1
|
Pavliuk MV, Böhm M, Wilhelmsen J, Hardt S, Land H, Tian H. Photobiocatalytic CO 2 reduction into CO by organic nanorod-carbon monoxide dehydrogenase assemblies: surfactant matters. Chem Sci 2024:d4sc03154g. [PMID: 39328197 PMCID: PMC11421036 DOI: 10.1039/d4sc03154g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 09/10/2024] [Indexed: 09/28/2024] Open
Abstract
Photobiocatalytic CO2 reduction represents an attractive approach for conversion of solar light and abundant resources to value-added chemicals. However, the design of suitable systems requires a detailed understanding of the interaction between the artificial photosensitizer and biocatalyst interface. In this work, we investigate the effect of surfactant charge utilized in the preparation of a phenoxazine-based organic molecule nanorod photosensitizer on the interaction with the carbon monoxide dehydrogenase II from Carboxydothermus hydrogenoformans within biohybrid assemblies for sacrificially driven photobiocatalytic CO2 reduction into CO. Electrophoretic mobility shift assay in conjunction with cryogenic electron microscopy (Cryo-EM) and detailed physicochemical characterization are conducted to understand the interaction at the biohybrid interface in order to suggest a strategy for future functionalization of nanoparticles that fulfills the needs of the biocatalyst for green fuel production.
Collapse
Affiliation(s)
- Mariia V Pavliuk
- Department of Chemistry - Ångström Laboratory, Physical Chemistry, Uppsala University Uppsala Sweden
| | - Maximilian Böhm
- Department of Chemistry - Ångström Laboratory, Molecular Biomimetics, Uppsala University Uppsala Sweden
| | - Janna Wilhelmsen
- Department of Chemistry - Ångström Laboratory, Physical Chemistry, Uppsala University Uppsala Sweden
| | - Steffen Hardt
- Leiden Institute of Chemistry, Energy and Sustainability - Catalysis and Surface Chemistry, Leiden University Einsteinweg 55 2333 CC Leiden the Netherlands
| | - Henrik Land
- Department of Chemistry - Ångström Laboratory, Molecular Biomimetics, Uppsala University Uppsala Sweden
| | - Haining Tian
- Department of Chemistry - Ångström Laboratory, Physical Chemistry, Uppsala University Uppsala Sweden
| |
Collapse
|
2
|
Carceller JM, Arias KS, Climent MJ, Iborra S, Corma A. One-pot chemo- and photo-enzymatic linear cascade processes. Chem Soc Rev 2024; 53:7875-7938. [PMID: 38965865 DOI: 10.1039/d3cs00595j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
The combination of chemo- and photocatalyses with biocatalysis, which couples the flexible reactivity of the photo- and chemocatalysts with the highly selective and environmentally friendly nature of enzymes in one-pot linear cascades, represents a powerful tool in organic synthesis. However, the combination of photo-, chemo- and biocatalysts in one-pot is challenging because the optimal operating conditions of the involved catalyst types may be rather different, and the different stabilities of catalysts and their mutual deactivation are additional problems often encountered in one-pot cascade processes. This review explores a large number of transformations and approaches adopted for combining enzymes and chemo- and photocatalytic processes in a successful way to achieve valuable chemicals and valorisation of biomass. Moreover, the strategies for solving incompatibility issues in chemo-enzymatic reactions are analysed, introducing recent examples of the application of non-conventional solvents, enzyme-metal hybrid catalysts, and spatial compartmentalization strategies to implement chemo-enzymatic cascade processes.
Collapse
Affiliation(s)
- J M Carceller
- Instituto de Tecnología Química (Universitat Politècnica de València-Agencia Estatal Consejo Superior de Investigaciones Científicas), Avda dels Tarongers s/n, 46022, Valencia, Spain.
| | - K S Arias
- Instituto de Tecnología Química (Universitat Politècnica de València-Agencia Estatal Consejo Superior de Investigaciones Científicas), Avda dels Tarongers s/n, 46022, Valencia, Spain.
| | - M J Climent
- Instituto de Tecnología Química (Universitat Politècnica de València-Agencia Estatal Consejo Superior de Investigaciones Científicas), Avda dels Tarongers s/n, 46022, Valencia, Spain.
| | - S Iborra
- Instituto de Tecnología Química (Universitat Politècnica de València-Agencia Estatal Consejo Superior de Investigaciones Científicas), Avda dels Tarongers s/n, 46022, Valencia, Spain.
| | - A Corma
- Instituto de Tecnología Química (Universitat Politècnica de València-Agencia Estatal Consejo Superior de Investigaciones Científicas), Avda dels Tarongers s/n, 46022, Valencia, Spain.
| |
Collapse
|
3
|
Huang W, Zhang W, Chen G, Chen Y, Ma J, Huang D, Zhao Q, Wu B. Visible light-driven oxidation of non-native substrate by laccase attached on Ru-based metal-organic frameworks. J Environ Sci (China) 2024; 137:741-753. [PMID: 37980056 DOI: 10.1016/j.jes.2023.02.047] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 02/22/2023] [Accepted: 02/22/2023] [Indexed: 11/20/2023]
Abstract
Light-induced electron transfer can broaden the substrate range of metalloenzyme. However, the efficiency of photo-enzyme coupling is limited by the poor combination of photosensitizer or photocatalyst with enzyme. Herein, we prepared the nano-photocatalyst MIL-125-NH2@Ru(bpy) by in site embedding ruthenium pyridine-diimine complex [Ru(bpy)3]2+ into metal organic frameworks MIL-125-NH2 and associated it with multicopper oxidase (MCO) laccase. Compared to [Ru(bpy)3]2+, the coupling efficiency of MIL-125-NH2@Ru(bpy)3 for enzymatic oxygen reduction increased by 35.7%. A series of characterizations confirmed that the amino group of laccase formed chemical bonds with the surface defects or hydrophobic groups of MIL-125-NH2@Ru(bpy)3. Consequently, the tight binding accelerated the quenching process and electron transfer between laccase and the immobilized ruthenium pyridine-diimine complex. This work would open an avenue for the synthesis of MOFs photocatalyst towards photo-enzyme coupling.
Collapse
Affiliation(s)
- Wenguang Huang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment of PRC, Guangzhou 510655, China
| | - Wentao Zhang
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Guantongyi Chen
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment of PRC, Guangzhou 510655, China
| | - Yun Chen
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment of PRC, Guangzhou 510655, China
| | - Jun Ma
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment of PRC, Guangzhou 510655, China
| | - Dawei Huang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment of PRC, Guangzhou 510655, China.
| | - Qinzheng Zhao
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215002, China
| | - Bingdang Wu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215002, China; Key Laboratory of Suzhou Sponge City Technology, Suzhou 215002, China.
| |
Collapse
|
4
|
Singh PP, Sinha S, Nainwal P, Singh PK, Srivastava V. Novel applications of photobiocatalysts in chemical transformations. RSC Adv 2024; 14:2590-2601. [PMID: 38226143 PMCID: PMC10788709 DOI: 10.1039/d3ra07371h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 12/28/2023] [Indexed: 01/17/2024] Open
Abstract
Photocatalysis has proven to be an effective approach for the production of reactive intermediates under moderate reaction conditions. The possibility for the green synthesis of high-value compounds using the synergy of photocatalysis and biocatalysis, benefiting from the selectivity of enzymes and the reactivity of photocatalysts, has drawn growing interest. Mechanistic investigations, substrate analyses, and photobiocatalytic chemical transformations will all be incorporated in this review. We seek to shed light on upcoming synthetic opportunities in the field by precisely describing mechanistically unique techniques in photobiocatalytic chemistry.
Collapse
Affiliation(s)
- Praveen P Singh
- Department of Chemistry, United College of Engineering & Research Prayagraj U. P.-211010 India
| | - Surabhi Sinha
- Department of Chemistry, United College of Engineering & Research Prayagraj U. P.-211010 India
| | - Pankaj Nainwal
- School of Pharmacy, Graphic Era Hill University Dehradun Uttarakhand India
| | - Pravin K Singh
- Department of Chemistry, CMP Degree College, University of Allahabad Prayagraj U. P.-211002 India
| | - Vishal Srivastava
- Department of Chemistry, CMP Degree College, University of Allahabad Prayagraj U. P.-211002 India
| |
Collapse
|
5
|
Machín A, Cotto M, Ducongé J, Márquez F. Artificial Photosynthesis: Current Advancements and Future Prospects. Biomimetics (Basel) 2023; 8:298. [PMID: 37504186 PMCID: PMC10807655 DOI: 10.3390/biomimetics8030298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/01/2023] [Accepted: 07/07/2023] [Indexed: 07/29/2023] Open
Abstract
Artificial photosynthesis is a technology with immense potential that aims to emulate the natural photosynthetic process. The process of natural photosynthesis involves the conversion of solar energy into chemical energy, which is stored in organic compounds. Catalysis is an essential aspect of artificial photosynthesis, as it facilitates the reactions that convert solar energy into chemical energy. In this review, we aim to provide an extensive overview of recent developments in the field of artificial photosynthesis by catalysis. We will discuss the various catalyst types used in artificial photosynthesis, including homogeneous catalysts, heterogeneous catalysts, and biocatalysts. Additionally, we will explore the different strategies employed to enhance the efficiency and selectivity of catalytic reactions, such as the utilization of nanomaterials, photoelectrochemical cells, and molecular engineering. Lastly, we will examine the challenges and opportunities of this technology as well as its potential applications in areas such as renewable energy, carbon capture and utilization, and sustainable agriculture. This review aims to provide a comprehensive and critical analysis of state-of-the-art methods in artificial photosynthesis by catalysis, as well as to identify key research directions for future advancements in this field.
Collapse
Affiliation(s)
- Abniel Machín
- Divisionof Natural Sciences and Technology, Universidad Ana G. Méndez-Cupey Campus, San Juan, PR 00926, USA
| | - María Cotto
- Nanomaterials Research Group, Department of Natural Sciences and Technology, Universidad Ana G. Méndez-Gurabo Campus, Gurabo, PR 00778, USA; (M.C.); (J.D.)
| | - José Ducongé
- Nanomaterials Research Group, Department of Natural Sciences and Technology, Universidad Ana G. Méndez-Gurabo Campus, Gurabo, PR 00778, USA; (M.C.); (J.D.)
| | - Francisco Márquez
- Nanomaterials Research Group, Department of Natural Sciences and Technology, Universidad Ana G. Méndez-Gurabo Campus, Gurabo, PR 00778, USA; (M.C.); (J.D.)
| |
Collapse
|
6
|
Garcia-Munoz P, Valenzuela L, Wegstein D, Schanz T, Lopez GE, Ruppert AM, Remita H, Bloh JZ, Keller N. Photocatalytic Synthesis of Hydrogen Peroxide from Molecular Oxygen and Water. Top Curr Chem (Cham) 2023; 381:15. [PMID: 37160833 DOI: 10.1007/s41061-023-00423-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 03/28/2023] [Indexed: 05/11/2023]
Abstract
Hydrogen peroxide is a powerful and green oxidant that allows for the oxidation of a wide span of organic and inorganic substrates in liquid media under mild reaction conditions, and forms only molecular water and oxygen as end products. Hydrogen peroxide is therefore used in a wide range of applications, for which the well-documented and established anthraquinone autoxidation process is by far the dominating production method at the industrial scale. As this method is highly energy consuming and environmentally costly, the search for more sustainable synthesis methods is of high interest. To this end, the article reviews the basis and the recent development of the photocatalytic synthesis of hydrogen peroxide. Different oxygen reduction and water oxidation mechanisms are discussed, as well as several kinetic models, and the influence of the main key reaction parameters is itemized. A large range of photocatalytic materials is reviewed, with emphasis on titania-based photocatalysts and on high-prospect graphitic carbon nitride-based systems that take advantage of advanced bulk and surface synthetic approaches. Strategies for enhancing the performances of solar-driven photocatalysts are reported, and the search for new, alternative, photocatalytic materials is detailed. Finally, the promise of in situ photocatalytic synthesis of hydrogen peroxide for water treatment and organic synthesis is described, as well as its coupling with enzymes and the direct in situ synthesis of other technical peroxides.
