1
|
Wang X, Xu S, Zhang B, Wu H, Liu Y, Zhang X, Wang ZG. Dynamic control of His-hemin coordination and catalysis by reversible host-guest inclusion in peptide assemblies. J Colloid Interface Sci 2025; 678:421-426. [PMID: 39213994 DOI: 10.1016/j.jcis.2024.08.147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/12/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024]
Abstract
Dynamic self-assembly has significant implications in the regulation of the enzyme activities. In this study, we present a histidine-based enzyme-mimicking catalyst, formed by the self-assembly of carefully-engineered FH-based short peptides with hemin, showcasing switchable catalytic activity of hemin due to externally induced reversible inclusion of a cucurbit[7]uril-peptide hybrid. 1H NMR, ITC and theoretical simulation are employed to examine the binding affinity between the guest and host components, and UV-vis spectra are used to investigate changes in the hemin coordination environment. The histidine segment of the short peptide can be partially shielded by the cucurbituril and released following addition of the azo compound, leading to a decrease and subsequent restoration of the histidine-hemin coordination affinity and hemin activity. The photoisomeriziable nature of the azo compound enabled the activation of FHH/hemin activity to be switched on and off by exposure to different wavelengths of light. During the operation, the Phe residue remained within the cucurbituril, allowing reversible inclusion and exposure of the histidine residues. The hemin stayed connected to FHH/cucurbit[7]uril hybrid, preventing the severe aggregation of hemin and irreversible deactivation. This work may provide insights into engineering the dynamic behaviors of the cofactor-dependent catalytic assemblies.
Collapse
Affiliation(s)
- Xinyue Wang
- State Key Laboratory of Organic-Inorganic Composites, Key Lab of Biomedical Materials of Natural Macromolecules (Ministry of Education), Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Shichao Xu
- State Key Laboratory of Organic-Inorganic Composites, Key Lab of Biomedical Materials of Natural Macromolecules (Ministry of Education), Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Baoli Zhang
- State Key Laboratory of Organic-Inorganic Composites, Key Lab of Biomedical Materials of Natural Macromolecules (Ministry of Education), Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Haifeng Wu
- State Key Laboratory of Organic-Inorganic Composites, Key Lab of Biomedical Materials of Natural Macromolecules (Ministry of Education), Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yuanxi Liu
- State Key Laboratory of Organic-Inorganic Composites, Key Lab of Biomedical Materials of Natural Macromolecules (Ministry of Education), Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xianxue Zhang
- State Key Laboratory of Organic-Inorganic Composites, Key Lab of Biomedical Materials of Natural Macromolecules (Ministry of Education), Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zhen-Gang Wang
- State Key Laboratory of Organic-Inorganic Composites, Key Lab of Biomedical Materials of Natural Macromolecules (Ministry of Education), Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
2
|
Yao Y, Liu Y, Liu X, Zhang X, Shi P, Zhang X, Zhang Q, Wei X. Bubble DNA tweezer: A triple-conformation sensor responsive to concentration-ratios. iScience 2024; 27:109074. [PMID: 38361618 PMCID: PMC10867447 DOI: 10.1016/j.isci.2024.109074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/12/2024] [Accepted: 01/26/2024] [Indexed: 02/17/2024] Open
Abstract
DNA tweezers, with their elegant simplicity and flexibility, have been pivotal in biosensing and DNA computing. However, conventional tweezers are confined to a binary transformation pre/post target signal recognition, limiting them to presence/absence judgments. This study introduces bubble DNA tweezers (BDT), capable of three distinct conformations based on variable target signal ratios. In contrast to traditional compact tweezers, BDT features a looser structure centered around a non-complementary bubble domain located between the tweezer arms' connecting axis and target signal recognition jaws. This bubble triggers toehold-free DNA strand displacement, leading to three conformational changes at different target signal concentrations. BDT detects presence/absence and true concentration with remarkable specificity and sensitivity. This adaptability is not confined to ideal scenarios, proving valuable in complex, noisy environments. Our method facilitates target DNA/miRNA signal quantification within a specific length range, promising applications in clinical research and environmental detection, while inspiring future biological assay innovations.
Collapse
Affiliation(s)
- Yao Yao
- School of Computer Science and Technology, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Yuan Liu
- School of Computer Science and Technology, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Xin Liu
- School of Computer Science and Technology, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Xun Zhang
- School of Computer Science and Technology, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Peijun Shi
- School of Computer Science and Technology, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Xiaokang Zhang
- School of Computer Science and Technology, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Qiang Zhang
- School of Computer Science and Technology, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Xiaopeng Wei
- School of Computer Science and Technology, Dalian University of Technology, Dalian, Liaoning 116024, China
| |
Collapse
|
3
|
Zhang R, Chen R, Ma Y, Liang J, Ren S, Gao Z. Application of DNA Nanotweezers in biosensing: Nanoarchitectonics and advanced challenges. Biosens Bioelectron 2023; 237:115445. [PMID: 37421799 DOI: 10.1016/j.bios.2023.115445] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/20/2023] [Accepted: 05/31/2023] [Indexed: 07/10/2023]
Abstract
Deoxyribonucleic acid (DNA) is a carrier of genetic information. DNA hybridization is characterized by predictability, diversity, and specificity owing to the strict complementary base-pairing assembly mode, which stimulates the use of DNA to build a variety of nanomachines, including DNA tweezers, motors, walkers, and robots. DNA nanomachines have become prevalent for signal amplification and transformation in the field of biosensing, providing a new method for constructing highly sensitive sensing analysis strategies. DNA tweezers have exhibited unique advantages in biosensing applications owing to their simple structures and fast responses. The two-state conformation of DNA tweezers, the open and closed states, enable them to open and close autonomously after stimulation, thus facilitating the quick detection of corresponding signal changes of different targets. This review discusses the recent progress in the application of DNA nanotweezers in the field of biosensing, and the trends in their development for application in the field of biosensing are summarized.
Collapse
Affiliation(s)
- Rui Zhang
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China; State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Ruipeng Chen
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China
| | - Yujing Ma
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China; State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Jun Liang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Shuyue Ren
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China.
| | - Zhixian Gao
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China.
| |
Collapse
|
4
|
Qin Y, Ouyang Y, Willner I. Nucleic acid-functionalized nanozymes and their applications. NANOSCALE 2023; 15:14301-14318. [PMID: 37646290 DOI: 10.1039/d3nr02345a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Nanozymes are inorganic, organic and metal-organic framework nanoparticles that reveal catalytic functions by emulating native enzyme activities. Recently, these nanozymes have attracted growing scientific interest, finding diverse analytical and medical applications. However, the catalytic activities and functions of nanozymes are limited, due to the lack of substrate binding sites that concentrate on the substrate at the catalytic site (molarity effect), introduce substrate specificity and allow functional complexity of the catalysts (cascaded, switchable and cooperative catalysis). The modification of nanozymes with functional nucleic acids provides means to overcome these limitations and engineer nucleic acid/nanozyme hybrids for diverse applications. This is exemplified with the synthesis of aptananozymes, which are supramolecular aptamer-modified nanozymes. Aptananozymes exhibit combined specific binding and catalytic properties that drive diverse chemical transformations, revealing enhanced catalytic activities, as compared to the separated nanozyme/aptamer constituents. Relationships of structure-catalytic functions in the aptananozyme constructs are demonstrated. In addition, modification of nanozymes exhibiting multimodal catalytic functions with aptamers allows the engineering of nanozyme-based bioreactors for cascaded catalysis. Also, the functionalization of reactive oxygen species (ROS)-generating nanozymes with cancer cell-recognizing aptamers yields aptananozymes for targeted chemodynamic treatment of cancer cells and cancer tumors elicited in mice. Finally, nucleic acid-modified enzyme (glucose oxidase)-loaded metal-organic framework nanoparticles yield switchable biocatalytic nanozymes that drive the ON/OFF biocatalyzed oxidation of Amplex Red, dopamine or the generation of chemiluminescence. Herein, future challenges of the topic are addressed.
