1
|
Kumar M, Sharma D, Singh VP. Modulation of the chain-breaking antioxidant activity of phenolic organochalcogens with various co-antioxidants at various pH values. Org Biomol Chem 2023; 21:1316-1327. [PMID: 36648399 DOI: 10.1039/d2ob01988d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Phenolic organochalcogen chain-breaking antioxidants, i.e. 6-bromo-8 (hexadecyltellanyl)-3,3-dimethyl-1,5-dihydro-[1,3]dioxepino[5,6-c]pyridin-9-ol and 2-methyl-2,3-dihydrobenzo[b]selenophene-5-ol, have been investigated in a two-phase (chlorobenzene/water) lipid peroxidation model system as potent inhibitors of lipid peroxyl radicals with various co-antioxidants at various pH values. The pH has a significant effect on the chain-breaking antioxidant activities of phenolic organochalcogens. The key chain-breaking mechanism profile was attributed to the first oxygen atom transfer from the lipid peroxyl radicals to the Se/Te atom, followed by hydrogen atom transfer in a solvent cage from the nearby phenolic group to the resulting alkoxyl radical. Finally, regeneration of organochalcogen antioxidants could take place in the presence of aqueous-soluble co-antioxidants. Also, in the presence of aqueous soluble N-acetylcysteine at pH 1-7, both antioxidants behaved as very good inhibitors of lipid peroxyl radicals. The role of aqueous soluble mild co-antioxidants in the regeneration studies of organochalcogen antioxidants has been investigated in a two-phase lipid peroxidation model system. The importance of the phase transfer catalyst has been explored in the inhibition studies of selenium containing antioxidants using an Fe(II) source. The overall pH-dependent antioxidant activities of organochalcogens depend on their hydrogen atom transfer ability, relative stability, and distribution in the aqueous/lipid phase.
Collapse
Affiliation(s)
- Manish Kumar
- Department of Chemistry & Centre of Advanced Studies in Chemistry, Panjab University, Sector-14, Chandigarh - 160 014, India.
| | - Deepika Sharma
- Department of Chemistry & Centre of Advanced Studies in Chemistry, Panjab University, Sector-14, Chandigarh - 160 014, India.
| | - Vijay P Singh
- Department of Chemistry & Centre of Advanced Studies in Chemistry, Panjab University, Sector-14, Chandigarh - 160 014, India.
| |
Collapse
|
2
|
Ferdousian R, Behbahani FK. Organoselenium compounds. Synthesis, application, and biological activity. PHOSPHORUS SULFUR 2022. [DOI: 10.1080/10426507.2022.2119237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
3
|
Gandhi VV, Bihani SC, Phadnis PP, Kunwar A. Diselenide-derivative of 3-pyridinol targets redox enzymes leading to cell cycle deregulation and apoptosis in A549 cells. Biol Chem 2022; 403:891-905. [PMID: 36002994 DOI: 10.1515/hsz-2022-0123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 08/01/2022] [Indexed: 11/15/2022]
Abstract
The aim of present study was to understand the mechanism of action of 2,2'-diselenobis(3-pyridinol) or DISPOL in human lung cancer (A549) cells. A549 cells were treated with 10 µM (∼IC50) of DISPOL for varying time points to corelate the intracellular redox changes with its cytotoxic effect. The results indicated that DISPOL treatment led to a time dependant decrease in the basal level of reactive oxygen species (ROS). Additionally, DISPOL treatment elevated the ratio of reduced (GSH) and oxidised (GSSG) glutathione by upregulating gamma-glutamylcysteine ligase (γ-GCL) involved in GSH biosynthesis and inhibiting the activities of redox enzymes responsible for GSH utilization and recycling, such as glutathione-S-transferase (GST) and glutathione reductase (GR). Molecular docking analysis suggests putative interactions of DISPOL with GST and GR which could account for its inhibitory effect on these enzymes. Further, DISPOL induced reductive environment preceded G1 arrest and apoptosis as evidenced by decreased expression of cell cycle genes (Cyclin D1 and Cyclin E1) and elevation of p21 and apoptotic markers (cleaved caspase 3 and cleaved PARP). The combinatorial experiments involving DISPOL and redox modulatory agents such as N-acetylcysteine (NAC) and buthionine sulfoximine (BSO) indeed confirmed the role of reductive stress in DISPOL-induced cell death. Finally, Lipinski's rule suggests attributes of drug likeness in DISPOL. Taken together, DISPOL exhibits a novel mechanism of reductive stress-mediated cell death in A549 cells that warrants future exploration as anticancer agent.
Collapse
Affiliation(s)
- Vishwa V Gandhi
- Radiation and Photochemistry Division, Bhabha Atomic Research Centre, Mumbai 400085, India.,Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| | - Subhash C Bihani
- Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India.,Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| | - Prasad P Phadnis
- Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India.,Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| | - Amit Kunwar
- Radiation and Photochemistry Division, Bhabha Atomic Research Centre, Mumbai 400085, India.,Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| |
Collapse
|
4
|
Rai RK, Karri R, Dubey KD, Roy G. Regulation of Tyrosinase Enzyme Activity by Glutathione Peroxidase Mimics. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:9730-9747. [PMID: 35861245 DOI: 10.1021/acs.jafc.2c02359] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Hydrogen peroxide plays a crucial role in the melanogenesis process by regulating the activity of the key melanin-forming enzyme tyrosinase, responsible for the browning of fruits, vegetables, and seafood. Therefore, a molecule with dual activities, both efficient tyrosinase inhibition and strong hydrogen peroxide degrading ability, may act as a promising antibrowning agent. Herein, we report highly efficient selone-based mushroom tyrosinase inhibitors 2 and 3 with remarkable glutathione peroxidase (GPx) enzyme-like activity. The presence of benzimidazole moiety enhances the tyrosinase inhibition efficiency of selone 2 (IC50 = 0.4 μM) by almost 600 times higher than imidazole-based selone 1 (IC50 = 238 μM). Interestingly, the addition of another aromatic ring to the benzimidazole moiety has led to the development of an efficient lipid-soluble tyrosinase inhibitor 3 (IC50 = 2.4 μM). The selenium center and the -NH group of 2 and 3 are extremely crucial to exhibit high GPx-like activity and tyrosinase inhibition potency. The hydrophobic moiety of the inhibitors (2 and 3) further assists them in tightly binding at the active site of the enzyme and facilitates the C═Se group to strongly coordinate with the copper ions. Inhibitor 2 exhibited excellent antibrowning and polyphenol oxidase inhibition properties in banana and apple juice extracts.
Collapse
Affiliation(s)
- Rakesh Kumar Rai
- Department of Chemistry, Indian Institute of Technology Tirupati, Tirupati, Andhra Pradesh 517506, India
| | - Ramesh Karri
- Department of Chemistry, School of Natural Sciences, Shiv Nadar University, Gautam Buddha Nagar, Uttar Pradesh 201314, India
| | - Kshatresh Dutta Dubey
- Department of Chemistry, School of Natural Sciences, Shiv Nadar University, Gautam Buddha Nagar, Uttar Pradesh 201314, India
| | - Gouriprasanna Roy
- Department of Chemistry, Indian Institute of Technology Tirupati, Tirupati, Andhra Pradesh 517506, India
| |
Collapse
|
5
|
Pan T, Wang Y, Xue X, Zhang C. Rational design of allosteric switchable catalysts. EXPLORATION (BEIJING, CHINA) 2022; 2:20210095. [PMID: 37323883 PMCID: PMC10191014 DOI: 10.1002/exp.20210095] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 12/01/2021] [Indexed: 06/16/2023]
Abstract
Allosteric regulation, in many cases, involves switching the activities of natural enzymes, which further affects the enzymatic network and cell signaling in the living systems. The research on the construction of allosteric switchable catalysts has attracted broad interests, aiming to control the progress and asymmetry of catalytic reactions, expand the chemical biology toolbox, substitute unstable natural enzymes in the biological detection and biosensors, and fabricate the biomimetic cascade reactions. Thus, in this review, we summarize the recent outstanding works in switchable catalysts based on the allosterism of single molecules, supramolecular complexes, and self-assemblies. The concept of allosterism was extended from natural proteins to polymers, organic molecules, and supramolecular systems. In terms of the difference between these building scaffolds, a variety of design methods that tailor biological and synthetic molecules into controllable catalysts were introduced with emphasis.
