1
|
Fan J, Wei PL, Yin WB. Formation of Bridged Disulfide in Epidithiodioxopiperazines. Chembiochem 2024; 25:e202300770. [PMID: 38116907 DOI: 10.1002/cbic.202300770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/19/2023] [Accepted: 12/20/2023] [Indexed: 12/21/2023]
Abstract
Epidithiodioxopiperazine (ETP) alkaloids, featuring a 2,5-diketopiperazine core and transannular disulfide bridge, exhibit a broad spectrum of biological activities. However, the structural complexity has prevented efficient chemical synthesis and further clinical research. In the past few decades, many achievements have been made in the biosynthesis of ETPs. Here, we discuss the biosynthetic progress and summarize them as two comprehensible metabolic principles for better understanding the complex pathways of α, α'- and α, β'-disulfide bridged ETPs. Specifically, we systematically outline the catalytic machineries to install α, α'- and α, β'-disulfide by flavin-containing oxygenases. This concept would contribute to the medical and industrial applications of ETPs.
Collapse
Affiliation(s)
- Jie Fan
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, P. R. China
| | - Peng-Lin Wei
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, P. R. China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Wen-Bing Yin
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, P. R. China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
2
|
Fenibo EO, Selvarajan R, Wang H, Wang Y, Abia ALK. Untapped talents: insight into the ecological significance of methanotrophs and its prospects. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:166145. [PMID: 37579801 DOI: 10.1016/j.scitotenv.2023.166145] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/06/2023] [Accepted: 08/06/2023] [Indexed: 08/16/2023]
Abstract
The deep ocean is a rich reservoir of unique organisms with great potential for bioprospecting, ecosystem services, and the discovery of novel materials. These organisms thrive in harsh environments characterized by high hydrostatic pressure, low temperature, and limited nutrients. Hydrothermal vents and cold seeps, prominent features of the deep ocean, provide a habitat for microorganisms involved in the production and filtration of methane, a potent greenhouse gas. Methanotrophs, comprising archaea and bacteria, play a crucial role in these processes. This review examines the intricate relationship between the roles, responses, and niche specialization of methanotrophs in the deep ocean ecosystem. Our findings reveal that different types of methanotrophs dominate specific zones depending on prevailing conditions. Type I methanotrophs thrive in oxygen-rich zones, while Type II methanotrophs display adaptability to diverse conditions. Verrumicrobiota and NC10 flourish in hypoxic and extreme environments. In addition to their essential role in methane regulation, methanotrophs contribute to various ecosystem functions. They participate in the degradation of foreign compounds and play a crucial role in cycling biogeochemical elements like metals, sulfur, and nitrogen. Methanotrophs also serve as a significant energy source for the oceanic food chain and drive chemosynthesis in the deep ocean. Moreover, their presence offers promising prospects for biotechnological applications, including the production of valuable compounds such as polyhydroxyalkanoates, methanobactin, exopolysaccharides, ecotines, methanol, putrescine, and biofuels. In conclusion, this review highlights the multifaceted roles of methanotrophs in the deep ocean ecosystem, underscoring their ecological significance and their potential for advancements in biotechnology. A comprehensive understanding of their niche specialization and responses will contribute to harnessing their full potential in various domains.
Collapse
Affiliation(s)
- Emmanuel Oliver Fenibo
- World Bank Africa Centre of Excellence, Centre for Oilfield Chemical Research, University of Port Harcourt, Port Harcourt 500272, Nigeria
| | - Ramganesh Selvarajan
- Laboratory of Extraterrestrial Ocean Systems (LEOS), Institute of Deep-Sea Science and Engineering (IDSSE), Chinese Academy of Sciences (CAS), Sanya, China; Department of Environmental Science, University of South Africa, Florida Campus, 1710, South Africa
| | - Huiqi Wang
- Laboratory of Extraterrestrial Ocean Systems (LEOS), Institute of Deep-Sea Science and Engineering (IDSSE), Chinese Academy of Sciences (CAS), Sanya, China
| | - Yue Wang
- Laboratory of Extraterrestrial Ocean Systems (LEOS), Institute of Deep-Sea Science and Engineering (IDSSE), Chinese Academy of Sciences (CAS), Sanya, China
| | - Akebe Luther King Abia
- Environmental Research Foundation, Westville 3630, South Africa; Antimicrobial Research Unit, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa.