Collapse
Affiliation(s)
- Patricia Garcia-Munoz
- Department of Chemical and Environmental Engineering, Escuela Técnica Superior de Ingenieros Industriales, Universidad Politécnica de Madrid, 28006, Madrid, Spain
| | - Laura Valenzuela
- Institut de Chimie et Procédés pour l'Energie, l'Environnement et la Santé (ICPEES), CNRS/University of Strasbourg, 25 rue Becquerel, Strasbourg, France
| | - Deborah Wegstein
- DECHEMA-Forschungsinstitut, Theodor-Heuss-Allee 25, 60486, Frankfurt am Main, Germany
| | - Tobias Schanz
- DECHEMA-Forschungsinstitut, Theodor-Heuss-Allee 25, 60486, Frankfurt am Main, Germany
| | - Girlie Eunice Lopez
- Institut de Chimie Physique, CNRS UMR 8000, Université Paris-Saclay, 91405, Orsay, France
| | - Agnieszka M Ruppert
- Institute of General and Ecological Chemistry, Lodz University of Technology, Żeromskiego 116, 90-924, Łódź, Poland
| | - Hynd Remita
- Institut de Chimie Physique, CNRS UMR 8000, Université Paris-Saclay, 91405, Orsay, France
| | - Jonathan Z Bloh
- DECHEMA-Forschungsinstitut, Theodor-Heuss-Allee 25, 60486, Frankfurt am Main, Germany
| | - Nicolas Keller
- Institut de Chimie et Procédés pour l'Energie, l'Environnement et la Santé (ICPEES), CNRS/University of Strasbourg, 25 rue Becquerel, Strasbourg, France.
| |
Collapse
|
7
|
Wang J, Shirvani H, Zhao H, Kibria MG, Hu J. Lignocellulosic biomass valorization via bio-photo/electro hybrid catalytic systems. Biotechnol Adv 2023; 66:108157. [PMID: 37084800 DOI: 10.1016/j.biotechadv.2023.108157] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/23/2023] [Accepted: 04/17/2023] [Indexed: 04/23/2023]
Abstract
Lignocellulosic biomass valorization is regarded as a promising approach to alleviate energy crisis and achieve carbon neutrality. Bioactive enzymes have attracted great attention and been commonly applied for biomass valorization owing to their high selectivity and catalytic efficiency under environmentally benign reaction conditions. Same as biocatalysis, photo-/electro-catalysis also happens at mild conditions (i.e., near ambient temperature and pressure). Therefore, the combination of these different catalytic approaches to benefit from their resulting synergy is appealing. In such hybrid systems, harness of renewable energy from the photo-/electro-catalytic compartment can be combined with the unique selectivity of biocatalysts, therefore providing a more sustainable and greener approach to obtain fuels and value-added chemicals from biomass. In this review, we firstly introduce the pros/cons, classifications, and the applications of photo-/electro-enzyme coupled systems. Then we focus on the fundamentals and comprehensive applications of the most representative biomass-active enzymes including lytic polysaccharide monooxygenases (LPMOs), glucose oxidase (GOD)/dehydrogenase (GDH) and lignin peroxidase (LiP), together with other biomass-active enzymes in the photo-/electro- enzyme coupled systems. Finally, we propose current deficiencies and future perspectives of biomass-active enzymes to be applied in the hybrid catalytic systems for global biomass valorization.
Collapse
Affiliation(s)
- Jiu Wang
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, NW, Calgary, Alberta, Canada
| | - Hamed Shirvani
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, NW, Calgary, Alberta, Canada
| | - Heng Zhao
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, NW, Calgary, Alberta, Canada
| | - Md Golam Kibria
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, NW, Calgary, Alberta, Canada.
| | - Jinguang Hu
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, NW, Calgary, Alberta, Canada.
| |
Collapse
|
8
|
Wang Y, Geng Q, Zhang Y, Adler-Abramovich L, Fan X, Mei D, Gazit E, Tao K. Fmoc-diphenylalanine gelating nanoarchitectonics: A simplistic peptide self-assembly to meet complex applications. J Colloid Interface Sci 2023; 636:113-133. [PMID: 36623365 DOI: 10.1016/j.jcis.2022.12.166] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/19/2022] [Accepted: 12/30/2022] [Indexed: 01/05/2023]
Abstract
9-fluorenylmethoxycarbonyl-diphenylalanine (Fmoc-FF), has been has been extensively explored due to its ultrafast self-assembly kinetics, inherent biocompatibility, tunable physicochemical properties, and especially, the capability of forming self-sustained gels under physiological conditions. Consequently, various methodologies to develop Fmoc-FF gels and their corresponding applications in biomedical and industrial fields have been extensively studied. Herein, we systemically summarize the mechanisms underlying Fmoc-FF self-assembly, discuss the preparation methodologies of Fmoc-FF hydrogels, and then deliberate the properties as well as the diverse applications of Fmoc-FF self-assemblies. Finally, the contemporary shortcomings which limit the development of Fmoc-FF self-assembly are raised and the alternative solutions are proposed, along with future research perspectives.
Collapse
Affiliation(s)
- Yunxiao Wang
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China; Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311200, China; Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, Hangzhou 311200, China
| | - Qiang Geng
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China; Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311200, China
| | - Yan Zhang
- Centre for Bioengineering and Biotechnology, College of Chemical Engineering, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao 266580, China
| | - Lihi Adler-Abramovich
- Department of Oral Biology, The Goldschleger School of Dental Medicine, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel; The Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv 6997801, Israel; Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, Hangzhou 311200, China.
| | - Xinyuan Fan
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China; Key Laboratory of Advanced Manufacturing Technology of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China; Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, Hangzhou 311200, China
| | - Deqing Mei
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China; Key Laboratory of Advanced Manufacturing Technology of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
| | - Ehud Gazit
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, 6997801 Tel Aviv, Israel; Department of Materials Science and Engineering, Iby and Aladar Fleischman, Tel Aviv University, 6997801 Tel Aviv, Israel; Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, Hangzhou 311200, China.
| | - Kai Tao
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China; Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311200, China; Key Laboratory of Advanced Manufacturing Technology of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China; Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, Hangzhou 311200, China.
| |
Collapse
|
9
|
Xing X, Liu Y, Lin RD, Zhang Y, Wu ZL, Yu XQ, Li K, Wang N. Development of an Integrated System for Highly Selective Photoenzymatic Synthesis of Formic Acid from CO 2. CHEMSUSCHEM 2023; 16:e202201956. [PMID: 36482031 DOI: 10.1002/cssc.202201956] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/13/2022] [Indexed: 06/17/2023]
Abstract
Herein, a Zr-based dual-ligand MOFs with pre-installed Rh complex was employed for NADH regeneration in situ and also used for immobilization of formic acid dehydrogenase (FDH) in order to realize a highly efficient CO2 fixation system. Then, based on the detailed investigations into the photochemical and electrochemical properties, it is demonstrated that the introduction of the photosensitive meso-tetra(4-carboxyphenyl) porphin (TCPP) ligands increased the catalytic active sites and improved photoelectric properties. Furthermore, the electron mediator Rh complex, anchored on the zirconium-based dual-ligand MOFs, enhanced the efficiency of electron transfer efficiency and facilitated the separation of photogenerated electrons and holes. Compared with UiO-66-NH2 , Rh-H2 TCPP-UiO-66-NH2 exhibits an optimized valence band structure and significantly improved photocatalytic activity for NAD+ reduction, resulting the synthesis of formic acid from CO2 increased from 150 μg mL-1 (UiO-66-NH2 ) to 254 μg mL-1 (Rh-H2 TCPP-UiO-66-NH2 ). Moreover, the assembled photocatalyst-enzyme coupled system also allows facile recycling of expensive electron mediator, enzyme, and photocatalyst.
Collapse
Affiliation(s)
- Xiu Xing
- Key Laboratory of Green Chemistry Technology, Ministry of Education, College of Chemistry, Sichuan University, 610064, Chengdu, P. R. China
| | - Yan Liu
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, 610041, Chengdu, P. R. China
| | - Ru-De Lin
- Key Laboratory of Green Chemistry Technology, Ministry of Education, College of Chemistry, Sichuan University, 610064, Chengdu, P. R. China
| | - Yang Zhang
- Key Laboratory of Green Chemistry Technology, Ministry of Education, College of Chemistry, Sichuan University, 610064, Chengdu, P. R. China
| | - Zhong-Liu Wu
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, 610041, Chengdu, P. R. China
| | - Xiao-Qi Yu
- Key Laboratory of Green Chemistry Technology, Ministry of Education, College of Chemistry, Sichuan University, 610064, Chengdu, P. R. China
| | - Kun Li
- Key Laboratory of Green Chemistry Technology, Ministry of Education, College of Chemistry, Sichuan University, 610064, Chengdu, P. R. China
| | - Na Wang
- Key Laboratory of Green Chemistry Technology, Ministry of Education, College of Chemistry, Sichuan University, 610064, Chengdu, P. R. China
| |
Collapse
|
10
|
Belkessa N, Serhane Y, Bouzaza A, Khezami L, Assadi AA. Gaseous ethylbenzene removal by photocatalytic TiO 2 nanoparticles immobilized on glass fiber tissue under real conditions: evaluation of reactive oxygen species contribution to the photocatalytic process. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:35745-35756. [PMID: 36538222 DOI: 10.1007/s11356-022-24636-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 12/02/2022] [Indexed: 06/17/2023]
Abstract
Photocatalytic oxidation (PCO) using a TiO2 catalyst is an effective technique to remove gaseous volatile organic compounds (VOCs). Herein, a lab-scale continuous reactor is used to investigate the photocatalytic performance toward ethylbenzene (EB) vapor removal over TiO2 nanoparticles immobilized on glass fiber tissue. The role of the reactive species in the removal of EB and the degradation pathway were studied. Firstly, the effect of key operating parameters such as EB concentration (13, 26, 60 mg/m3), relative humidity levels (From 5 to 80%), gas carrier composition (dry air + EB, O2 + EB and N2 + EB) and ultraviolet (UV) radiation wavelength (UV-A 365 nm, UV-C 254 nm) were explored. Then, using superoxide dismutase and tert-butanol as trapping agents, the real contribution of superoxide radical anion (O2.-) and hydroxyl radicals (OH.) to EB removal was quantified. The results show that (i) small water vapor content enhances the EB degradation; (ii) the reaction atmosphere plays an important role in the photocatalytic process; and (iii) oxygen atmosphere/UV-C radiation shows the highest EB degradation percentage. The use of radical scavengers confirms the major contribution of the hydroxyl radical to the photocatalytic mechanism with 75% versus 25% for superoxide radical anion.
Collapse
Affiliation(s)
- Nacer Belkessa
- Univ Rennes, École Nationale Supérieure de Chimie de Rennes, CNRS, ISCR (Institut Des Sciences Chimiques de Rennes) - UMR 6226, 35000, Rennes, France
| | - Youcef Serhane
- Univ Rennes, École Nationale Supérieure de Chimie de Rennes, CNRS, ISCR (Institut Des Sciences Chimiques de Rennes) - UMR 6226, 35000, Rennes, France
| | - Abdelkrim Bouzaza
- Univ Rennes, École Nationale Supérieure de Chimie de Rennes, CNRS, ISCR (Institut Des Sciences Chimiques de Rennes) - UMR 6226, 35000, Rennes, France
| | - Lotfi Khezami
- Department of Chemistry, Imam Mohammad Ibn Saud Islamic University (IMSIU), P.O. Box 5701, Riyadh, 11432, Saudi Arabia
| | - Aymen Amin Assadi
- Univ Rennes, École Nationale Supérieure de Chimie de Rennes, CNRS, ISCR (Institut Des Sciences Chimiques de Rennes) - UMR 6226, 35000, Rennes, France.
| |
Collapse
|
11
|
Schreier MR, Pfund B, Steffen DM, Wenger OS. Photocatalytic Regeneration of a Nicotinamide Adenine Nucleotide Mimic with Water-Soluble Iridium(III) Complexes. Inorg Chem 2023; 62:7636-7643. [PMID: 36731131 DOI: 10.1021/acs.inorgchem.2c03100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Nicotinamide adenine nucleotide (NADH) is involved in many biologically relevant redox reactions, and the photochemical regeneration of its oxidized form (NAD+) under physiological conditions is of interest for combined photo- and biocatalysis. Here, we demonstrate that tri-anionic, water-soluble variants of typically very lipophilic iridium(III) complexes can photo-catalyze the reduction of an NAD+ mimic in a comparatively efficient manner. In combination with a well-known rhodium co-catalyst to facilitate regioselective reactions, these iridium(III) photo-reductants outcompete the commonly used [Ru(bpy)3]2+ (bpy = 2,2'-bipyridine) photosensitizer in water by up to 1 order of magnitude in turnover frequency. This improved reactivity is attributable to the strong excited-state electron donor properties and the good chemical robustness of the tri-anionic iridium(III) sensitizers, combined with their favorable Coulombic interaction with the di-cationic rhodium co-catalyst. Our findings seem relevant in the greater context of photobiocatalysis, for which access to strong, efficient, and robust photoreductants with good water solubility can be essential.
