1
|
Paulus J, Sewald N. Small molecule- and peptide-drug conjugates addressing integrins: A story of targeted cancer treatment. J Pept Sci 2024; 30:e3561. [PMID: 38382900 DOI: 10.1002/psc.3561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/15/2023] [Accepted: 11/16/2023] [Indexed: 02/23/2024]
Abstract
Targeted cancer treatment should avoid side effects and damage to healthy cells commonly encountered during traditional chemotherapy. By combining small molecule or peptidic ligands as homing devices with cytotoxic drugs connected by a cleavable or non-cleavable linker in peptide-drug conjugates (PDCs) or small molecule-drug conjugates (SMDCs), cancer cells and tumours can be selectively targeted. The development of highly affine, selective peptides and small molecules in recent years has allowed PDCs and SMDCs to increasingly compete with antibody-drug conjugates (ADCs). Integrins represent an excellent target for conjugates because they are overexpressed by most cancer cells and because of the broad knowledge about native binding partners as well as the multitude of small-molecule and peptidic ligands that have been developed over the last 30 years. In particular, integrin αVβ3 has been addressed using a variety of different PDCs and SMDCs over the last two decades, following various strategies. This review summarises and describes integrin-addressing PDCs and SMDCs while highlighting points of great interest.
Collapse
Affiliation(s)
- Jannik Paulus
- Organic and Bioorganic Chemistry, Faculty of Chemistry, Bielefeld University, Bielefeld, Germany
| | - Norbert Sewald
- Organic and Bioorganic Chemistry, Faculty of Chemistry, Bielefeld University, Bielefeld, Germany
| |
Collapse
|
2
|
Goher SS, Abdrabo WS, Veerakanellore GB, Elgendy B. 2,5-Diketopiperazines (DKPs): Promising Scaffolds for Anticancer Agents. Curr Pharm Des 2024; 30:597-623. [PMID: 38343054 DOI: 10.2174/0113816128291798240201112916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 01/22/2024] [Indexed: 05/25/2024]
Abstract
2,5-Diketopiperazine (2,5-DKP) derivatives represent a family of secondary metabolites widely produced by bacteria, fungi, plants, animals, and marine organisms. Many natural products with DKP scaffolds exhibited various pharmacological activities such as antiviral, antifungal, antibacterial, and antitumor. 2,5-DKPs are recognized as privileged structures in medicinal chemistry, and compounds that incorporate the 2,5-DKP scaffold have been extensively investigated for their anticancer properties. This review is a thorough update on the anti-cancer activity of natural and synthesized 2,5-DKPs from 1997 to 2022. We have explored various aspects of 2,5-DKPs modifications and summarized their structure-activity relationships (SARs) to gain insight into their anticancer activities. We have also highlighted the novel approaches to enhance the specificity and pharmacokinetics of 2,5-DKP-based anticancer agents.
Collapse
Affiliation(s)
- Shaimaa S Goher
- Chemistry Department, Faculty of Science, Benha University, Benha 13518, Egypt
- Nanotechnology Research Centre (NTRC), The British University in Egypt (BUE), Suez Desert Road, El Sherouk City, Cairo 1183, Egypt
| | - Wessam S Abdrabo
- Chemistry Department, Faculty of Science, Benha University, Benha 13518, Egypt
| | - Giri Babu Veerakanellore
- Center for Clinical Pharmacology, Washington University School of Medicine and University of Health Sciences and Pharmacy, St. Louis, Missouri 63110, United States
- Department of Anesthesiology, Washington University School of Medicine in St. Louis, St. Louis, Missouri 63110, United States
| | - Bahaa Elgendy
- Chemistry Department, Faculty of Science, Benha University, Benha 13518, Egypt
- Center for Clinical Pharmacology, Washington University School of Medicine and University of Health Sciences and Pharmacy, St. Louis, Missouri 63110, United States
- Department of Anesthesiology, Washington University School of Medicine in St. Louis, St. Louis, Missouri 63110, United States
| |
Collapse
|
3
|
Javid H, Oryani MA, Rezagholinejad N, Esparham A, Tajaldini M, Karimi‐Shahri M. RGD peptide in cancer targeting: Benefits, challenges, solutions, and possible integrin-RGD interactions. Cancer Med 2024; 13:e6800. [PMID: 38349028 PMCID: PMC10832341 DOI: 10.1002/cam4.6800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 11/06/2023] [Accepted: 11/27/2023] [Indexed: 02/15/2024] Open
Abstract
RGD peptide can be found in cell adhesion and signaling proteins, such as fibronectin, vitronectin, and fibrinogen. RGD peptides' principal function is to facilitate cell adhesion by interacting with integrin receptors on the cell surface. They have been intensively researched for use in biotechnology and medicine, including incorporation into biomaterials, conjugation to medicinal molecules or nanoparticles, and labeling with imaging agents. RGD peptides can be utilized to specifically target cancer cells and the tumor vasculature by engaging with these integrins, improving drug delivery efficiency and minimizing adverse effects on healthy tissues. RGD-functionalized drug carriers are a viable option for cancer therapy as this focused approach has demonstrated promise in the future. Writing a review on the RGD peptide can significantly influence how drugs are developed in the future by improving our understanding of the peptide, finding knowledge gaps, fostering innovation, and making drug design easier.
Collapse
Affiliation(s)
- Hossein Javid
- Department of Medical Laboratory SciencesVarastegan Institute for Medical SciencesMashhadIran
- Department of Clinical Biochemistry, Faculty of MedicineMashhad University of Medical SciencesMashhadIran
- Surgical Oncology Research CenterMashhad University of Medical SciencesMashhadIran
| | - Mahsa Akbari Oryani
- Department of Pathology, School of MedicineMashhad University of Medical SciencesMashhadIran
| | | | - Ali Esparham
- Student Research Committee, Faculty of MedicineMashhad University of Medical SciencesMashhadIran
| | - Mahboubeh Tajaldini
- Ischemic Disorder Research CenterGolestan University of Medical SciencesGorganIran
| | - Mehdi Karimi‐Shahri
- Department of Pathology, School of MedicineMashhad University of Medical SciencesMashhadIran
- Department of Pathology, School of MedicineGonabad University of Medical SciencesGonabadIran
| |
Collapse
|
4
|
Gonciarz RL, Jiang H, Tram L, Hugelshofer CL, Ekpenyong O, Knemeyer I, Aron AT, Chang CJ, Flygare JA, Collisson EA, Renslo AR. In vivo bioluminescence imaging of labile iron in xenograft models and liver using FeAL-1, an iron-activatable form of D-luciferin. Cell Chem Biol 2023; 30:1468-1477.e6. [PMID: 37820725 PMCID: PMC10841594 DOI: 10.1016/j.chembiol.2023.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 07/21/2023] [Accepted: 09/18/2023] [Indexed: 10/13/2023]
Abstract
Dysregulated iron homeostasis underlies diverse pathologies, from ischemia-reperfusion injury to epithelial-mesenchymal transition and drug-tolerant "persister" cancer cell states. Here, we introduce ferrous iron-activatable luciferin-1 (FeAL-1), a small-molecule probe for bioluminescent imaging of the labile iron pool (LIP) in luciferase-expressing cells and animals. We find that FeAL-1 detects LIP fluctuations in cells after iron supplementation, depletion, or treatment with hepcidin, the master regulator of systemic iron in mammalian physiology. Utilizing FeAL-1 and a dual-luciferase reporter system, we quantify LIP in mouse liver and three different orthotopic pancreatic ductal adenocarcinoma tumors. We observed up to a 10-fold increase in FeAL-1 bioluminescent signal in xenograft tumors as compared to healthy liver, the major organ of iron storage in mammals. Treating mice with hepcidin further elevated hepatic LIP, as predicted. These studies reveal a therapeutic index between tumoral and hepatic LIP and suggest an approach to sensitize tumors toward LIP-activated therapeutics.
Collapse
Affiliation(s)
- Ryan L Gonciarz
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Honglin Jiang
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Linh Tram
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Cedric L Hugelshofer
- Department of Discovery Chemistry, Merck & Co, Inc., South San Francisco, CA 94080, USA
| | - Oscar Ekpenyong
- ADME & Discovery Toxicology, Merck & Co, Inc., South San Francisco, CA 94080, USA
| | - Ian Knemeyer
- ADME & Discovery Toxicology, Merck & Co, Inc., South San Francisco, CA 94080, USA
| | - Allegra T Aron
- Department of Chemistry and Biochemistry, University of Denver, Denver, CO 80208, USA
| | - Christopher J Chang
- Departments of Chemistry and Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - John A Flygare
- Department of Discovery Chemistry, Merck & Co, Inc., South San Francisco, CA 94080, USA
| | - Eric A Collisson
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Adam R Renslo
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
5
|
Zambra M, Ranđelović I, Talarico F, Borbély A, Svajda L, Tóvári J, Mező G, Bodero L, Colombo S, Arrigoni F, Fasola E, Gazzola S, Piarulli U. Optimizing the enzymatic release of MMAE from isoDGR-based small molecule drug conjugate by incorporation of a GPLG-PABC enzymatically cleavable linker. Front Pharmacol 2023; 14:1215694. [PMID: 37492088 PMCID: PMC10363981 DOI: 10.3389/fphar.2023.1215694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 06/28/2023] [Indexed: 07/27/2023] Open
Abstract
Antibody-Drug Conjugates (ADCs) and Small Molecule-Drug Conjugates (SMDCs) represent successful examples of targeted drug-delivery technologies for overcoming unwanted side effects of conventional chemotherapy in cancer treatment. In both strategies, a cytotoxic payload is connected to the tumor homing moiety through a linker that releases the drug inside or in proximity of the tumor cell, and that represents a key component for the final therapeutic effect of the conjugate. Here, we show that the replacement of the Val-Ala-p-aminobenzyloxycarbamate linker with the Gly-Pro-Leu-Gly-p-aminobenzyloxycarbamate (GPLG-PABC) sequence as enzymatically cleavable linker in the SMDC bearing the cyclo[DKP-isoDGR] αVβ3 integrin ligand as tumor homing moiety and the monomethyl auristatin E (MMAE) as cytotoxic payload led to a 4-fold more potent anti-tumoral effect of the final conjugate on different cancer cell lines. In addition, the synthesized conjugate resulted to be significantly more potent than the free MMAE when tested following the "kiss-and-run" protocol, and the relative potency were clearly consistent with the expression of the αVβ3 integrin receptor in the considered cancer cell lines. In vitro enzymatic cleavage tests showed that the GPLG-PABC linker is cleaved by lysosomal enzymes, and that the released drug is observable already after 15 min of incubation. Although additional data are needed to fully characterize the releasing capacity of GPLG-PABC linker, our findings are of therapeutic significance since we are introducing an alternative to other well-established enzymatically sensitive peptide sequences that might be used in the future for generating more efficient and less toxic drug delivery systems.
Collapse
Affiliation(s)
- Marco Zambra
- Science and High Technology Department, University of Insubria, Como, Italy
| | - Ivan Ranđelović
- The National Tumor Biology Laboratory, Department of Experimental Pharmacology, National Institute of Oncology, Budapest, Hungary
| | - Francesco Talarico
- Science and High Technology Department, University of Insubria, Como, Italy
| | - Adina Borbély
- MTA-ELTE Lendület Ion Mobility Mass Spectrometry Research Group and Faculty of Science, Institute of Chemistry, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Laura Svajda
- KINETO Lab Ltd., Budapest, Hungary
- Doctoral School of Pathological Sciences, Semmelweis University, Budapest, Hungary
| | - József Tóvári
- The National Tumor Biology Laboratory, Department of Experimental Pharmacology, National Institute of Oncology, Budapest, Hungary
| | - Gábor Mező
- ELKH-ELTE Research Group of Peptide Chemistry, Faculty of Science, Eötvös Loránd University, Budapest, Hungary
- Faculty of Science, Institute of Chemistry, Eötvös Loránd University, Budapest, Hungary
| | - Lizeth Bodero
- Science and High Technology Department, University of Insubria, Como, Italy
| | - Sveva Colombo
- Science and High Technology Department, University of Insubria, Como, Italy
- Department of Chemistry Organic and Bioorganic Chemistry, Bielefeld University, Bielefeld, Germany
| | - Federico Arrigoni
- Science and High Technology Department, University of Insubria, Como, Italy
| | - Elettra Fasola
- Science and High Technology Department, University of Insubria, Como, Italy
| | - Silvia Gazzola
- Science and High Technology Department, University of Insubria, Como, Italy
| | - Umberto Piarulli
- Science and High Technology Department, University of Insubria, Como, Italy
| |
Collapse
|
6
|
Cossu J, Thoreau F, Boturyn D. Multimeric RGD-Based Strategies for Selective Drug Delivery to Tumor Tissues. Pharmaceutics 2023; 15:pharmaceutics15020525. [PMID: 36839846 PMCID: PMC9961187 DOI: 10.3390/pharmaceutics15020525] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 01/30/2023] [Accepted: 02/01/2023] [Indexed: 02/09/2023] Open
Abstract
RGD peptides have received a lot of attention over the two last decades, in particular to improve tumor therapy through the targeting of the αVβ3 integrin receptor. This review focuses on the molecular design of multimeric RGD compounds, as well as the design of suitable linkers for drug delivery. Many examples of RGD-drug conjugates have been developed, and we show the importance of RGD constructs to enhance binding affinity to tumor cells, as well as their drug uptake. Further, we also highlight the use of RGD peptides as theranostic systems, promising tools offering dual modality, such as tumor diagnosis and therapy. In conclusion, we address the challenging issues, as well as ongoing and future development, in comparison with large molecules, such as monoclonal antibodies.