| |
Collapse
|
3
|
Podgorski MN, Keto AB, Coleman T, Bruning JB, De Voss JJ, Krenske EH, Bell SG. The Oxidation of Oxygen and Sulfur-Containing Heterocycles by Cytochrome P450 Enzymes. Chemistry 2023; 29:e202301371. [PMID: 37338048 DOI: 10.1002/chem.202301371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/12/2023] [Accepted: 06/20/2023] [Indexed: 06/21/2023]
Abstract
The cytochrome P450 (CYP) superfamily of monooxygenase enzymes play important roles in the metabolism of molecules which contain heterocyclic, aromatic functional groups. Here we study how oxygen- and sulfur-containing heterocyclic groups interact with and are oxidized using the bacterial enzyme CYP199A4. This enzyme oxidized both 4-(thiophen-2-yl)benzoic acid and 4-(thiophen-3-yl)benzoic acid almost exclusively via sulfoxidation. The thiophene oxides produced were activated towards Diels-Alder dimerization after sulfoxidation, forming dimeric metabolites. Despite X-ray crystal structures demonstrating that the aromatic carbon atoms of the thiophene ring were located closer to the heme than the sulfur, sulfoxidation was still favoured with 4-(thiophen-3-yl)benzoic acid. These results highlight a preference of this cytochrome P450 enzyme for sulfoxidation over aromatic hydroxylation. Calculations predict a strong preference for homodimerization of the enantiomers of the thiophene oxides and the formation of a single major product, in broad agreement with the experimental data. 4-(Furan-2-yl)benzoic acid was oxidized to 4-(4'-hydroxybutanoyl)benzoic acid using a whole-cell system. This reaction proceeded via a γ-keto-α,β-unsaturated aldehyde species which could be trapped in vitro using semicarbazide to generate a pyridazine species. The combination of the enzyme structures, the biochemical data and theoretical calculations provides detailed insight into the formation of the metabolites formed from these heterocyclic compounds.
Collapse
Affiliation(s)
- Matthew N Podgorski
- Department of Chemistry, University of Adelaide, Adelaide, SA, 5005, Australia
| | - Angus B Keto
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Qld, 4072, Australia
| | - Tom Coleman
- Department of Chemistry, University of Adelaide, Adelaide, SA, 5005, Australia
| | - John B Bruning
- School of Biological Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| | - James J De Voss
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Qld, 4072, Australia
| | - Elizabeth H Krenske
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Qld, 4072, Australia
| | - Stephen G Bell
- Department of Chemistry, University of Adelaide, Adelaide, SA, 5005, Australia
| |
Collapse
|
4
|
Abstract
The ability to site-selectively modify equivalent functional groups in a molecule has the potential to streamline syntheses and increase product yields by lowering step counts. Enzymes catalyze site-selective transformations throughout primary and secondary metabolism, but leveraging this capability for non-native substrates and reactions requires a detailed understanding of the potential and limitations of enzyme catalysis and how these bounds can be extended by protein engineering. In this review, we discuss representative examples of site-selective enzyme catalysis involving functional group manipulation and C-H bond functionalization. We include illustrative examples of native catalysis, but our focus is on cases involving non-native substrates and reactions often using engineered enzymes. We then discuss the use of these enzymes for chemoenzymatic transformations and target-oriented synthesis and conclude with a survey of tools and techniques that could expand the scope of non-native site-selective enzyme catalysis.