Collapse
Affiliation(s)
- Tiezheng Pan
- State Key Laboratory of Medicinal Chemical BiologyNankai UniversityTianjinChina
- School of Life SciencesNorthwestern Polytechnical UniversityXi'anChina
| | - Yaling Wang
- State Key Laboratory of Medicinal Chemical BiologyNankai UniversityTianjinChina
| | - Xue Xue
- State Key Laboratory of Medicinal Chemical BiologyNankai UniversityTianjinChina
| | - Chunqiu Zhang
- State Key Laboratory of Medicinal Chemical BiologyNankai UniversityTianjinChina
| |
Collapse
|
6
|
Alfieri ML, Panzella L, Amorati R, Cariola A, Valgimigli L, Napolitano A. Role of Sulphur and Heavier Chalcogens on the Antioxidant Power and Bioactivity of Natural Phenolic Compounds. Biomolecules 2022; 12:90. [PMID: 35053239 PMCID: PMC8774257 DOI: 10.3390/biom12010090] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/03/2022] [Accepted: 01/04/2022] [Indexed: 02/06/2023] Open
Abstract
The activity of natural phenols is primarily associated to their antioxidant potential, but is ultimately expressed in a variety of biological effects. Molecular scaffold manipulation of this large variety of compounds is a currently pursued approach to boost or modulate their properties. Insertion of S/Se/Te containing substituents on phenols may increase/decrease their H-donor/acceptor ability by electronic and stereo-electronic effects related to the site of substitution and geometrical constrains. Oxygen to sulphur/selenium isosteric replacement in resveratrol or ferulic acid leads to an increase in the radical scavenging activity with respect to the parent phenol. Several chalcogen-substituted phenols inspired by Vitamin E and flavonoids have been prepared, which in some cases prove to be chain-breaking antioxidants, far better than the natural counterparts. Conjugation of catechols with biological thiols (cysteine, glutathione, dihydrolipoic acid) is easily achieved by addition to the corresponding ortho-quinones. Noticeable examples of compounds with potentiated antioxidant activities are the human metabolite 5-S-cysteinyldopa, with high iron-induced lipid peroxidation inhibitory activity, due to strong iron (III) binding, 5-S-glutathionylpiceatannol a most effective inhibitor of nitrosation processes, and 5-S-lipoylhydroxytyrosol, and its polysulfides that proved valuable oxidative-stress protective agents in various cellular models. Different methodologies have been used for evaluation of the antioxidant power of these compounds against the parent compounds. These include kinetics of inhibition of lipid peroxidation alkylperoxyl radicals, common chemical assays of radical scavenging, inhibition of the OH• mediated hydroxylation/oxidation of model systems, ferric- or copper-reducing power, scavenging of nitrosating species. In addition, computational methods allowed researchers to determine the Bond Dissociation Enthalpy values of the OH groups of chalcogen modified phenolics and predict the best performing derivative. Finally, the activity of Se and Te containing compounds as mimic of glutathione peroxidase has been evaluated, together with other biological activities including anticancer action and (neuro)protective effects in various cellular models. These and other achievements are discussed and rationalized to guide future development in the field.
Collapse
Affiliation(s)
- Maria Laura Alfieri
- Department of Chemical Sciences, University of Naples “Federico II”, Via Cintia 21, I-80126 Naples, Italy; (M.L.A.); (L.P.)
| | - Lucia Panzella
- Department of Chemical Sciences, University of Naples “Federico II”, Via Cintia 21, I-80126 Naples, Italy; (M.L.A.); (L.P.)
| | - Riccardo Amorati
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, Via S. Giacomo 11, I-40126 Bologna, Italy; (R.A.); (A.C.)
| | - Alice Cariola
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, Via S. Giacomo 11, I-40126 Bologna, Italy; (R.A.); (A.C.)
| | - Luca Valgimigli
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, Via S. Giacomo 11, I-40126 Bologna, Italy; (R.A.); (A.C.)
| | - Alessandra Napolitano
- Department of Chemical Sciences, University of Naples “Federico II”, Via Cintia 21, I-80126 Naples, Italy; (M.L.A.); (L.P.)
| |
Collapse
|
7
|
Singh A, Kaushik A, Dhau JS, Kumar R. Exploring coordination preferences and biological applications of pyridyl-based organochalcogen (Se, Te) ligands. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214254] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
8
|
Pogorilyy V, Plyutinskaya A, Suvorov N, Diachkova E, Vasil’ev Y, Pankratov A, Mironov A, Grin M. The First Selenoanhydride in the Series of Chlorophyll a Derivatives, Its Stability and Photoinduced Cytotoxicity. Molecules 2021; 26:molecules26237298. [PMID: 34885879 PMCID: PMC8659179 DOI: 10.3390/molecules26237298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 11/26/2021] [Accepted: 11/29/2021] [Indexed: 12/02/2022] Open
Abstract
In this work, we obtained the first selenium-containing chlorin with a chalcogen atom in exlocycle E. It was shown that the spectral properties were preserved in the target compound and the stability increased at two different pH values, in comparison with the starting purpurin-18. The derivatives have sufficiently high fluorescence and singlet oxygen quantum yields. The photoinduced cytotoxicity of sulfur- and selenium-anhydrides of chlorin p6 studied for the first time in vitro on the S37 cell line was found to be two times higher that of purpurin-18 and purpurinimide studied previously. Moreover, the dark cytotoxicity increased four-fold in comparison with the latter compounds. Apparently, the increase in the dark cytotoxicity is due to the interaction of the pigments studied with sulfur- and selenium-containing endogenous intracellular compounds. Intracellular distributions of thioanhydride and selenoanhydride chlorin p6 in S37 cells were shown in cytoplasm by diffusion distribution. The intracellular concentration of the sulfur derivative turned out to be higher and, as a consequence, its photoinduced cytotoxicity was higher as well.
Collapse
Affiliation(s)
- Viktor Pogorilyy
- Department of Chemistry and Technology of Biologically Active Compounds, Medicinal and Organic Chemistry, Institute of Fine Chemical Technologies, MIREA-Russian Technological University, 86 Vernadsky Avenue, 119571 Moscow, Russia; (N.S.); (A.M.); (M.G.)
- Correspondence: (V.P.); (E.D.)
| | - Anna Plyutinskaya
- P. Hertsen Moscow Oncology Research Institute—Branch of the National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, 2nd Botkinsky pr., 3, 125284 Moscow, Russia; (A.P.); (A.P.)
| | - Nikita Suvorov
- Department of Chemistry and Technology of Biologically Active Compounds, Medicinal and Organic Chemistry, Institute of Fine Chemical Technologies, MIREA-Russian Technological University, 86 Vernadsky Avenue, 119571 Moscow, Russia; (N.S.); (A.M.); (M.G.)
| | - Ekaterina Diachkova
- Department of Oral Surgery of Borovsky Institute of Dentistry, I.M. Sechenov First Moscow State Medical University (Sechenov University), Trubetskaya St. bldg. 8\2, 119435 Moscow, Russia
- Department of Fundamental Medical Disciplines, Medical Faculty, Moscow Region State University (MRSU), Str. Radio 10 Build 1, 105005 Moscow, Russia
- Correspondence: (V.P.); (E.D.)
| | - Yuriy Vasil’ev
- Department of Operative Surgery and Topographic Anatomy, I.M. Sechenov First Moscow State Medical University (Sechenov University), Trubetskaya St. bldg. 8\2, 119435 Moscow, Russia;
- Department of Prosthetic Dentistry, Dental Faculty, Kazan State Medical University of the Ministry of Health of Russia, Str. Butlerova 49, 420012 Kazan, Russia
| | - Andrei Pankratov
- P. Hertsen Moscow Oncology Research Institute—Branch of the National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, 2nd Botkinsky pr., 3, 125284 Moscow, Russia; (A.P.); (A.P.)
| | - Andrey Mironov
- Department of Chemistry and Technology of Biologically Active Compounds, Medicinal and Organic Chemistry, Institute of Fine Chemical Technologies, MIREA-Russian Technological University, 86 Vernadsky Avenue, 119571 Moscow, Russia; (N.S.); (A.M.); (M.G.)
| | - Mikhail Grin
- Department of Chemistry and Technology of Biologically Active Compounds, Medicinal and Organic Chemistry, Institute of Fine Chemical Technologies, MIREA-Russian Technological University, 86 Vernadsky Avenue, 119571 Moscow, Russia; (N.S.); (A.M.); (M.G.)