Collapse
Affiliation(s)
- Jordan Cossu
- University Grenoble Alpes, CNRS, DCM UMR 5250, F-38000 Grenoble, France
| | - Fabien Thoreau
- University Poitiers, Inst Chim Milieux & Mat Poitiers IC2MP, UMR CNRS 7285, F-86073 Poitiers, France
| | - Didier Boturyn
- University Grenoble Alpes, CNRS, DCM UMR 5250, F-38000 Grenoble, France
- Correspondence:
| |
Collapse
|
7
|
Gomari MM, Abkhiz S, Pour TG, Lotfi E, Rostami N, Monfared FN, Ghobari B, Mosavi M, Alipour B, Dokholyan NV. Peptidomimetics in cancer targeting. Mol Med 2022; 28:146. [PMID: 36476230 PMCID: PMC9730693 DOI: 10.1186/s10020-022-00577-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 11/16/2022] [Indexed: 12/12/2022] Open
Abstract
The low efficiency of treatment strategies is one of the main obstacles to developing cancer inhibitors. Up to now, various classes of therapeutics have been developed to inhibit cancer progression. Peptides due to their small size and easy production compared to proteins are highly regarded in designing cancer vaccines and oncogenic pathway inhibitors. Although peptides seem to be a suitable therapeutic option, their short lifespan, instability, and low binding affinity for their target have not been widely applicable against malignant tumors. Given the peptides' disadvantages, a new class of agents called peptidomimetic has been introduced. With advances in physical chemistry and biochemistry, as well as increased knowledge about biomolecule structures, it is now possible to chemically modify peptides to develop efficient peptidomimetics. In recent years, numerous studies have been performed to the evaluation of the effectiveness of peptidomimetics in inhibiting metastasis, angiogenesis, and cancerous cell growth. Here, we offer a comprehensive review of designed peptidomimetics to diagnose and treat cancer.
Collapse
Affiliation(s)
- Mohammad Mahmoudi Gomari
- grid.411746.10000 0004 4911 7066Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Shadi Abkhiz
- grid.411746.10000 0004 4911 7066Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Taha Ghantab Pour
- grid.411746.10000 0004 4911 7066Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ehsan Lotfi
- grid.411746.10000 0004 4911 7066Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Neda Rostami
- grid.411425.70000 0004 0417 7516Department of Chemical Engineering, Faculty of Engineering, Arak University, Arak, Iran
| | - Fatemeh Nafe Monfared
- grid.411705.60000 0001 0166 0922Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Babak Ghobari
- grid.412831.d0000 0001 1172 3536Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Mona Mosavi
- grid.411746.10000 0004 4911 7066Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Behruz Alipour
- grid.411705.60000 0001 0166 0922Medical Biotechnology Department, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Nikolay V. Dokholyan
- grid.240473.60000 0004 0543 9901Department of Pharmacology, Penn State College of Medicine, Hershey, PA USA ,grid.240473.60000 0004 0543 9901Department of Biochemistry & Molecular Biology, Penn State College of Medicine, Hershey, PA USA
| |
Collapse
|
8
|
González-Cruz AO, Hernández-Juárez J, Ramírez-Cabrera MA, Balderas-Rentería I, Arredondo-Espinoza E. Peptide-based drug-delivery systems: A new hope for improving cancer therapy. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
9
|
Schuster S, Juhász É, Halmos G, Neundorf I, Gennari C, Mező G. Development and Biochemical Characterization of Self-Immolative Linker Containing GnRH-III-Drug Conjugates. Int J Mol Sci 2022; 23:ijms23095071. [PMID: 35563462 PMCID: PMC9105102 DOI: 10.3390/ijms23095071] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 04/26/2022] [Accepted: 04/29/2022] [Indexed: 12/10/2022] Open
Abstract
The human gonadotropin releasing hormone (GnRH-I) and its sea lamprey analogue GnRH-III specifically bind to GnRH receptors on cancer cells and can be used as targeting moieties for targeted tumor therapy. Considering that the selective release of drugs in cancer cells is of high relevance, we were encouraged to develop cleavable, self-immolative GnRH-III-drug conjugates which consist of a p-aminobenzyloxycarbonlyl (PABC) spacer between a cathepsin B-cleavable dipeptide (Val-Ala, Val-Cit) and the classical anticancer drugs daunorubicin (Dau) and paclitaxel (PTX). Alongside these compounds, non-cleavable GnRH-III-drug conjugates were also synthesized, and all compounds were analyzed for their antiproliferative activity. The cleavable GnRH-III bioconjugates revealed a growth inhibitory effect on GnRH receptor-expressing A2780 ovarian cancer cells, while their activity was reduced on Panc-1 pancreatic cancer cells exhibiting a lower GnRH receptor level. Moreover, the antiproliferative activity of the non-cleavable counterparts was strongly reduced. Additionally, the efficient cleavage of the Val-Ala linker and the subsequent release of the drugs could be verified by lysosomal degradation studies, while radioligand binding studies ensured that the GnRH-III-drug conjugates bound to the GnRH receptor with high affinity. Our results underline the high value of GnRH-III-based homing devices and the application of cathepsin B-cleavable linker systems for the development of small molecule drug conjugates (SMDCs).
Collapse
Affiliation(s)
- Sabine Schuster
- Faculty of Science, Institute of Chemistry, Eötvös Loránd University, 1117 Budapest, Hungary;
- ELKH-ELTE Research Group of Peptide Chemistry, Faculty of Science, Eötvös Loránd University, 1117 Budapest, Hungary
| | - Éva Juhász
- Department of Pediatrics, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary;
| | - Gábor Halmos
- Department of Biopharmacy, Faculty of Pharmacy, University of Debrecen, 4032 Debrecen, Hungary;
| | - Ines Neundorf
- Department of Chemistry, Institute of Biochemistry, University of Cologne, 50674 Cologne, Germany;
| | - Cesare Gennari
- Dipartimento di Chimica, Università degli Studi di Milano, 20133 Milano, Italy;
| | - Gábor Mező
- Faculty of Science, Institute of Chemistry, Eötvös Loránd University, 1117 Budapest, Hungary;
- ELKH-ELTE Research Group of Peptide Chemistry, Faculty of Science, Eötvös Loránd University, 1117 Budapest, Hungary
- Correspondence: ; Tel.: +36-1-372-2500
| |
Collapse
|
10
|
Wang L, Chen H, Wang F, Zhang X. The development of peptide-drug conjugates (PDCs) strategies for paclitaxel. Expert Opin Drug Deliv 2022; 19:147-161. [PMID: 35130795 DOI: 10.1080/17425247.2022.2039621] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Paclitaxel is a powerful and effective anti-tumor drug with wide clinical application. However, there are still some limitations, including poor water solubility, low specificity, and susceptibility to drug resistance. The peptide-drug conjugates (PDCs) represent a rising class of therapeutic drugs, which combines small-molecule chemotherapeutic drugs with highly flexible peptides through a cleavable or non-cleavable linker. When this strategy is applied, the therapeutic effects of paclitaxel can be improved. AREAS COVERED In this review, we discuss the application of the PDCs strategy in paclitaxel, including two parts: the tumor targeting peptide-paclitaxel conjugates and the cell penetrating peptide-paclitaxel conjugates. EXPERT OPINION Combining drugs with multifunctional peptides covalently is an effective strategy for delivering paclitaxel to tumors. Depending on different functional peptides, conjugates can increase the water solubility of paclitaxel, tumor permeability of paclitaxel, the accumulation of paclitaxel in tumor tissues, and enhance the antitumor effect of paclitaxel. In addition, due to the change of cell entry mechanism, partial conjugates can restore the therapeutic activity of paclitaxel against resistant tumors. Notably, in order to better translate into the clinical field in the future, more research should be conducted to ensure the safety and effectiveness of peptide-paclitaxel conjugates.
Collapse
Affiliation(s)
- Longkun Wang
- Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-based Medicine, Institute of Biochemical and Biotechnological Drug, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, People's Republic of China
| | - Hongyuan Chen
- Department of General Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong University, Jinan 250012, People's Republic of China
| | - Fengshan Wang
- Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-based Medicine, Institute of Biochemical and Biotechnological Drug, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, People's Republic of China
| | - Xinke Zhang
- Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmacology, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, People's Republic of China
| |
Collapse
|
11
|
Bodero L, Parente S, Arrigoni F, Klimpel A, Neundorf I, Gazzola S, Piarulli U. Synthesis and Biological Evaluation of an
iso
DGR‐Paclitaxel Conjugate Containing a Cell‐Penetrating Peptide to Promote Cellular Uptake. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Lizeth Bodero
- Dipartimento di Scienza e Alta Tecnologia Università degli Studi dell'Insubria Via Valleggio 11 22100 Como Italy
| | - Sara Parente
- Dipartimento di Scienza e Alta Tecnologia Università degli Studi dell'Insubria Via Valleggio 11 22100 Como Italy
| | - Federico Arrigoni
- Dipartimento di Scienza e Alta Tecnologia Università degli Studi dell'Insubria Via Valleggio 11 22100 Como Italy
| | - Annika Klimpel
- University of Cologne Department of Chemistry Institute for Biochemistry Zuelpicher Str. 47a 50674 Cologne Germany
| | - Ines Neundorf
- University of Cologne Department of Chemistry Institute for Biochemistry Zuelpicher Str. 47a 50674 Cologne Germany
| | - Silvia Gazzola
- Dipartimento di Scienza e Alta Tecnologia Università degli Studi dell'Insubria Via Valleggio 11 22100 Como Italy
| | - Umberto Piarulli
- Dipartimento di Scienza e Alta Tecnologia Università degli Studi dell'Insubria Via Valleggio 11 22100 Como Italy
| |
Collapse
|
12
|
Battistini L, Bugatti K, Sartori A, Curti C, Zanardi F. RGD Peptide‐Drug Conjugates as Effective Dual Targeting Platforms: Recent Advances. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100240] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Lucia Battistini
- Dipartimento di Scienze degli Alimenti e del Farmaco Università di Parma Parco Area delle Scienze 27 A 43124 Parma Italy
| | - Kelly Bugatti
- Dipartimento di Scienze degli Alimenti e del Farmaco Università di Parma Parco Area delle Scienze 27 A 43124 Parma Italy
| | - Andrea Sartori
- Dipartimento di Scienze degli Alimenti e del Farmaco Università di Parma Parco Area delle Scienze 27 A 43124 Parma Italy
| | - Claudio Curti
- Dipartimento di Scienze degli Alimenti e del Farmaco Università di Parma Parco Area delle Scienze 27 A 43124 Parma Italy
| | - Franca Zanardi
- Dipartimento di Scienze degli Alimenti e del Farmaco Università di Parma Parco Area delle Scienze 27 A 43124 Parma Italy
| |
Collapse
|
13
|
Panzeri S, Arosio D, Gazzola S, Belvisi L, Civera M, Potenza D, Vasile F, Kemker I, Ertl T, Sewald N, Reiser O, Piarulli U. Cyclic RGD and isoDGR Integrin Ligands Containing cis-2-amino-1-cyclopentanecarboxylic ( cis-β-ACPC) Scaffolds. Molecules 2020; 25:molecules25245966. [PMID: 33339382 PMCID: PMC7766232 DOI: 10.3390/molecules25245966] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 12/08/2020] [Accepted: 12/14/2020] [Indexed: 02/06/2023] Open
Abstract
Integrin ligands containing the tripeptide sequences Arg-Gly-Asp (RGD) and iso-Asp-Gly- Arg (isoDGR) were actively investigated as inhibitors of tumor angiogenesis and directing unit in tumor-targeting drug conjugates. Reported herein is the synthesis, of two RGD and one isoDGR cyclic peptidomimetics containing (1S,2R) and (1R,2S) cis-2-amino-1-cyclopentanecarboxylic acid (cis-β-ACPC), using a mixed solid phase/solution phase synthetic protocol. The three ligands were examined in vitro in competitive binding assays to the purified αvβ3 and α5β1 receptors using biotinylated vitronectin (αvβ3) and fibronectin (α5β1) as natural displaced ligands. The IC50 values of the ligands ranged from nanomolar (the two RGD ligands) to micromolar (the isoDGR ligand) with a pronounced selectivity for αvβ3 over α5β1. In vitro cell adhesion assays were also performed using the human skin melanoma cell line WM115 (rich in integrin αvβ3). The two RGD ligands showed IC50 values in the same micromolar range as the reference compound (cyclo[RGDfV]), while for the isoDGR derivative an IC50 value could not be measured for the cell adhesion assay. A conformational analysis of the free RGD and isoDGR ligands by NMR (VT-NMR and NOESY experiments) and computational studies (MC/EM and MD), followed by docking simulations performed in the αVβ3 integrin active site, provided a rationale for the behavior of these ligands toward the receptor.