Collapse
Affiliation(s)
- Yunlong Qin
- The Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel.
| | - Yu Ouyang
- The Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel.
| | - Itamar Willner
- The Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel.
| |
Collapse
|
5
|
Dong J, Willner I. Transient Transcription Machineries Modulate Dynamic Functions of G-Quadruplexes: Temporal Regulation of Biocatalytic Circuits, Gene Replication and Transcription. Angew Chem Int Ed Engl 2023; 62:e202307898. [PMID: 37380611 DOI: 10.1002/anie.202307898] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 06/26/2023] [Accepted: 06/27/2023] [Indexed: 06/30/2023]
Abstract
Native G-quadruplex-regulated temporal biocatalytic circuits, gene polymerization, and transcription processes are emulated by biomimetic, synthetically engineered transcription machineries coupled to reconfigurable G-quadruplex nanostructures. These are addressed by the following example: (i) A reaction module demonstrates the fuel-triggered transcription machinery-guided transient synthesis of G-quadruplex nanostructures. (ii) A dynamically triggered and modulated transcription machinery that guides the temporal separation and reassembly of the anti-thrombin G-quadruplex aptamer/thrombin complex is introduced, and the transient thrombin-catalyzed coagulation of fibrinogen is demonstrated. (iii) A dynamically fueled transient transcription machinery for the temporal activation of G-quadruplex-topologically blocked gene polymerization circuits is introduced. (iv) Transcription circuits revealing G-quadruplex-promoted or G-quadruplex-inhibited cascaded transcription machineries are presented. Beyond advancing the rapidly developing field of dynamically modulated G-quadruplex DNA nanostructures, the systems introduce potential therapeutic applications.
Collapse
Affiliation(s)
- Jiantong Dong
- The Institute of Chemistry, The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Itamar Willner
- The Institute of Chemistry, The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| |
Collapse
|
6
|
O’Hagan M, Duan Z, Huang F, Laps S, Dong J, Xia F, Willner I. Photocleavable Ortho-Nitrobenzyl-Protected DNA Architectures and Their Applications. Chem Rev 2023; 123:6839-6887. [PMID: 37078690 PMCID: PMC10214457 DOI: 10.1021/acs.chemrev.3c00016] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Indexed: 04/21/2023]
Abstract
This review article introduces mechanistic aspects and applications of photochemically deprotected ortho-nitrobenzyl (ONB)-functionalized nucleic acids and their impact on diverse research fields including DNA nanotechnology and materials chemistry, biological chemistry, and systems chemistry. Specific topics addressed include the synthesis of the ONB-modified nucleic acids, the mechanisms involved in the photochemical deprotection of the ONB units, and the photophysical and chemical means to tune the irradiation wavelength required for the photodeprotection process. Principles to activate ONB-caged nanostructures, ONB-protected DNAzymes and aptamer frameworks are introduced. Specifically, the use of ONB-protected nucleic acids for the phototriggered spatiotemporal amplified sensing and imaging of intracellular mRNAs at the single-cell level are addressed, and control over transcription machineries, protein translation and spatiotemporal silencing of gene expression by ONB-deprotected nucleic acids are demonstrated. In addition, photodeprotection of ONB-modified nucleic acids finds important applications in controlling material properties and functions. These are introduced by the phototriggered fusion of ONB nucleic acid functionalized liposomes as models for cell-cell fusion, the light-stimulated fusion of ONB nucleic acid functionalized drug-loaded liposomes with cells for therapeutic applications, and the photolithographic patterning of ONB nucleic acid-modified interfaces. Particularly, the photolithographic control of the stiffness of membrane-like interfaces for the guided patterned growth of cells is realized. Moreover, ONB-functionalized microcapsules act as light-responsive carriers for the controlled release of drugs, and ONB-modified DNA origami frameworks act as mechanical devices or stimuli-responsive containments for the operation of DNA machineries such as the CRISPR-Cas9 system. The future challenges and potential applications of photoprotected DNA structures are discussed.
Collapse
Affiliation(s)
- Michael
P. O’Hagan
- Institute
of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Zhijuan Duan
- State
Key Laboratory of Biogeology and Environmental Geology, Engineering
Research Center of Nano-Geomaterials of Ministry of Education, Faculty
of Materials Science and Chemistry, China
University of Geosciences, Wuhan 430074, China
| | - Fujian Huang
- State
Key Laboratory of Biogeology and Environmental Geology, Engineering
Research Center of Nano-Geomaterials of Ministry of Education, Faculty
of Materials Science and Chemistry, China
University of Geosciences, Wuhan 430074, China
| | - Shay Laps
- Institute
of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Jiantong Dong
- Institute
of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Fan Xia
- State
Key Laboratory of Biogeology and Environmental Geology, Engineering
Research Center of Nano-Geomaterials of Ministry of Education, Faculty
of Materials Science and Chemistry, China
University of Geosciences, Wuhan 430074, China
| | - Itamar Willner
- Institute
of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| |
Collapse
|
7
|
Dong J, O'Hagan MP, Willner I. Switchable and dynamic G-quadruplexes and their applications. Chem Soc Rev 2022; 51:7631-7661. [PMID: 35975685 DOI: 10.1039/d2cs00317a] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
G-Quadruplexes attract growing interest as functional constituents in biology, chemistry, nanotechnology, and material science. In particular, the reversible dynamic reconfiguration of G-quadruplexes provides versatile means to switch DNA nanostructures, reversibly control catalytic functions of DNA assemblies, and switch material properties and functions. The present review article discusses the switchable dynamic reconfiguration of G-quadruplexes as central functional and structural motifs that enable diverse applications in DNA nanotechnology and material science. The dynamic reconfiguration of G-quadruplexes has a major impact on the development of DNA switches and DNA machines. The integration of G-quadruplexes with enzymes yields supramolecular assemblies exhibiting switchable catalytic functions guided by dynamic G-quadruplex topologies. In addition, G-quadruplexes act as important building blocks to operate constitutional dynamic networks and transient dissipative networks mimicking complex biological dynamic circuitries. Furthermore, the integration of G-quadruplexes with DNA nanostructures, such as origami tiles, introduces dynamic and mechanical features into these static frameworks. Beyond the dynamic operation of G-quadruplex structures in solution, the assembly of G-quadruplexes on bulk surfaces such as electrodes or nanoparticles provides versatile means to engineer diverse electrochemical and photoelectrochemical devices and to switch the dynamic aggregation/deaggregation of nanoparticles, leading to nanoparticle assemblies that reveal switchable optical properties. Finally, the functionalization of hydrogels, hydrogel microcapsules, or nanoparticle carriers, such as SiO2 nanoparticles or metal-organic framework nanoparticles, yields stimuli-responsive materials exhibiting shape-memory, self-healing, and controlled drug release properties. Indeed, G-quadruplex-modified nanomaterials find growing interest in the area of nanomedicine. Beyond the impressive G-quadruplex-based scientific advances achieved to date, exciting future developments are still anticipated. The review addresses these goals by identifying the potential opportunities and challenges ahead of the field in the coming years.
Collapse
Affiliation(s)
- Jiantong Dong
- Institute of Chemistry, The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel.
| | - Michael P O'Hagan
- Institute of Chemistry, The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel.
| | - Itamar Willner
- Institute of Chemistry, The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel.
| |
Collapse
|
8
|
Adeoye RI, Okaiyeto K, Igunnu A, Oguntibeju OO. Systematic mapping of DNAzymes research from 1995 to 2019. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2022; 41:384-406. [PMID: 35343361 DOI: 10.1080/15257770.2022.2052318] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 03/03/2022] [Accepted: 03/08/2022] [Indexed: 06/14/2023]
Abstract
DNAzymes (catalytic DNA) have gained significant diagnostic and therapeutic applications with increasing research output over the years. Functional oligonucleotides are used as molecular recognition elements within biosensors for detection of analytes and viral infections such as SARS-CoV-2. DNAzymes are also applied for silencing and regulating cancer specific genes. However, there has not been any report on systematic analysis to track research status, reveal hotspots, and map knowledge in this field. Therefore, in the present study, research articles on DNAzymes from 1995 to 2019 were extracted from Web of Science (SCI-Expanded) after which, 1037 articles were imported into Rstudio (version 3.6.2) and analysed accordingly. The highest number of articles was published in 2019 (n = 138), while the least was in 1995 (n = 1). The articles were published across 216 journals by 2344 authors with 2337 multi-author and 7 single authors. The most prolific authors were Li Y (n = 47), Liu J (n = 46), Wang L (n = 33), Willner I (n = 33) and Zhang L (n = 33). The top three most productive countries were China (n = 2018), USA (n = 447) and Canada (n = 251). The most productive institutions were Hunan University, China (n = 141), University of Illinois, USA (n = 139) and Fuzhou University, China (n = 101). Despite the increasing interest in this field, international collaborations between institutions were very low which requires immediate attention to mitigate challenges such as limited funding, access to facilities, and existing knowledge gap.