Collapse
Affiliation(s)
- Dibyendu Mondal
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Harrison M Snodgrass
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Christian A Gomez
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Jared C Lewis
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| |
Collapse
|
5
|
Huber EM. Epipolythiodioxopiperazine-Based Natural Products: Building Blocks, Biosynthesis and Biological Activities. Chembiochem 2022; 23:e202200341. [PMID: 35997236 PMCID: PMC10086836 DOI: 10.1002/cbic.202200341] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/19/2022] [Indexed: 01/25/2023]
Abstract
Epipolythiodioxopiperazines (ETPs) are fungal secondary metabolites that share a 2,5-diketopiperazine scaffold built from two amino acids and bridged by a sulfide moiety. Modifications of the core and the amino acid side chains, for example by methylations, acetylations, hydroxylations, prenylations, halogenations, cyclizations, and truncations create the structural diversity of ETPs and contribute to their biological activity. However, the key feature responsible for the bioactivities of ETPs is their sulfide moiety. Over the last years, combinations of genome mining, reverse genetics, metabolomics, biochemistry, and structural biology deciphered principles of ETP production. Sulfurization via glutathione and uncovering of the thiols followed by either oxidation or methylation crystallized as fundamental steps that impact expression of the biosynthesis cluster, toxicity and secretion of the metabolite as well as self-tolerance of the producer. This article showcases structure and activity of prototype ETPs such as gliotoxin and discusses the current knowledge on the biosynthesis routes of these exceptional natural products.
Collapse
Affiliation(s)
- Eva M Huber
- Chair of Biochemistry, Center for Protein Assemblies, Technical University of Munich, Ernst-Otto-Fischer-Str. 8, 85748, Garching, Germany
| |
Collapse
|
6
|
Monooxygenase- and Dioxygenase-Catalyzed Oxidative Dearomatization of Thiophenes by Sulfoxidation, cis-Dihydroxylation and Epoxidation. Int J Mol Sci 2022; 23:ijms23020909. [PMID: 35055091 PMCID: PMC8777831 DOI: 10.3390/ijms23020909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/31/2021] [Accepted: 01/05/2022] [Indexed: 11/17/2022] Open
Abstract
Enzymatic oxidations of thiophenes, including thiophene-containing drugs, are important for biodesulfurization of crude oil and drug metabolism of mono- and poly-cyclic thiophenes. Thiophene oxidative dearomatization pathways involve reactive metabolites, whose detection is important in the pharmaceutical industry, and are catalyzed by monooxygenase (sulfoxidation, epoxidation) and dioxygenase (sulfoxidation, dihydroxylation) enzymes. Sulfoxide and epoxide metabolites of thiophene substrates are often unstable, and, while cis-dihydrodiol metabolites are more stable, significant challenges are presented by both types of metabolite. Prediction of the structure, relative and absolute configuration, and enantiopurity of chiral metabolites obtained from thiophene enzymatic oxidation depends on the substrate, type of oxygenase selected, and molecular docking results. The racemization and dimerization of sulfoxides, cis/trans epimerization of dihydrodiol metabolites, and aromatization of epoxides are all factors associated with the mono- and di-oxygenase-catalyzed metabolism of thiophenes and thiophene-containing drugs and their applications in chemoenzymatic synthesis and medicine.
Collapse
|
7
|
Coleman T, Kirk AM, Lee JHZ, Doherty DZ, Bruning JB, Krenske EH, De Voss JJ, Bell SG. Different Geometric Requirements for Cytochrome P450-Catalyzed Aliphatic Versus Aromatic Hydroxylation Results in Chemoselective Oxidation. ACS Catal 2022. [DOI: 10.1021/acscatal.1c05483] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Tom Coleman
- Department of Chemistry, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Alicia M. Kirk
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Joel H. Z. Lee
- Department of Chemistry, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Daniel Z. Doherty
- Department of Chemistry, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - John B. Bruning
- School of Biological Sciences, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Elizabeth H. Krenske
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland 4072, Australia
| | - James J. De Voss
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Stephen G. Bell
- Department of Chemistry, University of Adelaide, Adelaide, South Australia 5005, Australia
| |
Collapse
|
8
|
Subbaiah MAM, Meanwell NA. Bioisosteres of the Phenyl Ring: Recent Strategic Applications in Lead Optimization and Drug Design. J Med Chem 2021; 64:14046-14128. [PMID: 34591488 DOI: 10.1021/acs.jmedchem.1c01215] [Citation(s) in RCA: 198] [Impact Index Per Article: 66.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The benzene moiety is the most prevalent ring system in marketed drugs, underscoring its historic popularity in drug design either as a pharmacophore or as a scaffold that projects pharmacophoric elements. However, introspective analyses of medicinal chemistry practices at the beginning of the 21st century highlighted the indiscriminate deployment of phenyl rings as an important contributor to the poor physicochemical properties of advanced molecules, which limited their prospects of being developed into effective drugs. This Perspective deliberates on the design and applications of bioisosteric replacements for a phenyl ring that have provided practical solutions to a range of developability problems frequently encountered in lead optimization campaigns. While the effect of phenyl ring replacements on compound properties is contextual in nature, bioisosteric substitution can lead to enhanced potency, solubility, and metabolic stability while reducing lipophilicity, plasma protein binding, phospholipidosis potential, and inhibition of cytochrome P450 enzymes and the hERG channel.
