cytometry to characterize bacterial physiological responses. BIOMED RESEARCH INTERNATIONAL 2014; 2014:461941. [PMID: 25276788 PMCID: PMC4174974 DOI: 10.1155/2014/461941] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 08/13/2014] [Accepted: 08/13/2014] [Indexed: 12/30/2022]
Abstract
Although reports of flow cytometry (FCM) applied to bacterial analysis are increasing, studies of FCM related to human cells still vastly outnumber other reports. However, current advances in FCM combined with a new generation of cellular reporter probes have made this technique suitable for analyzing physiological responses in bacteria. We review how FCM has been applied to characterize distinct physiological conditions in bacteria including responses to antibiotics and other cytotoxic chemicals and physical factors, pathogen-host interactions, cell differentiation during biofilm formation, and the mechanisms governing development pathways such as sporulation. Since FCM is suitable for performing studies at the single-cell level, we describe how this powerful technique has yielded invaluable information about the heterogeneous distribution of differently and even specialized responding cells and how it may help to provide insights about how cell interaction takes place in complex structures, such as those that prevail in bacterial biofilms.
Collapse
|
47
|
Li L, Li Z, Shi W, Li X, Ma H. Sensitive and Selective Near-Infrared Fluorescent Off–On Probe and Its Application to Imaging Different Levels of β-Lactamase in Staphylococcus aureus. Anal Chem 2014; 86:6115-20. [DOI: 10.1021/ac501288e] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Lihong Li
- Beijing
National Laboratory
for Molecular Sciences, Key Laboratory of Analytical Chemistry for
Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Zhao Li
- Beijing
National Laboratory
for Molecular Sciences, Key Laboratory of Analytical Chemistry for
Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Wen Shi
- Beijing
National Laboratory
for Molecular Sciences, Key Laboratory of Analytical Chemistry for
Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Xiaohua Li
- Beijing
National Laboratory
for Molecular Sciences, Key Laboratory of Analytical Chemistry for
Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Huimin Ma
- Beijing
National Laboratory
for Molecular Sciences, Key Laboratory of Analytical Chemistry for
Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|