Collapse
Affiliation(s)
- Raphael Idowu Adeoye
- Enzymology Unit, Department of Biochemistry, Faculty of Life Sciences, University of Ilorin, Ilorin, Kwara State, Nigeria
- Biochemistry Unit, Department of Chemistry and Biochemistry, College of Pure and Applied Sciences, Caleb University, Imota, Lagos, Nigeria
| | - Kunle Okaiyeto
- Phytomedicine and Phytochemistry Group, Department of Biomedical Sciences, Faculty of Health and Wellness Sciences, Cape Peninsula University of Technology, Bellville, South Africa
| | - Adedoyin Igunnu
- Enzymology Unit, Department of Biochemistry, Faculty of Life Sciences, University of Ilorin, Ilorin, Kwara State, Nigeria
| | - Oluwafemi Omoniyi Oguntibeju
- Phytomedicine and Phytochemistry Group, Department of Biomedical Sciences, Faculty of Health and Wellness Sciences, Cape Peninsula University of Technology, Bellville, South Africa
| |
Collapse
|
9
|
Harding BI, Pollak NM, Stefanovic D, Macdonald J. Complexing deoxyribozymes with RNA aptamers for detection of the small molecule theophylline. Biosens Bioelectron 2022; 198:113774. [PMID: 34823962 DOI: 10.1016/j.bios.2021.113774] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 10/17/2021] [Accepted: 11/05/2021] [Indexed: 11/28/2022]
Abstract
Biointegrative information processing systems offer a great advantage to autonomous biodevices, as their capacity for biological computation provides the ability to sense the state of more complex environments and better integrate with downstream biological regulation systems. Deoxyribozymes (DNAzymes) and aptamers are of interest to such computational biosensing systems due to the enzymatic properties of DNAzymes and the ligand-inducible conformational structures of aptamers. Herein, we describe a novel method for providing ligand-responsive allosteric control to a DNAzyme using an RNA aptamer. We designed a NOT-logic-compliant E6 DNAzyme to be complementary to an RNA aptamer targeting theophylline, such that the aptamer competitively interacted with either theophylline or the DNAzyme, and disabled the DNAzyme only when theophylline concentration was below a given threshold. Out of our seven designed "complexing aptazymes," three demonstrated effective theophylline-responsive allosteric regulation (2.84 ± 3.75%, 4.97 ± 2.92%, and 8.91 ± 4.19% activity in the absence of theophylline; 46.29 ± 3.36%, 50.70 ± 10.15%, and 61.26 ± 6.18% activity in the presence of theophylline). Moreover, the same three complexing aptazymes also demonstrated the ability to semi-quantitatively determine the concentration of theophylline present in solution, successfully discriminating between therapeutically ineffective (<20 μM), safe (20-100 μM), and toxic (>100 μM) theophylline concentrations. Our method of using an RNA aptamer for ligand-responsive allosteric control of a DNAzyme expands the way aptamers can be configured for biosensing, and suggests a pathway for embedding DNAzymes to provide enhanced information processing and control of biological systems.
Collapse
Affiliation(s)
- Bradley I Harding
- Genecology Research Centre, University of the Sunshine Coast, Sippy Downs, Queensland, 4556, Australia; School of Science and Engineering, University of the Sunshine Coast, Sippy Downs, Queensland, 4556, Australia
| | - Nina M Pollak
- Genecology Research Centre, University of the Sunshine Coast, Sippy Downs, Queensland, 4556, Australia; School of Science and Engineering, University of the Sunshine Coast, Sippy Downs, Queensland, 4556, Australia; CSIRO Synthetic Biology Future Science Platform, GPO Box 1700, Canberra, Australian Capital Territory, 2601, Australia
| | - Darko Stefanovic
- Department of Computer Science, University of New Mexico, Albuquerque, NM, 87131, United States; Department of Chemical and Biological Engineering, University of New Mexico, Albuquerque, NM, 87131, United States; Center for Biomedical Engineering, University of New Mexico, Albuquerque, NM, 87131, United States
| | - Joanne Macdonald
- Genecology Research Centre, University of the Sunshine Coast, Sippy Downs, Queensland, 4556, Australia; School of Science and Engineering, University of the Sunshine Coast, Sippy Downs, Queensland, 4556, Australia.
| |
Collapse
|
10
|
Liu S, Xiang K, Wang C, Zhang Y, Fan GC, Wang W, Han H. DNA Nanotweezers for Biosensing Applications: Recent Advances and Future Prospects. ACS Sens 2022; 7:3-20. [PMID: 34989231 DOI: 10.1021/acssensors.1c01647] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
DNA nanotweezers (DTs) are reversible DNA nanodevices that can optionally switch between opened and closed states. Due to their excellent flexibility and high programmability, they have been recognized as a promising platform for constructing a diversity of biosensors and logic gates, as well as a versatile tool for molecular biology studies. In this review, we provide an overview of biosensing applications using DTs. First, the design and working principle of DTs are introduced. Next, the signal producing principles of DTs are summarized. Furthermore, biosensing applications of DTs for varying targets and purposes, both in buffers and complex biological environments, are highlighted. Finally, we provide potential opportunities and challenges for the further development of DTs.
Collapse
Affiliation(s)
- Shanshan Liu
- The State Key Laboratory of Agricultural Microbiology, College of Science, Huazhong Agricultural University, Wuhan 430070, Hubei, People’s Republic of China
| | - Kaikai Xiang
- The State Key Laboratory of Agricultural Microbiology, College of Science, Huazhong Agricultural University, Wuhan 430070, Hubei, People’s Republic of China
| | - Chunyan Wang
- The State Key Laboratory of Agricultural Microbiology, College of Science, Huazhong Agricultural University, Wuhan 430070, Hubei, People’s Republic of China
| | - Yutian Zhang
- The State Key Laboratory of Agricultural Microbiology, College of Science, Huazhong Agricultural University, Wuhan 430070, Hubei, People’s Republic of China
| | - Gao-Chao Fan
- Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, Shandong, People’s Republic of China
| | - Wenjing Wang
- The State Key Laboratory of Agricultural Microbiology, College of Science, Huazhong Agricultural University, Wuhan 430070, Hubei, People’s Republic of China
- Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, People’s Republic of China
| | - Heyou Han
- The State Key Laboratory of Agricultural Microbiology, College of Science, Huazhong Agricultural University, Wuhan 430070, Hubei, People’s Republic of China
| |
Collapse
|
11
|
Fabrini G, Minard A, Brady RA, Di Antonio M, Di Michele L. Cation-Responsive and Photocleavable Hydrogels from Noncanonical Amphiphilic DNA Nanostructures. NANO LETTERS 2022; 22:602-611. [PMID: 35026112 PMCID: PMC8796241 DOI: 10.1021/acs.nanolett.1c03314] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 12/01/2021] [Indexed: 05/26/2023]
Abstract
Thanks to its biocompatibility, versatility, and programmable interactions, DNA has been proposed as a building block for functional, stimuli-responsive frameworks with applications in biosensing, tissue engineering, and drug delivery. Of particular importance for in vivo applications is the possibility of making such nanomaterials responsive to physiological stimuli. Here, we demonstrate how combining noncanonical DNA G-quadruplex (G4) structures with amphiphilic DNA constructs yields nanostructures, which we termed "Quad-Stars", capable of assembling into responsive hydrogel particles via a straightforward, enzyme-free, one-pot reaction. The embedded G4 structures allow one to trigger and control the assembly/disassembly in a reversible fashion by adding or removing K+ ions. Furthermore, the hydrogel aggregates can be photo-disassembled upon near-UV irradiation in the presence of a porphyrin photosensitizer. The combined reversibility of assembly, responsiveness, and cargo-loading capabilities of the hydrophobic moieties make Quad-Stars a promising candidate for biosensors and responsive drug delivery carriers.