Collapse
Affiliation(s)
- Murugaiah A M Subbaiah
- Department of Medicinal Chemistry, Biocon-Bristol Myers Squibb Research and Development Centre, Biocon Park, Bommasandra IV Phase, Jigani Link Road, Bangalore, Karnataka 560099, India
| | - Nicholas A Meanwell
- Department of Small Molecule Drug Discovery, Bristol Myers Squibb Research and Early Development, P.O. Box 4000, Princeton, New Jersey 08543-4000, United States
| |
Collapse
|
9
|
Cytochrome P450 Can Epoxidize an Oxepin to a Reactive 2,3-Epoxyoxepin Intermediate: Potential Insights into Metabolic Ring-Opening of Benzene. MOLECULES (BASEL, SWITZERLAND) 2020; 25:molecules25194542. [PMID: 33023027 PMCID: PMC7582548 DOI: 10.3390/molecules25194542] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 09/30/2020] [Accepted: 10/01/2020] [Indexed: 11/16/2022]
Abstract
Dimethyldioxirane epoxidizes 4,5-benzoxepin to form the reactive 2,3-epoxyoxepin intermediate followed by very rapid ring-opening to an o-xylylene that immediately isomerizes to the stable product 1H-2-benzopyran-1-carboxaldehyde. The present study demonstrates that separate incubations of 4,5-benzoxepin with three cytochrome P450 isoforms (2E1, 1A2, and 3A4) as well as pooled human liver microsomes (pHLM) also produce 1H-2-benzopyran-1-carboxaldehyde as the major product, likely via the 2,3-epoxyoxepin. The reaction of 4,5-benzoxepin with cerium (IV) ammonium nitrate (CAN) yields a dimeric oxidized molecule that is also a lesser product of the P450 oxidation of 4,5-benzoxepin. The observation that P450 enzymes epoxidize 4,5-benzoxepin suggests that the 2,3-epoxidation of oxepin is a major pathway for the ring-opening metabolism of benzene to muconaldehyde.
Collapse
|
10
|
Oxepinamide F biosynthesis involves enzymatic D-aminoacyl epimerization, 3H-oxepin formation, and hydroxylation induced double bond migration. Nat Commun 2020; 11:4914. [PMID: 33004788 PMCID: PMC7530659 DOI: 10.1038/s41467-020-18713-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 09/04/2020] [Indexed: 12/22/2022] Open
Abstract
Oxepinamides are derivatives of anthranilyl-containing tripeptides and share an oxepin ring and a fused pyrimidinone moiety. To the best of our knowledge, no studies have been reported on the elucidation of an oxepinamide biosynthetic pathway and conversion of a quinazolinone to a pyrimidinone-fused 1H-oxepin framework by a cytochrome P450 enzyme in fungal natural product biosynthesis. Here we report the isolation of oxepinamide F from Aspergillus ustus and identification of its biosynthetic pathway by gene deletion, heterologous expression, feeding experiments, and enzyme assays. The nonribosomal peptide synthase (NRPS) OpaA assembles the quinazolinone core with D-Phe incorporation. The cytochrome P450 enzyme OpaB catalyzes alone the oxepin ring formation. The flavoenzyme OpaC installs subsequently one hydroxyl group at the oxepin ring, accompanied by double bond migration. The epimerase OpaE changes the D-Phe residue back to L-form, which is essential for the final methylation by OpaF.