Collapse
Affiliation(s)
- Silvia Panzeri
- Dipartimento di Scienza e Alta Tecnologia, Università degli Studi dell’Insubria, Via Valleggio 11, 22100 Como, Italy; (S.P.); (S.G.)
- Institute of Organic Chemistry, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany; (T.E.); (O.R.)
| | - Daniela Arosio
- Consiglio Nazionale delle Ricerche (CNR), Istituto di Scienze e Tecnologie Chimiche (SCITEC), Giulio Natta, Via C. Golgi 19, 20133 Milan, Italy;
| | - Silvia Gazzola
- Dipartimento di Scienza e Alta Tecnologia, Università degli Studi dell’Insubria, Via Valleggio 11, 22100 Como, Italy; (S.P.); (S.G.)
| | - Laura Belvisi
- Dipartimento di Chimica, Università degli Studi di Milano, Via C. Golgi 19, 20133 Milan, Italy; (L.B.); (M.C.); (D.P.); (F.V.)
| | - Monica Civera
- Dipartimento di Chimica, Università degli Studi di Milano, Via C. Golgi 19, 20133 Milan, Italy; (L.B.); (M.C.); (D.P.); (F.V.)
| | - Donatella Potenza
- Dipartimento di Chimica, Università degli Studi di Milano, Via C. Golgi 19, 20133 Milan, Italy; (L.B.); (M.C.); (D.P.); (F.V.)
| | - Francesca Vasile
- Dipartimento di Chimica, Università degli Studi di Milano, Via C. Golgi 19, 20133 Milan, Italy; (L.B.); (M.C.); (D.P.); (F.V.)
| | - Isabell Kemker
- Department of Chemistry, Organic and Bioorganic Chemistry, University of Bielefeld, Universitätsstraße 25, 33615 Bielefeld, Germany; (I.K.); (N.S.)
| | - Thomas Ertl
- Institute of Organic Chemistry, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany; (T.E.); (O.R.)
| | - Norbert Sewald
- Department of Chemistry, Organic and Bioorganic Chemistry, University of Bielefeld, Universitätsstraße 25, 33615 Bielefeld, Germany; (I.K.); (N.S.)
| | - Oliver Reiser
- Institute of Organic Chemistry, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany; (T.E.); (O.R.)
| | - Umberto Piarulli
- Dipartimento di Scienza e Alta Tecnologia, Università degli Studi dell’Insubria, Via Valleggio 11, 22100 Como, Italy; (S.P.); (S.G.)
- Correspondence:
| |
Collapse
|
14
|
Pérez-López AM, Rubio-Ruiz B, Valero T, Contreras-Montoya R, Álvarez de Cienfuegos L, Sebastián V, Santamaría J, Unciti-Broceta A. Bioorthogonal Uncaging of Cytotoxic Paclitaxel through Pd Nanosheet-Hydrogel Frameworks. J Med Chem 2020; 63:9650-9659. [PMID: 32787091 PMCID: PMC7497487 DOI: 10.1021/acs.jmedchem.0c00781] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Indexed: 12/21/2022]
Abstract
The promising potential of bioorthogonal catalysis in biomedicine is inspiring incremental efforts to design strategies that regulate drug activity in living systems. To achieve this, it is not only essential to develop customized inactive prodrugs and biocompatible metal catalysts but also the right physical environment for them to interact and enable drug production under spatial and/or temporal control. Toward this goal, here, we report the first inactive precursor of the potent broad-spectrum anticancer drug paclitaxel (a.k.a. Taxol) that is stable in cell culture and labile to Pd catalysts. This new prodrug is effectively uncaged in cancer cell culture by Pd nanosheets captured within agarose and alginate hydrogels, providing a biodegradable catalytic framework to achieve controlled release of one of the most important chemotherapy drugs in medical practice. The compatibility of bioorthogonal catalysis and physical hydrogels opens up new opportunities to administer and modulate the mobility of transition metal catalysts in living environs.
Collapse
Affiliation(s)
- Ana M. Pérez-López
- Cancer
Cancer Research UK Edinburgh Centre, Institute of Genetics and Molecular
Medicine, University of Edinburgh, Crewe Road South, Edinburgh EH4 2XR, U.K.
| | - Belén Rubio-Ruiz
- Cancer
Cancer Research UK Edinburgh Centre, Institute of Genetics and Molecular
Medicine, University of Edinburgh, Crewe Road South, Edinburgh EH4 2XR, U.K.
| | - Teresa Valero
- Cancer
Cancer Research UK Edinburgh Centre, Institute of Genetics and Molecular
Medicine, University of Edinburgh, Crewe Road South, Edinburgh EH4 2XR, U.K.
| | - Rafael Contreras-Montoya
- Departamento
de Química Orgánica, Facultad de Ciencias, Universidad de Granada, Campus de Fuentenueva s/n, Granada 18002, Spain
| | - Luis Álvarez de Cienfuegos
- Departamento
de Química Orgánica, Facultad de Ciencias, Universidad de Granada, Campus de Fuentenueva s/n, Granada 18002, Spain
| | - Víctor Sebastián
- Department
of Chemical Engineering and Environmental Technology; Instituto de
Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza 50009, Spain
- Networking
Research Center on Bioengineering Biomaterials and Nanomedicine (CIBER-
BBN), Madrid 28029, Spain
| | - Jesús Santamaría
- Department
of Chemical Engineering and Environmental Technology; Instituto de
Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza 50009, Spain
- Networking
Research Center on Bioengineering Biomaterials and Nanomedicine (CIBER-
BBN), Madrid 28029, Spain
| | - Asier Unciti-Broceta
- Cancer
Cancer Research UK Edinburgh Centre, Institute of Genetics and Molecular
Medicine, University of Edinburgh, Crewe Road South, Edinburgh EH4 2XR, U.K.
| |
Collapse
|
15
|
Nair JB, Mohapatra S, Joseph MM, Maniganda S, Gupta V, Ghosh S, Maiti KK. Tracking the Footprints of Paclitaxel Delivery and Mechanistic Action via SERS Trajectory in Glioblastoma Cells. ACS Biomater Sci Eng 2020; 6:5254-5263. [PMID: 33455274 DOI: 10.1021/acsbiomaterials.0c00717] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The design and development of an efficacious tumor-specific drug-delivery system is a challenging task. In this study, we have synthesized target-specific small peptide substrates on an octaguanidine sorbitol scaffold, named small molecular targeted drug-delivery conjugate (SMTDDC). The SMTDDC fabrication, with dual targeting cRGD and Cathepsin B (Cath B)-specific tripeptide (Glu-Lys-Phe), altered the microtubule network of glioblastoma cells by the orchestrated release of the cytotoxic paclitaxel (PTX). Cath B assisted PTX delivery was monitored by high-performance liquid chromatography and Surface-Enhanced Raman Scattering (SERS) modalities. The time-dependent SERS fingerprinting and imaging revealed a fast and accurate PTX release profile and subsequent in vitro cytotoxicity as well as the apoptotic events and microtubule network alteration in U-87 MG glioblastoma cells. Furthermore, SMTDDC displayed adequate stability under physiological conditions and demonstrated biocompatibility toward red blood cells and lymphocytes. This study indicated a new insight on SERS-guided peptidomimetic sorbitol molecular transporter, enabling a greater promise with high potential for the further development of PTX delivery in glioblastoma treatment.
Collapse
Affiliation(s)
- Jyothi B Nair
- Chemical Sciences & Technology Division (CSTD), Organic Chemistry Section, CSIR-National Institute for Interdisciplinary Science & Technology (NIIST), Industrial Estate, Pappanamcode, Thiruvananthapuram 695019, Kerala, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Saswat Mohapatra
- Organic and Medicinal Chemistry and Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata 700 032, West Bengal, India.,Department of Bioscience & Bioengineering, Indian Institute of Technology Jodhpur, NH 65, Surpura Bypass Road, Karwar, Rajasthan 342037, India.,Julia McFarlane Diabetes Research Centre (JMDRC) and Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases and Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Alberta T2N 4N1, Canada
| | - Manu M Joseph
- Chemical Sciences & Technology Division (CSTD), Organic Chemistry Section, CSIR-National Institute for Interdisciplinary Science & Technology (NIIST), Industrial Estate, Pappanamcode, Thiruvananthapuram 695019, Kerala, India
| | - Santhi Maniganda
- Chemical Sciences & Technology Division (CSTD), Organic Chemistry Section, CSIR-National Institute for Interdisciplinary Science & Technology (NIIST), Industrial Estate, Pappanamcode, Thiruvananthapuram 695019, Kerala, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Varsha Gupta
- Organic and Medicinal Chemistry and Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata 700 032, West Bengal, India
| | - Surajit Ghosh
- Organic and Medicinal Chemistry and Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata 700 032, West Bengal, India.,Department of Bioscience & Bioengineering, Indian Institute of Technology Jodhpur, NH 65, Surpura Bypass Road, Karwar, Rajasthan 342037, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Kaustabh Kumar Maiti
- Chemical Sciences & Technology Division (CSTD), Organic Chemistry Section, CSIR-National Institute for Interdisciplinary Science & Technology (NIIST), Industrial Estate, Pappanamcode, Thiruvananthapuram 695019, Kerala, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
16
|
Pina A, Kadri M, Arosio D, Dal Corso A, Coll JL, Gennari C, Boturyn D. Multimeric Presentation of RGD Peptidomimetics Enhances Integrin Binding and Tumor Cell Uptake. Chemistry 2020; 26:7492-7496. [PMID: 32227540 DOI: 10.1002/chem.202001115] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 03/25/2020] [Indexed: 12/13/2022]
Abstract
The use of multimeric ligands is considered as a promising strategy to improve tumor targeting for diagnosis and therapy. Herein, tetrameric RGD (Arg-Gly-Asp) peptidomimetics were designed to target αv β3 integrin-expressing tumor cells. These compounds were prepared by an oxime chemoselective assembly of cyclo(DKP-RGD) ligands and a cyclodecapeptide scaffold, which allows a tetrameric presentation. The resulting tetrameric RGD peptidomimetics were shown to improve αv β3 integrin binding compared with the monomeric form. Interestingly, these compounds were also able to enhance tumor cell endocytosis in the same way as tetrameric RGD peptides. Altogether, the results show the potential of the tetrameric cyclo(DKP-RGD) ligands for in vivo imaging and drug delivery.