Collapse
Affiliation(s)
- Mirjam R Schreier
- Department of Chemistry, University of Basel, Street Johanns-Ring 19, 4056 Basel, Switzerland.,National Competence Center in Research, Molecular Systems Engineering, 4002 Basel, Switzerland
| | - Björn Pfund
- Department of Chemistry, University of Basel, Street Johanns-Ring 19, 4056 Basel, Switzerland
| | - Debora M Steffen
- Department of Chemistry, University of Basel, Street Johanns-Ring 19, 4056 Basel, Switzerland
| | - Oliver S Wenger
- Department of Chemistry, University of Basel, Street Johanns-Ring 19, 4056 Basel, Switzerland.,National Competence Center in Research, Molecular Systems Engineering, 4002 Basel, Switzerland
| |
Collapse
|
12
|
Zhang N, Trépout S, Chen H, Li MH. AIE Polymer Micelle/Vesicle Photocatalysts Combined with Native Enzymes for Aerobic Photobiocatalysis. J Am Chem Soc 2023; 145:288-299. [PMID: 36562998 DOI: 10.1021/jacs.2c09933] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Biocatalytic transformation has attracted increasing attention in the green synthesis of chemicals due to the diversity of enzymes, their high catalytic activities and specificities, and environmentally benign conditions. Most redox enzymes in nature are dependent on nicotinamide cofactors like β-nicotinamide adenine dinucleotide (NAD+)/reduced nicotinamide adenine dinucleotide (NADH). The use of solar energy, especially visible light, in the regeneration of cofactors through the combination of photocatalysis and biocatalysis provides an extraordinary opportunity to make complete green processes. However, the combination of photocatalysts and enzymes has been challenged by the rapid degradation and deactivation of the enzymatic material by photogenerated reactive oxygen species (ROS). Here, we design core-shell structured polymer micelles and vesicles with aggregation-induced emission (AIE) as visible-light-mediated photocatalysts for highly stable and recyclable photobiocatalysis under aerobic conditions. NAD+ from NADH can be efficiently regenerated by the photoactive hydrophobic core of polymer micelles and the hydrophobic membrane of polymer vesicles, while the enzymatic material (glucose 1-dehydrogenase) is screened from the attack of photogenerated ROS by the hydrophilic surface layer of polymer colloids. After at least 10 regeneration cycles, the enzyme keeps its active state; meanwhile, polymer micelles and vesicles maintain their photocatalytic activity. These polymer colloids show the potential to be developed for the implementation of industrially relevant photobiocatalytic systems.
Collapse
Affiliation(s)
- Nian Zhang
- Institut de Recherche de Chimie Paris, UMR8247, CNRS, Chimie ParisTech, PSL Université Paris, 11 rue Pierre et Marie Curie, 75005 Paris, France
| | - Sylvain Trépout
- Institut Curie, Inserm US43, CNRS UMS2016, Université Paris-Saclay, Centre Universitaire, Bât. 101B-110-111-112, Rue Henri Becquerel, CS 90030, 91401 Orsay Cedex, France
| | - Hui Chen
- Institut de Recherche de Chimie Paris, UMR8247, CNRS, Chimie ParisTech, PSL Université Paris, 11 rue Pierre et Marie Curie, 75005 Paris, France
| | - Min-Hui Li
- Institut de Recherche de Chimie Paris, UMR8247, CNRS, Chimie ParisTech, PSL Université Paris, 11 rue Pierre et Marie Curie, 75005 Paris, France
| |
Collapse
|
13
|
Design and Applications of Enzyme-Linked Nanostructured Materials for Efficient Bio-catalysis. Top Catal 2023. [DOI: 10.1007/s11244-022-01770-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
14
|
Sharma VK, Hutchison JM, Allgeier AM. Redox Biocatalysis: Quantitative Comparisons of Nicotinamide Cofactor Regeneration Methods. CHEMSUSCHEM 2022; 15:e202200888. [PMID: 36129761 PMCID: PMC10029092 DOI: 10.1002/cssc.202200888] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 08/06/2022] [Indexed: 06/15/2023]
Abstract
Enzymatic processes, particularly those capable of performing redox reactions, have recently been of growing research interest. Substrate specificity, optimal activity at mild temperatures, high selectivity, and yield are among the desirable characteristics of these oxidoreductase catalyzed reactions. Nicotinamide adenine dinucleotide (phosphate) or NAD(P)H-dependent oxidoreductases have been extensively studied for their potential applications like biosynthesis of chiral organic compounds, construction of biosensors, and pollutant degradation. One of the main challenges associated with making these processes commercially viable is the regeneration of the expensive cofactors required by the enzymes. Numerous efforts have pursued enzymatic regeneration of NAD(P)H by coupling a substrate reduction with a complementary enzyme catalyzed oxidation of a co-substrate. While offering excellent selectivity and high total turnover numbers, such processes involve complicated downstream product separation of a primary product from the coproducts and impurities. Alternative methods comprising chemical, electrochemical, and photochemical regeneration have been developed with the goal of enhanced efficiency and operational simplicity compared to enzymatic regeneration. Despite the goal, however, the literature rarely offers a meaningful comparison of the total turnover numbers for various regeneration methodologies. This comprehensive Review systematically discusses various methods of NAD(P)H cofactor regeneration and quantitatively compares performance across the numerous methods. Further, fundamental barriers to enhanced cofactor regeneration in the various methods are identified, and future opportunities are highlighted for improving the efficiency and sustainability of commercially viable oxidoreductase processes for practical implementation.
Collapse
Affiliation(s)
- Victor K Sharma
- Chemical and Petroleum Engineering, The University of Kansas, 1530 W 15th St, 66045, Lawrence, Kansas, United States
| | - Justin M Hutchison
- Civil, Environmental and Architectural Engineering, The University of Kansas, 1530 W 15th St, 66045, Lawrence, Kansas, United States
| | - Alan M Allgeier
- Chemical and Petroleum Engineering, The University of Kansas, 1530 W 15th St, 66045, Lawrence, Kansas, United States
| |
Collapse
|
15
|
Sun W, Zhang M, Li J, Peng C. Solar-Driven Catalytic Urea Oxidation for Environmental Remediation and Energy Recovery. CHEMSUSCHEM 2022; 15:e202201263. [PMID: 35972075 DOI: 10.1002/cssc.202201263] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/15/2022] [Indexed: 06/15/2023]
Abstract
The water-energy nexus is highly related to sustainable societal development. As one of the most abundant biowastes discharged into the environment, mild abatements and green conversions of urea wastewater have been widely investigated. Due to abundant sources, global distribution, and easy control, light-based catalytic strategies have become alternative on-site treatment approaches. After comprehensively surveying the recent progress, recent achievements of urea oxidation under light irradiation are reviewed herein. Several typical light-promoted systems employed in urea conversion, including photocatalysis, photo-electrocatalysis, photo-biocatalysis, and photocatalytic fuel cells, are meticulously introduced and discussed, from catalyst designs and medium conditions to established mechanisms. To realize the goal of sustainability, the chemical energy in urea-rich water could be utilized for the value-added production of hydrogen fuel and electricity. Finally, based on current developments, existing challenges are enumerated and developmental prospects in the future of light-driven urea conversion technologies are proposed.
Collapse
Affiliation(s)
- Wenbo Sun
- School of Resources and Environmental Engineering, Shandong University of Technology, Zibo, 255000, P. R. China
| | - Meng Zhang
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, P. R. China
| | - Jianan Li
- National Engineering Research Centre of Industrial Wastewater Detoxication and Resource Recovery, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Chong Peng
- School of Sensing Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| |
Collapse
|
16
|
Zhang Y, Liu J. Bioinspired Photocatalytic NADH Regeneration by Covalently Metalated Carbon Nitride for Enhanced CO 2 Reduction. Chemistry 2022; 28:e202201430. [PMID: 35758216 DOI: 10.1002/chem.202201430] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Indexed: 12/29/2022]
Abstract
Natural photosynthesis is a highly unified biocatalytic system, which coupled cofactor (NAD(P)H) regeneration and enzymatic CO2 reduction efficiently for solar energy conversion. Mimicking nature, a novel system with Rh complex covalently grafted onto NH2 -functionalized polymeric carbon nitride (NH2 -PCN) was constructed. The integrated connection of the light-harvesting and electron mediation modules as Rhm3 -N-PCN could promote the efficient NAD+ reduction to NADH. As a result, the integrated system exhibited a conversion of ∼66 % within 20 minutes. By further coupling in situ generated NADH with formate dehydrogenase (FDH), a photoenzymatic production of formic acid (HCOOH) from CO2 was accomplished. Moreover, by immobilizing FDH onto a hydrophobic membrane, an enhanced HCOOH production of ∼5.0 mM can be obtained due to the concentrated CO2 on the gas-liquid-solid three-phase interface. Our work herein provides an integrated strategy for coupling the anchored electron mediator with immobilized enzyme for enhanced artificial photosynthesis.
Collapse
Affiliation(s)
- Yuanyuan Zhang
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China) E-mail: l.qust.edu.cn.,Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Shandong Energy Institute, Qingdao, 266101, P. R. China
| | - Jian Liu
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China) E-mail: l.qust.edu.cn.,Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Shandong Energy Institute, Qingdao, 266101, P. R. China
| |
Collapse
|
17
|
Wu J, Yan B, Meng J, Yang E, Ye X, Yao Q. Catalyst-free photo-reductions of aromatic olefins and carbonyl compounds. Org Biomol Chem 2022; 20:8638-8642. [PMID: 36102896 DOI: 10.1039/d2ob01353c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We describe herein a catalyst-free, traditional reductant-free strategy for the direct photoinduced hydrogenation or deuteration of aromatic olefins, ketones, and aldehydes with simple bases as the only additives. A broad range of substrates were demonstrated with high yields and deuterium incorporations. Mechanistic experiments indicate a radical mechanism.
Collapse
Affiliation(s)
- Jieliang Wu
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Department of Pharmacy, Zunyi Medical University, 6 Xuefu Road West, Zunyi, 563000, China.
| | - Boyu Yan
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Department of Pharmacy, Zunyi Medical University, 6 Xuefu Road West, Zunyi, 563000, China.
| | - Jiangtao Meng
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Department of Pharmacy, Zunyi Medical University, 6 Xuefu Road West, Zunyi, 563000, China.
| | - Enqin Yang
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Department of Pharmacy, Zunyi Medical University, 6 Xuefu Road West, Zunyi, 563000, China.
| | - Xiushen Ye
- Key Laboratory of Comprehensive and Highly Efficient Utilization of Salt Lake Resources, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining, 810008, China
| | - Qiuli Yao
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Department of Pharmacy, Zunyi Medical University, 6 Xuefu Road West, Zunyi, 563000, China. .,Key Laboratory of Comprehensive and Highly Efficient Utilization of Salt Lake Resources, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining, 810008, China
| |
Collapse
|
18
|
Villa K, Sopha H, Zelenka J, Motola M, Dekanovsky L, Beketova DC, Macak JM, Ruml T, Pumera M. Enzyme-Photocatalyst Tandem Microrobot Powered by Urea for Escherichia coli Biofilm Eradication. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2106612. [PMID: 35122470 DOI: 10.1002/smll.202106612] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/16/2021] [Indexed: 06/14/2023]
Abstract
Urinary-based infections affect millions of people worldwide. Such bacterial infections are mainly caused by Escherichia coli (E. coli) biofilm formation in the bladder and/or urinary catheters. Herein, the authors present a hybrid enzyme/photocatalytic microrobot, based on urease-immobilized TiO2 /CdS nanotube bundles, that can swim in urea as a biocompatible fuel and respond to visible light. Upon illumination for 2 h, these microrobots are able to remove almost 90% of bacterial biofilm, due to the generation of reactive radicals, while bare TiO2 /CdS photocatalysts (non-motile) or urease-coated microrobots in the dark do not show any toxic effect. These results indicate a synergistic effect between the self-propulsion provided by the enzyme and the photocatalytic activity induced under light stimuli. This work provides a photo-biocatalytic approach for the design of efficient light-driven microrobots with promising applications in microbiology and biomedicine.
Collapse
Affiliation(s)
- Katherine Villa
- Center for Advanced Functional Nanorobots Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technická 5, Prague, 166 28, Czech Republic
| | - Hanna Sopha
- Center of Materials and Nanotechnologies, Faculty of Chemical Technology, University of Pardubice, Náměstí čs, Legií 565, Pardubice, 530 02, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Purkyňova 123, Brno, 612 00, Czech Republic
| | - Jaroslav Zelenka
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Technická 5, Prague, 166 28, Czech Republic
| | - Martin Motola
- Center of Materials and Nanotechnologies, Faculty of Chemical Technology, University of Pardubice, Náměstí čs, Legií 565, Pardubice, 530 02, Czech Republic
| | - Lukas Dekanovsky
- Center for Advanced Functional Nanorobots Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technická 5, Prague, 166 28, Czech Republic
| | - Darya Chylii Beketova
- Center of Materials and Nanotechnologies, Faculty of Chemical Technology, University of Pardubice, Náměstí čs, Legií 565, Pardubice, 530 02, Czech Republic
| | - Jan M Macak
- Center of Materials and Nanotechnologies, Faculty of Chemical Technology, University of Pardubice, Náměstí čs, Legií 565, Pardubice, 530 02, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Purkyňova 123, Brno, 612 00, Czech Republic
| | - Tomáš Ruml
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Technická 5, Prague, 166 28, Czech Republic
| | - Martin Pumera
- Center for Advanced Functional Nanorobots Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technická 5, Prague, 166 28, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Purkyňova 123, Brno, 612 00, Czech Republic
- Department of Medical Research, China Medical University Hospital, China Medical University, No. 91 Hsueh-Shih Road, Taichung, 40402, Taiwan
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Korea
| |
Collapse
|
19
|
Wang Z, Hu Y, Zhang S, Sun Y. Artificial photosynthesis systems for solar energy conversion and storage: platforms and their realities. Chem Soc Rev 2022; 51:6704-6737. [PMID: 35815740 DOI: 10.1039/d1cs01008e] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In natural photosynthesis, photosynthetic organisms such as green plants realize efficient solar energy conversion and storage by integrating photosynthetic components on the thylakoid membrane of chloroplasts. Inspired by natural photosynthesis, researchers have developed many artificial photosynthesis systems (APS's) that integrate various photocatalysts and biocatalysts to convert and store solar energy in the fields of resource, environment, food, and energy. To improve the system efficiency and reduce the operation cost, reaction platforms are introduced in APS's since they allow for great stability and continuous processing. A systematic understanding of how a reaction platform affects the performance of artificial photosynthesis is conducive for designing an APS with superb solar energy utilization. In this review, we discuss the recent APS's researches, especially those confined on/in platforms. The importance of different platforms and their influences on APS's performance are emphasized. Generally, confined platforms can enhance the stability and repeatability of both photocatalysts and biocatalysts in APS's as well as improve the photosynthetic performance due to the proximity effect. For functional platforms that can participate in the artificial photosynthesis reactions as active parts, a high integration of APS's components on/in these platforms can lead to efficient electron transfer, enhanced light-harvesting, or synergistic catalysis, resulting in superior photosynthesis performance. Therefore, the integration of APS's components is beneficial for the transfer of substrates and photoexcited electrons in artificial photosynthesis. We finally summarize the current challenges of APS's development and further efforts on the improvement of APS's.