Collapse
|
11
|
Houston SD, Fahrenhorst-Jones T, Xing H, Chalmers BA, Sykes ML, Stok JE, Farfan Soto C, Burns JM, Bernhardt PV, De Voss JJ, Boyle GM, Smith MT, Tsanaktsidis J, Savage GP, Avery VM, Williams CM. The cubane paradigm in bioactive molecule discovery: further scope, limitations and the cyclooctatetraene complement. Org Biomol Chem 2020; 17:6790-6798. [PMID: 31241113 DOI: 10.1039/c9ob01238a] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The cubane phenyl ring bioisostere paradigm was further explored in an extensive study covering a wide range of pharmaceutical and agrochemical templates, which included antibiotics (cefaclor, penicillin G) and antihistamine (diphenhydramine), a smooth muscle relaxant (alverine), an anaesthetic (ketamine), an agrochemical instecticide (triflumuron), an antiparasitic (benznidazole) and an anticancer agent (tamibarotene). This investigation highlights the scope and limitations of incorporating cubane into bioactive molecule discovery, both in terms of synthetic compatibility and physical property matching. Cubane maintained bioisosterism in the case of the Chagas disease antiparasitic benznidazole, although it was less active in the case of the anticancer agent (tamibarotenne). Application of the cyclooctatetraene (COT) (bio)motif complement was found to optimize benznidazole relative to the benzene parent, and augmented anticancer activity relative to the cubane analogue in the case of tamibarotene. Like all bioisosteres, scaffolds and biomotifs, however, there are limitations (e.g. synthetic implementation), and these have been specifically highlighted herein using failed examples. A summary of all templates prepared to date by our group that were biologically evaluated strongly supports the concept that cubane is a valuable tool in bioactive molecule discovery and COT is a viable complement.
Collapse
Affiliation(s)
- Sevan D Houston
- School of Chemistry and Molecular Biosciences, University of Queensland (UQ), Brisbane, 4072, Queensland (QLD), Australia.
| | - Tyler Fahrenhorst-Jones
- School of Chemistry and Molecular Biosciences, University of Queensland (UQ), Brisbane, 4072, Queensland (QLD), Australia.
| | - Hui Xing
- School of Chemistry and Molecular Biosciences, University of Queensland (UQ), Brisbane, 4072, Queensland (QLD), Australia.
| | - Benjamin A Chalmers
- School of Chemistry and Molecular Biosciences, University of Queensland (UQ), Brisbane, 4072, Queensland (QLD), Australia.
| | - Melissa L Sykes
- Discovery Biology, Griffith Institute for Drug Discovery, Griffith University, Brisbane, QLD 4111, Australia
| | - Jeanette E Stok
- School of Chemistry and Molecular Biosciences, University of Queensland (UQ), Brisbane, 4072, Queensland (QLD), Australia.
| | - Clementina Farfan Soto
- School of Chemistry and Molecular Biosciences, University of Queensland (UQ), Brisbane, 4072, Queensland (QLD), Australia.
| | - Jed M Burns
- School of Chemistry and Molecular Biosciences, University of Queensland (UQ), Brisbane, 4072, Queensland (QLD), Australia.
| | - Paul V Bernhardt
- School of Chemistry and Molecular Biosciences, University of Queensland (UQ), Brisbane, 4072, Queensland (QLD), Australia.
| | - James J De Voss
- School of Chemistry and Molecular Biosciences, University of Queensland (UQ), Brisbane, 4072, Queensland (QLD), Australia.
| | - Glen M Boyle
- QIMR Berghofer Medical Research Institute, PO Royal Brisbane Hospital, Brisbane, 4029, QLD, Australia
| | - Maree T Smith
- School of Biomedical Sciences, Faculty of Medicine, UQ, Brisbane, Australia
| | - John Tsanaktsidis
- CSIRO Manufacturing, Ian Wark Laboratory, Melbourne, 3168, Victoria (VIC), Australia
| | - G Paul Savage
- CSIRO Manufacturing, Ian Wark Laboratory, Melbourne, 3168, Victoria (VIC), Australia
| | - Vicky M Avery
- Discovery Biology, Griffith Institute for Drug Discovery, Griffith University, Brisbane, QLD 4111, Australia
| | - Craig M Williams
- School of Chemistry and Molecular Biosciences, University of Queensland (UQ), Brisbane, 4072, Queensland (QLD), Australia.