Collapse
Affiliation(s)
- Giacomo Fabrini
- Department
of Chemistry, Imperial College London, London W12 0BZ, United Kingdom
| | - Aisling Minard
- Department
of Chemistry, Imperial College London, London W12 0BZ, United Kingdom
| | - Ryan A. Brady
- Department
of Chemistry, King’s College London, London SE1 1DB, United Kingdom
| | - Marco Di Antonio
- Department
of Chemistry, Imperial College London, London W12 0BZ, United Kingdom
| | - Lorenzo Di Michele
- Department
of Chemistry, Imperial College London, London W12 0BZ, United Kingdom
- Department
of Physics—Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, United Kingdom
| |
Collapse
|
12
|
Development of Synthetic DNA Circuit and Networks for Molecular Information Processing. NANOMATERIALS 2021; 11:nano11112955. [PMID: 34835719 PMCID: PMC8625377 DOI: 10.3390/nano11112955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/25/2021] [Accepted: 10/25/2021] [Indexed: 11/23/2022]
Abstract
Deoxyribonucleic acid (DNA), a genetic material, encodes all living information and living characteristics, e.g., in cell, DNA signaling circuits control the transcription activities of specific genes. In recent years, various DNA circuits have been developed to implement a wide range of signaling and for regulating gene network functions. In particular, a synthetic DNA circuit, with a programmable design and easy construction, has become a crucial method through which to simulate and regulate DNA signaling networks. Importantly, the construction of a hierarchical DNA circuit provides a useful tool for regulating gene networks and for processing molecular information. Moreover, via their robust and modular properties, DNA circuits can amplify weak signals and establish programmable cascade systems, which are particularly suitable for the applications of biosensing and detecting. Furthermore, a biological enzyme can also be used to provide diverse circuit regulation elements. Currently, studies regarding the mechanisms and applications of synthetic DNA circuit are important for the establishment of more advanced artificial gene regulation systems and intelligent molecular sensing tools. We therefore summarize recent relevant research progress, contributing to the development of nanotechnology-based synthetic DNA circuits. By summarizing the current highlights and the development of synthetic DNA circuits, this paper provides additional insights for future DNA circuit development and provides a foundation for the construction of more advanced DNA circuits.
Collapse
|
13
|
Zhang P, Ouyang Y, Willner I. Multiplexed and amplified chemiluminescence resonance energy transfer (CRET) detection of genes and microRNAs using dye-loaded hemin/G-quadruplex-modified UiO-66 metal-organic framework nanoparticles. Chem Sci 2021; 12:4810-4818. [PMID: 34163734 PMCID: PMC8179566 DOI: 10.1039/d0sc06744j] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 02/07/2021] [Indexed: 01/11/2023] Open
Abstract
Dye-loaded UiO-66 metal-organic framework nanoparticles (NMOFs) modified with catalytic hemin/G-quadruplex DNAzyme labels act as functional hybrid modules for the chemiluminescence resonance energy transfer (CRET) analysis of miRNAs (miRNA-155 or miRNA-21) or genes (p53 or BRCA1). The dye-loaded NMOFs (dye = fluorescein (Fl) or rhodamine 6G (Rh 6G)) are modified with hairpin probes that are engineered to include in their loop domains recognition sequences for the miRNAs or genes, and in their stem regions caged G-quadruplex domains. In the presence of the analytes miRNAs or genes, the hairpin structures are opened, leading, in the presence of hemin, to the self-assembly of hemin/G-quadruplex DNAzyme labels linked to the dye-loaded NMOFs. In the presence of luminol and H2O2, the hemin/G-quadruplex DNAzyme labels catalyze the generation of chemiluminescence that provides radiative energy to stimulate the process of CRET to the dye loaded in the NMOFs, resulting in the luminescence of the loaded dye without external excitation. The resulting CRET signals relate to the concentrations of the miRNAs or the genes and allow the sensitive analysis of miRNAs and genes. In addition, the DNA hairpin-functionalized dye-loaded NMOF sensing modules were further applied to develop amplified miRNA or gene CRET-based sensing platforms. The dye-loaded NMOFs were modified with hairpin probes that include in their loop domain the recognition sequences for miRNA-155 or miRNA-21 or the recognition sequences for the p53 or BRCA1 genes. Subjecting the hairpin-modified NMOFs to the respective miRNAs or genes, in the presence of two hairpins H i and H j that include in their stem regions caged G-quadruplex subunit domains, results in the analyte-triggered opening of the probe hairpin linked to the NMOFs, and the opened hairpin tethers induce the cross-opening of the hairpins H i and H j by the hybridization chain reaction, HCR, resulting in the assembly of G-quadruplex wires tethered to the NMOFs. The binding of hemin to the HCR-generated chains yields hemin/G-quadruplex DNAzyme wires that enhance, in the presence of luminol/H2O2, the CRET processes in the hybrid nanostructures. These amplification platforms lead to the amplified sensing of miRNAs and genes. By mixing the Fl- and Rh 6G-loaded hairpin-functionalized UiO NMOFs, the multiplexed CRET detection of miRNA-155, miRNA-21 and the p53 and BRCA1 genes is demonstrated.
Collapse
Affiliation(s)
- Pu Zhang
- Institute of Chemistry, Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem Jerusalem 91904 Israel
| | - Yu Ouyang
- Institute of Chemistry, Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem Jerusalem 91904 Israel
| | - Itamar Willner
- Institute of Chemistry, Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem Jerusalem 91904 Israel
| |
Collapse
|
14
|
Yue L, Wang S, Wulf V, Willner I. Stiffness-switchable DNA-based constitutional dynamic network hydrogels for self-healing and matrix-guided controlled chemical processes. Nat Commun 2019; 10:4774. [PMID: 31636256 PMCID: PMC6803638 DOI: 10.1038/s41467-019-12697-2] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 09/26/2019] [Indexed: 12/31/2022] Open
Abstract
Constitutional dynamic networks (CDNs) attract interest as signal-triggered reconfigurable systems mimicking natural networks. The application of CDNs to control material properties is, however, a major challenge. Here we report on the design of a CDN consisting of four toehold-modified constituents, two of which act as bidentate units for chain-elongating, while the other two form a tetradentate structure acting as a crosslinking unit. Their hybridization yields a hydrogel of medium stiffness controlled by the balance between bidentate and tetradentate units. Stabilization of the tetradentate constituent by an auxiliary effector up-regulates the crosslinking unit, yielding a high-stiffness hydrogel. Conversely, stabilization of one of the bidentate constituents by an orthogonal effector enriches the chain-elongation units leading to a low-stiffness hydrogel. Using appropriate counter effectors, the hydrogels are reversibly switched across low-, medium- and high-stiffness states. The hydrogels are used to develop self-healing and controlled drug-release matrices and functional materials for operating biocatalytic cascades. Dynamic hydrogels with controllable properties are of interest for a range of applications. Here, the authors report on a DNA hydrogel system which can be tailored to have reversible mechanical changes, reversible shape changes, is self-healing and can be used for controlled release applications.
Collapse
Affiliation(s)
- Liang Yue
- Institute of Chemistry, The Hebrew University of Jerusalem, 91904, Jerusalem, Israel
| | - Shan Wang
- Institute of Chemistry, The Hebrew University of Jerusalem, 91904, Jerusalem, Israel
| | - Verena Wulf
- Institute of Chemistry, The Hebrew University of Jerusalem, 91904, Jerusalem, Israel
| | - Itamar Willner
- Institute of Chemistry, The Hebrew University of Jerusalem, 91904, Jerusalem, Israel.
| |
Collapse
|
15
|
O'Hagan MP, Morales JC, Galan MC. Binding and Beyond: What Else Can G-Quadruplex Ligands Do? European J Org Chem 2019. [DOI: 10.1002/ejoc.201900692] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
| | - Juan C. Morales
- Instituto de Parasitología y Biomedicina “López Neyra”; Consejo Superior de Investigaciones Científicas (CSIC); PTS Granada; Avenida del Conocimiento 17 18016 Armilla, Granada Spain
| | - M. Carmen Galan
- School of Chemistry; University of Bristol; Cantock's Close BS8 1TS UK
| |
Collapse
|
16
|
Wang J, Yue L, Wang S, Willner I. Triggered Reversible Reconfiguration of G-Quadruplex-Bridged "Domino"-Type Origami Dimers: Application of the Systems for Programmed Catalysis. ACS NANO 2018; 12:12324-12336. [PMID: 30427652 DOI: 10.1021/acsnano.8b06191] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The reversible and switchable reconfiguration of the two-origami-dimer mixture AB plus CD into the dimer mixture DA plus BC and back using the triggered formation of K+-ion-stabilized G-quadruplexes and subsequent treatment with 18-crown-6-ether is presented. The reconfiguration processes are followed by atomic force microscopy imaging of the dimer structures that include tiles marked with 0, 1, 2, and 3 4× hairpin labels. By the functionalization of AB and CD dimers with the Mg2+-ion-dependent DNAzyme subunits, the AB plus CD mixture leads to the cleavage of the fluorophore- and quencher-modified substrate of the DNAzyme and to the activation of the fluorescence of the fluorophore (fluorescein)-modified fragment product. The K+-ion-induced isomerization of the mixture of AB plus CD into the mixture DA plus BC separates the Mg2+-ion-dependent DNAzyme subunits and concomitantly reconfigures the K+-ion-stabilized G-quadruplex associated with the two dimers. After the binding of hemin to the G-quadruplexes, the hemin/G-quadruplex DNAzyme is generated, leading to the catalyzed oxidation of Amplex Red by H2O2 to yield the fluorescent resorufin product. By the cyclic treatment of the AB plus CD mixture with K+ ions to yield the DA plus BC mixture and the subsequent recovery of the AB plus CD mixture by subjecting the DA plus BC mixture to 18-crown-6-ether, the fluorescence output signals of the system are switched on and off between the fluorescence of fluorescein and resorufin, respectively.