Collapse
Affiliation(s)
- Zhenfu Wang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology and Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, China.
| | - Yang Hu
- Department of Biochemical Engineering, School of Chemical Engineering and Technology and Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, China.
| | - Songping Zhang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Yan Sun
- Department of Biochemical Engineering, School of Chemical Engineering and Technology and Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, China.
| |
Collapse
|
20
|
Huang Z, Wang L, Yang C, Chen J, Zhao G, Huang X. A versatile optofluidic microreactor for artificial photosynthesis induced coenzyme regeneration and L-glutamate synthesis. LAB ON A CHIP 2022; 22:2878-2885. [PMID: 35838372 DOI: 10.1039/d2lc00398h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
With the rapid development of modern society, the energy crisis has become a global concern. Solar energy is a good replacement because it is green, unlimited and environment-friendly. Inspired by natural photosynthesis, artificial photosynthesis was developed to convert solar energy to chemical energy by a photocatalyst system. For better utilizing solar energy and improving the conversion efficiency, the design of photoreactors is crucial for the improvement of photocatalysis efficiency. However, most of the reported microreactors hardly satisfy the demands for low cost, easy fabrication, high transparency, being evaporation-proof, ease of scaling up, high surface-to-volume ratio, and photocatalyst immobilization. In this paper, we developed a facile method to build a fully immobilized microreactor (FIM) and a controllable partially immobilized microreactor (PIM), both of which satisfy all the demands mentioned above. In the FIM, the regeneration rate of a coenzyme (nicotinamide adenine dinucleotide, NADH) reached 82.20% in 40 min. Considering the NADH regeneration rate per unit/coating angle of photocatalysts in circular microreactors, the PIM performed much better than the FIM, proving that our partial coating method is a significant and useful improvement. Also, the bioactivity of NADH toward enzyme catalysis was demonstrated by glutamate dehydrogenase-catalyzed synthesis of L-glutamate, and the conversion of α-ketoglutarate reached 99.92%. To test the practicality of the microreactor in a real environment, we performed a test under solar light, achieving a good result of 74.92% in 60 min. Thus, this efficient and versatile microfluidic platform may have good potential for photocatalytic synthesis of versatile valuable products in the future.
Collapse
Affiliation(s)
- Ziyu Huang
- Department of Bioengineering, State Key Laboratory of Biobased Material and Green Papermaking, School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, 250353, China.
| | - Lei Wang
- Department of Bioengineering, State Key Laboratory of Biobased Material and Green Papermaking, School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, 250353, China.
| | - Chonghui Yang
- Department of Bioengineering, State Key Laboratory of Biobased Material and Green Papermaking, School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, 250353, China.
| | - Jiaci Chen
- Department of Bioengineering, State Key Laboratory of Biobased Material and Green Papermaking, School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, 250353, China.
| | - Gaozhen Zhao
- Department of Bioengineering, State Key Laboratory of Biobased Material and Green Papermaking, School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, 250353, China.
| | - Xiaowen Huang
- Department of Bioengineering, State Key Laboratory of Biobased Material and Green Papermaking, School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, 250353, China.
| |
Collapse
|
21
|
Hoffmann N. Heterocyclic Compounds in Enantioselective Photochemical Reactions. HETEROCYCLES 2022. [DOI: 10.1002/9783527832002.ch1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
22
|
Boronat M, Climent MJ, Concepción P, Díaz U, García H, Iborra S, Leyva-Pérez A, Liu L, Martínez A, Martínez C, Moliner M, Pérez-Pariente J, Rey F, Sastre E, Serna P, Valencia S. A Career in Catalysis: Avelino Corma. ACS Catal 2022. [DOI: 10.1021/acscatal.2c01043] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Mercedes Boronat
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas (UPV-CSIC), Av. de los Naranjos s/n, Valencia 46022, Spain
| | - Maria J. Climent
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas (UPV-CSIC), Av. de los Naranjos s/n, Valencia 46022, Spain
| | - Patricia Concepción
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas (UPV-CSIC), Av. de los Naranjos s/n, Valencia 46022, Spain
| | - Urbano Díaz
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas (UPV-CSIC), Av. de los Naranjos s/n, Valencia 46022, Spain
| | - Hermenegildo García
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas (UPV-CSIC), Av. de los Naranjos s/n, Valencia 46022, Spain
| | - Sara Iborra
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas (UPV-CSIC), Av. de los Naranjos s/n, Valencia 46022, Spain
| | - Antonio Leyva-Pérez
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas (UPV-CSIC), Av. de los Naranjos s/n, Valencia 46022, Spain
| | - Lichen Liu
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Agustin Martínez
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas (UPV-CSIC), Av. de los Naranjos s/n, Valencia 46022, Spain
| | - Cristina Martínez
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas (UPV-CSIC), Av. de los Naranjos s/n, Valencia 46022, Spain
| | - Manuel Moliner
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas (UPV-CSIC), Av. de los Naranjos s/n, Valencia 46022, Spain
| | - Joaquín Pérez-Pariente
- Instituto de Catálisis y Petroleoquímica, Consejo Superior de Investigaciones Científicas, Marie Curie 2, Madrid 28049, Spain
| | - Fernando Rey
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas (UPV-CSIC), Av. de los Naranjos s/n, Valencia 46022, Spain
| | - Enrique Sastre
- Instituto de Catálisis y Petroleoquímica, Consejo Superior de Investigaciones Científicas, Marie Curie 2, Madrid 28049, Spain
| | - Pedro Serna
- ExxonMobil Technology and Engineering Company, Catalysis Fundamentals, Annandale, New Jersey 08801, United States
| | - Susana Valencia
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas (UPV-CSIC), Av. de los Naranjos s/n, Valencia 46022, Spain
| |
Collapse
|
23
|
Sheldon RA, Brady D. Green Chemistry, Biocatalysis, and the Chemical Industry of the Future. CHEMSUSCHEM 2022; 15:e202102628. [PMID: 35026060 DOI: 10.1002/cssc.202102628] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 01/11/2022] [Indexed: 06/14/2023]
Abstract
In the movement to decarbonize our economy and move away from fossil fuels we will need to harness the waste products of our activities, such as waste lignocellulose, methane, and carbon dioxide. Our wastes need to be integrated into a circular economy where used products are recycled into a manufacturing carbon cycle. Key to this will be the recycling of plastics at the resin and monomer levels. Biotechnology is well suited to a future chemical industry that must adapt to widely distributed and diverse biological chemical feedstocks. Our increasing mastery of biotechnology is allowing us to develop enzymes and organisms that can synthesize a widening selection of desirable bulk chemicals, including plastics, at commercially viable productivities. Integration of bioreactors with electrochemical systems will permit new production opportunities with enhanced productivities and the advantage of using a low-carbon electricity from renewable and sustainable sources.
Collapse
Affiliation(s)
- Roger A Sheldon
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, 1 Jan Smuts Avenue, Braamfontein, Johannesburg, 2000, South Africa
- Department of Biotechnology, Delft University of Technology, Section BOC, van der Maasweg 9, 2629 HZ, Delft, Netherlands
| | - Dean Brady
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, 1 Jan Smuts Avenue, Braamfontein, Johannesburg, 2000, South Africa
| |
Collapse
|
24
|
Casadevall C, Pascual D, Aragón J, Call A, Casitas A, Casademont-Reig I, Lloret-Fillol J. Light-driven reduction of aromatic olefins in aqueous media catalysed by aminopyridine cobalt complexes. Chem Sci 2022; 13:4270-4282. [PMID: 35509462 PMCID: PMC9006965 DOI: 10.1039/d1sc06608k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 03/09/2022] [Indexed: 12/15/2022] Open
Abstract
A catalytic system based on earth-abundant elements that efficiently hydrogenates aryl olefins using visible light as the driving-force and H2O as the sole hydrogen atom source is reported. The catalytic system involves a robust and well-defined aminopyridine cobalt complex and a heteroleptic Cu photoredox catalyst. The system shows the reduction of styrene in aqueous media with a remarkable selectivity (>20 000) versus water reduction (WR). Reactivity and mechanistic studies support the formation of a [Co–H] intermediate, which reacts with the olefin via a hydrogen atom transfer (HAT). Synthetically useful deuterium-labelled compounds can be straightforwardly obtained by replacing H2O with D2O. Moreover, the dual photocatalytic system and the photocatalytic conditions can be rationally designed to tune the selectivity for aryl olefin vs. aryl ketone reduction; not only by changing the structural and electronic properties of the cobalt catalysts, but also by modifying the reduction properties of the photoredox catalyst. A dual catalytic system based on earth-abundant elements reduces aryl olefins to alkanes in aqueous media under visible light. Mechanistic studies allow for rational tunning of the system for the selective reduction of aryl olefins vs ketones and vice versa.![]()
Collapse
Affiliation(s)
- Carla Casadevall
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology Avinguda Països Catalans 16 43007 Tarragona Spain
| | - David Pascual
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology Avinguda Països Catalans 16 43007 Tarragona Spain
| | - Jordi Aragón
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology Avinguda Països Catalans 16 43007 Tarragona Spain
| | - Arnau Call
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology Avinguda Països Catalans 16 43007 Tarragona Spain
| | - Alicia Casitas
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology Avinguda Països Catalans 16 43007 Tarragona Spain
| | - Irene Casademont-Reig
- Donostia International Physics Center (DIPC), Polimero eta Material Aurreratuak: Fisika, Kimika eta Teknologia, Kimika Fakultatea, Euskal Herriko Unibertsitatea UPV/EHU P.K. 1072 20080 Donostia Euskadi Spain
| | - Julio Lloret-Fillol
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology Avinguda Països Catalans 16 43007 Tarragona Spain .,Catalan Institution for Research and Advanced Studies (ICREA) Passeig Lluïs Companys, 23 08010 Barcelona Spain
| |
Collapse
|
25
|
Brandão LMDS, Barbosa MDS, de Jesus RA, Bharad PA, Lima ÁS, Soares CMF, Yerga RMN, Bilal M, Ferreira LFR, Iqbal HM, Gopinath CS, Figueiredo RT. Enhanced hydrogen fuel production using synergistic combination of solar radiation and TiO2 photocatalyst coupled with Burkholderia cepacia lipase. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY 2022. [DOI: 10.1016/j.ijhydene.2022.02.220] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
26
|
Rozhin P, Abdel Monem Gamal J, Giordani S, Marchesan S. Carbon Nanomaterials (CNMs) and Enzymes: From Nanozymes to CNM-Enzyme Conjugates and Biodegradation. MATERIALS (BASEL, SWITZERLAND) 2022; 15:1037. [PMID: 35160982 PMCID: PMC8838330 DOI: 10.3390/ma15031037] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 01/20/2022] [Accepted: 01/26/2022] [Indexed: 01/27/2023]
Abstract
Carbon nanomaterials (CNMs) and enzymes differ significantly in terms of their physico-chemical properties-their handling and characterization require very different specialized skills. Therefore, their combination is not trivial. Numerous studies exist at the interface between these two components-especially in the area of sensing-but also involving biofuel cells, biocatalysis, and even biomedical applications including innovative therapeutic approaches and theranostics. Finally, enzymes that are capable of biodegrading CNMs have been identified, and they may play an important role in controlling the environmental fate of these structures after their use. CNMs' widespread use has created more and more opportunities for their entry into the environment, and thus it becomes increasingly important to understand how to biodegrade them. In this concise review, we will cover the progress made in the last five years on this exciting topic, focusing on the applications, and concluding with future perspectives on research combining carbon nanomaterials and enzymes.