| |
Collapse
|
9
|
Upadhyay A, Kumar Jha R, Batabyal M, Dutta T, Koner AL, Kumar S. Janus -faced oxidant and antioxidant profiles of organo diselenides. Dalton Trans 2021; 50:14576-14594. [PMID: 34590653 DOI: 10.1039/d1dt01565f] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
To date, organoseleniums are pre-eminent for peroxide decomposition and radical quenching antioxidant activities. On the contrary, here, a series of Janus-faced aminophenolic diselenides have been prepared from substituted 2-iodoaniline and selenium powder using copper-catalyzed methodology. Subsequently, condensation with substituted salicylaldehyde afforded the Schiff base, which on reduction, yielded the desired substituted aminophenolic diselenides in 72%-88% yields. The generation of reactive oxygen species (ROS) from oxygen gas by the synthesized aminophenolic diselenides was studied by analyzing the oxidation of dichlorofluorescein diacetate (DCFDA) dye and para-nitro-thiophenol by fluorescence and UV-Visible spectroscopic methods. Furthermore, density functional theory calculations and crystal structure analysis revealed the role of functional amine and hydroxyl sites present in the Janus-faced organoselenium catalyst for the activation of molecular oxygen, where NH and phenolic groups bring the oxygen molecule close to the catalyst by N-H⋯O and O-H⋯O intermolecular interactions. Additionally, these functionalities stabilize the selenium-centered radical in the formed transition states. Antioxidant activities of the synthesized diselenides have been explored as the catalyst for the decomposition of hydrogen peroxide using benzenethiol sacrificial co-reductant by a well-established thiol assay. Radical quenching antioxidant activity was studied by the quenching of DPPH radicals at 516 nm by UV-Visible spectroscopy. The structure activity correlation suggests that the electron-rich phenol and electron-rich and sterically hindered selenium center enhance the oxidizing property of the aminophenolic diselenides. Janus-faced diselenides were also evaluated for their cytotoxic effect on HeLa cancer cells via MTT assay, which suggests that the compounds are effective at 15-18 μM concentration against cancer cells. Moreover, the combination with therapeutic anticancer drugs Erlotinib and Doxorubicin showed promising cytotoxicity at the nanomolar concentration (8-28 nM), which is sufficient to suppress the growth of the cancer cells.
Collapse
Affiliation(s)
- Aditya Upadhyay
- Department of Chemistry, Indian Institute of Science Education and Research, Bhopal Bhauri By-pass Road, Bhopal 462066, Madhya Pradesh, India.
| | - Raushan Kumar Jha
- Department of Chemistry, Indian Institute of Science Education and Research, Bhopal Bhauri By-pass Road, Bhopal 462066, Madhya Pradesh, India.
| | - Monojit Batabyal
- Department of Chemistry, Indian Institute of Science Education and Research, Bhopal Bhauri By-pass Road, Bhopal 462066, Madhya Pradesh, India.
| | - Tanoy Dutta
- Department of Chemistry, Indian Institute of Science Education and Research, Bhopal Bhauri By-pass Road, Bhopal 462066, Madhya Pradesh, India.
| | - Apurba Lal Koner
- Department of Chemistry, Indian Institute of Science Education and Research, Bhopal Bhauri By-pass Road, Bhopal 462066, Madhya Pradesh, India.
| | - Sangit Kumar
- Department of Chemistry, Indian Institute of Science Education and Research, Bhopal Bhauri By-pass Road, Bhopal 462066, Madhya Pradesh, India.
| |
Collapse
|
10
|
Tripathi A, Daolio A, Pizzi A, Guo Z, Turner DR, Baggioli A, Famulari A, Deacon GB, Resnati G, Singh HB. Chalcogen Bonds in Selenocysteine Seleninic Acid, a Functional GPx Constituent, and in Other Seleninic or Sulfinic Acid Derivatives. Chem Asian J 2021; 16:2351-2360. [PMID: 34214252 PMCID: PMC8456948 DOI: 10.1002/asia.202100545] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/01/2021] [Indexed: 11/24/2022]
Abstract
The controlled oxidation reaction of L-selenocystine under neutral pH conditions affords selenocysteine seleninic acid (3-selenino-L-alanine) which is characterized also by means of single-crystal X-ray diffraction. This technique shows that selenium forms three chalcogen bonds (ChBs), one of them being outstandingly short. A survey of seleninic acid derivatives in the Cambridge Structural Database (CSD) confirms that the C-Se(=O)O- functionality tends to act as a ChB donor robust enough to systematically influence the interactional landscape in the solid. Quantum Theory of Atom in Molecules (QTAIM) analysis proves the attractive nature of the short contacts observed in crystals containing the seleninic functionality and calculation of surface molecular electrostatic potential (MEP) reveals that remarkably positive σ-holes can frequently be found opposite to the covalent bonds at selenium. Both CSD searches and QTAIM and MEP approaches show that also the sulfinic acid moiety can function as a ChB donor, albeit less frequently than the seleninic acid one. These findings may contribute to a better understanding, at the atomic level, of the mechanism of action of the enzymes that control oxidative stress and ROS deactivation and that contain selenocysteine seleninic acid and cysteine sulfinic acid in the active site.
Collapse
Affiliation(s)
- Abhishek Tripathi
- Department of ChemistryIndian Institute of Technology BombayMumbai400076India
- School of ChemistryMonash UniversityClaytonVictoria3800Australia
- IITB-Monash Research AcademyMonash UniversityPowai, Mumbai400076India
| | - Andrea Daolio
- Department of Chemistry, Materials and Chemical Engineering“Giulio Natta”Politecnico di MilanoVia Luigi Mancinelli 720131MilanoItaly
| | - Andrea Pizzi
- Department of Chemistry, Materials and Chemical Engineering“Giulio Natta”Politecnico di MilanoVia Luigi Mancinelli 720131MilanoItaly
| | - Zhifang Guo
- School of ChemistryMonash UniversityClaytonVictoria3800Australia
| | - David R. Turner
- School of ChemistryMonash UniversityClaytonVictoria3800Australia
- IITB-Monash Research AcademyMonash UniversityPowai, Mumbai400076India
| | - Alberto Baggioli
- Department of Chemistry, Materials and Chemical Engineering“Giulio Natta”Politecnico di MilanoVia Luigi Mancinelli 720131MilanoItaly
| | - Antonino Famulari
- Department of Chemistry, Materials and Chemical Engineering“Giulio Natta”Politecnico di MilanoVia Luigi Mancinelli 720131MilanoItaly
| | - Glen B. Deacon
- School of ChemistryMonash UniversityClaytonVictoria3800Australia
- IITB-Monash Research AcademyMonash UniversityPowai, Mumbai400076India
| | - Giuseppe Resnati
- Department of Chemistry, Materials and Chemical Engineering“Giulio Natta”Politecnico di MilanoVia Luigi Mancinelli 720131MilanoItaly
| | - Harkesh B. Singh
- Department of ChemistryIndian Institute of Technology BombayMumbai400076India
- IITB-Monash Research AcademyMonash UniversityPowai, Mumbai400076India
| |
Collapse
|
11
|
Nogueira CW, Barbosa NV, Rocha JBT. Toxicology and pharmacology of synthetic organoselenium compounds: an update. Arch Toxicol 2021; 95:1179-1226. [PMID: 33792762 PMCID: PMC8012418 DOI: 10.1007/s00204-021-03003-5] [Citation(s) in RCA: 109] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 02/10/2021] [Indexed: 12/17/2022]
Abstract
Here, we addressed the pharmacology and toxicology of synthetic organoselenium compounds and some naturally occurring organoselenium amino acids. The use of selenium as a tool in organic synthesis and as a pharmacological agent goes back to the middle of the nineteenth and the beginning of the twentieth centuries. The rediscovery of ebselen and its investigation in clinical trials have motivated the search for new organoselenium molecules with pharmacological properties. Although ebselen and diselenides have some overlapping pharmacological properties, their molecular targets are not identical. However, they have similar anti-inflammatory and antioxidant activities, possibly, via activation of transcription factors, regulating the expression of antioxidant genes. In short, our knowledge about the pharmacological properties of simple organoselenium compounds is still elusive. However, contrary to our early expectations that they could imitate selenoproteins, organoselenium compounds seem to have non-specific modulatory activation of antioxidant pathways and specific inhibitory effects in some thiol-containing proteins. The thiol-oxidizing properties of organoselenium compounds are considered the molecular basis of their chronic toxicity; however, the acute use of organoselenium compounds as inhibitors of specific thiol-containing enzymes can be of therapeutic significance. In summary, the outcomes of the clinical trials of ebselen as a mimetic of lithium or as an inhibitor of SARS-CoV-2 proteases will be important to the field of organoselenium synthesis. The development of computational techniques that could predict rational modifications in the structure of organoselenium compounds to increase their specificity is required to construct a library of thiol-modifying agents with selectivity toward specific target proteins.