Collapse
Affiliation(s)
- Arianna Pina
- Università degli Studi di Milano, Dipartimento di Chimica, Via C. Golgi 19, 20133, Milan, Italy
| | - Malika Kadri
- Institute for Advanced Biosciences, University Grenoble Alpes, INSERM, CNRS, Site Santé, Allée des Alpes, 38700, La Tronche, France
| | - Daniela Arosio
- CNR, Istituto di Scienze e Tecnologie Chimiche (SCITEC) "Giulio Natta", Via C. Golgi, 19, 20133, Milan, Italy
| | - Alberto Dal Corso
- Università degli Studi di Milano, Dipartimento di Chimica, Via C. Golgi 19, 20133, Milan, Italy
| | - Jean-Luc Coll
- Institute for Advanced Biosciences, University Grenoble Alpes, INSERM, CNRS, Site Santé, Allée des Alpes, 38700, La Tronche, France
| | - Cesare Gennari
- Università degli Studi di Milano, Dipartimento di Chimica, Via C. Golgi 19, 20133, Milan, Italy
| | - Didier Boturyn
- Department of Molecular Chemistry, University Grenoble Alpes, CNRS, 570, rue de la chimie, CS 40700, 38041, GRENOBLE Cedex 9, France
| |
Collapse
|
17
|
Ferrazzano L, Corbisiero D, Potenza E, Baiula M, Dattoli SD, Spampinato S, Belvisi L, Civera M, Tolomelli A. Side chain effect in the modulation of α vβ 3/α 5β 1 integrin activity via clickable isoxazoline-RGD-mimetics: development of molecular delivery systems. Sci Rep 2020; 10:7410. [PMID: 32366988 PMCID: PMC7198601 DOI: 10.1038/s41598-020-64396-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 03/21/2020] [Indexed: 11/08/2022] Open
Abstract
Construction of small molecule ligand (SML) based delivery systems has been performed starting from a polyfunctionalized isoxazoline scaffold, whose αvβ3 and α5β1 integrins' potency has been already established. The synthesis of this novel class of ligands was obtained by conjugation of linkers to the heterocyclic core via Huisgen-click reaction, with the aim to use them as "shuttles" for selective delivery of diagnostic agents to cancer cells, exploring the effects of the side chains in the interaction with the target. Compounds 17b and 24 showed excellent potency towards α5β1 integrin acting as selective antagonist and agonist respectively. Further investigations confirmed their effects on target receptor through the analysis of fibronectin-induced ERK1/2 phosphorylation. In addition, confocal microscopy analysis allowed us to follow the fate of EGFP conjugated α5β1 integrin and 17b FITC-conjugated (compound 31) inside the cells. Moreover, the stability in water solution at different values of pH and in bovine serum confirmed the possible exploitation of these peptidomimetic molecules for pharmaceutical application.
Collapse
Affiliation(s)
- Lucia Ferrazzano
- Department of Chemistry "G.Ciamician", University of Bologna, Via Selmi 2, 40126, Bologna, Italy.
| | - Dario Corbisiero
- Department of Chemistry "G.Ciamician", University of Bologna, Via Selmi 2, 40126, Bologna, Italy
| | - Eleonora Potenza
- Department of Chemistry "G.Ciamician", University of Bologna, Via Selmi 2, 40126, Bologna, Italy
| | - Monica Baiula
- Department of Pharmacy and Biothecnology, FABIT, University of Bologna, Via Irnerio 48, 40126, Bologna, Italy
| | - Samantha Deianira Dattoli
- Department of Pharmacy and Biothecnology, FABIT, University of Bologna, Via Irnerio 48, 40126, Bologna, Italy
| | - Santi Spampinato
- Department of Pharmacy and Biothecnology, FABIT, University of Bologna, Via Irnerio 48, 40126, Bologna, Italy
| | - Laura Belvisi
- Department of Chemistry, University of Milano, Via Golgi 19, 20133, Milano, Italy
| | - Monica Civera
- Department of Chemistry, University of Milano, Via Golgi 19, 20133, Milano, Italy
| | - Alessandra Tolomelli
- Department of Chemistry "G.Ciamician", University of Bologna, Via Selmi 2, 40126, Bologna, Italy
| |
Collapse
|
18
|
Li N, Guo W, Li Y, Zuo H, Zhang H, Wang Z, Zhao Y, Yang F, Ren G, Zhang S. Construction and anti-tumor activities of disulfide-linked docetaxel-dihydroartemisinin nanoconjugates. Colloids Surf B Biointerfaces 2020; 191:111018. [PMID: 32304917 DOI: 10.1016/j.colsurfb.2020.111018] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 04/02/2020] [Accepted: 04/04/2020] [Indexed: 12/19/2022]
Abstract
Co-delivery of anti-tumor agents with outstanding stimulus-triggered drug release in tumor cells, especially with the aid of nanotechnology, provided the possibility to enhance delivery efficiency for targeting tumor cells and antitumor efficacy. In this paper, docetaxel-dihydroartemisinin nanoconjugates linked by disulfide bond were designed to increase co-delivery and anti-tumor efficacy. Docetaxel and dihydroartemisinin were synthesized using two-step reaction and furtherly assembled to nanoconjugates. Nanoprescription was optimized to evaluate its physicochemical properties. In vitro anti-tumor activities of nanoformulation were assessed by MTT. The flow cytometry was adopted to analyze cell apoptosis and cell cycle arrest. The wound healing assay was used to evaluate antimigratory-property. In vivo pharmacokinetic and pharmacodynamic studies were investigated in rats and 4T1 bearing Balb/c mice model after intravenous injection, respectively. The chemical structure of conjugate was confirmed. The prepared nanoparticles possessed uniform size distribution (172.10 ± 1.70 nm, PDI 0.05 ± 0.01), was stable during storage period, sustained release profiles and sensitive reduction responsiveness. MTT assay indicated that the toxicity of nanoconjugates was slightly weak. Flow cytometry studies showed that nanoconjugates could promote early apoptosis significantly and mainly arose from G0/G1 phase. The wound healing assay provided an obvious antimetastatic potential of nanoparticles in 4T1 cells. The result of pharmacokinetic study suggested that nanoconjugates exhibited higher exposure levels. In vivo pharmacodynamic research showed that mice treated with docetaxel-dihydroartemisinin nanoconjugates had lower systemic toxicity and higher survival ratio than those of control groups. This potential of nanoconjugates was developed as a novel nanoplateform to treat tumor.
Collapse
Affiliation(s)
- Ning Li
- School of Pharmacy, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Wenju Guo
- School of Pharmacy, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yujie Li
- School of Pharmacy, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Hengtong Zuo
- School of Pharmacy, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Huihui Zhang
- School of Pharmacy, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Zhaoyun Wang
- School of Pharmacy, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yongdan Zhao
- School of Pharmacy, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Fan Yang
- School of Pharmacy, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Guolian Ren
- School of Pharmacy, Shanxi Medical University, Taiyuan, Shanxi, China.
| | - Shuqiu Zhang
- School of Pharmacy, Shanxi Medical University, Taiyuan, Shanxi, China.
| |
Collapse
|
19
|
Dal Corso A, Borlandelli V, Corno C, Perego P, Belvisi L, Pignataro L, Gennari C. Fast Cyclization of a Proline-Derived Self-Immolative Spacer Improves the Efficacy of Carbamate Prodrugs. Angew Chem Int Ed Engl 2020; 59:4176-4181. [PMID: 31881115 DOI: 10.1002/anie.201916394] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Indexed: 12/14/2022]
Abstract
Self-immolative (SI) spacers are sophisticated chemical constructs designed for molecular delivery or material degradation. We describe herein a (S)-2-(aminomethyl)pyrrolidine SI spacer that is able to release different types of anticancer drugs (possessing either a phenolic or secondary and tertiary hydroxyl groups) through a fast cyclization mechanism involving carbamate cleavage. The high efficiency of drug release obtained with this spacer was found to be beneficial for the in vitro cytotoxic activity of protease-sensitive prodrugs, compared with a commonly used spacer of the same class. These findings expand the repertoire of degradation machineries and are instrumental for the future development of highly efficient delivery platforms.
Collapse
Affiliation(s)
- Alberto Dal Corso
- Università degli Studi di Milano, Dipartimento di Chimica, via C. Golgi, 19, 20133, Milan, Italy
| | - Valentina Borlandelli
- Università degli Studi di Milano, Dipartimento di Chimica, via C. Golgi, 19, 20133, Milan, Italy
| | - Cristina Corno
- Fondazione IRCCS Istituto Nazionale dei Tumori, Molecular Pharmacology Unit, Department of Applied Research and Technological Development, via Amadeo 42, 20133, Milan, Italy
| | - Paola Perego
- Fondazione IRCCS Istituto Nazionale dei Tumori, Molecular Pharmacology Unit, Department of Applied Research and Technological Development, via Amadeo 42, 20133, Milan, Italy
| | - Laura Belvisi
- Università degli Studi di Milano, Dipartimento di Chimica, via C. Golgi, 19, 20133, Milan, Italy
| | - Luca Pignataro
- Università degli Studi di Milano, Dipartimento di Chimica, via C. Golgi, 19, 20133, Milan, Italy
| | - Cesare Gennari
- Università degli Studi di Milano, Dipartimento di Chimica, via C. Golgi, 19, 20133, Milan, Italy
| |
Collapse
|
20
|
Dal Corso A, Borlandelli V, Corno C, Perego P, Belvisi L, Pignataro L, Gennari C. Fast Cyclization of a Proline‐Derived Self‐Immolative Spacer Improves the Efficacy of Carbamate Prodrugs. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201916394] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Alberto Dal Corso
- Università degli Studi di Milano Dipartimento di Chimica via C. Golgi, 19 20133 Milan Italy
| | - Valentina Borlandelli
- Università degli Studi di Milano Dipartimento di Chimica via C. Golgi, 19 20133 Milan Italy
| | - Cristina Corno
- Fondazione IRCCS Istituto Nazionale dei Tumori Molecular Pharmacology Unit Department of Applied Research and Technological Development via Amadeo 42 20133 Milan Italy
| | - Paola Perego
- Fondazione IRCCS Istituto Nazionale dei Tumori Molecular Pharmacology Unit Department of Applied Research and Technological Development via Amadeo 42 20133 Milan Italy
| | - Laura Belvisi
- Università degli Studi di Milano Dipartimento di Chimica via C. Golgi, 19 20133 Milan Italy
| | - Luca Pignataro
- Università degli Studi di Milano Dipartimento di Chimica via C. Golgi, 19 20133 Milan Italy
| | - Cesare Gennari
- Università degli Studi di Milano Dipartimento di Chimica via C. Golgi, 19 20133 Milan Italy
| |
Collapse
|
21
|
López Rivas P, Müller C, Breunig C, Hechler T, Pahl A, Arosio D, Belvisi L, Pignataro L, Dal Corso A, Gennari C. β-Glucuronidase triggers extracellular MMAE release from an integrin-targeted conjugate. Org Biomol Chem 2020; 17:4705-4710. [PMID: 31020985 DOI: 10.1039/c9ob00617f] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A non-internalizing αvβ3 integrin ligand was conjugated to the anticancer drug MMAE through a β-glucuronidase-responsive linker. In the presence of β-glucuronidase, only the conjugate bearing a PEG4 spacer inhibited the proliferation of integrin-expressing cancer cells at low nanomolar concentrations, indicating important structural requirements for the efficacy of these therapeutics.
Collapse
Affiliation(s)
- Paula López Rivas
- Università degli Studi di Milano, Dipartimento di Chimica, Via C. Golgi, 19 I-20133, Milan, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Wei J, Lin F, You D, Qian Y, Wang Y, Bi Y. Self-Assembly and Enzyme Responsiveness of Amphiphilic Linear-Dendritic Block Copolymers Based on Poly( N-vinylpyrrolidone) and Dendritic Phenylalanyl-lysine Dipeptides. Polymers (Basel) 2019; 11:E1625. [PMID: 31597356 PMCID: PMC6836210 DOI: 10.3390/polym11101625] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 09/29/2019] [Accepted: 10/04/2019] [Indexed: 12/23/2022] Open
Abstract
In this study, we present the synthesis, self-assembly, and enzyme responsive nature of a unique class of well-defined amphiphilic linear-dendritic block copolymers (PNVP-b-dendr(Phe-Lys)n, n = 1-3) based on linear poly(N-vinylpyrrolidone) (PNVP) and dendritic phenylalanyl-lysine (Phe-Lys) dipeptides. The copolymers were prepared via a combination ofreversible addition-fragmentation chain transfer (RAFT) /xanthates (MADIX) polymerization of N-vinylpyrrolidone and stepwise peptide chemistry. The results of fluorescence spectroscopy, 1H NMR analyses, transmission electron microscopy (TEM), and particle size analysis demonstrated that the copolymers self-assemble in aqueous solution into micellar nanocontainers that can disassemble and release encapsulated anticancer drug doxorubicin or hydrophobic dye Nile red by trigger of a serine protease trypsin under physiological conditions. The disassembly of the formed micelles and release rates of the drug or dye can be adjusted by changing the generation of dendrons in PNVP-b-dendr(Phe-Lys)n. Furthermore, the cytocompatibility of the copolymers have been confirmed using human lung epithelial cells (BEAS-2B) and human liver cancer cells (SMMC-7721). Due to the fact of their enzyme responsive properties and good biocompatibility, the copolymers may have potential applicability in smart controlled release systems capable of site-specific response.