Collapse
Affiliation(s)
- Jianbang Wang
- Institute of Chemistry, The Center for Nanoscience and Nanotechnology , The Hebrew University of Jerusalem , Jerusalem 91904 , Israel
| | - Liang Yue
- Institute of Chemistry, The Center for Nanoscience and Nanotechnology , The Hebrew University of Jerusalem , Jerusalem 91904 , Israel
| | - Shan Wang
- Institute of Chemistry, The Center for Nanoscience and Nanotechnology , The Hebrew University of Jerusalem , Jerusalem 91904 , Israel
| | - Itamar Willner
- Institute of Chemistry, The Center for Nanoscience and Nanotechnology , The Hebrew University of Jerusalem , Jerusalem 91904 , Israel
| |
Collapse
|
17
|
Zhou Z, Liu X, Yue L, Willner I. Controlling the Catalytic and Optical Properties of Aggregated Nanoparticles or Semiconductor Quantum Dots Using DNA-Based Constitutional Dynamic Networks. ACS NANO 2018; 12:10725-10735. [PMID: 30256615 DOI: 10.1021/acsnano.8b05452] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Nucleic acid-based constitutional dynamic networks (CDNs) attract growing interest as a means to mimic complex biological networks. The triggered stabilization of the CDNs allows the dictated guided reversible reconfiguration and re-equilibration of the CDNs to other CDN configurations, where some of the constituents are up-regulated, while other constituents are down-regulated. Although substantial progress in controlling the adaptive dynamic control of the compositions of networks by means of auxiliary triggers was demonstrated, the use of CDNs as active ensembles for controlling chemical functionalities is still a challenge. We report on the assembly of signal-triggered CDN systems that guide the switchable aggregation of Au nanoparticles (NPs), thereby controlling their plasmonic properties and their catalytic functions (Au NPs-catalyzed oxidation of l-DOPA to dopachrome). In addition, we demonstrate that the triggered and orthogonal up-regulation and down-regulation of the constituents of the CDNs leads to the dictated aggregation of different-sized CdSe/ZnS quantum dots (QDs), cross-linked by K+-ion-stabilized G-quadruplex units. The incorporation of hemin into the G-quadruplex cross-linking units yields horseradish peroxidase-mimicking DNAzyme units that catalyze the generation of chemiluminescence via the oxidation of luminol by H2O2. The resulting chemiluminescence stimulates the chemiluminescence resonance energy transfer (CRET) process to the QDs, resulting in the luminescence of the two-sized QDs. By the application of appropriate triggers, the CDN-dictated up-regulation and down-regulation of the different-sized QDs aggregates are demonstrated, and the control over the photophysical functions of the different-sized QDs, by means of the CDNs, is highlighted.
Collapse
Affiliation(s)
- Zhixin Zhou
- Institute of Chemistry , The Hebrew University of Jerusalem , Jerusalem 91904 , Israel
| | - Xia Liu
- Institute of Chemistry , The Hebrew University of Jerusalem , Jerusalem 91904 , Israel
| | - Liang Yue
- Institute of Chemistry , The Hebrew University of Jerusalem , Jerusalem 91904 , Israel
| | - Itamar Willner
- Institute of Chemistry , The Hebrew University of Jerusalem , Jerusalem 91904 , Israel
| |
Collapse
|
18
|
Zhou Z, Yue L, Wang S, Lehn JM, Willner I. DNA-Based Multiconstituent Dynamic Networks: Hierarchical Adaptive Control over the Composition and Cooperative Catalytic Functions of the Systems. J Am Chem Soc 2018; 140:12077-12089. [DOI: 10.1021/jacs.8b06546] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Zhixin Zhou
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Liang Yue
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Shan Wang
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Jean-Marie Lehn
- Institut de Science et d’Ingénierie Supramoléculaires (ISIS), University of Strasbourg, 8 allée Gaspard Monge, 67000 Strasbourg, France
| | - Itamar Willner
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| |
Collapse
|
19
|
|
20
|
Wang S, Yue L, Li Z, Zhang J, Tian H, Willner I. Light‐Induced Reversible Reconfiguration of DNA‐Based Constitutional Dynamic Networks: Application to Switchable Catalysis. Angew Chem Int Ed Engl 2018; 57:8105-8109. [DOI: 10.1002/anie.201803371] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Indexed: 12/18/2022]
Affiliation(s)
- Shan Wang
- Institute of ChemistryThe Center for Nanoscience and NanotechnologyThe Hebrew University of Jerusalem Jerusalem 91904 Israel
| | - Liang Yue
- Institute of ChemistryThe Center for Nanoscience and NanotechnologyThe Hebrew University of Jerusalem Jerusalem 91904 Israel
| | - Zi‐Yuan Li
- Key Laboratory for Advanced MaterialsSchool of Chemistry and Molecular EngineeringEast China University of Science and Technology Shanghai China
| | - Junji Zhang
- Key Laboratory for Advanced MaterialsSchool of Chemistry and Molecular EngineeringEast China University of Science and Technology Shanghai China
| | - He Tian
- Key Laboratory for Advanced MaterialsSchool of Chemistry and Molecular EngineeringEast China University of Science and Technology Shanghai China
| | - Itamar Willner
- Institute of ChemistryThe Center for Nanoscience and NanotechnologyThe Hebrew University of Jerusalem Jerusalem 91904 Israel
| |
Collapse
|
21
|
Wang S, Yue L, Li Z, Zhang J, Tian H, Willner I. Light‐Induced Reversible Reconfiguration of DNA‐Based Constitutional Dynamic Networks: Application to Switchable Catalysis. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201803371] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Shan Wang
- Institute of ChemistryThe Center for Nanoscience and NanotechnologyThe Hebrew University of Jerusalem Jerusalem 91904 Israel
| | - Liang Yue
- Institute of ChemistryThe Center for Nanoscience and NanotechnologyThe Hebrew University of Jerusalem Jerusalem 91904 Israel
| | - Zi‐Yuan Li
- Key Laboratory for Advanced MaterialsSchool of Chemistry and Molecular EngineeringEast China University of Science and Technology Shanghai China
| | - Junji Zhang
- Key Laboratory for Advanced MaterialsSchool of Chemistry and Molecular EngineeringEast China University of Science and Technology Shanghai China
| | - He Tian
- Key Laboratory for Advanced MaterialsSchool of Chemistry and Molecular EngineeringEast China University of Science and Technology Shanghai China
| | - Itamar Willner
- Institute of ChemistryThe Center for Nanoscience and NanotechnologyThe Hebrew University of Jerusalem Jerusalem 91904 Israel
| |
Collapse
|
22
|
Yue L, Wang S, Lilienthal S, Wulf V, Remacle F, Levine RD, Willner I. Intercommunication of DNA-Based Constitutional Dynamic Networks. J Am Chem Soc 2018; 140:8721-8731. [DOI: 10.1021/jacs.8b03450] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Liang Yue
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Shan Wang
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Sivan Lilienthal
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Verena Wulf
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Françoise Remacle
- Department of Chemistry, University of Liege, B6c, 4000 Liege, Belgium
| | - R. D. Levine
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Itamar Willner
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| |
Collapse
|
23
|
Rossetti M, Porchetta A. Allosterically regulated DNA-based switches: From design to bioanalytical applications. Anal Chim Acta 2018; 1012:30-41. [PMID: 29475471 DOI: 10.1016/j.aca.2017.12.046] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 12/10/2017] [Accepted: 12/28/2017] [Indexed: 02/07/2023]
Abstract
DNA-based switches are structure-switching biomolecules widely employed in different bioanalytical applications. Of particular interest are DNA-based switches whose activity is regulated through the use of allostery. Allostery is a naturally occurring mechanism in which ligand binding induces the modulation and fine control of a connected biomolecule function as a consequence of changes in concentration of the effector. Through this general mechanism, many different allosteric DNA-based switches able to respond in a highly controlled way at the presence of a specific molecular effector have been engineered. Here, we discuss how to design allosterically regulated DNA-based switches and their applications in the field of molecular sensing, diagnostic and drug release.