Collapse
Affiliation(s)
- Cristina W Nogueira
- Laboratório de Síntese, Reatividade e Avaliação Farmacológica E Toxicológica de Organocalcogênios, Centro de Ciências Naturais E Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, CEP 97105-900, Brazil.
| | - Nilda V Barbosa
- Laboratório de Síntese, Reatividade e Avaliação Farmacológica E Toxicológica de Organocalcogênios, Centro de Ciências Naturais E Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, CEP 97105-900, Brazil
| | - João B T Rocha
- Laboratório de Síntese, Reatividade e Avaliação Farmacológica E Toxicológica de Organocalcogênios, Centro de Ciências Naturais E Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, CEP 97105-900, Brazil.
| |
Collapse
|
12
|
Upadhyay A, Singh Bhakuni B, Meena R, Kumar S. Radical Chain Breaking Bis(
ortho
‐organoselenium) Substituted Phenolic Antioxidants. Chem Asian J 2021; 16:966-973. [DOI: 10.1002/asia.202100139] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 02/26/2021] [Indexed: 12/24/2022]
Affiliation(s)
- Aditya Upadhyay
- Department of Chemistry Indian Institute of Science Education and Research Bhopal By-Pass Road Bhauri, Bhopal 462 066 Madhya Pradesh India
| | - Bhagat Singh Bhakuni
- Department of Chemistry Indian Institute of Science Education and Research Bhopal By-Pass Road Bhauri, Bhopal 462 066 Madhya Pradesh India
| | - Rahul Meena
- Department of Chemistry Indian Institute of Science Education and Research Bhopal By-Pass Road Bhauri, Bhopal 462 066 Madhya Pradesh India
| | - Sangit Kumar
- Department of Chemistry Indian Institute of Science Education and Research Bhopal By-Pass Road Bhauri, Bhopal 462 066 Madhya Pradesh India
| |
Collapse
|
13
|
Tiekink ERT. Zero-, one-, two- and three-dimensional supramolecular architectures sustained by Se …O chalcogen bonding: A crystallographic survey. Coord Chem Rev 2021; 427:213586. [PMID: 33100367 PMCID: PMC7568495 DOI: 10.1016/j.ccr.2020.213586] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 09/02/2020] [Indexed: 12/20/2022]
Abstract
The Cambridge Structural Database was evaluated for crystals containing Se…O chalcogen bonding interactions. These secondary bonding interactions are found to operate independently of complementary intermolecular interactions in about 13% of the structures they can potentially form. This number rises significantly when more specific interactions are considered, e.g. Se…O(carbonyl) interactions occur in 50% of cases where they can potentially form. In about 55% of cases, the supramolecular assemblies sustained by Se…O(oxygen) interactions are one-dimensional architectures, with the next most prominent being zero-dimensional assemblies, at 30%.
Collapse
Affiliation(s)
- Edward R T Tiekink
- Research Centre for Crystalline Materials, School of Science and Technology, 5 Jalan Universiti, Sunway University, Bandar Sunway, Selangor Darul Ehsan 47500, Malaysia
| |
Collapse
|
14
|
Hamsath A, Xian M. Chemistry and Chemical Biology of Selenenyl Sulfides and Thioseleninic Acids. Antioxid Redox Signal 2020; 33:1143-1157. [PMID: 32151152 PMCID: PMC7698873 DOI: 10.1089/ars.2020.8083] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 03/04/2020] [Indexed: 12/14/2022]
Abstract
Significance: Selenenyl sulfides (RSeSRs) and thioseleninic acids (RSeSHs) are the monoselenium (Se) analogs of disulfides and persulfides that contain Se-S bonds. These bonds are found in several antioxidant-regenerating enzymes as derivatives of selenocysteine, making them an important player in redox biology as it pertains to sulfur redox regulation. Recent Advances: Mechanistic studies of redox-regulating selenoenzymes such as thioredoxin reductase and glutathione peroxidase suggest crucial Se-S bonds in the active sites. Peptide models and small-molecule mimics of these active sites have been prepared to study their fundamental chemistry. These advances help pave the road to better understand the functions of the Se-S bond in the body. Critical Issues: The Se-S bond is unstable at atmospheric temperatures and pressures. Therefore, studying their properties proposes a major challenge. Currently, there are no trapping reagents specific to RSeSRs or RSeSHs, making their presence, identity, and fates in biological environments difficult to track. Future Directions: Further understanding of the fundamental chemistry/biochemistry of RSeSRs and RSeSHs is needed to understand what their intracellular targets are and to what extent they impact signaling. Besides antioxidant regeneration and peroxide radical reduction, the roles of RSeSR and RSeSHs in other systems need to be further explored.
Collapse
Affiliation(s)
- Akil Hamsath
- Department of Chemistry, Washington State University, Pullman, Washington, USA
| | - Ming Xian
- Department of Chemistry, Washington State University, Pullman, Washington, USA
| |
Collapse
|
15
|
Yu SC, Kim IC, Ri KJ, Ri J, Kühn H. New insight into the role of glutathione reductase in glutathione peroxidase-like activity determination by coupled reductase assay: Molecular Docking Study. J Inorg Biochem 2020; 215:111276. [PMID: 33341590 DOI: 10.1016/j.jinorgbio.2020.111276] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 10/02/2020] [Accepted: 10/03/2020] [Indexed: 12/23/2022]
Abstract
Previously we have shown that among 15 substituted salicyloyl (2-hydroxybenzoyl) 5-seleninic acids (SSAs) 4 compounds with longer side chains or a cyclohexyl group exhibit no glutathione peroxidase (GPx)-like activity in the coupled reductase assay. Experimental inhibition of glutathione reductase (GR) by the selenenylsulfide (a main intermediate in the catalytic cycle for GPx-like activity determination) of one of the inactive compounds led us to assess the interactions between 15 selenenylsulfide compounds and the active site of GR by molecular docking. Docking results showed that S and Se atoms in selenenylsulfides of the compounds with no GPx-like activity were beyond 5 Å from S atom of Cys-58 or N atom of imidazole ring of His-467 (Root Mean Square Distances for general assessment of 3 major distances were over 4.8 Å) in the active site, so that they could not be catalyzed to be reduced by GR. Furthermore, their docking scores over 89 Kcal/mol meant that the selenenylsulfides were bound too strongly to the active site to leave it, leading eventually to inhibition of GR. We also applied the molecular docking to other GPx mimics such as ebselen, cyclic seleninate esters and di(propylaminomethylphenyl) diselenides to explain the differences in their GPx-like activity depending to the assays used. Our results suggest that the reduction of a selenenylsulfide by GR plays a positive role in GPx-like activity of GPx mimics in the coupled assay and recommended the prediction of possibility and strength of GPx-like activity by molecular docking before entering experimental research.
Collapse
Affiliation(s)
- Sun-Chol Yu
- Faculty of Pharmacy, Pyongyang University of Medical Sciences, Ryonhwa Dong No. 2, Central District, Pyongyang, DPR of Korea.