Collapse
Affiliation(s)
- Junwu Wei
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650500, China
| | - Feng Lin
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650500, China
| | - Dan You
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650500, China
| | - Yangyang Qian
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650500, China
| | - Yujia Wang
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650500, China
| | - Yunmei Bi
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650500, China.
| |
Collapse
|
23
|
Hu H, Wang B, Lai C, Xu X, Zhen Z, Zhou H, Xu D. iRGD-paclitaxel conjugate nanoparticles for targeted paclitaxel delivery. Drug Dev Res 2019; 80:1080-1088. [PMID: 31411346 DOI: 10.1002/ddr.21589] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 07/10/2019] [Accepted: 07/31/2019] [Indexed: 12/13/2022]
Abstract
Paclitaxel (PTX) is a chemotherapeutic agent which shows antitumor activities against a broad spectrum of cancers. Yet, the current formulation of PTX used in clinic may cause a number of adverse reactions, which significantly limit its application. To obtain better clinical use of PTX, we report, for the first time, iRGD-PTX conjugate nanoparticles (NPs) for targeted PTX delivery. iRGD-PTX conjugate was synthesized from thiolated iRGD and 6-maleimidocaproic acid-PTX through Michael addition reaction. iRGD-PTX NPs with hydrodynamic diameter of ~110 nm were self-assembled from iRGD-PTX conjugate in deionized water. The as-prepared iRGD-PTX NPs exhibit good stability in phosphate buffered saline (PBS) buffer and fetal bovine serum containing PBS buffer. iRGD-PTX NPs exhibit sustained drug release behaviors. The in vitro studies show that iRGD-PTX NPs can be internalized by 4T1 cells by integrin αV-mediated endocytosis, resulting in better in vitro antitumor activity as compared to free PTX. The in vivo studies demonstrate that iRGD-PTX NPs exhibit enhanced tumor accumulation. The iRGD-PTX NPs reported here represent a novel PTX nanoplatform to achieve targeted PTX delivery.
Collapse
Affiliation(s)
- Hang Hu
- School of Pharmaceutical Engineering and Life Science, Changzhou University, Changzhou, People's Republic of China
| | - Bin Wang
- School of Pharmaceutical Engineering and Life Science, Changzhou University, Changzhou, People's Republic of China
| | - Chao Lai
- School of Pharmaceutical Engineering and Life Science, Changzhou University, Changzhou, People's Republic of China
| | - Xiangjian Xu
- School of Pharmaceutical Engineering and Life Science, Changzhou University, Changzhou, People's Republic of China
| | - Zihan Zhen
- School of Pharmaceutical Engineering and Life Science, Changzhou University, Changzhou, People's Republic of China
| | - Huan Zhou
- Center for Health Science and Engineering, Hebei University of Technology, Tianjin, People's Republic of China.,School of Mechanical Engineering, Jiangsu University of Technology, Changzhou, Jiangsu, People's Republic of China
| | - Defeng Xu
- School of Pharmaceutical Engineering and Life Science, Changzhou University, Changzhou, People's Republic of China
| |
Collapse
|
24
|
Borbély A, Figueras E, Martins A, Bodero L, Raposo Moreira Dias A, López Rivas P, Pina A, Arosio D, Gallinari P, Frese M, Steinkühler C, Gennari C, Piarulli U, Sewald N. Conjugates of Cryptophycin and RGD or isoDGR Peptidomimetics for Targeted Drug Delivery. ChemistryOpen 2019; 8:737-742. [PMID: 31275795 PMCID: PMC6587324 DOI: 10.1002/open.201900110] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 04/16/2019] [Indexed: 12/28/2022] Open
Abstract
RGD-cryptophycin and isoDGR-cryptophycin conjugates were synthetized by combining peptidomimetic integrin ligands and cryptophycin, a highly potent tubulin-binding antimitotic agent across lysosomally cleavable Val-Ala or uncleavable linkers. The conjugates were able to effectively inhibit binding of biotinylated vitronectin to integrin αvβ3, showing a binding affinity in the same range as that of the free ligands. The antiproliferative activity of the novel conjugates was evaluated on human melanoma cells M21 and M21-L with different expression levels of integrin αvβ3, showing nanomolar potency of all four compounds against both cell lines. Conjugates containing uncleavable linker show reduced activity compared to the corresponding cleavable conjugates, indicating efficient intracellular drug release in the case of cryptophycin-based SMDCs. However, no significant correlation between the in vitro biological activity of the conjugates and the integrin αvβ3 expression level was observed, which is presumably due to a non-integrin-mediated uptake. This reveals the complexity of effective and selective αvβ3 integrin-mediated drug delivery.
Collapse
Affiliation(s)
- Adina Borbély
- Organic and Bioorganic Chemistry, Department of ChemistryBielefeld UniversityUniversitätsstraße 25DE-33615BielefeldGermany
| | - Eduard Figueras
- Organic and Bioorganic Chemistry, Department of ChemistryBielefeld UniversityUniversitätsstraße 25DE-33615BielefeldGermany
| | - Ana Martins
- Organic and Bioorganic Chemistry, Department of ChemistryBielefeld UniversityUniversitätsstraße 25DE-33615BielefeldGermany
- Exiris s.r.l.Via di Castel Romano 100IT-00128RomeItaly
| | - Lizeth Bodero
- Dipartimento di Scienza e Alta TecnologiaUniversità degli Studi dell'InsubriaVia Valleggio, 11IT-22100ComoItaly
| | | | - Paula López Rivas
- Dipartimento di ChimicaUniversità degli Studi di MilanoVia C. Golgi, 19IT-20133MilanoItaly
| | - Arianna Pina
- Dipartimento di ChimicaUniversità degli Studi di MilanoVia C. Golgi, 19IT-20133MilanoItaly
| | - Daniela Arosio
- Istituto di Scienze e Tecnologie Molecolari (ISTM)CNRVia C. Golgi, 19IT-20133MilanoItaly
| | | | - Marcel Frese
- Organic and Bioorganic Chemistry, Department of ChemistryBielefeld UniversityUniversitätsstraße 25DE-33615BielefeldGermany
| | | | - Cesare Gennari
- Dipartimento di ChimicaUniversità degli Studi di MilanoVia C. Golgi, 19IT-20133MilanoItaly
| | - Umberto Piarulli
- Dipartimento di Scienza e Alta TecnologiaUniversità degli Studi dell'InsubriaVia Valleggio, 11IT-22100ComoItaly
| | - Norbert Sewald
- Organic and Bioorganic Chemistry, Department of ChemistryBielefeld UniversityUniversitätsstraße 25DE-33615BielefeldGermany
| |
Collapse
|
25
|
Raposo Moreira Dias A, Bodero L, Martins A, Arosio D, Gazzola S, Belvisi L, Pignataro L, Steinkühler C, Dal Corso A, Gennari C, Piarulli U. Synthesis and Biological Evaluation of RGD and isoDGR-Monomethyl Auristatin Conjugates Targeting Integrin α V β 3. ChemMedChem 2019; 14:938-942. [PMID: 30840356 PMCID: PMC6593765 DOI: 10.1002/cmdc.201900049] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 02/26/2019] [Indexed: 11/09/2022]
Abstract
This work reports the synthesis of a series of small-molecule-drug conjugates containing the αV β3 -integrin ligand cyclo[DKP-RGD] or cyclo[DKP-isoDGR], a lysosomally cleavable Val-Ala (VA) linker or an "uncleavable" version devoid of this sequence, and monomethyl auristatin E (MMAE) or F (MMAF) as the cytotoxic agent. The conjugates were obtained via a straightforward synthetic scheme taking advantage of a copper-catalyzed azide-alkyne cycloaddition as the key step. The conjugates were tested for their binding affinity for the isolated αv β3 receptor and were shown to retain nanomolar IC50 values, in the same range as those of the free ligands. The cytotoxic activity of the conjugates was evaluated in cell viability assays with αv β3 integrin overexpressing human glioblastoma (U87) and human melanoma (M21) cells. The conjugates possess markedly lower cytotoxic activity than the free drugs, which is consistent with inefficient integrin-mediated internalization. In almost all cases the conjugates featuring isoDGR as integrin ligand exhibited higher potency than their RGD counterparts. In particular, the cyclo[DKP-isoDGR]-VA-MMAE conjugate has low nanomolar IC50 values in cell viability assays with both cancer cell lines tested (U87: 11.50±0.13 nm; M21: 6.94±0.09 nm) and is therefore a promising candidate for in vivo experiments.
Collapse
Affiliation(s)
| | - Lizeth Bodero
- Università degli Studi dell'InsubriaDipartimento di Scienza e Alta TecnologiaVia Valleggio, 1122100ComoItaly
| | - Ana Martins
- Exiris SrlVia di Castel Romano, 10000128RomeItaly
| | - Daniela Arosio
- CNRIstituto di Scienze e Tecnologie Molecolari (ISTM)Via C. Golgi, 1920133MilanItaly
| | - Silvia Gazzola
- Università degli Studi dell'InsubriaDipartimento di Scienza e Alta TecnologiaVia Valleggio, 1122100ComoItaly
| | - Laura Belvisi
- Università degli Studi di MilanoDipartimento di ChimicaVia C. Golgi, 1920133MilanItaly
- CNRIstituto di Scienze e Tecnologie Molecolari (ISTM)Via C. Golgi, 1920133MilanItaly
| | - Luca Pignataro
- Università degli Studi di MilanoDipartimento di ChimicaVia C. Golgi, 1920133MilanItaly
| | | | - Alberto Dal Corso
- Università degli Studi di MilanoDipartimento di ChimicaVia C. Golgi, 1920133MilanItaly
| | - Cesare Gennari
- Università degli Studi di MilanoDipartimento di ChimicaVia C. Golgi, 1920133MilanItaly
- CNRIstituto di Scienze e Tecnologie Molecolari (ISTM)Via C. Golgi, 1920133MilanItaly
| | - Umberto Piarulli
- Università degli Studi dell'InsubriaDipartimento di Scienza e Alta TecnologiaVia Valleggio, 1122100ComoItaly
| |
Collapse
|
26
|
Raposo Moreira Dias A, Pina A, Dean A, Lerchen H, Caruso M, Gasparri F, Fraietta I, Troiani S, Arosio D, Belvisi L, Pignataro L, Dal Corso A, Gennari C. Neutrophil Elastase Promotes Linker Cleavage and Paclitaxel Release from an Integrin-Targeted Conjugate. Chemistry 2019; 25:1696-1700. [PMID: 30452790 PMCID: PMC6471013 DOI: 10.1002/chem.201805447] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 11/16/2018] [Indexed: 12/16/2022]
Abstract
This work takes advantage of one of the hallmarks of cancer, that is, the presence of tumor infiltrating cells of the immune system and leukocyte-secreted enzymes, to promote the activation of an anticancer drug at the tumor site. The peptidomimetic integrin ligand cyclo(DKP-RGD) was found to accumulate on the surface of αv β3 integrin-expressing human renal cell carcinoma 786-O cells. The ligand was conjugated to the anticancer drug paclitaxel through a Asn-Pro-Val (NPV) tripeptide linker, which is a substrate of neutrophil-secreted elastase. In vitro linker cleavage assays and cell antiproliferative experiments demonstrate the efficacy of this tumor-targeting conjugate, opening the way to potential therapeutic applications.
Collapse
Affiliation(s)
| | - Arianna Pina
- Università degli Studi di MilanoDipartimento di ChimicaVia C. Golgi, 19I-20133MilanItaly
| | - Amelia Dean
- Università degli Studi di MilanoDipartimento di ChimicaVia C. Golgi, 19I-20133MilanItaly
| | | | - Michele Caruso
- Nerviano Medical SciencesViale Pasteur, 10I-20014NervianoItaly
| | - Fabio Gasparri
- Nerviano Medical SciencesViale Pasteur, 10I-20014NervianoItaly
| | - Ivan Fraietta
- Nerviano Medical SciencesViale Pasteur, 10I-20014NervianoItaly
| | - Sonia Troiani
- Nerviano Medical SciencesViale Pasteur, 10I-20014NervianoItaly
| | - Daniela Arosio
- CNR, Istituto di Scienze e Tecnologie Molecolari (ISTM)Via C. Golgi, 19I-20133MilanItaly
| | - Laura Belvisi
- Università degli Studi di MilanoDipartimento di ChimicaVia C. Golgi, 19I-20133MilanItaly
- CNR, Istituto di Scienze e Tecnologie Molecolari (ISTM)Via C. Golgi, 19I-20133MilanItaly
| | - Luca Pignataro
- Università degli Studi di MilanoDipartimento di ChimicaVia C. Golgi, 19I-20133MilanItaly
| | - Alberto Dal Corso
- Università degli Studi di MilanoDipartimento di ChimicaVia C. Golgi, 19I-20133MilanItaly
| | - Cesare Gennari
- Università degli Studi di MilanoDipartimento di ChimicaVia C. Golgi, 19I-20133MilanItaly
- CNR, Istituto di Scienze e Tecnologie Molecolari (ISTM)Via C. Golgi, 19I-20133MilanItaly
| |
Collapse
|
27
|
Abstract
There is a growing interest for the discovery of new cancer-targeted delivery systems for drug delivery and diagnosis. A synopsis of the bibliographic data will be presented on bombesin, neurotensin, octreotide, Arg-Gly-Asp, luteinizing hormone-releasing hormone and other peptides. Many of them have reached the clinics for therapeutic or diagnostic purposes, and have been utilized as carriers of known cytotoxic agents such as doxorubicin, paclitaxel, cisplatin, methotrexate or dyes and radioisotopes. In our article, recent advances in the development of peptides as carriers of cytotoxic drugs or radiometals will be analyzed.