Collapse
Affiliation(s)
- Marianna Rossetti
- Chemistry Department, University of Rome, Tor Vergata, Via della Ricerca Scientifica, 00133, Rome, Italy
| | - Alessandro Porchetta
- Chemistry Department, University of Rome, Tor Vergata, Via della Ricerca Scientifica, 00133, Rome, Italy.
| |
Collapse
|
24
|
Cai W, Xie S, Zhang J, Tang D, Tang Y. An electrochemical impedance biosensor for Hg2+ detection based on DNA hydrogel by coupling with DNAzyme-assisted target recycling and hybridization chain reaction. Biosens Bioelectron 2017; 98:466-472. [DOI: 10.1016/j.bios.2017.07.025] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 07/06/2017] [Accepted: 07/10/2017] [Indexed: 12/24/2022]
|
25
|
Wang S, Yue L, Shpilt Z, Cecconello A, Kahn JS, Lehn JM, Willner I. Controlling the Catalytic Functions of DNAzymes within Constitutional Dynamic Networks of DNA Nanostructures. J Am Chem Soc 2017. [DOI: 10.1021/jacs.7b04531] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Shan Wang
- Institute
of Chemistry, The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Liang Yue
- Institute
of Chemistry, The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Zohar Shpilt
- Institute
of Chemistry, The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Alessandro Cecconello
- Institute
of Chemistry, The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Jason S. Kahn
- Institute
of Chemistry, The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Jean-Marie Lehn
- Institut
de Science et d’Ingénierie Supramoléculaires
(ISIS), University of Strasbourg, 8 Rue Gaspard Monge, Strasbourg 67000, France
| | - Itamar Willner
- Institute
of Chemistry, The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| |
Collapse
|
26
|
Yamaoki Y, Nagata T, Mashima T, Katahira M. Development of an RNA aptamer that acquires binding capacity against HIV-1 Tat protein via G-quadruplex formation in response to potassium ions. Chem Commun (Camb) 2017; 53:7056-7059. [PMID: 28620664 DOI: 10.1039/c7cc03312e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
For the development of K+-responsive RNA aptamers, we proposed a new general strategy that makes use of a G-quadruplex formation in response to K+. This is the first report of developing an RNA aptamer that demonstrates ON/OFF switching of its target-binding activity by sensing the addition/removal of K+.
Collapse
Affiliation(s)
- Yudai Yamaoki
- Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Takashi Nagata
- Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan and Graduate School of Energy Science, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan.
| | - Tsukasa Mashima
- Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan and Graduate School of Energy Science, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan.
| | - Masato Katahira
- Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan and Graduate School of Energy Science, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan.
| |
Collapse
|
27
|
Shiu SCC, Cheung YW, Dirkzwager RM, Liang S, Kinghorn AB, Fraser LA, Tang MSL, Tanner JA. Aptamer-Mediated Protein Molecular Recognition Driving a DNA Tweezer Nanomachine. ACTA ACUST UNITED AC 2016; 1:e1600006. [DOI: 10.1002/adbi.201600006] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 11/10/2016] [Indexed: 12/17/2022]
Affiliation(s)
- Simon Chi-Chin Shiu
- School of Biomedical Sciences; Li Ka Shing Faculty of Medicine; The University of Hong Kong; Pokfulam, Hong Kong S. A. R. China
| | - Yee-Wai Cheung
- School of Biomedical Sciences; Li Ka Shing Faculty of Medicine; The University of Hong Kong; Pokfulam, Hong Kong S. A. R. China
| | - Roderick M. Dirkzwager
- School of Biomedical Sciences; Li Ka Shing Faculty of Medicine; The University of Hong Kong; Pokfulam, Hong Kong S. A. R. China
| | - Shaolin Liang
- School of Biomedical Sciences; Li Ka Shing Faculty of Medicine; The University of Hong Kong; Pokfulam, Hong Kong S. A. R. China
| | - Andrew B. Kinghorn
- School of Biomedical Sciences; Li Ka Shing Faculty of Medicine; The University of Hong Kong; Pokfulam, Hong Kong S. A. R. China
| | - Lewis A. Fraser
- School of Biomedical Sciences; Li Ka Shing Faculty of Medicine; The University of Hong Kong; Pokfulam, Hong Kong S. A. R. China
| | - Marco S. L. Tang
- School of Biomedical Sciences; Li Ka Shing Faculty of Medicine; The University of Hong Kong; Pokfulam, Hong Kong S. A. R. China
| | - Julian A. Tanner
- School of Biomedical Sciences; Li Ka Shing Faculty of Medicine; The University of Hong Kong; Pokfulam, Hong Kong S. A. R. China
| |
Collapse
|
28
|
Wang L, Yang H, He J, Zhang Y, Yu J, Song Y. Cu-Hemin Metal-Organic-Frameworks/Chitosan-Reduced Graphene Oxide Nanocomposites with Peroxidase-Like Bioactivity for Electrochemical Sensing. Electrochim Acta 2016. [DOI: 10.1016/j.electacta.2016.07.162] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
29
|
Aleman Garcia MA, Hu Y, Willner I. Switchable supramolecular catalysis using DNA-templated scaffolds. Chem Commun (Camb) 2016; 52:2153-6. [PMID: 26701068 DOI: 10.1039/c5cc08873a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Switchable β-cyclodextrin (β-CD)-induced hydrolysis of m-tert-butylphenyl acetate is demonstrated in the presence of supramolecular β-CD/adamantane oligonucleotide scaffolds. In one system, a duplex between a β-CD-functionalized nucleic acid and an adamantane-nucleic acid leads to a switchable catalytic system. In a second system, a β-CD/adamantane duplex is cooperatively generated by K(+)-stabilized G-quadruplex units. The binding of hemin to the second system yields a bifunctional DNA scaffold with alternate catalytic functions.
Collapse
Affiliation(s)
- Miguel Angel Aleman Garcia
- Institute of Chemistry, The Minerva Center for Biohybrid Complex Systems, The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel.
| | - Yuwei Hu
- Institute of Chemistry, The Minerva Center for Biohybrid Complex Systems, The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel.
| | - Itamar Willner
- Institute of Chemistry, The Minerva Center for Biohybrid Complex Systems, The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel.
| |
Collapse
|
30
|
Gao F, Gao C, He S, Wang Q, Wu A. Label-free electrochemical lead (II) aptasensor using thionine as the signaling molecule and graphene as signal-enhancing platform. Biosens Bioelectron 2016; 81:15-22. [PMID: 26913503 DOI: 10.1016/j.bios.2016.01.096] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2015] [Revised: 01/29/2016] [Accepted: 01/30/2016] [Indexed: 12/24/2022]
Abstract
A label-free and highly sensitive electrochemical aptasensor for Pb(2+) was constructed using thionine (TH) as the signaling molecule and graphene (GR) as the signal-enhancing platform. The electrochemical sensing interface was fabricated by stepwise assembly of GR and TH on the lead (II) specific aptamer (LSA) modified electrode. Upon interaction with Pb(2+), the aptamer probe on the sensor underwent conformational switch from a single-stranded DNA form to the G-quadruplex structure, causing the GR with assembled TH released from the electrode surface into solution. As a result, the electrochemical signal of TH on the aptasensor was substantially reduced. Under the optimal experimental conditions, the attenuation of peak currents presented a good linear relationship with the logarithm of Pb(2+) concentrations over the range from 1.6×10(-13) to 1.6×10(-10)M. The detection limit was estimated to be 3.2×10(-14)M. The aptasensor also exhibited good regenerability, excellent selectivity, and acceptable reproducibility, indicating promising application in environment monitoring of lead.