| | - In-Chol Kim
- Faculty of Pharmacy, Pyongyang University of Medical Sciences, Ryonhwa Dong No. 2, Central District, Pyongyang, DPR of Korea
| | - Kum-Ju Ri
- Faculty of Pharmacy, Pyongyang University of Medical Sciences, Ryonhwa Dong No. 2, Central District, Pyongyang, DPR of Korea
| | - Jin Ri
- Faculty of Pharmacy, Pyongyang University of Medical Sciences, Ryonhwa Dong No. 2, Central District, Pyongyang, DPR of Korea
| | - Hartmut Kühn
- Institute of Biochemistry, University Medicine Berlin-Charité, Chariteplatz 1, Berlin D-10117, Germany
| |
Collapse
|
16
|
Chand A, Sahoo DK, Rana A, Jena S, Biswal HS. The Prodigious Hydrogen Bonds with Sulfur and Selenium in Molecular Assemblies, Structural Biology, and Functional Materials. Acc Chem Res 2020; 53:1580-1592. [PMID: 32677432 DOI: 10.1021/acs.accounts.0c00289] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Hydrogen bonds (H-bonds) play important roles in imparting functionality to the basic molecules of life by stabilizing their structures and directing their interactions. Numerous studies have been devoted to understanding H-bonds involving highly electronegative atoms like nitrogen, oxygen, and halogens and consequences of those H-bonds in chemical reactions, catalysis, and structure and function of biomolecules; but the involvement of less electronegative atoms like sulfur and selenium in H-bond formation establishes the concept of noncanonical H-bonds. Initially belittled for the "weak" nature of their interactions, these perceptions have gradually evolved over time through dedicated efforts by several research groups. This has been facilitated by advancements in experimental methods for their detection through gas-phase laser spectroscopy and solution NMR spectroscopy, as well as through theoretical predictions from high level quantum chemical calculations.In this Account, we present insights into the versatility of the sulfur and selenium centered H-bonds (S/SeCHBs) by highlighting their multifarious applications in various fields from chemical reactions to optoelectronic properties to structural biology. Our group has highlighted the significance and strength of such H-bonds in natural and modified biomolecules. Here, we have reviewed several molecular assemblies, biomolecules, and functional materials, where the role of these H-bonds is pivotal in influencing biological functions. It is worth mentioning here that the precise experimental data obtained from gas-phase laser spectroscopy have contributed considerably to changing the existing perceptions toward S/SeCHBs. Thus, molecular beam experiments, though difficult to perform on smaller model thio- or seleno-substituted Molecules, etc. (amides, nucleobases, drug molecules), are inevitable to gather elementary knowledge and convincing concepts on S/SeCHBs that can be extended from a small four-atom sulfanyl dimer to a large 14 kDa iron-sulfur protein, ferredoxin. These H-bonds can also tailor a fascinating array of molecular frameworks and design supramolecular assemblies by inter- and intralinking of individual "molecular Lego-like" units.The discussion is indeed intriguing when it turns to the usage of S/SeCHBs in facile synthetic strategies like tuning regioselectivity in reactions, as well as invoking phenomena like dual phosphorescence and chemiluminescence. This is in addition to our investigations of the dispersive nature of the hydrogen bond between metal hydrides and sulfur or selenium as acceptor, which we anticipate would lead to progress in the areas of proton and hydride transfer, as well as force-field design. This Account demonstrates how ease of fabrication, enhanced efficiency, and alteration of physicochemical properties of several functional materials is facilitated owing to the presence of S/SeCHBs. Our efforts have been instrumental in the evaluation of various S/SeCHBs in flue gas capture, as well as design of organic energy harvesting materials, where dipole moment and polarizability have important roles to play. We hope this Account invokes newer perspectives with regard to how H-bonds with sulfur and selenium can be adequately adopted for crystal engineering, for more photo- and biophysical studies with different spectroscopic methods, and for developing next-generation field-effect transistors, batteries, superconductors, and organic thin-film transistors, among many other multifunctional materials for the future.
Collapse
Affiliation(s)
- Apramita Chand
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), PO Bhimpur-Padanpur, Via-Jatni, District Khurda, 752050 Bhubaneswar, India
- Homi Bhabha National Institute, Training School
Complex, Anushakti Nagar, Mumbai 400094, India
| | - Dipak Kumar Sahoo
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), PO Bhimpur-Padanpur, Via-Jatni, District Khurda, 752050 Bhubaneswar, India
- Homi Bhabha National Institute, Training School
Complex, Anushakti Nagar, Mumbai 400094, India
| | - Abhijit Rana
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), PO Bhimpur-Padanpur, Via-Jatni, District Khurda, 752050 Bhubaneswar, India
- Homi Bhabha National Institute, Training School
Complex, Anushakti Nagar, Mumbai 400094, India
| | - Subhrakant Jena
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), PO Bhimpur-Padanpur, Via-Jatni, District Khurda, 752050 Bhubaneswar, India
- Homi Bhabha National Institute, Training School
Complex, Anushakti Nagar, Mumbai 400094, India
| | - Himansu S. Biswal
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), PO Bhimpur-Padanpur, Via-Jatni, District Khurda, 752050 Bhubaneswar, India
- Homi Bhabha National Institute, Training School
Complex, Anushakti Nagar, Mumbai 400094, India
| |
Collapse
|
17
|
Ferrocenylated Chalcogen (Se and Te)-containing N-heterocyclic carbenes: Selenones, silver and palladium complexes. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2020.119531] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
18
|
Kholshin SV, Yagunov SE, Kandalintseva NV, Prosenko AE. Synthesis of new selenium-containing analogs of phenozan acid. Russ Chem Bull 2020. [DOI: 10.1007/s11172-019-2715-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
19
|
Kumar J, Kumar N, Sati N, Hota PK. Antioxidant properties of ethenyl indole: DPPH assay and TDDFT studies. NEW J CHEM 2020. [DOI: 10.1039/d0nj01317j] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Ethenyl indole exhibits antioxidant activity in a substituent dependent manner. Ethenyls bearing strong electron withdrawing substituents show weak or no antioxidant activities, whereas ethenyls with electron donating substituents exhibit antioxidant properties comparable to vitamin E.
Collapse
Affiliation(s)
- Jagdeep Kumar
- Department of Chemistry
- School of Sciences
- Hemvati Nandan Bahuguna Garhwal University
- Srinagar (Garhwal)
- India
| | - Naresh Kumar
- Department of Chemistry
- School of Sciences
- Hemvati Nandan Bahuguna Garhwal University
- Srinagar (Garhwal)
- India
| | - Nitin Sati
- Department of Pharmaceutical Sciences
- School of Sciences
- Hemvati Nandan Bahuguna Garhwal University
- Srinagar (Garhwal)
- India
| | - Prasanta Kumar Hota
- Department of Chemistry
- School of Sciences
- Hemvati Nandan Bahuguna Garhwal University
- Srinagar (Garhwal)
- India
| |
Collapse
|
20
|
Abstract
Internally functionalized multifaceted organochalcogen compounds have been designed and their ligand chemistry has been developed. The palladium complexes show remarkable homogeneous catalytic activity.
Collapse
Affiliation(s)
- Vimal K. Jain
- UM-DAE Centre for Excellence in Basic Sciences
- Nalanda Building
- University of Mumbai
- Mumbai-400 098
- India
| |
Collapse
|
21
|
Reddy CR, Ranjan R, Prajapti SK. Copper-Catalyzed Intramolecular Chalcogenoamination of Enynyl Azides: Synthesis of 5-Selenyl/Sulfenyl Nicotinates. Org Lett 2019; 21:623-626. [DOI: 10.1021/acs.orglett.8b03695] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Chada Raji Reddy
- Department of Organic Synthesis & Process Chemistry, CSIR−Indian Institute of Chemical Technology, Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| | - Ravi Ranjan
- Department of Organic Synthesis & Process Chemistry, CSIR−Indian Institute of Chemical Technology, Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| | - Santosh Kumar Prajapti
- Department of Organic Synthesis & Process Chemistry, CSIR−Indian Institute of Chemical Technology, Hyderabad 500007, India
| |
Collapse
|
22
|
Hua G, Du J, Carpenter-Warren CL, Cordes DB, Slawin AMZ, Woollins JD. New insight into the chemistry of selenoureas: synthesis and single crystal structural study of diverse derivatives. NEW J CHEM 2019. [DOI: 10.1039/c9nj01059a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A series of new heteroatom derivatives of N-acylselenoureas was obtained through the reaction of KSeCN with acyl chloride and primary amines, followed by the cyclisation reaction with phenacyl bromides.
Collapse
Affiliation(s)
- Guoxiong Hua
- EaStCHEM School of Chemistry
- University of St Andrews
- UK
| | - Junyi Du
- EaStCHEM School of Chemistry
- University of St Andrews
- UK
| | | | | | | | | |
Collapse
|
23
|
Kadu R, Batabyal M, Kadyan H, Koner AL, Kumar S. An efficient copper-catalyzed synthesis of symmetrical bis(N-arylbenzamide) selenides and their conversion to hypervalent spirodiazaselenuranes and hydroxy congeners. Dalton Trans 2019; 48:7249-7260. [PMID: 30747185 DOI: 10.1039/c8dt04832k] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A copper catalyzed efficient synthetic method has been developed to access bis(N-arylbenzamide) selenides from 2-halo-N-arylbenzamide substrates and disodium selenide in HMPA at 110 °C. The developed protocol tolerates substituents in both N-aryl and benzamide rings of the 2-halobenzamide substrates and provides an array of bis(N-arylbenzamide) selenides in practical yields. The resulting selenides were transformed into hypervalent spirodiazaselenuranes by oxidation using aqueous hydrogen peroxide. (N-(1-Naphthyl)) spirodiazaselenurane is also structurally characterized by a single crystal X-ray study. Hydroxy-substituted spiroselenuranes have been prepared by careful demethylation of methoxy-substituted selenides followed by oxidation by hydrogen peroxide. Antioxidant properties for the decomposition of hydrogen peroxide and for the deactivation of radicals of hydroxy-substituted spiroselenuranes have been studied by the thiol assay and 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay. Both hydroxy-substituted spiroselenuranes exhibit dual mimic functions of glutathione peroxidase (GPx) selenoenzyme and α-tocopherol for decomposition of hydrogen peroxide and deactivation of radicals, respectively.