Collapse
Affiliation(s)
- Petr Rozhin
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, 34127 Trieste, Italy;
| | - Jada Abdel Monem Gamal
- School of Chemical Sciences, Faculty of Science & Health, Dublin City University, D09 E432 Dublin, Ireland;
- Department of Chemistry, Faculty of Mathematical, Physical and Natural Sciences, University Sapienza of Rome, 00185 Rome, Italy
| | - Silvia Giordani
- School of Chemical Sciences, Faculty of Science & Health, Dublin City University, D09 E432 Dublin, Ireland;
| | - Silvia Marchesan
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, 34127 Trieste, Italy;
| |
Collapse
|
27
|
Chapman A, Ertekin E, Kubota M, Nagao A, Bertsch K, Macadre A, Tsuchiyama T, Masamura T, Takaki S, Komoda R, Dadfarnia M, Somerday B, Staykov AT, Sugimura J, Sawae Y, Morita T, Tanaka H, Yagi K, Niste V, Saravanan P, Onitsuka S, Yoon KS, Ogo S, Matsushima T, Tumen-Ulzii G, Klotz D, Nguyen DH, Harrington G, Adachi C, Matsumoto H, Kwati L, Takahashi Y, Kosem N, Ishihara T, Yamauchi M, Saha BB, Islam MA, Miyawaki J, Sivasankaran H, Kohno M, Fujikawa S, Selyanchyn R, Tsuji T, Higashi Y, Kirchheim R, Sofronis P. Achieving a Carbon Neutral Future through Advanced Functional Materials and Technologies. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2022. [DOI: 10.1246/bcsj.20210323] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Andrew Chapman
- International Institute for Carbon Neutral Energy Research (I2CNER), Kyushu University, Fukuoka, Japan
| | - Elif Ertekin
- International Institute for Carbon Neutral Energy Research (I2CNER), Kyushu University, Fukuoka, Japan
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Illinois, USA
| | - Masanobu Kubota
- International Institute for Carbon Neutral Energy Research (I2CNER), Kyushu University, Fukuoka, Japan
| | - Akihide Nagao
- International Institute for Carbon Neutral Energy Research (I2CNER), Kyushu University, Fukuoka, Japan
| | - Kaila Bertsch
- Lawrence Livermore National Laboratory, California, USA
| | - Arnaud Macadre
- International Institute for Carbon Neutral Energy Research (I2CNER), Kyushu University, Fukuoka, Japan
- Department of Mechanical Engineering, Yamaguchi University, Yamaguchi, Japan
| | - Toshihiro Tsuchiyama
- International Institute for Carbon Neutral Energy Research (I2CNER), Kyushu University, Fukuoka, Japan
- Department of Materials Science and Engineering, Kyushu University, Fukuoka, Japan
| | - Takuro Masamura
- International Institute for Carbon Neutral Energy Research (I2CNER), Kyushu University, Fukuoka, Japan
- Department of Materials Science and Engineering, Kyushu University, Fukuoka, Japan
| | - Setsuo Takaki
- Netsuren Co., Ltd., Hyogo, Japan
- Emeritus Professor, Kyushu University, Fukuoka, Japan
| | - Ryosuke Komoda
- International Institute for Carbon Neutral Energy Research (I2CNER), Kyushu University, Fukuoka, Japan
- Department of Mechanical Engineering, Fukuoka University, Fukuoka, Japan
| | - Mohsen Dadfarnia
- International Institute for Carbon Neutral Energy Research (I2CNER), Kyushu University, Fukuoka, Japan
- Department of Mechanical Engineering, Seattle University, Washington, USA
| | - Brian Somerday
- International Institute for Carbon Neutral Energy Research (I2CNER), Kyushu University, Fukuoka, Japan
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Illinois, USA
- Somerday Consulting LLC, Pennsylvania, USA
| | - Alexander Tsekov Staykov
- International Institute for Carbon Neutral Energy Research (I2CNER), Kyushu University, Fukuoka, Japan
| | - Joichi Sugimura
- International Institute for Carbon Neutral Energy Research (I2CNER), Kyushu University, Fukuoka, Japan
- Research Center for Hydrogen Industrial Use and Storage, Kyushu University, Fukuoka, Japan
- Department of Mechanical Engineering, Fukuoka University, Fukuoka, Japan
| | - Yoshinori Sawae
- International Institute for Carbon Neutral Energy Research (I2CNER), Kyushu University, Fukuoka, Japan
- Department of Mechanical Engineering, Fukuoka University, Fukuoka, Japan
| | - Takehiro Morita
- International Institute for Carbon Neutral Energy Research (I2CNER), Kyushu University, Fukuoka, Japan
- Department of Mechanical Engineering, Fukuoka University, Fukuoka, Japan
| | - Hiroyoshi Tanaka
- International Institute for Carbon Neutral Energy Research (I2CNER), Kyushu University, Fukuoka, Japan
- Research Center for Hydrogen Industrial Use and Storage, Kyushu University, Fukuoka, Japan
- Department of Mechanical Engineering, Fukuoka University, Fukuoka, Japan
| | - Kazuyuki Yagi
- International Institute for Carbon Neutral Energy Research (I2CNER), Kyushu University, Fukuoka, Japan
- Research Center for Hydrogen Industrial Use and Storage, Kyushu University, Fukuoka, Japan
- Department of Mechanical Engineering, Fukuoka University, Fukuoka, Japan
| | | | - Prabakaran Saravanan
- Department of Mechanical Engineering, Birla Institute of Technology & Science - Pilani, Hyderabad, Telangana, India
| | - Shugo Onitsuka
- International Institute for Carbon Neutral Energy Research (I2CNER), Kyushu University, Fukuoka, Japan
| | - Ki-Seok Yoon
- International Institute for Carbon Neutral Energy Research (I2CNER), Kyushu University, Fukuoka, Japan
| | - Seiji Ogo
- International Institute for Carbon Neutral Energy Research (I2CNER), Kyushu University, Fukuoka, Japan
| | - Toshinori Matsushima
- International Institute for Carbon Neutral Energy Research (I2CNER), Kyushu University, Fukuoka, Japan
| | - Ganbaatar Tumen-Ulzii
- International Institute for Carbon Neutral Energy Research (I2CNER), Kyushu University, Fukuoka, Japan
| | - Dino Klotz
- International Institute for Carbon Neutral Energy Research (I2CNER), Kyushu University, Fukuoka, Japan
| | - Dinh Hoa Nguyen
- International Institute for Carbon Neutral Energy Research (I2CNER), Kyushu University, Fukuoka, Japan
| | - George Harrington
- International Institute for Carbon Neutral Energy Research (I2CNER), Kyushu University, Fukuoka, Japan
| | - Chihaya Adachi
- International Institute for Carbon Neutral Energy Research (I2CNER), Kyushu University, Fukuoka, Japan
| | - Hiroshige Matsumoto
- International Institute for Carbon Neutral Energy Research (I2CNER), Kyushu University, Fukuoka, Japan
| | - Leonard Kwati
- International Institute for Carbon Neutral Energy Research (I2CNER), Kyushu University, Fukuoka, Japan
| | - Yukina Takahashi
- International Institute for Carbon Neutral Energy Research (I2CNER), Kyushu University, Fukuoka, Japan
| | - Nuttavut Kosem
- International Institute for Carbon Neutral Energy Research (I2CNER), Kyushu University, Fukuoka, Japan
| | - Tatsumi Ishihara
- International Institute for Carbon Neutral Energy Research (I2CNER), Kyushu University, Fukuoka, Japan
| | - Miho Yamauchi
- International Institute for Carbon Neutral Energy Research (I2CNER), Kyushu University, Fukuoka, Japan
| | - Bidyut Baran Saha
- International Institute for Carbon Neutral Energy Research (I2CNER), Kyushu University, Fukuoka, Japan
| | - Md. Amirul Islam
- International Institute for Carbon Neutral Energy Research (I2CNER), Kyushu University, Fukuoka, Japan
| | - Jin Miyawaki
- International Institute for Carbon Neutral Energy Research (I2CNER), Kyushu University, Fukuoka, Japan
| | - Harish Sivasankaran
- International Institute for Carbon Neutral Energy Research (I2CNER), Kyushu University, Fukuoka, Japan
| | - Masamichi Kohno
- International Institute for Carbon Neutral Energy Research (I2CNER), Kyushu University, Fukuoka, Japan
| | - Shigenori Fujikawa
- International Institute for Carbon Neutral Energy Research (I2CNER), Kyushu University, Fukuoka, Japan
| | - Roman Selyanchyn
- International Institute for Carbon Neutral Energy Research (I2CNER), Kyushu University, Fukuoka, Japan
| | - Takeshi Tsuji
- International Institute for Carbon Neutral Energy Research (I2CNER), Kyushu University, Fukuoka, Japan
| | - Yukihiro Higashi
- International Institute for Carbon Neutral Energy Research (I2CNER), Kyushu University, Fukuoka, Japan
| | - Reiner Kirchheim
- International Institute for Carbon Neutral Energy Research (I2CNER), Kyushu University, Fukuoka, Japan
- Institute of Materials Physics, University of Gottingen, Germany
| | - Petros Sofronis
- International Institute for Carbon Neutral Energy Research (I2CNER), Kyushu University, Fukuoka, Japan
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Illinois, USA
| |
Collapse
|
28
|
Giraldi V, Marchini M, Di Giosia M, Gualandi A, Cirillo M, Calvaresi M, Ceroni P, Giacomini D, Cozzi PG. Acceleration of oxidation promoted by laccase irradiation with red light. NEW J CHEM 2022. [DOI: 10.1039/d2nj01107g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Irradiation with red light is able to improve yields and shorten the reaction time in enzymatic reactions.
Collapse
Affiliation(s)
- Valentina Giraldi
- Dipartimento di Chimica “Giacomo Ciamician”, Alma Mater Studiorum – Università di Bologna, Via Selmi 2, 40126, Bologna, Italy
| | - Marianna Marchini
- Dipartimento di Chimica “Giacomo Ciamician”, Alma Mater Studiorum – Università di Bologna, Via Selmi 2, 40126, Bologna, Italy
| | - Matteo Di Giosia
- Dipartimento di Chimica “Giacomo Ciamician”, Alma Mater Studiorum – Università di Bologna, Via Selmi 2, 40126, Bologna, Italy
- Center for Chemical Catalysis - C3, Alma Mater Studiorum Università di Bologna, Via Selmi 2, 40126, Bologna, Italy
| | - Andrea Gualandi
- Dipartimento di Chimica “Giacomo Ciamician”, Alma Mater Studiorum – Università di Bologna, Via Selmi 2, 40126, Bologna, Italy
- Center for Chemical Catalysis - C3, Alma Mater Studiorum Università di Bologna, Via Selmi 2, 40126, Bologna, Italy
| | - Martina Cirillo
- Dipartimento di Chimica “Giacomo Ciamician”, Alma Mater Studiorum – Università di Bologna, Via Selmi 2, 40126, Bologna, Italy
| | - Matteo Calvaresi
- Dipartimento di Chimica “Giacomo Ciamician”, Alma Mater Studiorum – Università di Bologna, Via Selmi 2, 40126, Bologna, Italy
- Center for Chemical Catalysis - C3, Alma Mater Studiorum Università di Bologna, Via Selmi 2, 40126, Bologna, Italy
| | - Paola Ceroni
- Dipartimento di Chimica “Giacomo Ciamician”, Alma Mater Studiorum – Università di Bologna, Via Selmi 2, 40126, Bologna, Italy
- Center for Chemical Catalysis - C3, Alma Mater Studiorum Università di Bologna, Via Selmi 2, 40126, Bologna, Italy
| | - Daria Giacomini
- Dipartimento di Chimica “Giacomo Ciamician”, Alma Mater Studiorum – Università di Bologna, Via Selmi 2, 40126, Bologna, Italy
- Center for Chemical Catalysis - C3, Alma Mater Studiorum Università di Bologna, Via Selmi 2, 40126, Bologna, Italy
| | - Pier Giorgio Cozzi
- Dipartimento di Chimica “Giacomo Ciamician”, Alma Mater Studiorum – Università di Bologna, Via Selmi 2, 40126, Bologna, Italy
- Center for Chemical Catalysis - C3, Alma Mater Studiorum Università di Bologna, Via Selmi 2, 40126, Bologna, Italy
| |
Collapse
|
29
|
Enantioselective synthesis of heterocyclic compounds using photochemical reactions. Photochem Photobiol Sci 2021; 20:1657-1674. [PMID: 34822126 DOI: 10.1007/s43630-021-00135-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 11/06/2021] [Indexed: 10/19/2022]
Abstract
Different methods for the direct enantioselective photochemical synthesis of heterocycles are presented. Currently, asymmetric catalysis with templates involving hydrogen bonds or metal complexes is intensively investigated. Enzyme catalysis can be simplified under photochemical conditions. For example, in multi enzyme systems, one or more enzyme catalytic steps can be replaced by simple photochemical reactions. Chiral induction in photochemical reactions performed with homochiral crystals is highly efficient. Such reactions can also be carried out with crystalline inclusion complexes. Inclusion of a photochemical substrate and an enantiopure compound in zeolites also leads to enantioselective compounds. In all these methods, the conformational mobility of the photochemical substrates is reduced or controlled. Memory of chirality is a particular case in which a chiral information is temporally lost but the rigid conformations stabilize the molecular structure which leads to the formation of enantiopure compounds. Such studies allows a profound understanding on how particular conformations determine the configuration of the final products.Graphical abstract.