Collapse
Affiliation(s)
- Feng Gao
- College of Chemistry and Environment, Fujian Province Key Laboratory of Morden Analytical Science and Separation Technology, Minnan Normal University, Zhangzhou 363000, PR China
| | - Cai Gao
- College of Chemistry and Environment, Fujian Province Key Laboratory of Morden Analytical Science and Separation Technology, Minnan Normal University, Zhangzhou 363000, PR China
| | - Suyu He
- College of Chemistry and Environment, Fujian Province Key Laboratory of Morden Analytical Science and Separation Technology, Minnan Normal University, Zhangzhou 363000, PR China
| | - Qingxiang Wang
- College of Chemistry and Environment, Fujian Province Key Laboratory of Morden Analytical Science and Separation Technology, Minnan Normal University, Zhangzhou 363000, PR China.
| | - Aiqun Wu
- College of Chemistry and Environment, Fujian Province Key Laboratory of Morden Analytical Science and Separation Technology, Minnan Normal University, Zhangzhou 363000, PR China
| |
Collapse
|
31
|
Chang T, Gong H, Ding P, Liu X, Li W, Bing T, Cao Z, Shangguan D. Activity Enhancement of G-Quadruplex/Hemin DNAzyme by Flanking d(CCC). Chemistry 2016; 22:4015-21. [PMID: 26813684 DOI: 10.1002/chem.201504797] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2015] [Indexed: 12/17/2022]
Abstract
G-quadruplex (G4)/hemin DNAzymes have been extensively applied in bioanalysis and molecular devices. However, their catalytic activity is still much lower than that of proteinous enzymes. The G4/hemin DNAzyme activity is correlated with the G4 conformations and the solution conditions. However, little is known about the effect of the flanking sequences on the activity, though they are important parts of G4s. Here, we report sequences containing d(CCC), flanked on both ends of the G4-core sequences remarkably enhance their DNAzyme activity. By using circular dichroism and UV-visible spectroscopy, the d(CCC) flanking sequences were demonstrated to improve the hemin binding affinity to G4s instead of increasing the parallel G4 formation, which might explain the enhanced DNAzyme activity. Meanwhile, the increased hemin binding ability promoted the degradation of hemin within the DNAzyme by H2O2. Furthermore, the DNAzyme with d(CCC) flanking sequences showed strong tolerance to pH value changes, which makes it more suitable for applications requiring wide pH conditions. The results highlight the influence of the flanking sequences on the DNAzyme activity and provide insightful information for the design of highly active DNAzymes.
Collapse
Affiliation(s)
- Tianjun Chang
- Institute of Resources and Environment, Henan Polytechnic University, Jiaozuo, 454000, P.R. China
| | - Hongmei Gong
- Institute of Resources and Environment, Henan Polytechnic University, Jiaozuo, 454000, P.R. China
| | - Pi Ding
- Institute of Resources and Environment, Henan Polytechnic University, Jiaozuo, 454000, P.R. China
| | - Xiangjun Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P.R. China
| | - Weiguo Li
- Institute of Resources and Environment, Henan Polytechnic University, Jiaozuo, 454000, P.R. China
| | - Tao Bing
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P.R. China
| | - Zehui Cao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P.R. China
| | - Dihua Shangguan
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P.R. China.
| |
Collapse
|
32
|
G-Quadruplex DNAzyme Biosensor for Quantitative Detection of T4 Polynucleotide Kinase Activity by Using Split-to-intact G-Quadruplex DNAzyme Conversion. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2016. [DOI: 10.1016/s1872-2040(16)60900-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
33
|
Albada HB, de Vries JW, Liu Q, Golub E, Klement N, Herrmann A, Willner I. Supramolecular micelle-based nucleoapzymes for the catalytic oxidation of dopamine to aminochrome. Chem Commun (Camb) 2016; 52:5561-4. [DOI: 10.1039/c6cc01115b] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Lipidated DNAzymes or a lipidated Cu(ii)-complex and lipidated aptamer sequences form supramolecular assemblies of micellar nucleoapzymes for the enhanced oxidation of dopamine to aminochrome.
Collapse
Affiliation(s)
- H. Bauke Albada
- Institute of Chemistry
- The Minerva Center for Biohybrid Complex Systems
- The Hebrew University of Jerusalem
- Jerusalem 91904
- Israel
| | - Jan Willem de Vries
- Zernike Institute for Advanced Materials
- University of Groningen
- Groningen
- The Netherlands
| | - Qing Liu
- Zernike Institute for Advanced Materials
- University of Groningen
- Groningen
- The Netherlands
| | - Eyal Golub
- Institute of Chemistry
- The Minerva Center for Biohybrid Complex Systems
- The Hebrew University of Jerusalem
- Jerusalem 91904
- Israel
| | - Niels Klement
- Zernike Institute for Advanced Materials
- University of Groningen
- Groningen
- The Netherlands
| | - Andreas Herrmann
- Zernike Institute for Advanced Materials
- University of Groningen
- Groningen
- The Netherlands
| | - Itamar Willner
- Institute of Chemistry
- The Minerva Center for Biohybrid Complex Systems
- The Hebrew University of Jerusalem
- Jerusalem 91904
- Israel
| |
Collapse
|
34
|
Lin X, Leung KH, Lin L, Lin L, Lin S, Leung CH, Ma DL, Lin JM. Determination of cell metabolite VEGF₁₆₅ and dynamic analysis of protein-DNA interactions by combination of microfluidic technique and luminescent switch-on probe. Biosens Bioelectron 2015; 79:41-7. [PMID: 26686922 DOI: 10.1016/j.bios.2015.11.089] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2015] [Revised: 11/01/2015] [Accepted: 11/28/2015] [Indexed: 11/24/2022]
Abstract
In this paper, we rationally design a novel G-quadruplex-selective luminescent iridium (III) complex for rapid detection of oligonucleotide and VEGF165 in microfluidics. This new probe is applied as a convenient biosensor for label-free quantitative analysis of VEGF165 protein from cell metabolism, as well as for studying the kinetics of the aptamer-protein interaction combination with a microfluidic platform. As a result, we have successfully established a quantitative analysis of VEGF165 from cell metabolism. Furthermore, based on the principles of hydrodynamic focusing and diffusive mixing, different transient states during kinetics process were monitored and recorded. Thus, the combination of microfluidic technique and G-quadruplex luminescent probe will be potentially applied in the studies of intramolecular interactions and molecule recognition in the future.
Collapse
Affiliation(s)
- Xuexia Lin
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China; College of Chemical Engineering, Huaqiao University, Xiamen 361000, China; Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Ka-Ho Leung
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Ling Lin
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China
| | - Luyao Lin
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China
| | - Sheng Lin
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Chung-Hang Leung
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Dik-Lung Ma
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China.
| | - Jin-Ming Lin
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
35
|
Adornetto G, Porchetta A, Palleschi G, Plaxco KW, Ricci F. A general approach to the design of allosteric, transcription factor-regulated DNAzymes. Chem Sci 2015; 6:3692-3696. [PMID: 28706715 PMCID: PMC5496187 DOI: 10.1039/c5sc00228a] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 03/09/2015] [Indexed: 12/26/2022] Open
Abstract
Here we explore a general strategy for the rational design of nucleic acid catalysts that can be allosterically activated by specific nucleic-acid binding proteins. To demonstrate this we have combined a catalytic DNAzyme sequence and the consensus sequence recognized by specific transcription factors to create a construct exhibiting two low-energy conformations: a more stable conformation lacking catalytic activity and lacking the transcription factor binding site, and a less stable conformation that is both catalytically active and competent to bind the transcription factor. The presence of the target transcription factor pushes the equilibrium between these states towards the latter conformation, concomitantly activating catalysis. To demonstrate this we have designed and characterized two peroxidase-like DNAzymes whose activities are triggered upon binding either TATA binding protein or the microphthalmia-associated transcription factor. Our approach augments the current tool kit for the allosteric control of DNAzymes and ribozymes and, because transcription factors control many key biological functions, could have important clinical and diagnostic applications.
Collapse
Affiliation(s)
- G Adornetto
- Dipartimento di Scienze e Tecnologie Chimiche University of Rome Tor Vergata , Via della Ricerca Scientifica , Rome 00133 , Italy .
| | - A Porchetta
- Dipartimento di Scienze e Tecnologie Chimiche University of Rome Tor Vergata , Via della Ricerca Scientifica , Rome 00133 , Italy .
- Consorzio Interuniversitario Biostrutture e Biosistemi "INBB" , Rome 00136 , Italy
| | - G Palleschi
- Dipartimento di Scienze e Tecnologie Chimiche University of Rome Tor Vergata , Via della Ricerca Scientifica , Rome 00133 , Italy .
- Consorzio Interuniversitario Biostrutture e Biosistemi "INBB" , Rome 00136 , Italy
| | - K W Plaxco
- Department of Chemistry and Biochemistry , University of California Santa Barbara , Santa Barbara , California 93106 , USA
- Center for Bioengineering , University of California Santa Barbara , Santa Barbara , California 93106 , USA
| | - F Ricci
- Dipartimento di Scienze e Tecnologie Chimiche University of Rome Tor Vergata , Via della Ricerca Scientifica , Rome 00133 , Italy .