Collapse
Affiliation(s)
- Rahul Kadu
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal By-pass Road, Bhauri, Bhopal-462066, India.
| | | | | | | | | |
Collapse
|
24
|
Singh BG, Kumar P, Phadnis P, Iwaoka M, Priyadarsini KI. Free radical induced selenoxide formation in isomeric organoselenium compounds: the effect of chemical structures on antioxidant activity. NEW J CHEM 2019. [DOI: 10.1039/c9nj02227a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Formation of selenoxides improves the antioxidant activity of organoselenium compounds and should be considered as an important marker in the design of new selenium based antioxidants.
Collapse
Affiliation(s)
- Beena G. Singh
- Radiation & Photochemistry Division
- Bhabha Atomic Research Centre
- Trombay
- Mumbai-400085
- India
| | - Pavitra Kumar
- Radiation & Photochemistry Division
- Bhabha Atomic Research Centre
- Trombay
- Mumbai-400085
- India
| | - P. Phadnis
- Chemistry Division
- Bhabha Atomic Research Centre
- Trombay
- Mumbai-400085
- India
| | - Michio Iwaoka
- Department of Chemistry
- School of Science
- Tokai University
- Kitakaname
- Hiratsuka-shi
| | | |
Collapse
|
25
|
Venkateshwaran K, Rajesh Prasad P, Deka R, Raju S, Singh HB, Butcher RJ. Contrasting Reactivity of 2-chloro-1-formyl-3-hydroxymethylenecyclohexene and its Schiff Bases towards Disodium Diselenide: Isolation of Selenospirocycles versus Azapentalenes. ASIAN J ORG CHEM 2018. [DOI: 10.1002/ajoc.201800544] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
| | - Poonam Rajesh Prasad
- Department of Chemistry; Indian Institute of Technology Bombay, Powai; Mumbai 400 076 India
- Department of Chemistry Institute of Science; Banaras Hindu University; Varanasi 221005 India
| | - Rajesh Deka
- Department of Chemistry; Indian Institute of Technology Bombay, Powai; Mumbai 400 076 India
| | - Saravanan Raju
- Department of Chemistry; Indian Institute of Technology Bombay, Powai; Mumbai 400 076 India
| | - Harkesh B. Singh
- Department of Chemistry; Indian Institute of Technology Bombay, Powai; Mumbai 400 076 India
| | - Ray J. Butcher
- Department of Chemistry; Howard University; Washington, DC 20059 USA
| |
Collapse
|
26
|
5-Hydroxy-2,3-dihydrobenzofuran-derived polyfunctional antioxidants 3. Synthesis and antioxidant activity of 2-dodecylthiomethyland 2-dodecylselenomethyl-5-hydroxy-4,6,7-trimethyl-2,3-dihydrobenzofurans. Russ Chem Bull 2018. [DOI: 10.1007/s11172-018-2239-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
27
|
Tanini D, Tiberi C, Gellini C, Salvi PR, Capperucci A. A Straightforward Access to Stable β-Functionalized Alkyl Selenols. Adv Synth Catal 2018. [DOI: 10.1002/adsc.201800602] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Damiano Tanini
- Dipartimento di Chimica “Ugo Schiff”; Via della Lastruccia 3-13 50019 Sesto Fiorentino (FI) Italy
| | - Caterina Tiberi
- Dipartimento di Chimica “Ugo Schiff”; Via della Lastruccia 3-13 50019 Sesto Fiorentino (FI) Italy
| | - Cristina Gellini
- Dipartimento di Chimica “Ugo Schiff”; Via della Lastruccia 3-13 50019 Sesto Fiorentino (FI) Italy
| | - Pier Remigio Salvi
- Dipartimento di Chimica “Ugo Schiff”; Via della Lastruccia 3-13 50019 Sesto Fiorentino (FI) Italy
| | - Antonella Capperucci
- Dipartimento di Chimica “Ugo Schiff”; Via della Lastruccia 3-13 50019 Sesto Fiorentino (FI) Italy
| |
Collapse
|
28
|
Yu SC, Ri DM, Kühn H. Hydrophobicity and glutathione peroxidase-like activity of substituted salicyloyl-5-seleninic acids: Re-investigations on aromatic selenium compounds based on their hydrophobicity. J Organomet Chem 2018. [DOI: 10.1016/j.jorganchem.2018.02.045] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
29
|
Sands KN, Tuck TA, Back TG. Cyclic Seleninate Esters, Spirodioxyselenuranes and Related Compounds: New Classes of Biological Antioxidants That Emulate Glutathione Peroxidase. Chemistry 2018. [DOI: 10.1002/chem.201800182] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Kai N. Sands
- Department of Chemistry; University of Calgary; 2500 University Drive NW Calgary Alberta T2N 1N4 Canada
| | - Tyler A. Tuck
- Department of Chemistry; University of Calgary; 2500 University Drive NW Calgary Alberta T2N 1N4 Canada
| | - Thomas G. Back
- Department of Chemistry; University of Calgary; 2500 University Drive NW Calgary Alberta T2N 1N4 Canada
| |
Collapse
|
30
|
Payne NC, Barber DR, Ruggles EL, Hondal RJ. Can dimedone be used to study selenoproteins? An investigation into the reactivity of dimedone toward oxidized forms of selenocysteine. Protein Sci 2018; 28:41-55. [PMID: 29451338 DOI: 10.1002/pro.3390] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 02/12/2018] [Accepted: 02/13/2018] [Indexed: 01/24/2023]
Abstract
Dimedone is a widely used reagent to assess the redox state of cysteine-containing proteins as it will alkylate sulfenic acid residues, but not sulfinic acid residues. While it has been reported that dimedone can label selenenic acid residues in selenoproteins, we investigated the stability, and reversibility of this label in a model peptide system. We also wondered whether dimedone could be used to detect seleninic acid residues. We used benzenesulfinic acid, benzeneseleninic acid, and model selenocysteine-containing peptides to investigate possible reactions with dimedone. These peptides were incubated with H2 O2 in the presence of dimedone and then the reactions were followed by liquid chromatography/electrospray ionization mass spectrometry (LC/ESI-MS). The native peptide, H-PTVTGCUG-OH (corresponding to the native amino acid sequence of the C-terminus of mammalian thioredoxin reductase), could not be alkylated by dimedone, but could be carboxymethylated with iodoacetic acid. However the "mutant peptide," H-PTVTGAUG-OH, could be labeled with dimedone at low concentrations of H2 O2 , but the reaction was reversible by addition of thiol. Due to the reversible nature of this alkylation, we conclude that dimedone is not a good reagent for detecting selenenic acids in selenoproteins. At high concentrations of H2 O2 , selenium was eliminated from the peptide and a dimeric form of dimedone could be detected using LCMS and 1 H NMR. The dimeric dimedone product forms as a result of a seleno-Pummerer reaction with Sec-seleninic acid. Overall our results show that the reaction of dimedone with oxidized cysteine residues is quite different from the same reaction with oxidized selenocysteine residues.