Collapse
|
30
|
Tian L, Xin Q, Zhao C, Xie G, Akram MZ, Wang W, Ma R, Jia X, Guo B, Gong JR. Nanoarray Structures for Artificial Photosynthesis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2006530. [PMID: 33896110 DOI: 10.1002/smll.202006530] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 01/25/2021] [Indexed: 05/14/2023]
Abstract
Conversion and storage of solar energy into fuels and chemicals by artificial photosynthesis has been considered as one of the promising methods to address the global energy crisis. However, it is still far from the practical applications on a large scale. Nanoarray structures that combine the advantages of nanosize and array alignment have demonstrated great potential to improve solar energy conversion efficiency, stability, and selectivity. This article provides a comprehensive review on the utilization of nanoarray structures in artificial photosynthesis of renewable fuels and high value-added chemicals. First, basic principles of solar energy conversion and superiorities of using nanoarray structures in this field are described. Recent research progress on nanoarray structures in both abiotic and abiotic-biotic hybrid systems is then outlined, highlighting contributions to light absorption, charge transport and transfer, and catalytic reactions (including kinetics and selectivity). Finally, conclusions and outlooks on future research directions of nanoarray structures for artificial photosynthesis are presented.
Collapse
Affiliation(s)
- Liangqiu Tian
- Chinese Academy of Sciences (CAS) Center for Excellence in Nanoscience, CAS Key Laboratory for Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- School of Chemical Sciences, University of CAS, Beijing, 100049, P. R. China
| | - Qi Xin
- Chinese Academy of Sciences (CAS) Center for Excellence in Nanoscience, CAS Key Laboratory for Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
| | - Chang Zhao
- Chinese Academy of Sciences (CAS) Center for Excellence in Nanoscience, CAS Key Laboratory for Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- School of Chemical Sciences, University of CAS, Beijing, 100049, P. R. China
| | - Guancai Xie
- Chinese Academy of Sciences (CAS) Center for Excellence in Nanoscience, CAS Key Laboratory for Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- School of Chemical Sciences, University of CAS, Beijing, 100049, P. R. China
| | - Muhammad Zain Akram
- Chinese Academy of Sciences (CAS) Center for Excellence in Nanoscience, CAS Key Laboratory for Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- School of Chemical Sciences, University of CAS, Beijing, 100049, P. R. China
| | - Wenrong Wang
- Chinese Academy of Sciences (CAS) Center for Excellence in Nanoscience, CAS Key Laboratory for Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
| | - Renping Ma
- Chinese Academy of Sciences (CAS) Center for Excellence in Nanoscience, CAS Key Laboratory for Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
| | - Xinrui Jia
- Chinese Academy of Sciences (CAS) Center for Excellence in Nanoscience, CAS Key Laboratory for Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- School of Chemical Sciences, University of CAS, Beijing, 100049, P. R. China
| | - Beidou Guo
- Chinese Academy of Sciences (CAS) Center for Excellence in Nanoscience, CAS Key Laboratory for Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- School of Chemical Sciences, University of CAS, Beijing, 100049, P. R. China
| | - Jian Ru Gong
- Chinese Academy of Sciences (CAS) Center for Excellence in Nanoscience, CAS Key Laboratory for Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- School of Chemical Sciences, University of CAS, Beijing, 100049, P. R. China
| |
Collapse
|
31
|
Romero E, Jones BS, Hogg BN, Rué Casamajo A, Hayes MA, Flitsch SL, Turner NJ, Schnepel C. Enzymkatalysierte späte Modifizierungen: Besser spät als nie. ANGEWANDTE CHEMIE (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 133:16962-16993. [PMID: 38505660 PMCID: PMC10946893 DOI: 10.1002/ange.202014931] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 01/15/2021] [Indexed: 03/21/2024]
Abstract
AbstractDie Enzymkatalyse gewinnt zunehmend an Bedeutung in der Synthesechemie. Die durch Bioinformatik und Enzym‐Engineering stetig wachsende Zahl von Biokatalysatoren eröffnet eine große Vielfalt selektiver Reaktionen. Insbesondere für späte Funktionalisierungsreaktionen ist die Biokatalyse ein geeignetes Werkzeug, das oftmals der konventionellen De‐novo‐Synthese überlegen ist. Enzyme haben sich als nützlich erwiesen, um funktionelle Gruppen direkt in komplexe Molekülgerüste einzuführen sowie für die rasche Diversifizierung von Substanzbibliotheken. Biokatalytische Oxyfunktionalisierungen, Halogenierungen, Methylierungen, Reduktionen und Amidierungen sind von besonderem Interesse, da diese Strukturmotive häufig in Pharmazeutika vertreten sind. Dieser Aufsatz gibt einen Überblick über die Stärken und Schwächen der enzymkatalysierten späten Modifizierungen durch native und optimierte Enzyme in der Synthesechemie. Ebenso werden wichtige Beispiele in der Wirkstoffentwicklung hervorgehoben.
Collapse
Affiliation(s)
- Elvira Romero
- Compound Synthesis and ManagementDiscovery Sciences, BioPharmaceuticals R&DAstraZenecaGötheborgSchweden
| | - Bethan S. Jones
- School of ChemistryThe University of ManchesterManchester Institute of Biotechnology131 Princess StreetManchesterM1 7DNVereinigtes Königreich
| | - Bethany N. Hogg
- School of ChemistryThe University of ManchesterManchester Institute of Biotechnology131 Princess StreetManchesterM1 7DNVereinigtes Königreich
| | - Arnau Rué Casamajo
- School of ChemistryThe University of ManchesterManchester Institute of Biotechnology131 Princess StreetManchesterM1 7DNVereinigtes Königreich
| | - Martin A. Hayes
- Compound Synthesis and ManagementDiscovery Sciences, BioPharmaceuticals R&DAstraZenecaGötheborgSchweden
| | - Sabine L. Flitsch
- School of ChemistryThe University of ManchesterManchester Institute of Biotechnology131 Princess StreetManchesterM1 7DNVereinigtes Königreich
| | - Nicholas J. Turner
- School of ChemistryThe University of ManchesterManchester Institute of Biotechnology131 Princess StreetManchesterM1 7DNVereinigtes Königreich
| | - Christian Schnepel
- School of ChemistryThe University of ManchesterManchester Institute of Biotechnology131 Princess StreetManchesterM1 7DNVereinigtes Königreich
| |
Collapse
|
32
|
Romero E, Jones BS, Hogg BN, Rué Casamajo A, Hayes MA, Flitsch SL, Turner NJ, Schnepel C. Enzymatic Late-Stage Modifications: Better Late Than Never. Angew Chem Int Ed Engl 2021; 60:16824-16855. [PMID: 33453143 PMCID: PMC8359417 DOI: 10.1002/anie.202014931] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 01/15/2021] [Indexed: 12/16/2022]
Abstract
Enzyme catalysis is gaining increasing importance in synthetic chemistry. Nowadays, the growing number of biocatalysts accessible by means of bioinformatics and enzyme engineering opens up an immense variety of selective reactions. Biocatalysis especially provides excellent opportunities for late-stage modification often superior to conventional de novo synthesis. Enzymes have proven to be useful for direct introduction of functional groups into complex scaffolds, as well as for rapid diversification of compound libraries. Particularly important and highly topical are enzyme-catalysed oxyfunctionalisations, halogenations, methylations, reductions, and amide bond formations due to the high prevalence of these motifs in pharmaceuticals. This Review gives an overview of the strengths and limitations of enzymatic late-stage modifications using native and engineered enzymes in synthesis while focusing on important examples in drug development.
Collapse
Affiliation(s)
- Elvira Romero
- Compound Synthesis and ManagementDiscovery Sciences, BioPharmaceuticals R&DAstraZenecaGothenburgSweden
| | - Bethan S. Jones
- School of ChemistryThe University of ManchesterManchester Institute of Biotechnology131 Princess StreetManchesterM1 7DNUnited Kingdom
| | - Bethany N. Hogg
- School of ChemistryThe University of ManchesterManchester Institute of Biotechnology131 Princess StreetManchesterM1 7DNUnited Kingdom
| | - Arnau Rué Casamajo
- School of ChemistryThe University of ManchesterManchester Institute of Biotechnology131 Princess StreetManchesterM1 7DNUnited Kingdom
| | - Martin A. Hayes
- Compound Synthesis and ManagementDiscovery Sciences, BioPharmaceuticals R&DAstraZenecaGothenburgSweden
| | - Sabine L. Flitsch
- School of ChemistryThe University of ManchesterManchester Institute of Biotechnology131 Princess StreetManchesterM1 7DNUnited Kingdom
| | - Nicholas J. Turner
- School of ChemistryThe University of ManchesterManchester Institute of Biotechnology131 Princess StreetManchesterM1 7DNUnited Kingdom
| | - Christian Schnepel
- School of ChemistryThe University of ManchesterManchester Institute of Biotechnology131 Princess StreetManchesterM1 7DNUnited Kingdom
| |
Collapse
|
33
|
Cui YH, Wu JH, Wei W, Zhang F, Li LL, Tian LJ, Li WW, Lam PKS, Yu HQ. Intracellular Hybrid Biosystem in a Protozoan to Trigger Visible-Light-Driven Photocatalysis. ACS APPLIED MATERIALS & INTERFACES 2021; 13:19846-19854. [PMID: 33886264 DOI: 10.1021/acsami.0c21902] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Incorporating artificial photosensitizers with microorganisms has recently been recognized as an effective way to convert light energy into chemical energy. However, the incorporated biosystem is usually constructed in an extracellular manner and is vulnerable to the external environment. Here, we develop an intracellular hybrid biosystem in a higher organism protozoa Tetrahymena pyriformis, in which the in vivo synthesized CdS nanoparticles trigger photoreduction of nitrobenzene into aniline under visible-light irradiation. Integrating a photosensitizer CdS into T. pyriformis enables the photosensitizer CdS, inherent nitroreductase, and the cytoplasmic reductive substance in T. pyriformis to synergistically engage in the photocatalysis process, generating a greatly enhanced aniline yield with a 40-fold increment. Moreover, building an intracellular hybrid biosystem in mutant T. pyriformis could even grant it new capability of reducing nitrobenzene into aniline under visible-light irradiation. Such an intracellular hybrid biosystem paves a new way to functionalize higher organisms and diversify light energy conversion.
Collapse
Affiliation(s)
- Yin-Hua Cui
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Jing-Hang Wu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Wei Wei
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Feng Zhang
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, China
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials, (Anhui University), Ministry of Eduction, Hefei 230601, China
| | - Ling-Li Li
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Li-Jiao Tian
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Wen-Wei Li
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Paul K S Lam
- State Key Laboratory in Marine Pollution, Department of Biology and Chemistry, City University of Hong Kong, Hong Kong, SAR 999077, China
| | - Han-Qing Yu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
34
|
Liao HX, Jia HY, Dai JR, Zong MH, Li N. Bioinspired Cooperative Photobiocatalytic Regeneration of Oxidized Nicotinamide Cofactors for Catalytic Oxidations. CHEMSUSCHEM 2021; 14:1687-1691. [PMID: 33559949 DOI: 10.1002/cssc.202100184] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 02/05/2021] [Indexed: 06/12/2023]
Abstract
Inspired by water-forming NAD(P)H oxidases, a cooperative photobiocatalytic system has been designed to aerobically regenerate the oxidized nicotinamide cofactors. Photocatalysts enable NAD(P)H oxidation with O2 under visible-light irradiation, producing H2 O2 as a byproduct, which is subsequently used as an oxidant by the horseradish peroxidase mediator system (PMS) to oxidize NAD(P)H. The photobiocatalytic system shows a turnover frequency of 8800 min-1 in the oxidation of NAD(P)H. Photobiocatalytic NAD(P)H oxidation proceeds smoothly at pH 6-9. In addition to natural NAD(P)H, synthetic biomimetics are also good substrates for this regeneration system. Total turnover numbers of up to 180000 are obtained for the cofactor when the photobiocatalytic regeneration system is coupled with dehydrogenase-catalyzed oxidations. It may be a promising protocol to recycle the oxidized cofactors for catalytic oxidations.
Collapse
Affiliation(s)
- Huan-Xin Liao
- School of Food Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou, 510640, P. R. China
| | - Hao-Yu Jia
- School of Food Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou, 510640, P. R. China
| | - Jian-Rong Dai
- School of Food Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou, 510640, P. R. China
| | - Min-Hua Zong
- School of Food Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou, 510640, P. R. China
| | - Ning Li
- School of Food Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou, 510640, P. R. China
| |
Collapse
|
35
|
de Barros HR, López-Gallego F, Liz-Marzán LM. Light-Driven Catalytic Regulation of Enzymes at the Interface with Plasmonic Nanomaterials. Biochemistry 2021; 60:991-998. [PMID: 32643921 DOI: 10.1021/acs.biochem.0c00447] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Regulation of enzymes is highly relevant toward orchestrating cell-free and stepwise biotransformations, thereby maximizing their overall performance. Plasmonic nanomaterials offer a great opportunity to tune the functionality of enzymes through their remarkable optical properties. Localized surface plasmon resonances (LSPR) can be used to modify chemical transformations at the nanomaterial's surface, upon light irradiation. Incident light can promote energetic processes, which may be related to an increase of local temperature (photothermal effects) but also to effects triggered by generated hotspots or hot electrons (photoelectronic effects). As a consequence, light irradiation of the protein-nanomaterial interface affects enzyme functionality. To harness these effects to finely and remotely regulate enzyme activity, the physicochemical features of the nanomaterial, properties of the incident light, and parameters governing molecular interactions must be optimized. In this Perspective, we discuss relevant examples that illustrate the use of plasmonic nanoparticles to control enzyme function through LSPR excitation. Finally, we also highlight the importance of expanding the use of plasmonic nanomaterials to the immobilization of multienzyme systems for light-driven regulation of cell-free biosynthetic pathways. Although this concept is living its infancy, we encourage the scientific community to advance in the development of novel light-controlled biocatalytic plasmonic nanoconjugates and explore their application in biosensing, applied biocatalysis, and biomedicine.