- Consorzio Interuniversitario Biostrutture e Biosistemi "INBB" , Rome 00136 , Italy
| |
Collapse
|
36
|
G-quadruplex induced chirality of methylazacalix[6]pyridine via unprecedented binding stoichiometry: en route to multiplex controlled molecular switch. Sci Rep 2015; 5:10479. [PMID: 25990684 PMCID: PMC4438431 DOI: 10.1038/srep10479] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 04/15/2015] [Indexed: 12/30/2022] Open
Abstract
Nucleic acid based molecular device is a developing research field which attracts great interests in material for building machinelike nanodevices. G-quadruplex, as a new type of DNA secondary structures, can be harnessed to construct molecular device owing to its rich structural polymorphism. Herein, we developed a switching system based on G-quadruplexes and methylazacalix[6]pyridine (MACP6). The induced circular dichroism (CD) signal of MACP6 was used to monitor the switch controlled by temperature or pH value. Furthermore, the CD titration, Job-plot, variable temperature CD and 1H-NMR experiments not only confirmed the binding mode between MACP6 and G-quadruplex, but also explained the difference switching effect of MACP6 and various G-quadruplexes. The established strategy has the potential to be used as the chiral probe for specific G-quadruplex recognition.
Collapse
|
37
|
Golub E, Lu CH, Willner I. Metalloporphyrin/G-quadruplexes: From basic properties to practical applications. J PORPHYR PHTHALOCYA 2015. [DOI: 10.1142/s1088424615300025] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Guanine-rich single-stranded nucleic acids self-assemble into G-quadruplex nanostructures (predominately in the presence of K +-ions). Metalloporphyrins bind to the G-quadruplex nanostructures to form supramolecular assemblies exhibiting unique catalytic, electrocatalytic and photophysical properties. This paper addresses the advances in the characterization and the implementation of the metalloporphyrin/G-quadruplexes complexes for various applications. Out of the different complexes, the most extensively studied complexes are the hemin/G-quadruplex horseradish peroxidase-mimicking DNAzyme and the Zn(II) -protoporphyrin IX-functionalized G-quadruplex. Specifically, the hemin/G-quadruplex was found to act as a catalyst for driving different chemical transformations that mimic the native horseradish peroxidase enzyme, and, also, to function as an electrocatalyst for the reduction of H 2 O 2. Also, the hemin/G-quadruplex stimulates interesting photophysical and photocatalytic processes such as the electron-transfer quenching of semiconductor quantum dots or the chemiluminescence resonance energy transfer to semiconductor quantum dots. Alternatively, Zn(II) -protoporphyrin IX associated with G-quadruplexes exhibit intensified fluorescence properties. Beyond the straight forward application of the metalloporphyrin/G-quadruplexes as catalysts that stimulate different chemical transformations, the specific catalytic, electrocatalytic and photocatalytic functions of hemin/G-quadruplexes are heavily implemented to develop sophisticated colorimetric, electrochemical, and optical sensing platforms. Also, the unique fluorescence properties of Zn(II) -protoporphyrin IX-functionalized G-quadruplexes are applied to develop fluorescence sensing platforms. The article exemplifies different sensing assays for analyzing DNA, ligand-aptamer complexes and telomerase activity using the metalloporphyrins/G-quadruplexes as transducing labels. Also, the use of the hemin/G-quadruplex as a probe to follow the operations of DNA machines is discussed.
Collapse
Affiliation(s)
- Eyal Golub
- Institute of Chemistry, The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Givat Ram, Jerusalem 91904, Israel
| | - Chun-Hua Lu
- Institute of Chemistry, The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Givat Ram, Jerusalem 91904, Israel
| | - Itamar Willner
- Institute of Chemistry, The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Givat Ram, Jerusalem 91904, Israel
| |
Collapse
|
38
|
Abstract
Two-ring interlocked DNA catenanes are synthesized and characterized. The supramolecular catenanes show switchable cyclic catalytic properties. In one system, the catenane structure is switched between a hemin/G-quadruplex catalytic structure and a catalytically inactive state. In the second catenane structure the catenane is switched between a catalytically active Mg(2+)-dependent DNAzyme-containing catenane and an inactive catenane state. In the third system, the interlocked catenane structure is switched between two distinct catalytic structures that include the Mg(2+)- and the Zn(2+)-dependent DNAzymes.
Collapse
Affiliation(s)
- Lianzhe Hu
- Institute of Chemistry, Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem , Jerusalem 91904, Israel
| | | | | |
Collapse
|
39
|
Zeng S, Huang H, Huang Y, Liu X, Qin J, Zhao S, Chen ZF, Liang H. Label-free and amplified colorimetric assay of ribonuclease H activity and inhibition based on a novel enzyme-responsive DNAzyme cascade. RSC Adv 2015. [DOI: 10.1039/c5ra05712d] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
A simple, label-free and amplified colorimetric assay strategy based on a novel enzyme-responsive DNAzyme cascade is developed for assay of ribonuclease H activity and inhibition. This assay exhibits high sensitivity and selectivity.
Collapse
Affiliation(s)
- Shulan Zeng
- Ministry of Education Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources
- Guangxi Normal University
- Guilin
- China
| | - Huakui Huang
- Ministry of Education Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources
- Guangxi Normal University
- Guilin
- China
- College of Chemistry and Pharmacy
| | - Yong Huang
- Ministry of Education Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources
- Guangxi Normal University
- Guilin
- China
- College of Chemistry and Pharmacy
| | - Xiaoqian Liu
- College of Chemistry and Pharmacy
- Guangxi Normal University
- Guilin
- China
| | - Jian Qin
- College of Chemistry and Pharmacy
- Guangxi Normal University
- Guilin
- China
| | - Shulin Zhao
- Ministry of Education Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources
- Guangxi Normal University
- Guilin
- China
- College of Chemistry and Pharmacy
| | - Zhen-Feng Chen
- Ministry of Education Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources
- Guangxi Normal University
- Guilin
- China
| | - Hong Liang
- Ministry of Education Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources
- Guangxi Normal University
- Guilin
- China
- College of Chemistry and Pharmacy
| |
Collapse
|
40
|
Hu Y, Wang F, Lu CH, Girsh J, Golub E, Willner I. Switchable Enzyme/DNAzyme Cascades by the Reconfiguration of DNA Nanostructures. Chemistry 2014; 20:16203-9. [DOI: 10.1002/chem.201404122] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Indexed: 01/16/2023]
|
41
|
Hu L, Liu X, Cecconello A, Willner I. Dual switchable CRET-induced luminescence of CdSe/ZnS quantum dots (QDs) by the hemin/G-quadruplex-bridged aggregation and deaggregation of two-sized QDs. NANO LETTERS 2014; 14:6030-6035. [PMID: 25216118 DOI: 10.1021/nl503299f] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The hemin/G-quadruplex-catalyzed generation of chemiluminescence through the oxidation of luminol by H2O2 stimulates the chemiluminescence resonance energy transfer (CRET) to CdSe/ZnS quantum dots (QDs), resulting in the luminescence of the QDs. By the cyclic K(+)-ion-induced formation of the hemin/G-quadruplex linked to the QDs, and the separation of the G-quadruplex in the presence of 18-crown-6-ether, the ON-OFF switchable CRET-induced luminescence of the QDs is demonstrated. QDs were modified with nucleic acids consisting of the G-quadruplex subunits sequences and of programmed domains that can be cross-linked through hybridization, using an auxiliary scaffold. In the presence of K(+)-ions, the QDs aggregate through the cooperative stabilization of K(+)-ion-stabilized G-quadruplex bridges and duplex domains between the auxiliary scaffold and the nucleic acids associated with the QDs. In the presence of 18-crown-6-ether, the K(+)-ions are eliminated from the G-quadruplex units, leading to the separation of the aggregated QDs. By the cyclic treatment of the QDs with K(+)-ions/18-crown-6-ether, the reversible aggregation/deaggregation of the QDs is demonstrated. The incorporation of hemin into the K(+)-ion-stabilized G-quadruplex leads to the ON-OFF switchable CRET-stimulated luminescence of the QDs. By the mixing of appropriately modified two-sized QDs, emitting at 540 and 610 nm, the dual ON-OFF activation of the luminescence of the QDs is demonstrated.
Collapse
Affiliation(s)
- Lianzhe Hu
- Institute of Chemistry, Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem , Jerusalem 91904, Israel
| | | | | | | |
Collapse
|