Collapse
Affiliation(s)
- N Connor Payne
- Department of Biochemistry, University of Vermont, College of Medicine, Burlington, Vermont, 05405
| | - Drew R Barber
- Department of Biochemistry, University of Vermont, College of Medicine, Burlington, Vermont, 05405
| | - Erik L Ruggles
- Department of Biochemistry, University of Vermont, College of Medicine, Burlington, Vermont, 05405
| | - Robert J Hondal
- Department of Biochemistry, University of Vermont, College of Medicine, Burlington, Vermont, 05405
| |
Collapse
|
31
|
Fragoso E, Azpiroz R, Sharma P, Espinosa-Pérez G, Lara-Ochoa F, Toscano A, Gutierrez R, Portillo O. New organoselenium compounds with intramolecular Se⋯O/ Se⋯H interactions: NMR and theoretical studies. J Mol Struct 2018. [DOI: 10.1016/j.molstruc.2017.11.054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
32
|
Yu S, Liu S. Multifunctional Antioxidants with High Activity at Elevated Temperatures Based on Intramolecular Synergism. European J Org Chem 2018. [DOI: 10.1002/ejoc.201701577] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Shasha Yu
- Polymers and Composites Division; Ningbo Institute of Materials Technology and Engineering; Chinese Academy of Sciences; No. 1219 Zhongguan West Road 315201 Ningbo China
| | - Shenggao Liu
- Polymers and Composites Division; Ningbo Institute of Materials Technology and Engineering; Chinese Academy of Sciences; No. 1219 Zhongguan West Road 315201 Ningbo China
| |
Collapse
|
33
|
|
34
|
Barbosa NV, Nogueira CW, Nogara PA, de Bem AF, Aschner M, Rocha JBT. Organoselenium compounds as mimics of selenoproteins and thiol modifier agents. Metallomics 2017; 9:1703-1734. [PMID: 29168872 DOI: 10.1039/c7mt00083a] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Selenium is an essential trace element for animals and its role in the chemistry of life relies on a unique functional group: the selenol (-SeH) group. The selenol group participates in critical redox reactions. The antioxidant enzymes glutathione peroxidase (GPx) and thioredoxin reductase (TrxR) exemplify important selenoproteins. The selenol group shares several chemical properties with the thiol group (-SH), but it is much more reactive than the sulfur analogue. The substitution of S by Se has been exploited in organic synthesis for a long time, but in the last 4 decades the re-discovery of ebselen (2-phenyl-1,2-benzisoselenazol-3(2H)-one) and the demonstration that it has antioxidant and therapeutic properties has renovated interest in the field. The ability of ebselen to mimic the reaction catalyzed by GPx has been viewed as the most important molecular mechanism of action of this class of compound. The term GPx-like or thiol peroxidase-like reaction was previously coined in the field and it is now accepted as the most important chemical attribute of organoselenium compounds. Here, we will critically review the literature on the capacity of organoselenium compounds to mimic selenoproteins (particularly GPx) and discuss some of the bottlenecks in the field. Although the GPx-like activity of organoselenium compounds contributes to their pharmacological effects, the superestimation of the GPx-like activity has to be questioned. The ability of these compounds to oxidize the thiol groups of proteins (the thiol modifier effects of organoselenium compounds) and to spare selenoproteins from inactivation by soft-electrophiles (MeHg+, Hg2+, Cd2+, etc.) might be more relevant for the explanation of their pharmacological effects than their GPx-like activity. In our view, the exploitation of the thiol modifier properties of organoselenium compounds can be harnessed more rationally than the use of low mass molecular structures to mimic the activity of high mass macromolecules that have been shaped by millions to billions of years of evolution.
Collapse
Affiliation(s)
- Nilda V Barbosa
- Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil.
| | - Cristina W Nogueira
- Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil.
| | - Pablo A Nogara
- Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil.
| | - Andreza F de Bem
- Departamento de Bioquímica, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - João B T Rocha
- Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil.
| |
Collapse
|
35
|
Arai K, Tashiro A, Osaka Y, Iwaoka M. Glutathione Peroxidase-Like Activity of Amino-Substituted Water-Soluble Cyclic Selenides: A Shift of the Major Catalytic Cycle in Methanol. Molecules 2017; 22:molecules22030354. [PMID: 28245615 PMCID: PMC6155421 DOI: 10.3390/molecules22030354] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 02/21/2017] [Accepted: 02/22/2017] [Indexed: 02/03/2023] Open
Abstract
We previously reported that water-soluble cyclic selenides can mimic the antioxidative function of glutathione peroxidase (GPx) in water through a simple catalytic cycle, in which the selenide (>Se) is oxidized by H2O2 to the selenoxide (>Se=O) and the selenoxide is reduced by a thiol back to the selenide. In methanol, however, the GPx-like activity could not be explained by this simple scenario. To look into the reasons for the unusual behaviors in methanol, monoamino-substituted cyclic selenides with a variable ring size were synthesized, and the intermediates of the catalytic cycle were characterized by means of 77Se-NMR and LC–MS spectroscopies. In water, it was confirmed that the selenide and the selenoxide mainly contribute to the antioxidative function, though a slight contribution from the dihydroxy selenane (>Se(OH)2) was also suggested. In methanol, on the other hand, other active species, such as hydroxyselenonium (>Se+–OH) and hydroxy perhydroxy selenane (>Se(OH)(OOH)), could be generated to build another catalytic cycle. This over-oxidation would be more feasible for amino-substituted cyclic selenides, probably because the ammonium (NH3+) group would transfer a proton to the selenoxide moiety to produce a hydroxyselenonium species in the absence of an additional proton source. Thus, a shift of the major catalytic cycle in methanol would make the GPx-like antioxidative function of selenides perplexing.
Collapse
Affiliation(s)
- Kenta Arai
- Department of Chemistry, School of Science, Tokai University, Kitakaname, Hiratsuka-shi, Kanagawa 259-1292, Japan.
| | - Ayako Tashiro
- Department of Chemistry, School of Science, Tokai University, Kitakaname, Hiratsuka-shi, Kanagawa 259-1292, Japan.
| | - Yuui Osaka
- Department of Chemistry, School of Science, Tokai University, Kitakaname, Hiratsuka-shi, Kanagawa 259-1292, Japan.
| | - Michio Iwaoka
- Department of Chemistry, School of Science, Tokai University, Kitakaname, Hiratsuka-shi, Kanagawa 259-1292, Japan.
| |
Collapse
|
36
|
Lu X, Mestres G, Singh VP, Effati P, Poon JF, Engman L, Ott MK. Selenium- and Tellurium-Based Antioxidants for Modulating Inflammation and Effects on Osteoblastic Activity. Antioxidants (Basel) 2017; 6:antiox6010013. [PMID: 28216602 PMCID: PMC5384176 DOI: 10.3390/antiox6010013] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 02/10/2017] [Indexed: 01/04/2023] Open
Abstract
Increased oxidative stress plays a significant role in the etiology of bone diseases. Heightened levels of H2O2 disrupt bone homeostasis, leading to greater bone resorption than bone formation. Organochalcogen compounds could act as free radical trapping agents or glutathione peroxidase mimetics, reducing oxidative stress in inflammatory diseases. In this report, we synthesized and screened a library of organoselenium and organotellurium compounds for hydrogen peroxide scavenging activity, using macrophagic cell lines RAW264.7 and THP-1, as well as human mono- and poly-nuclear cells. These cells were stimulated to release H2O2, using phorbol 12-myristate 13-acetate, with and without organochalogens. Released H2O2 was then measured using a chemiluminescent assay over a period of 2 h. The screening identified an organoselenium compound which scavenged H2O2 more effectively than the vitamin E analog, Trolox. We also found that this organoselenium compound protected MC3T3 cells against H2O2-induced toxicity, whereas Trolox did not. The organoselenium compound exhibited no cytotoxicity to the cells and had no deleterious effects on cell proliferation, viability, or alkaline phosphatase activity. The rapidity of H2O2 scavenging and protection suggests that the mechanism of protection is due to the direct scavenging of extracellular H2O2. This compound is a promising modulators of inflammation and could potentially treat diseases involving high levels of oxidative stress.
Collapse
Affiliation(s)
- Xi Lu
- Department of Engineering Science, Applied Materials Science, Uppsala University, Box 534, Uppsala 751 21, Sweden.
| | - Gemma Mestres
- Department of Engineering, Microsystems Technology, Uppsala University, Box 534, Uppsala 751 21, Sweden.
| | - Vijay Pal Singh
- Department of Chemistry, BMC, Uppsala University, Box 576, Uppsala 751 23, Sweden.
| | - Pedram Effati
- Department of Engineering Science, Applied Materials Science, Uppsala University, Box 534, Uppsala 751 21, Sweden.
| | - Jia-Fei Poon
- Department of Chemistry, BMC, Uppsala University, Box 576, Uppsala 751 23, Sweden.
| | - Lars Engman
- Department of Chemistry, BMC, Uppsala University, Box 576, Uppsala 751 23, Sweden.
| | - Marjam Karlsson Ott
- Department of Engineering Science, Applied Materials Science, Uppsala University, Box 534, Uppsala 751 21, Sweden.