Collapse
Affiliation(s)
- Heloise Ribeiro de Barros
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Paseo de Miramón 182, 20014 Donostia, San Sebastián, Spain
- Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes, 748, Vila Universitária, 05508-000 São Paulo, São Paulo Brazil
| | - Fernando López-Gallego
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Paseo de Miramón 182, 20014 Donostia, San Sebastián, Spain
- IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain
| | - Luis M Liz-Marzán
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Paseo de Miramón 182, 20014 Donostia, San Sebastián, Spain
- IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain
- Centro de Investigación Biomédica en Red, Bioingenierı́a, Biomateriales y Nanomedicina (CIBER-BBN), Paseo de Miramón 182, 20014 Donostia, San Sebastián, Spain
| |
Collapse
|
36
|
Özgen FF, Runda ME, Schmidt S. Photo-biocatalytic Cascades: Combining Chemical and Enzymatic Transformations Fueled by Light. Chembiochem 2021; 22:790-806. [PMID: 32961020 PMCID: PMC7983893 DOI: 10.1002/cbic.202000587] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 09/22/2020] [Indexed: 12/13/2022]
Abstract
In the field of green chemistry, light - an attractive natural agent - has received particular attention for driving biocatalytic reactions. Moreover, the implementation of light to drive (chemo)enzymatic cascade reactions opens up a golden window of opportunities. However, there are limitations to many current examples, mostly associated with incompatibility between the enzyme and the photocatalyst. Additionally, the formation of reactive radicals upon illumination and the loss of catalytic activities in the presence of required additives are common observations. As outlined in this review, the main question is how to overcome current challenges to the exploitation of light to drive (chemo)enzymatic transformations. First, we highlight general concepts in photo-biocatalysis, then give various examples of photo-chemoenzymatic (PCE) cascades, further summarize current synthetic examples of PCE cascades and discuss strategies to address the limitations.
Collapse
Affiliation(s)
- Fatma Feyza Özgen
- Groningen Research Institute of PharmacyDepartment of Chemical and Pharmaceutical BiologyAntonius Deusinglaan 19713 AVGroningen (TheNetherlands
| | - Michael E. Runda
- Groningen Research Institute of PharmacyDepartment of Chemical and Pharmaceutical BiologyAntonius Deusinglaan 19713 AVGroningen (TheNetherlands
| | - Sandy Schmidt
- Groningen Research Institute of PharmacyDepartment of Chemical and Pharmaceutical BiologyAntonius Deusinglaan 19713 AVGroningen (TheNetherlands
| |
Collapse
|
37
|
Fu Y, Huang J, Wu Y, Liu X, Zhong F, Wang J. Biocatalytic Cross-Coupling of Aryl Halides with a Genetically Engineered Photosensitizer Artificial Dehalogenase. J Am Chem Soc 2021; 143:617-622. [PMID: 33410683 DOI: 10.1021/jacs.0c10882] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Devising artificial photoenzymes for abiological bond-forming reactions is of high synthetic value but also a tremendous challenge. Disclosed herein is the first photobiocatalytic cross-coupling of aryl halides enabled by a designer artificial dehalogenase, which features a genetically encoded benzophenone chromophore and site-specifically modified synthetic NiII(bpy) cofactor with tunable proximity to streamline the dual catalysis. Transient absorption studies suggest the likelihood of energy transfer activation in the elementary organometallic event. This design strategy is viable to significantly expand the catalytic repertoire of artificial photoenzymes for useful organic transformations.
Collapse
Affiliation(s)
- Yu Fu
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science & Technology (HUST), 1037 Luoyu Road, Wuhan 430074, P.R. China.,Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Science, 15 Datun Road, Beijing 100020, P.R. China
| | - Jian Huang
- Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Science, 15 Datun Road, Beijing 100020, P.R. China
| | - Yuzhou Wu
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science & Technology (HUST), 1037 Luoyu Road, Wuhan 430074, P.R. China
| | - Xiaohong Liu
- Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Science, 15 Datun Road, Beijing 100020, P.R. China
| | - Fangrui Zhong
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science & Technology (HUST), 1037 Luoyu Road, Wuhan 430074, P.R. China
| | - Jiangyun Wang
- Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Science, 15 Datun Road, Beijing 100020, P.R. China
| |
Collapse
|
38
|
Dodge N, Russo DA, Blossom BM, Singh RK, van Oort B, Croce R, Bjerrum MJ, Jensen PE. Water-soluble chlorophyll-binding proteins from Brassica oleracea allow for stable photobiocatalytic oxidation of cellulose by a lytic polysaccharide monooxygenase. BIOTECHNOLOGY FOR BIOFUELS 2020; 13:192. [PMID: 33292428 PMCID: PMC7708235 DOI: 10.1186/s13068-020-01832-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 11/16/2020] [Indexed: 05/06/2023]
Abstract
BACKGROUND Lytic polysaccharide monooxygenases (LPMOs) are indispensable redox enzymes used in industry for the saccharification of plant biomass. LPMO-driven cellulose oxidation can be enhanced considerably through photobiocatalysis using chlorophyll derivatives and light. Water soluble chlorophyll binding proteins (WSCPs) make it is possible to stabilize and solubilize chlorophyll in aqueous solution, allowing for in vitro studies on photostability and ROS production. Here we aim to apply WSCP-Chl a as a photosensitizing complex for photobiocatalysis with the LPMO, TtAA9. RESULTS We have in this study demonstrated how WSCP reconstituted with chlorophyll a (WSCP-Chl a) can create a stable photosensitizing complex which produces controlled amounts of H2O2 in the presence of ascorbic acid and light. WSCP-Chl a is highly reactive and allows for tightly controlled formation of H2O2 by regulating light intensity. TtAA9 together with WSCP-Chl a shows increased cellulose oxidation under low light conditions, and the WSCP-Chl a complex remains stable after 24 h of light exposure. Additionally, the WSCP-Chl a complex demonstrates stability over a range of temperatures and pH conditions relevant for enzyme activity in industrial settings. CONCLUSION With WSCP-Chl a as the photosensitizer, the need to replenish Chl is greatly reduced, enhancing the catalytic lifetime of light-driven LPMOs and increasing the efficiency of cellulose depolymerization. WSCP-Chl a allows for stable photobiocatalysis providing a sustainable solution for biomass processing.
Collapse
Affiliation(s)
- N Dodge
- Department of Food Science, University of Copenhagen, Rolighedsvej 26, 1958, Frederiksberg, Denmark
| | - D A Russo
- Department of Bioorganic Analytics, Institute for Inorganic and Analytical Chemistry, Friedrich Schiller University Jena, Jena, Germany
| | - B M Blossom
- Department of Geosciences and Natural Resource Management, University of Copenhagen, Frederiksberg C, Denmark
| | - R K Singh
- Department of Chemistry, University of Copenhagen, Copenhagen, Denmark
| | - B van Oort
- Biophysics of Photosynthesis, Department of Physics and Astronomy, Faculty of Sciences, and LaserLaB Amsterdam, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - R Croce
- Biophysics of Photosynthesis, Department of Physics and Astronomy, Faculty of Sciences, and LaserLaB Amsterdam, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - M J Bjerrum
- Department of Chemistry, University of Copenhagen, Copenhagen, Denmark
| | - P E Jensen
- Department of Food Science, University of Copenhagen, Rolighedsvej 26, 1958, Frederiksberg, Denmark.
| |
Collapse
|
39
|
Lan F, Wang Q, Chen H, Chen Y, Zhang Y, Huang B, Liu H, Liu J, Li R. Preparation of Hydrophilic Conjugated Microporous Polymers for Efficient Visible Light-Driven Nicotinamide Adenine Dinucleotide Regeneration and Photobiocatalytic Formaldehyde Reduction. ACS Catal 2020. [DOI: 10.1021/acscatal.0c03652] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Fang Lan
- College of Material Science and Engineering, Hunan University, Hunan, Changsha 410082, China
| | - Qin Wang
- College of Material Science and Engineering, Hunan University, Hunan, Changsha 410082, China
| | - Hui Chen
- College of Material Science and Engineering, Hunan University, Hunan, Changsha 410082, China
- Hunan Province Key Laboratory for Advanced Carbon Materials and Applied Technology, Hunan University, Hunan, Changsha 410082, China
| | - Yi Chen
- College of Material Science and Engineering, Hunan University, Hunan, Changsha 410082, China
| | - Yuanyuan Zhang
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Bowen Huang
- College of Material Science and Engineering, Hunan University, Hunan, Changsha 410082, China
| | - Hongbo Liu
- College of Material Science and Engineering, Hunan University, Hunan, Changsha 410082, China
- Hunan Province Key Laboratory for Advanced Carbon Materials and Applied Technology, Hunan University, Hunan, Changsha 410082, China
| | - Jian Liu
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Run Li
- College of Material Science and Engineering, Hunan University, Hunan, Changsha 410082, China
- Hunan Province Key Laboratory for Advanced Carbon Materials and Applied Technology, Hunan University, Hunan, Changsha 410082, China
| |
Collapse
|
40
|
Abstract
The biological process of photosynthesis was critical in catalyzing the oxygenation of Earth’s atmosphere 2.5 billion years ago, changing the course of development of life on Earth. Recently, the fields of applied and synthetic photosynthesis have utilized the light-driven protein–pigment supercomplexes central to photosynthesis for the photocatalytic production of fuel and other various valuable products. The reaction center Photosystem I is of particular interest in applied photosynthesis due to its high stability post-purification, non-geopolitical limitation, and its ability to generate the greatest reducing power found in nature. These remarkable properties have been harnessed for the photocatalytic production of a number of valuable products in the applied photosynthesis research field. These primarily include photocurrents and molecular hydrogen as fuels. The use of artificial reaction centers to generate substrates and reducing equivalents to drive non-photoactive enzymes for valuable product generation has been a long-standing area of interest in the synthetic photosynthesis research field. In this review, we cover advances in these areas and further speculate synthetic and applied photosynthesis as photocatalysts for the generation of valuable products.
Collapse
|
41
|
Schmermund L, Bierbaumer S, Schein VK, Winkler CK, Kara S, Kroutil W. Extending the Library of Light‐Dependent Protochlorophyllide Oxidoreductases and their Solvent Tolerance, Stability in Light and Cofactor Flexibility. ChemCatChem 2020. [DOI: 10.1002/cctc.202000561] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Luca Schmermund
- Institute of Chemistry University of Graz – Field of Excellence BioHealth NAWI Graz BioTechMed Graz Heinrichstrasse 28 8010 Graz Austria
| | - Sarah Bierbaumer
- Institute of Chemistry University of Graz – Field of Excellence BioHealth NAWI Graz BioTechMed Graz Heinrichstrasse 28 8010 Graz Austria
| | - Viktor K. Schein
- Institute of Chemistry University of Graz – Field of Excellence BioHealth NAWI Graz BioTechMed Graz Heinrichstrasse 28 8010 Graz Austria
| | - Christoph K. Winkler
- Institute of Chemistry University of Graz – Field of Excellence BioHealth NAWI Graz BioTechMed Graz Heinrichstrasse 28 8010 Graz Austria
| | - Selin Kara
- Department of Engineering Biological and Chemical Engineering Biocatalysis and Bioprocessing Group Aarhus University Gustav Wieds Vej 10 8000 Aarhus Denmark
| | - Wolfgang Kroutil
- Institute of Chemistry University of Graz – Field of Excellence BioHealth NAWI Graz BioTechMed Graz Heinrichstrasse 28 8010 Graz Austria
| |
Collapse
|
42
|
Edwards EH, Bren KL. Light-driven catalysis with engineered enzymes and biomimetic systems. Biotechnol Appl Biochem 2020; 67:463-483. [PMID: 32588914 DOI: 10.1002/bab.1976] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 06/21/2020] [Indexed: 01/01/2023]
Abstract
Efforts to drive catalytic reactions with light, inspired by natural processes like photosynthesis, have a long history and have seen significant recent growth. Successfully engineering systems using biomolecular and bioinspired catalysts to carry out light-driven chemical reactions capitalizes on advantages offered from the fields of biocatalysis and photocatalysis. In particular, driving reactions under mild conditions and in water, in which enzymes are operative, using sunlight as a renewable energy source yield environmentally friendly systems. Furthermore, using enzymes and bioinspired systems can take advantage of the high efficiency and specificity of biocatalysts. There are many challenges to overcome to fully capitalize on the potential of light-driven biocatalysis. In this mini-review, we discuss examples of enzymes and engineered biomolecular catalysts that are activated via electron transfer from a photosensitizer in a photocatalytic system. We place an emphasis on selected forefront chemical reactions of high interest, including CH oxidation, proton reduction, water oxidation, CO2 reduction, and N2 reduction.