Collapse
|
28
|
López Rivas P, Ranđelović I, Raposo Moreira Dias A, Pina A, Arosio D, Tóvári J, Mező G, Dal Corso A, Pignataro L, Gennari C. Synthesis and Biological Evaluation of Paclitaxel Conjugates Involving Linkers Cleavable by Lysosomal Enzymes and αV
β3
-Integrin Ligands for Tumor Targeting. European J Org Chem 2018. [DOI: 10.1002/ejoc.201800447] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Paula López Rivas
- Dipartimento di Chimica; Università degli Studi di Milano; Via C. Golgi, 19 20133 Milan Italy
| | - Ivan Ranđelović
- Department of Experimental Pharmacology; National Institute of Oncology; Ráth György u. 7-9. 1122 Budapest Hungary
| | | | - Arianna Pina
- Dipartimento di Chimica; Università degli Studi di Milano; Via C. Golgi, 19 20133 Milan Italy
| | - Daniela Arosio
- CNR; Istituto di Scienze e Tecnologie Molecolari (ISTM); Via C. Golgi, 19 20133 Milan Italy
| | - József Tóvári
- Department of Experimental Pharmacology; National Institute of Oncology; Ráth György u. 7-9. 1122 Budapest Hungary
| | - Gábor Mező
- Faculty of Science; Institute of Chemistry; Eötvös Loránd University; Pázmány Péter st. 1/A 1117 Budapest Hungary
| | - Alberto Dal Corso
- Dipartimento di Chimica; Università degli Studi di Milano; Via C. Golgi, 19 20133 Milan Italy
| | - Luca Pignataro
- Dipartimento di Chimica; Università degli Studi di Milano; Via C. Golgi, 19 20133 Milan Italy
| | - Cesare Gennari
- Dipartimento di Chimica; Università degli Studi di Milano; Via C. Golgi, 19 20133 Milan Italy
- CNR; Istituto di Scienze e Tecnologie Molecolari (ISTM); Via C. Golgi, 19 20133 Milan Italy
| |
Collapse
|
29
|
Liang Y, Li S, Wang X, Zhang Y, Sun Y, Wang Y, Wang X, He B, Dai W, Zhang H, Wang X, Zhang Q. A comparative study of the antitumor efficacy of peptide-doxorubicin conjugates with different linkers. J Control Release 2018; 275:129-141. [DOI: 10.1016/j.jconrel.2018.01.033] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 01/06/2018] [Accepted: 01/30/2018] [Indexed: 12/12/2022]
|
30
|
Bodero L, López Rivas P, Korsak B, Hechler T, Pahl A, Müller C, Arosio D, Pignataro L, Gennari C, Piarulli U. Synthesis and biological evaluation of RGD and isoDGR peptidomimetic-α-amanitin conjugates for tumor-targeting. Beilstein J Org Chem 2018. [PMID: 29520305 PMCID: PMC5827777 DOI: 10.3762/bjoc.14.29] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
RGD-α-amanitin and isoDGR-α-amanitin conjugates were synthesized by joining integrin ligands to α-amanitin via various linkers and spacers. The conjugates were evaluated for their ability to inhibit biotinylated vitronectin binding to the purified αVβ3 receptor, retaining good binding affinity, in the same nanomolar range as the free ligands. The antiproliferative activity of the conjugates was evaluated in three cell lines possessing different levels of αVβ3 integrin expression: human glioblastoma U87 (αVβ3+), human lung carcinoma A549 (αVβ3−) and breast adenocarcinoma MDA-MB-468 (αVβ3−). In the U87, in the MDA-MB-468, and partly in the A549 cancer cell lines, the cyclo[DKP-isoDGR]-α-amanitin conjugates bearing the lysosomally cleavable Val-Ala linker were found to be slightly more potent than α-amanitin. Apparently, for all these α-amanitin conjugates there is no correlation between the cytotoxicity and the expression of αVβ3 integrin. To determine whether the increased cytotoxicity of the cyclo[DKP-isoDGR]-α-amanitin conjugates is governed by an integrin-mediated binding and internalization process, competition experiments were carried out in which the conjugates were tested with U87 (αVβ3+, αVβ5+, αVβ6−, α5β1+) and MDA-MB-468 (αVβ3−, αVβ5+, αVβ6+, α5β1−) cells in the presence of excess cilengitide, with the aim of blocking integrins on the cell surface. Using the MDA-MB-468 cell line, a fivefold increase of the IC50 was observed for the conjugates in the presence of excess cilengitide, which is known to strongly bind not only αVβ3, but also αVβ5, αVβ6, and α5β1. These data indicate that in this case the cyclo[DKP-isoDGR]-α-amanitin conjugates are possibly internalized by a process mediated by integrins different from αVβ3 (e.g., αVβ5).
Collapse
Affiliation(s)
- Lizeth Bodero
- Dipartimento di Scienza e Alta Tecnologia, Via Valleggio, 11, 22100, Como, Italy
| | - Paula López Rivas
- Dipartimento di Chimica, Università degli Studi di Milano, Via C. Golgi, 19, I-20133, Milan, Italy
| | - Barbara Korsak
- Heidelberg Pharma Research GmbH, Schriesheimer Strasse 101, 68526, Ladenburg, Germany
| | - Torsten Hechler
- Heidelberg Pharma Research GmbH, Schriesheimer Strasse 101, 68526, Ladenburg, Germany
| | - Andreas Pahl
- Heidelberg Pharma Research GmbH, Schriesheimer Strasse 101, 68526, Ladenburg, Germany
| | - Christoph Müller
- Heidelberg Pharma Research GmbH, Schriesheimer Strasse 101, 68526, Ladenburg, Germany
| | - Daniela Arosio
- CNR, Istituto di Scienze e Tecnologie Molecolare (ITSM), Via C. Golgi, 19, 20133, Milan, Italy
| | - Luca Pignataro
- Dipartimento di Chimica, Università degli Studi di Milano, Via C. Golgi, 19, I-20133, Milan, Italy
| | - Cesare Gennari
- Dipartimento di Chimica, Università degli Studi di Milano, Via C. Golgi, 19, I-20133, Milan, Italy
| | - Umberto Piarulli
- Dipartimento di Scienza e Alta Tecnologia, Via Valleggio, 11, 22100, Como, Italy
| |
Collapse
|
31
|
αvβ3 and α5β1 integrin-specific ligands: From tumor angiogenesis inhibitors to vascularization promoters in regenerative medicine? Biotechnol Adv 2017; 36:208-227. [PMID: 29155160 DOI: 10.1016/j.biotechadv.2017.11.004] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 11/07/2017] [Accepted: 11/13/2017] [Indexed: 12/30/2022]
Abstract
Integrins are cell adhesion receptors predominantly important during normal and tumor angiogenesis. A sequence present on several extracellular matrix proteins composed of Arg-Gly-Asp (RGD) has attracted attention due to its role in cell adhesion mediated by integrins. The development of ligands that can bind to integrins involved in tumor angiogenesis and brake disease progression has resulted in new investigational drug entities reaching the clinical trial phase in humans. The use of integrin-specific ligands can be useful for the vascularization of regenerative medicine constructs, which remains a major limitation for translation into clinical practice. In order to enhance vascularization, immobilization of integrin-specific RGD peptidomimetics within constructs is a recommended approach, due to their high specificity and selectivity towards certain desired integrins. This review endeavours to address the potential of peptidomimetic-coated biomaterials as vascular network promoters for regenerative medicine purposes. Clinical studies involving molecules tracking active integrins in cancer angiogenesis and reasons for their failure are also addressed.
Collapse
|
32
|
Investigating the Interaction of Cyclic RGD Peptidomimetics with α Vβ₆ Integrin by Biochemical and Molecular Docking Studies. Cancers (Basel) 2017; 9:cancers9100128. [PMID: 28934103 PMCID: PMC5664067 DOI: 10.3390/cancers9100128] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 09/13/2017] [Accepted: 09/18/2017] [Indexed: 01/15/2023] Open
Abstract
The interaction of a small library of cyclic RGD (Arg-Gly-Asp) peptidomimetics with αVβ6 integrin has been investigated by means of competitive solid phase binding assays to the isolated receptor and docking calculations in the crystal structure of the αVβ6 binding site. To this aim, a rigid receptor-flexible ligand docking protocol has been set up and then applied to predict the binding mode of the cyclic RGD peptidomimetics to αVβ6 integrin. Although the RGD interaction with αVβ6 recapitulates the RGD binding mode observed in αVβ3, differences between the integrin binding pockets can strongly affect the ligand binding ability. In general, the peptidomimetics exhibited IC50 values for integrin αVβ6 (i.e., the concentration of compound required for 50% inhibition of biotinylated fibronectin binding to isolated αVβ6 integrin) in the nanomolar range (77–345 nM), about 10–100 times higher than those for the related αVβ3 receptor, with a single notable ligand displaying a low nanomolar IC50 value (2.3 nM). Insights from the properties of the binding pocket combined with the analysis of the docking poses provided a rationale for ligand recognition and selectivity.
Collapse
|
33
|
Raposo Moreira Dias A, Pina A, Dal Corso A, Arosio D, Belvisi L, Pignataro L, Caruso M, Gennari C. Multivalency Increases the Binding Strength of RGD Peptidomimetic-Paclitaxel Conjugates to Integrin α V β 3. Chemistry 2017; 23:14410-14415. [PMID: 28816404 PMCID: PMC5656903 DOI: 10.1002/chem.201703093] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Indexed: 11/29/2022]
Abstract
This work reports the synthesis of three multimeric RGD peptidomimetic‐paclitaxel conjugates featuring a number of αVβ3 integrin ligands ranging from 2 to 4. These constructs were assembled by conjugation of the integrin αVβ3 ligand cyclo[DKP‐RGD]‐CH2NH2 with paclitaxel via a 2′‐carbamate with a self‐immolative spacer, the lysosomally cleavable Val‐Ala dipeptide linker, a multimeric scaffold, a triazole linkage, and finally a PEG spacer. Two monomeric conjugates were also synthesized as reference compounds. Remarkably, the new multimeric conjugates showed a binding affinity for the purified integrin αVβ3 receptor that increased with the number of integrin ligands (reaching a minimum IC50 value of 1.2 nm for the trimeric), thus demonstrating that multivalency is an effective strategy to strengthen the ligand–target interactions.