| |
Collapse
|
37
|
Prasad CD, Sattar M, Kumar S. Transition-Metal-Free Selective Oxidative C(sp3)–S/Se Coupling of Oxindoles, Tetralone, and Arylacetamides: Synthesis of Unsymmetrical Organochalcogenides. Org Lett 2017; 19:774-777. [DOI: 10.1021/acs.orglett.6b03735] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Ch. Durga Prasad
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Bhopal, MP 462 066, India
| | - Moh. Sattar
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Bhopal, MP 462 066, India
| | - Sangit Kumar
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Bhopal, MP 462 066, India
| |
Collapse
|
38
|
McNeil NMR, Press DJ, Mayder DM, Garnica P, Doyle LM, Back TG. Enhanced Glutathione Peroxidase Activity of Water-Soluble and Polyethylene Glycol-Supported Selenides, Related Spirodioxyselenuranes, and Pincer Selenuranes. J Org Chem 2016; 81:7884-97. [DOI: 10.1021/acs.joc.6b01593] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Nicole M. R. McNeil
- Department of Chemistry, University of Calgary, 2500 University Drive N.W., Calgary, Alberta T2N 1N4, Canada
| | - David J. Press
- Department of Chemistry, University of Calgary, 2500 University Drive N.W., Calgary, Alberta T2N 1N4, Canada
| | - Don M. Mayder
- Department of Chemistry, University of Calgary, 2500 University Drive N.W., Calgary, Alberta T2N 1N4, Canada
| | - Pablo Garnica
- Department of Chemistry, University of Calgary, 2500 University Drive N.W., Calgary, Alberta T2N 1N4, Canada
| | - Lisa M. Doyle
- Department of Chemistry, University of Calgary, 2500 University Drive N.W., Calgary, Alberta T2N 1N4, Canada
| | - Thomas G. Back
- Department of Chemistry, University of Calgary, 2500 University Drive N.W., Calgary, Alberta T2N 1N4, Canada
| |
Collapse
|
39
|
Kumar S, Yan J, Poon JF, Singh VP, Lu X, Karlsson Ott M, Engman L, Kumar S. Multifunctional Antioxidants: Regenerable Radical-Trapping and Hydroperoxide-Decomposing Ebselenols. Angew Chem Int Ed Engl 2016; 55:3729-33. [DOI: 10.1002/anie.201510947] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 01/11/2016] [Indexed: 11/10/2022]
Affiliation(s)
- Shailesh Kumar
- Department of Chemistry; Indian Institute of Science Education and Research (IISER); Bhopal- 462066 India
| | - Jiajie Yan
- Department of Chemistry-BMC; Uppsala University; Box-576 75123 Uppsala Sweden
| | - Jia-fei Poon
- Department of Chemistry-BMC; Uppsala University; Box-576 75123 Uppsala Sweden
| | - Vijay P. Singh
- Department of Chemistry-BMC; Uppsala University; Box-576 75123 Uppsala Sweden
| | - Xi Lu
- Division of Applied Materials Science; Department of Engineering Sciences; Uppsala University; Sweden
| | - Marjam Karlsson Ott
- Division of Applied Materials Science; Department of Engineering Sciences; Uppsala University; Sweden
| | - Lars Engman
- Department of Chemistry-BMC; Uppsala University; Box-576 75123 Uppsala Sweden
| | - Sangit Kumar
- Department of Chemistry; Indian Institute of Science Education and Research (IISER); Bhopal- 462066 India
| |
Collapse
|
40
|
Kumar S, Yan J, Poon JF, Singh VP, Lu X, Karlsson Ott M, Engman L, Kumar S. Multifunctional Antioxidants: Regenerable Radical-Trapping and Hydroperoxide-Decomposing Ebselenols. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201510947] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Shailesh Kumar
- Department of Chemistry; Indian Institute of Science Education and Research (IISER); Bhopal- 462066 India
| | - Jiajie Yan
- Department of Chemistry-BMC; Uppsala University; Box-576 75123 Uppsala Sweden
| | - Jia-fei Poon
- Department of Chemistry-BMC; Uppsala University; Box-576 75123 Uppsala Sweden
| | - Vijay P. Singh
- Department of Chemistry-BMC; Uppsala University; Box-576 75123 Uppsala Sweden
| | - Xi Lu
- Division of Applied Materials Science; Department of Engineering Sciences; Uppsala University; Sweden
| | - Marjam Karlsson Ott
- Division of Applied Materials Science; Department of Engineering Sciences; Uppsala University; Sweden
| | - Lars Engman
- Department of Chemistry-BMC; Uppsala University; Box-576 75123 Uppsala Sweden
| | - Sangit Kumar
- Department of Chemistry; Indian Institute of Science Education and Research (IISER); Bhopal- 462066 India
| |
Collapse
|
41
|
Verma A, Jana S, Durga Prasad C, Yadav A, Kumar S. Organoselenium and DMAP co-catalysis: regioselective synthesis of medium-sized halolactones and bromooxepanes from unactivated alkenes. Chem Commun (Camb) 2016; 52:4179-82. [DOI: 10.1039/c5cc10245f] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A co-catalytic system has been developed for the synthesis of medium-sized halolactones and bromooxepanes possessing high transannular strain. Mechanistic studies reveal that quaternary selenium intermediate is involved in catalysis.
Collapse
Affiliation(s)
- Ajay Verma
- Department of Chemistry
- Indian Institute of Science Education and Research (IISER) Bhopal
- Bhopal
- India
| | - Sadhan Jana
- Department of Chemistry
- Indian Institute of Science Education and Research (IISER) Bhopal
- Bhopal
- India
| | - Ch. Durga Prasad
- Department of Chemistry
- Indian Institute of Science Education and Research (IISER) Bhopal
- Bhopal
- India
| | - Abhimanyu Yadav
- Department of Chemistry
- Indian Institute of Science Education and Research (IISER) Bhopal
- Bhopal
- India
| | - Sangit Kumar
- Department of Chemistry
- Indian Institute of Science Education and Research (IISER) Bhopal
- Bhopal
- India
| |
Collapse
|
42
|
Singh VP, Poon JF, Butcher RJ, Lu X, Mestres G, Ott MK, Engman L. Effect of a Bromo Substituent on the Glutathione Peroxidase Activity of a Pyridoxine-like Diselenide. J Org Chem 2015; 80:7385-95. [DOI: 10.1021/acs.joc.5b00797] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Vijay P. Singh
- Department
of Chemistry−BMC, Uppsala University, Box 576, SE-751 23 Uppsala, Sweden
| | - Jia-fei Poon
- Department
of Chemistry−BMC, Uppsala University, Box 576, SE-751 23 Uppsala, Sweden
| | - Ray J. Butcher
- Department
of Chemistry, Howard University, Washington, D.C. 20059, United States
| | - Xi Lu
- Division
of Applied Materials Science, Department of Engineering Sciences, Uppsala University, SE-751 23 Uppsala, Sweden
| | - Gemma Mestres
- Division
of Applied Materials Science, Department of Engineering Sciences, Uppsala University, SE-751 23 Uppsala, Sweden
| | - Marjam Karlsson Ott
- Division
of Applied Materials Science, Department of Engineering Sciences, Uppsala University, SE-751 23 Uppsala, Sweden
| | - Lars Engman
- Department
of Chemistry−BMC, Uppsala University, Box 576, SE-751 23 Uppsala, Sweden
| |
Collapse
|
43
|
Murai T, Mizutani T, Ebihara M, Maruyama T. α-Hydroxy and α-Oxo Selenoamides: Synthesis via Nucleophilic Selenocarbamoylation of Carbonyl Compounds and Characterization. J Org Chem 2015; 80:6903-7. [DOI: 10.1021/acs.joc.5b00969] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Toshiaki Murai
- Department
of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, Yanagido, Gifu 501-1193, Japan
- JST, ACT-C, 4-1-8 Honcho, Kawaguchi,
Saitama 332-0012, Japan
| | - Tomohiko Mizutani
- Department
of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, Yanagido, Gifu 501-1193, Japan
| | - Masahiro Ebihara
- Department
of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, Yanagido, Gifu 501-1193, Japan
| | - Toshifumi Maruyama
- Department
of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, Yanagido, Gifu 501-1193, Japan
| |
Collapse
|
44
|
Wang Z, Wang Y, Li W, Liu Z, Luo Z, Sun Y, Wu R, Huang L, Li X. Computer-assisted designed “selenoxy–chinolin”: a new catalytic mechanism of the GPx-like cycle and inhibition of metal-free and metal-associated Aβ aggregation. Dalton Trans 2015; 44:20913-25. [DOI: 10.1039/c5dt02130h] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Using support from rational computer-assisted design, a novel series of hybrids designed by fusing the metal-chelating agent CQ and the antioxidant ebselen were synthesized and evaluated as multitarget-directed ligands.
Collapse
Affiliation(s)
- Zhiren Wang
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou 510006
- China
| | - Yali Wang
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou 510006
- China
| | - Wenrui Li
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou 510006
- China
| | - Zhihong Liu
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou 510006
- China
| | - Zonghua Luo
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou 510006
- China
| | - Yang Sun
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou 510006
- China
| | - Ruibo Wu
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou 510006
- China
| | - Ling Huang
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou 510006
- China
| | - Xingshu Li
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou 510006
- China
| |
Collapse
|