Collapse
Affiliation(s)
- Emily H Edwards
- Department of Chemistry, University of Rochester, Rochester, NY, USA
| | - Kara L Bren
- Department of Chemistry, University of Rochester, Rochester, NY, USA
| |
Collapse
|
43
|
Corcoran EB, McMullen JP, Lévesque F, Wismer MK, Naber JR. Photon Equivalents as a Parameter for Scaling Photoredox Reactions in Flow: Translation of Photocatalytic C−N Cross‐Coupling from Lab Scale to Multikilogram Scale. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201915412] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Emily B. Corcoran
- Process Research & Development Merck & Co., Inc. Boston MA 02115 USA
| | | | - François Lévesque
- Process Research & Development Merck & Co., Inc. Rahway NJ 07065 USA
| | - Michael K. Wismer
- Scientific Engineering & Design Merck & Co., Inc. Kenilworth NJ 07033 USA
| | - John R. Naber
- Process Research & Development Merck & Co., Inc. Rahway NJ 07065 USA
| |
Collapse
|
44
|
Corcoran EB, McMullen JP, Lévesque F, Wismer MK, Naber JR. Photon Equivalents as a Parameter for Scaling Photoredox Reactions in Flow: Translation of Photocatalytic C−N Cross‐Coupling from Lab Scale to Multikilogram Scale. Angew Chem Int Ed Engl 2020; 59:11964-11968. [DOI: 10.1002/anie.201915412] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 02/19/2020] [Indexed: 01/08/2023]
Affiliation(s)
- Emily B. Corcoran
- Process Research & Development Merck & Co., Inc. Boston MA 02115 USA
| | | | - François Lévesque
- Process Research & Development Merck & Co., Inc. Rahway NJ 07065 USA
| | - Michael K. Wismer
- Scientific Engineering & Design Merck & Co., Inc. Kenilworth NJ 07033 USA
| | - John R. Naber
- Process Research & Development Merck & Co., Inc. Rahway NJ 07065 USA
| |
Collapse
|
45
|
Crisenza GM, Mazzarella D, Melchiorre P. Synthetic Methods Driven by the Photoactivity of Electron Donor-Acceptor Complexes. J Am Chem Soc 2020; 142:5461-5476. [PMID: 32134647 PMCID: PMC7099579 DOI: 10.1021/jacs.0c01416] [Citation(s) in RCA: 510] [Impact Index Per Article: 127.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Indexed: 12/14/2022]
Abstract
The association of an electron-rich substrate with an electron-accepting molecule can generate a new molecular aggregate in the ground state, called an electron donor-acceptor (EDA) complex. Even when the two precursors do not absorb visible light, the resulting EDA complex often does. In 1952, Mulliken proposed a quantum-mechanical theory to rationalize the formation of such colored EDA complexes. However, and besides a few pioneering studies in the 20th century, it is only in the past few years that the EDA complex photochemistry has been recognized as a powerful strategy for expanding the potential of visible-light-driven radical synthetic chemistry. Here, we explain why this photochemical synthetic approach was overlooked for so long. We critically discuss the historical context, scientific reasons, serendipitous observations, and landmark discoveries that were essential for progress in the field. We also outline future directions and identify the key advances that are needed to fully exploit the potential of the EDA complex photochemistry.
Collapse
Affiliation(s)
- Giacomo
E. M. Crisenza
- ICIQ
− Institute of Chemical Research of Catalonia, Barcelona Institute of Science and Technology, Avinguda Països Catalans 16, 43007 Tarragona, Spain
| | - Daniele Mazzarella
- ICIQ
− Institute of Chemical Research of Catalonia, Barcelona Institute of Science and Technology, Avinguda Països Catalans 16, 43007 Tarragona, Spain
| | - Paolo Melchiorre
- ICIQ
− Institute of Chemical Research of Catalonia, Barcelona Institute of Science and Technology, Avinguda Països Catalans 16, 43007 Tarragona, Spain
- ICREA, Passeig Lluís Companys 23, 08010 Barcelona, Spain
| |
Collapse
|
46
|
Utterback JK, Ruzicka JL, Keller HR, Pellows LM, Dukovic G. Electron Transfer from Semiconductor Nanocrystals to Redox Enzymes. Annu Rev Phys Chem 2020; 71:335-359. [PMID: 32074472 DOI: 10.1146/annurev-physchem-050317-014232] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
This review summarizes progress in understanding electron transfer from photoexcited nanocrystals to redox enzymes. The combination of the light-harvesting properties of nanocrystals and the catalytic properties of redox enzymes has emerged as a versatile platform to drive a variety of enzyme-catalyzed reactions with light. Transfer of a photoexcited charge from a nanocrystal to an enzyme is a critical first step for these reactions. This process has been studied in depth in systems that combine Cd-chalcogenide nanocrystals with hydrogenases. The two components can be assembled in close proximity to enable direct interfacial electron transfer or integrated with redox mediators to transport charges. Time-resolved spectroscopy and kinetic modeling have been used to measure the rates and efficiencies of the electron transfer. Electron transfer has been described within the framework of Marcus theory, providing insights into the factors that can be used to control the photochemical activity of these biohybrid systems. The range of potential applications and reactions that can be achieved using nanocrystal-enzyme systems is expanding, and numerous fundamental and practical questions remain to be addressed.
Collapse
Affiliation(s)
- James K Utterback
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, USA; , , .,Current affiliation: Department of Chemistry, University of California, Berkeley, California 94720, USA;
| | - Jesse L Ruzicka
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, USA; , ,
| | - Helena R Keller
- Materials Science and Engineering Program, University of Colorado Boulder, Boulder, Colorado 80309, USA;
| | - Lauren M Pellows
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, USA; , ,
| | - Gordana Dukovic
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, USA; , ,
| |
Collapse
|
47
|
Bissaro B, Kommedal E, Røhr ÅK, Eijsink VGH. Controlled depolymerization of cellulose by light-driven lytic polysaccharide oxygenases. Nat Commun 2020; 11:890. [PMID: 32060276 PMCID: PMC7021734 DOI: 10.1038/s41467-020-14744-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 01/28/2020] [Indexed: 11/09/2022] Open
Abstract
Lytic polysaccharide (mono)oxygenases (LPMOs) perform oxidative cleavage of polysaccharides, and are key enzymes in biomass processing and the global carbon cycle. It has been shown that LPMO reactions may be driven by light, using photosynthetic pigments or photocatalysts, but the mechanism behind this highly attractive catalytic route remains unknown. Here, prompted by the discovery that LPMOs catalyze a peroxygenase reaction more efficiently than a monooxygenase reaction, we revisit these light-driven systems, using an LPMO from Streptomyces coelicolor (ScAA10C) as model cellulolytic enzyme. By using coupled enzymatic assays, we show that H2O2 is produced and necessary for efficient light-driven activity of ScAA10C. Importantly, this activity is achieved without addition of reducing agents and proportional to the light intensity. Overall, the results highlight the importance of controlling fluxes of reactive oxygen species in LPMO reactions and demonstrate the feasibility of light-driven, tunable enzymatic peroxygenation to degrade recalcitrant polysaccharides.
Collapse
Affiliation(s)
- Bastien Bissaro
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), 1432 Ås, Oslo, Norway.,INRAE, Aix Marseille University, UMR1163 Biodiversité et Biotechnologie Fongiques, 13009, Marseille, France
| | - Eirik Kommedal
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), 1432 Ås, Oslo, Norway
| | - Åsmund K Røhr
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), 1432 Ås, Oslo, Norway
| | - Vincent G H Eijsink
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), 1432 Ås, Oslo, Norway.
| |
Collapse
|
48
|
Kosem N, Honda Y, Watanabe M, Takagaki A, Tehrani ZP, Haydous F, Lippert T, Ishihara T. Photobiocatalytic H2 evolution of GaN:ZnO and [FeFe]-hydrogenase recombinant Escherichia coli. Catal Sci Technol 2020. [DOI: 10.1039/d0cy00128g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The need for sustainable, renewable and low-cost approaches is a driving force behind the development of solar-to-H2 conversion technologies.
Collapse
Affiliation(s)
- Nuttavut Kosem
- International Institute for Carbon-Neutral Energy Research (I2CNER)
- Kyushu University
- Fukuoka 819-0395
- Japan
- Department of Applied Chemistry
| | - Yuki Honda
- Department of Chemistry, Biology and Environmental Science
- Faculty of Science
- Nara Women's University
- Nara 630-8506
- Japan
| | - Motonori Watanabe
- International Institute for Carbon-Neutral Energy Research (I2CNER)
- Kyushu University
- Fukuoka 819-0395
- Japan
| | - Atsushi Takagaki
- International Institute for Carbon-Neutral Energy Research (I2CNER)
- Kyushu University
- Fukuoka 819-0395
- Japan
- Department of Applied Chemistry
| | - Zahra Pourmand Tehrani
- Laboratory for Multiscale Materials Experiments
- Paul Scherrer Institut
- CH-5232 Villigen PSI
- Switzerland
| | - Fatima Haydous
- Laboratory for Multiscale Materials Experiments
- Paul Scherrer Institut
- CH-5232 Villigen PSI
- Switzerland
- Division of Applied Physical Chemistry
| | - Thomas Lippert
- International Institute for Carbon-Neutral Energy Research (I2CNER)
- Kyushu University
- Fukuoka 819-0395
- Japan
- Laboratory for Multiscale Materials Experiments
| | - Tatsumi Ishihara
- International Institute for Carbon-Neutral Energy Research (I2CNER)
- Kyushu University
- Fukuoka 819-0395
- Japan
- Department of Applied Chemistry
| |
Collapse
|
49
|
Chen W, Cai X, Ji L, Li X, Wang X, Zhang X, Gao Y, Feng F. A photosynthesis-inspired supramolecular system: caging photosensitizer and photocatalyst in apoferritin. PHOTOSYNTHESIS RESEARCH 2019; 142:169-180. [PMID: 31522365 DOI: 10.1007/s11120-019-00671-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 08/19/2019] [Indexed: 06/10/2023]
Abstract
Inspired by the bioinorganic structure of natural [FeFe]-hydrogenase ([FeFe]-H2ase) that possesses iron sulfur clusters to catalyze proton reduction to hydrogen (H2), we design a supramolecular photosystem by sequentially integrating hydrophobic ruthenium complex (as a photosensitizer) and diiron dithiolate complex (as a photocatalyst) into the inner surface or cavity of apoferritin via noncovalent interactions. This platform allows photosensitizer and catalyst to localize in a close proximity and short-distance electron transfer process to occur within a confined space. The resulted uniform core-shell nanocomposites were stable and well dispersed in water, and showed enhanced H2 generation activity in acidic solution as compared to the homogenous system without apoferritin participation.
Collapse
Affiliation(s)
- Weijian Chen
- Key Laboratory of High Performance Polymer Material and Technology of Ministry of Education, Department of Polymer Science & Engineering, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing, 210023, People's Republic of China
| | - Xuetong Cai
- Key Laboratory of High Performance Polymer Material and Technology of Ministry of Education, Department of Polymer Science & Engineering, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing, 210023, People's Republic of China
| | - Luyang Ji
- Key Laboratory of High Performance Polymer Material and Technology of Ministry of Education, Department of Polymer Science & Engineering, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing, 210023, People's Republic of China
| | - Xiao Li
- Key Laboratory of High Performance Polymer Material and Technology of Ministry of Education, Department of Polymer Science & Engineering, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing, 210023, People's Republic of China
| | - Xuewei Wang
- Key Laboratory of High Performance Polymer Material and Technology of Ministry of Education, Department of Polymer Science & Engineering, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing, 210023, People's Republic of China
| | - Xiaoran Zhang
- Key Laboratory of High Performance Polymer Material and Technology of Ministry of Education, Department of Polymer Science & Engineering, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing, 210023, People's Republic of China
| | - Yajing Gao
- Key Laboratory of High Performance Polymer Material and Technology of Ministry of Education, Department of Polymer Science & Engineering, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing, 210023, People's Republic of China
| | - Fude Feng
- Key Laboratory of High Performance Polymer Material and Technology of Ministry of Education, Department of Polymer Science & Engineering, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing, 210023, People's Republic of China.
| |
Collapse
|
50
|
Tomás‐Gamasa M, Mascareñas JL. TiO
2
‐Based Photocatalysis at the Interface with Biology and Biomedicine. Chembiochem 2019; 21:294-309. [DOI: 10.1002/cbic.201900229] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 06/11/2019] [Indexed: 01/06/2023]
Affiliation(s)
- María Tomás‐Gamasa
- Centro Singular de Investigación en Química Biolóxica, e Materiais Moleculares (CIQUS)Departamento de Química OrgánicaUniversidade de Santiago de Compostela Campus Vida 15782 Santiago de Compostela Spain
| | - José Luis Mascareñas
- Centro Singular de Investigación en Química Biolóxica, e Materiais Moleculares (CIQUS)Departamento de Química OrgánicaUniversidade de Santiago de Compostela Campus Vida 15782 Santiago de Compostela Spain
| |
Collapse
|