Collapse
Affiliation(s)
- André Raposo Moreira Dias
- Università degli Studi di Milano, Dipartimento di Chimica, Via C. Golgi 19, 20133, Milan, Italy), Fax: (+39) 02-5031-4072
| | - Arianna Pina
- Università degli Studi di Milano, Dipartimento di Chimica, Via C. Golgi 19, 20133, Milan, Italy), Fax: (+39) 02-5031-4072
| | - Alberto Dal Corso
- Università degli Studi di Milano, Dipartimento di Chimica, Via C. Golgi 19, 20133, Milan, Italy), Fax: (+39) 02-5031-4072
| | - Daniela Arosio
- CNR, Istituto di Scienze e Tecnologie Molecolari (ISTM), Via C. Golgi, 19, 20133, Milan, Italy
| | - Laura Belvisi
- Università degli Studi di Milano, Dipartimento di Chimica, Via C. Golgi 19, 20133, Milan, Italy), Fax: (+39) 02-5031-4072.,CNR, Istituto di Scienze e Tecnologie Molecolari (ISTM), Via C. Golgi, 19, 20133, Milan, Italy
| | - Luca Pignataro
- Università degli Studi di Milano, Dipartimento di Chimica, Via C. Golgi 19, 20133, Milan, Italy), Fax: (+39) 02-5031-4072
| | - Michele Caruso
- Nerviano Medical Sciences, Viale Pasteur, 10, 20014, Nerviano, Italy
| | - Cesare Gennari
- Università degli Studi di Milano, Dipartimento di Chimica, Via C. Golgi 19, 20133, Milan, Italy), Fax: (+39) 02-5031-4072.,CNR, Istituto di Scienze e Tecnologie Molecolari (ISTM), Via C. Golgi, 19, 20133, Milan, Italy
| |
Collapse
|
34
|
Dal Corso A, Cazzamalli S, Gébleux R, Mattarella M, Neri D. Protease-Cleavable Linkers Modulate the Anticancer Activity of Noninternalizing Antibody-Drug Conjugates. Bioconjug Chem 2017; 28:1826-1833. [PMID: 28662334 DOI: 10.1021/acs.bioconjchem.7b00304] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Antibody-drug conjugates (ADCs) represent an attractive class of biopharmaceutical agents, with the potential to selectively deliver potent cytotoxic agents to tumors. It is generally assumed that ADC products should preferably bind and internalize into cancer cells in order to liberate their toxic payload, but a growing body of evidence indicates that also ADCs based on noninternalizing antibodies may be potently active. In this Communication, we investigated dipeptide-based linkers (frequently used for internalizing ADC products) in the context of the noninternalizing F16 antibody, specific to a splice isoform of tenascin-C. Using monomethyl auristatin E (MMAE) as potent cytotoxic drug, we observed that a single amino acid substitution of the Val-Cit dipeptide linker can substantially modulate the in vivo stability of the corresponding ADC products, as well as the anticancer activity in mice bearing the human epidermoid A431 carcinoma. In these settings, the linker based on the Val-Ala dipeptide exhibited better performances, compared to Val-Cit, Val-Lys, and Val-Arg analogues. Mass spectrometric analysis revealed that the four linkers displayed not only different stability in vivo but also differences in cleavage sites. Moreover, the absence of anticancer activity for a F16-MMAE conjugate featuring a noncleavable linker indicated that drug release modalities, based on proteolytic degradation of the immunoglobulin moiety, cannot be exploited with noninternalizing antibodies. ADC products based on the noninternalizing F16 antibody may be useful for the treatment of several human malignancies, as the cognate antigen is abundantly expressed in the extracellular matrix of several tumors, while being virtually undetectable in most normal adult tissues.
Collapse
Affiliation(s)
- Alberto Dal Corso
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich) , Vladimir-Prelog-Weg 4, CH-8093 Zürich, Switzerland
| | - Samuele Cazzamalli
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich) , Vladimir-Prelog-Weg 4, CH-8093 Zürich, Switzerland
| | - Rémy Gébleux
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich) , Vladimir-Prelog-Weg 4, CH-8093 Zürich, Switzerland
| | | | - Dario Neri
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich) , Vladimir-Prelog-Weg 4, CH-8093 Zürich, Switzerland
| |
Collapse
|
35
|
Weiss C, Figueras E, Borbely AN, Sewald N. Cryptophycins: cytotoxic cyclodepsipeptides with potential for tumor targeting. J Pept Sci 2017; 23:514-531. [PMID: 28661555 DOI: 10.1002/psc.3015] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 05/02/2017] [Accepted: 05/05/2017] [Indexed: 02/06/2023]
Abstract
Cryptophycins are a class of 16-membered highly cytotoxic macrocyclic depsipeptides isolated from cyanobacteria. The biological activity is based on their ability to interact with tubulin. They interfere with microtubule dynamics and prevent microtubules from forming correct mitotic spindles, which causes cell-cycle arrest and apoptosis. Their strong antiproliferative activities with 100-fold to 1000-fold potency compared with those of paclitaxel and vinblastine have been observed. Cryptophycins are highly promising drug candidates, as their biological activity is not negatively affected by P-glycoprotein, a drug efflux system commonly found in multidrug-resistant cancer cell lines and solid tumors. Cryptophycin-52 had been investigated in phase II clinical trials but failed because of its high neurotoxicity. Recently, cryptophycin conjugates with peptides and antibodies have been developed for targeted delivery in tumor therapy. Copyright © 2017 European Peptide Society and John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Christine Weiss
- Organic and Bioorganic Chemistry, Department of Chemistry, Bielefeld University, PO Box 100131, 33501, Bielefeld, Germany
| | - Eduard Figueras
- Organic and Bioorganic Chemistry, Department of Chemistry, Bielefeld University, PO Box 100131, 33501, Bielefeld, Germany
| | - Adina N Borbely
- Organic and Bioorganic Chemistry, Department of Chemistry, Bielefeld University, PO Box 100131, 33501, Bielefeld, Germany
| | - Norbert Sewald
- Organic and Bioorganic Chemistry, Department of Chemistry, Bielefeld University, PO Box 100131, 33501, Bielefeld, Germany
| |
Collapse
|
36
|
Pina A, Dal Corso A, Caruso M, Belvisi L, Arosio D, Zanella S, Gasparri F, Albanese C, Cucchi U, Fraietta I, Marsiglio A, Pignataro L, Donati D, Gennari C. Targeting Integrin αV
β3
with Theranostic RGD-Camptothecin Conjugates Bearing a Disulfide Linker: Biological Evaluation Reveals a Complex Scenario. ChemistrySelect 2017. [DOI: 10.1002/slct.201701052] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Arianna Pina
- Dipartimento di Chimica; Università degli Studi di Milano; Via C. Golgi 19 20133 Milano Italy
| | - A. Dal Corso
- Dipartimento di Chimica; Università degli Studi di Milano; Via C. Golgi 19 20133 Milano Italy
| | - Michele Caruso
- Nerviano Medical Sciences (NMS); Via Pasteur 10 20014 Nerviano Italy
| | - Laura Belvisi
- Dipartimento di Chimica; Università degli Studi di Milano; Via C. Golgi 19 20133 Milano Italy
| | - Daniela Arosio
- Istituto di Scienze e Tecnologie Molecolari (ISTM); CNR; Via C. Golgi 19 20133 Milano Italy
| | - Simone Zanella
- Dipartimento di Chimica; Università degli Studi di Milano; Via C. Golgi 19 20133 Milano Italy
| | - Fabio Gasparri
- Nerviano Medical Sciences (NMS); Via Pasteur 10 20014 Nerviano Italy
| | - Clara Albanese
- Nerviano Medical Sciences (NMS); Via Pasteur 10 20014 Nerviano Italy
| | - Ulisse Cucchi
- Nerviano Medical Sciences (NMS); Via Pasteur 10 20014 Nerviano Italy
| | - Ivan Fraietta
- Nerviano Medical Sciences (NMS); Via Pasteur 10 20014 Nerviano Italy
| | - Aurelio Marsiglio
- Nerviano Medical Sciences (NMS); Via Pasteur 10 20014 Nerviano Italy
| | - Luca Pignataro
- Dipartimento di Chimica; Università degli Studi di Milano; Via C. Golgi 19 20133 Milano Italy
| | - Daniele Donati
- Nerviano Medical Sciences (NMS); Via Pasteur 10 20014 Nerviano Italy
| | - Cesare Gennari
- Dipartimento di Chimica; Università degli Studi di Milano; Via C. Golgi 19 20133 Milano Italy
| |
Collapse
|
37
|
Zanella S, Angerani S, Pina A, López Rivas P, Giannini C, Panzeri S, Arosio D, Caruso M, Gasparri F, Fraietta I, Albanese C, Marsiglio A, Pignataro L, Belvisi L, Piarulli U, Gennari C. Tumor Targeting with an isoDGR-Drug Conjugate. Chemistry 2017; 23:7910-7914. [PMID: 28449309 PMCID: PMC5488297 DOI: 10.1002/chem.201701844] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Indexed: 11/20/2022]
Abstract
Herein we report the first example of an isoDGR-drug conjugate (2), designed to release paclitaxel selectively within cancer cells expressing integrin αV β3 . Conjugate 2 was synthesized by connecting the isoDGR peptidomimetic 5 with paclitaxel via the lysosomally cleavable Val-Ala dipeptide linker. Conjugate 2 displayed a low nanomolar affinity for the purified integrin αV β3 receptor (IC50 =11.0 nm). The tumor targeting ability of conjugate 2 was assessed in vitro in anti-proliferative assays on two isogenic cancer cell lines characterized by different integrin αV β3 expression: human glioblastoma U87 (αV β3 +) and U87 β3 -KO (αV β3 -). The isoDGR-PTX conjugate 2 displayed a remarkable targeting index (TI=9.9), especially when compared to the strictly related RGD-PTX conjugate 4 (TI=2.4).
Collapse
Affiliation(s)
- Simone Zanella
- Dipartimento di ChimicaUniversità degli Studi di MilanoVia C. Golgi 1920133MilanoItaly
| | - Simona Angerani
- Dipartimento di ChimicaUniversità degli Studi di MilanoVia C. Golgi 1920133MilanoItaly
| | - Arianna Pina
- Dipartimento di ChimicaUniversità degli Studi di MilanoVia C. Golgi 1920133MilanoItaly
| | - Paula López Rivas
- Dipartimento di ChimicaUniversità degli Studi di MilanoVia C. Golgi 1920133MilanoItaly
| | - Clelia Giannini
- Dipartimento di ChimicaUniversità degli Studi di MilanoVia C. Golgi 1920133MilanoItaly
| | - Silvia Panzeri
- Dipartimento di Scienza e Alta TecnologiaUniversità degli Studi dell'InsubriaVia Valleggio 1122100ComoItaly
| | - Daniela Arosio
- Istituto di Scienze e Tecnologie Molecolari (ISTM)CNRVia C. Golgi 1920133MilanoItaly
| | - Michele Caruso
- Nerviano Medical Sciences (NMS)Via Pasteur 1020014NervianoItaly
| | - Fabio Gasparri
- Nerviano Medical Sciences (NMS)Via Pasteur 1020014NervianoItaly
| | - Ivan Fraietta
- Nerviano Medical Sciences (NMS)Via Pasteur 1020014NervianoItaly
| | - Clara Albanese
- Nerviano Medical Sciences (NMS)Via Pasteur 1020014NervianoItaly
| | | | - Luca Pignataro
- Dipartimento di ChimicaUniversità degli Studi di MilanoVia C. Golgi 1920133MilanoItaly
| | - Laura Belvisi
- Dipartimento di ChimicaUniversità degli Studi di MilanoVia C. Golgi 1920133MilanoItaly
| | - Umberto Piarulli
- Dipartimento di Scienza e Alta TecnologiaUniversità degli Studi dell'InsubriaVia Valleggio 1122100ComoItaly
| | - Cesare Gennari
- Dipartimento di ChimicaUniversità degli Studi di MilanoVia C. Golgi 1920133MilanoItaly
| |
Collapse
|
38
|
Abstract
Conjugates of cytotoxic agents with RGD peptides (Arg-Gly-Asp) addressed to ανβ3, α5β1 and ανβ6 integrin receptors overexpressed by cancer cells, have recently gained attention as potential selective anticancer chemotherapeutics. In this review, the design and the development of RGD conjugates coupled to different small molecules including known cytotoxic drugs and natural products will be discussed.
Collapse
|
39
|
Zabala-Uncilla N, Miranda JI, Laso A, Fernández X, Ganboa JI, Palomo C. Linear and Cyclic Depsipeptidomimetics with β-Lactam Cores: A Class of New αvβ3Integrin Receptor Inhibitors. Chembiochem 2017; 18:654-665. [DOI: 10.1002/cbic.201600642] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Indexed: 12/21/2022]
Affiliation(s)
- Nerea Zabala-Uncilla
- Departamento de Química Orgánica-I; Facultad de Química; Universidad del País Vasco UPV/EHU; Paseo Manuel Lardizabal-3 20018 San Sebastian Spain
| | - José I. Miranda
- SGIKer NMR Facility; Universidad del País Vasco UPV/EHU; Joxe Mari Korta R&D Center; Avenida Tolosa-72 20018 San Sebastian Spain
| | - Antonio Laso
- Genetadi Biotech A. G.; Edificio 502 Parque Tecnológico de Bizkaia 48160 Derio Spain
| | - Xavier Fernández
- Genetadi Biotech A. G.; Edificio 502 Parque Tecnológico de Bizkaia 48160 Derio Spain
| | - Jose I. Ganboa
- Departamento de Química Orgánica-I; Facultad de Química; Universidad del País Vasco UPV/EHU; Paseo Manuel Lardizabal-3 20018 San Sebastian Spain
| | - Claudio Palomo
- Departamento de Química Orgánica-I; Facultad de Química; Universidad del País Vasco UPV/EHU; Paseo Manuel Lardizabal-3 20018 San Sebastian Spain
| |
Collapse
|
40
|
Li B, Liu P, Yan D, Zeng F, Wu S. A self-immolative and DT-diaphorase-activatable prodrug for drug-release tracking and therapy. J Mater Chem B 2017; 5:2635-2643. [DOI: 10.1039/c7tb00266a] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A DT-diaphorase-activatable theranostic prodrug has been developed for visualizing the release of active drug and enhancing the therapeutic effect.
Collapse
Affiliation(s)
- Bowen Li
- State Key Lab of Luminescent Materials & Devices
- College of Materials Science & Engineering
- South China University of Technology
- Guangzhou 510640
- P. R. China
| | - Peilian Liu
- State Key Lab of Luminescent Materials & Devices
- College of Materials Science & Engineering
- South China University of Technology
- Guangzhou 510640
- P. R. China
| | - Donghang Yan
- State Key Lab of Luminescent Materials & Devices
- College of Materials Science & Engineering
- South China University of Technology
- Guangzhou 510640
- P. R. China
| | - Fang Zeng
- State Key Lab of Luminescent Materials & Devices
- College of Materials Science & Engineering
- South China University of Technology
- Guangzhou 510640
- P. R. China
| | - Shuizhu Wu
- State Key Lab of Luminescent Materials & Devices
- College of Materials Science & Engineering
- South China University of Technology
- Guangzhou 510640
- P. R. China
| |
Collapse
|
41
|
Cazzamalli S, Corso AD, Neri D. Linker stability influences the anti-tumor activity of acetazolamide-drug conjugates for the therapy of renal cell carcinoma. J Control Release 2016; 246:39-45. [PMID: 27890855 DOI: 10.1016/j.jconrel.2016.11.023] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 10/26/2016] [Accepted: 11/17/2016] [Indexed: 10/20/2022]
Abstract
Small molecule-drug conjugates (SMDCs) are increasingly being considered as an alternative to antibody-drug conjugates (ADCs) for the selective delivery of anticancer agents to the tumor site, sparing normal tissues. Carbonic anhydrase IX (CAIX) is a membrane-bound enzyme, which is over-expressed in the majority of renal cell carcinomas and which can be efficiently targeted in vivo, using charged derivatives of acetazolamide, a small heteroaromatic sulfonamide. Here, we show that SMDC products, obtained by the coupling of acetazolamide with monomethyl auristatin E (MMAE) using dipeptide linkers, display a potent anti-tumoral activity in mice bearing xenografted SKRC-52 renal cell carcinomas. A comparative evaluation of four dipeptides revealed that SMDCs featuring valine-citrulline and valine-alanine linkers exhibited greater serum stability and superior therapeutic activity, compared to the counterparts with valine-lysine or valine-arginine linkers. The most active products substantially inhibited tumor growth over a prolonged period of time, in a tumor model for which sunitinib and sorafenib do not display therapeutic activity. However, complete tumor eradication was not possible even after ten intravenous injection. Macroscopic near-infrared imaging procedures confirmed that ligands had not lost the ability to selectively localize at the tumor site at the end of therapy and that the neoplastic masses continued to express CAIX. The findings are of mechanistic and of therapeutic significance, since CAIX is a non-internalizing membrane-associated antigen, which can be considered for targeted drug delivery applications in kidney cancer patients.
Collapse
Affiliation(s)
- Samuele Cazzamalli
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), Vladimir-Prelog-Weg 4, CH-8093 Zürich (Switzerland)
| | - Alberto Dal Corso
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), Vladimir-Prelog-Weg 4, CH-8093 Zürich (Switzerland)
| | - Dario Neri
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), Vladimir-Prelog-Weg 4, CH-8093 Zürich (Switzerland)
| |
Collapse
|
42
|
Li J, Wang F, Sun D, Wang R. A review of the ligands and related targeting strategies for active targeting of paclitaxel to tumours. J Drug Target 2016; 24:590-602. [PMID: 26878228 DOI: 10.3109/1061186x.2016.1154561] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
It has been 30 years since the discovery of the anti-tumour property of paclitaxel (PTX), which has been successfully applied in clinic for the treatment of carcinomas of the lungs, breast and ovarian. However, PTX is poorly soluble in water and has no targeting and selectivity to tumour tissue. Recent advances in active tumour targeting of PTX delivery vehicles have addressed some of the issues related to lack of solubility in water and non-specific toxicities associated with PTX. These PTX delivery vehicles are designed for active targeting to specific cancer cells by the addition of ligands for recognition by specific receptors/antigens on cancer cells. This article will focus on various ligands and related targeting strategies serving as potential tools for active targeting of PTX to tumour tissues, illustrating their use in different tumour models. This review also highlights the need of further studies on the discovery of receptors in different cells of specific organ and ligands with binding efficiency to these specific receptors.
Collapse
Affiliation(s)
- Juan Li
- a Department of Pharmacy , The Second Hospital of Shandong University , Jinan , PR China
| | - Fengshan Wang
- b Key Laboratory of Chemical Biology of Natural Products (Ministry of Education) , Institute of Biochemical and Biotechnological Drugs, School of Pharmaceutical Sciences, Shandong University , Jinan , China ;,c National Glycoengineering Research Center , Shandong University , Jinan , China
| | - Deqing Sun
- a Department of Pharmacy , The Second Hospital of Shandong University , Jinan , PR China
| | - Rongmei Wang
- a Department of Pharmacy , The Second Hospital of Shandong University , Jinan , PR China
| |
Collapse
|
43
|
Arosio D, Casagrande C. Advancement in integrin facilitated drug delivery. Adv Drug Deliv Rev 2016; 97:111-43. [PMID: 26686830 DOI: 10.1016/j.addr.2015.12.001] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 11/27/2015] [Accepted: 12/03/2015] [Indexed: 02/06/2023]
Abstract
The research of integrin-targeted anticancer agents has recorded important advancements in ingenious design of delivery systems, based either on the prodrug approach, or on nanoparticle carriers, but for now, none of these has reached a clinical stage of development. Past work in this area has been extensively reviewed by us and others. Thus, the purpose and scope of the present review is to survey the advancement reported in the last 3years, with focus on innovative delivery systems that appear to afford openings for future developments. These systems exploit the labelling with conventional and novel integrin ligands for targeting the interface of cancer cells and of endothelial cells involved in cancer angiogenesis, with the proteins of the extracellular matrix, in the circulation, in tissues, and in tumour stroma, as the site of progression and metastatic evolution of the disease. Furthermore, these systems implement the expertise in the development of nanomedicines to the purpose of achieving preferential biodistribution and uptake in cancer tissues, internalisation in cancer cells, and release of the transported drugs at intracellular sites. The assessment of the value of controlling these factors, and their combination, for future developments requires support of biological testing in appropriate mechanistic models, but also imperatively demand confirmation in therapeutically relevant in vivo models for biodistribution, efficacy, and lack of off-target effects. Thus, among many studies, we have tried to point out the results supported by relevant in vivo studies, and we have emphasised in specific sections those addressing the medical needs of drug delivery to brain tumours, as well as the delivery of oligonucleotides modulating gene-dependent pathological mechanism. The latter could constitute the basis of a promising third branch in the therapeutic armamentarium against cancer, in addition to antibody-based agents and to cytotoxic agents.
Collapse
Affiliation(s)
- Daniela Arosio
- Istituto di Scienze e Tecnologie Molecolari (ISTM), CNR, Via C. Golgi 19, I-20133 Milan, Italy.
| | - Cesare Casagrande
- Università degli Studi di Milano, Dipartimento di Chimica, Via C. Golgi 19, I-20133 Milan, Italy.
| |
Collapse
|
44
|
Song Q, Wang X, Wang Y, Liang Y, Zhou Y, Song X, He B, Zhang H, Dai W, Wang X, Zhang Q. Reduction Responsive Self-Assembled Nanoparticles Based on Disulfide-Linked Drug–Drug Conjugate with High Drug Loading and Antitumor Efficacy. Mol Pharm 2015; 13:190-201. [DOI: 10.1021/acs.molpharmaceut.5b00631] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Qin Song
- Beijing
Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems,
School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xing Wang
- Beijing
Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems,
School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Yaoqi Wang
- Beijing
Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems,
School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Yanqin Liang
- Beijing
Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems,
School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Yanxia Zhou
- Beijing
Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems,
School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xiaoning Song
- Beijing
Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems,
School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Bing He
- Beijing
Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems,
School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Hua Zhang
- Beijing
Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems,
School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Wenbing Dai
- Beijing
Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems,
School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xueqing Wang
- Beijing
Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems,
School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Qiang Zhang
- Beijing
Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems,
School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- State
Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, China
| |
Collapse
|
45
|
Serra M, Tambini SM, Di Giacomo M, Peviani EG, Belvisi L, Colombo L. Synthesis of Easy-to-Functionalize Azabicycloalkane Scaffolds as Dipeptide Turn Mimics en Route to cRGD-Based Bioconjugates. European J Org Chem 2015. [DOI: 10.1002/ejoc.201501003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
46
|
Zanella S, Mingozzi M, Dal Corso A, Fanelli R, Arosio D, Cosentino M, Schembri L, Marino F, De Zotti M, Formaggio F, Pignataro L, Belvisi L, Piarulli U, Gennari C. Synthesis, Characterization, and Biological Evaluation of a Dual-Action Ligand Targeting αvβ3 Integrin and VEGF Receptors. ChemistryOpen 2015; 4:633-41. [PMID: 26491644 PMCID: PMC4608532 DOI: 10.1002/open.201500062] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Indexed: 12/17/2022] Open
Abstract
A dual-action ligand targeting both integrin αVβ3 and vascular endothelial growth factor receptors (VEGFRs), was synthesized via conjugation of a cyclic peptidomimetic αVβ3 Arg-Gly-Asp (RGD) ligand with a decapentapeptide. The latter was obtained from a known VEGFR antagonist by acetylation at the Lys13 side chain. Functionalization of the precursor ligands was carried out in solution and in the solid phase, affording two fragments: an alkyne VEGFR ligand and the azide integrin αVβ3 ligand, which were conjugated by click chemistry. Circular dichroism studies confirmed that both the RGD and VEGFR ligand portions of the dual-action compound substantially adopt the biologically active conformation. In vitro binding assays on isolated integrin αVβ3 and VEGFR-1 showed that the dual-action conjugate retains a good level of affinity for both its target receptors, although with one order of magnitude (10/20 times) decrease in potency. The dual-action ligand strongly inhibited the VEGF-induced morphogenesis in Human Umbilical Vein Endothelial Cells (HUVECs). Remarkably, its efficiency in preventing the formation of new blood vessels was similar to that of the original individual ligands, despite the worse affinity towards integrin αVβ3 and VEGFR-1.
Collapse
Affiliation(s)
- Simone Zanella
- Dipartimento di Chimica, Università degli Studi di MilanoVia C. Golgi 19, 20133, Milan, Italy
| | - Michele Mingozzi
- Dipartimento di Chimica, Università degli Studi di MilanoVia C. Golgi 19, 20133, Milan, Italy
| | - Alberto Dal Corso
- Dipartimento di Chimica, Università degli Studi di MilanoVia C. Golgi 19, 20133, Milan, Italy
| | - Roberto Fanelli
- Dipartimento di Scienza e Alta Tecnologia, Università degli Studi dell'InsubriaVia Valleggio 11, 22100, Como, Italy
| | - Daniela Arosio
- Istituto di Scienze e Tecnologie Molecolari (ISTM), National Research Council (CNR)Via C. Golgi 19, 20133, Milan, Italy
| | - Marco Cosentino
- Center for Research in Medical Pharmacology, Università degli Studi dell'InsubriaVia Ottorino Rossi 9, 21100, Varese, Italy
| | - Laura Schembri
- Center for Research in Medical Pharmacology, Università degli Studi dell'InsubriaVia Ottorino Rossi 9, 21100, Varese, Italy
| | - Franca Marino
- Center for Research in Medical Pharmacology, Università degli Studi dell'InsubriaVia Ottorino Rossi 9, 21100, Varese, Italy
| | - Marta De Zotti
- Istituto di Chimica Biomolecolare, CNR, Unità di Padova, Dipartimento di Chimica, Università degli Studi di PadovaVia Marzolo 1, 35131, Padova, Italy
| | - Fernando Formaggio
- Istituto di Chimica Biomolecolare, CNR, Unità di Padova, Dipartimento di Chimica, Università degli Studi di PadovaVia Marzolo 1, 35131, Padova, Italy
| | - Luca Pignataro
- Dipartimento di Chimica, Università degli Studi di MilanoVia C. Golgi 19, 20133, Milan, Italy
| | - Laura Belvisi
- Dipartimento di Chimica, Università degli Studi di MilanoVia C. Golgi 19, 20133, Milan, Italy
| | - Umberto Piarulli
- Dipartimento di Scienza e Alta Tecnologia, Università degli Studi dell'InsubriaVia Valleggio 11, 22100, Como, Italy
| | - Cesare Gennari
- Dipartimento di Chimica, Università degli Studi di MilanoVia C. Golgi 19, 20133, Milan, Italy
| |
Collapse
|