| |
Collapse
|
12
|
Determining the necessity of phenyl ring π-character in warfarin. Bioorg Med Chem Lett 2019; 29:1954-1956. [PMID: 31147103 DOI: 10.1016/j.bmcl.2019.05.039] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 05/18/2019] [Accepted: 05/18/2019] [Indexed: 11/23/2022]
Abstract
Despite the difficulty in administering a safe dose regimen and reports of emerging resistance, warfarin (1) remains the most widely-used oral anticoagulant for the prevention and treatment of thrombosis in humans globally. Systematic substitution of the warfarin phenyl ring with either 1,3,5,7-cyclooctatetraene (COT) (2), cubane (3), cyclohexane (4) or cyclooctane (5) and subsequent evaluation against the target enzyme, vitamin K epoxide reductase (VKOR), facilitated interrogation of both steric and electronic properties of the phenyl pharmacophore. The tolerance of VKOR to further functional group modification (carboxylate 14, PTAD adduct 15) was also investigated. The results demonstrate the importance of both annulene conferred π-interactions and ring size in the activity of warfarin.
Collapse
|
13
|
Xing H, Houston SD, Chen X, Ghassabian S, Fahrenhorst-Jones T, Kuo A, Murray CEP, Conn KA, Jaeschke KN, Jin DY, Pasay C, Bernhardt PV, Burns JM, Tsanaktsidis J, Savage GP, Boyle GM, De Voss JJ, McCarthy J, Walter GH, Burne THJ, Smith MT, Tie JK, Williams CM. Cyclooctatetraene: A Bioactive Cubane Paradigm Complement. Chemistry 2019; 25:2729-2734. [PMID: 30681236 PMCID: PMC6436534 DOI: 10.1002/chem.201806277] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Indexed: 12/14/2022]
Abstract
Cubane was recently validated as a phenyl ring (bio)isostere, but highly strained caged carbocyclic systems lack π character, which is often critical for mediating key biological interactions. This electronic property restriction associated with cubane has been addressed herein with cyclooctatetraene (COT), using known pharmaceutical and agrochemical compounds as templates. COT either outperformed or matched cubane in multiple cases suggesting that versatile complementarity exists between the two systems for enhanced bioactive molecule discovery.
Collapse
Affiliation(s)
- Hui Xing
- School of Chemistry and Molecular Biosciences, University of Queensland (UQ), Brisbane, 4072, Queensland (QLD, Australia
| | - Sevan D Houston
- School of Chemistry and Molecular Biosciences, University of Queensland (UQ), Brisbane, 4072, Queensland (QLD, Australia
| | - Xuejie Chen
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Sussan Ghassabian
- Centre for Integrated Preclinical Drug Development, University of Queensland (UQ), Australia
| | - Tyler Fahrenhorst-Jones
- School of Chemistry and Molecular Biosciences, University of Queensland (UQ), Brisbane, 4072, Queensland (QLD, Australia
| | - Andy Kuo
- Centre for Integrated Preclinical Drug Development, University of Queensland (UQ), Australia
| | | | - Kyna-Anne Conn
- Queensland Brain Institute, University of Queensland (UQ), Australia
| | - Kara N Jaeschke
- Queensland Brain Institute, University of Queensland (UQ), Australia
| | - Da-Yun Jin
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Cielo Pasay
- QIMR Berghofer Medical Research Institute, PO Royal Brisbane Hospital, Brisbane, 4029, QLD, Australia
| | - Paul V Bernhardt
- School of Chemistry and Molecular Biosciences, University of Queensland (UQ), Brisbane, 4072, Queensland (QLD, Australia
| | - Jed M Burns
- School of Chemistry and Molecular Biosciences, University of Queensland (UQ), Brisbane, 4072, Queensland (QLD, Australia
| | - John Tsanaktsidis
- CISRO Manufacturing, Ian Wark Laboratory, Melbourne, 3168, Victoria (VIC, Australia
| | - G Paul Savage
- CISRO Manufacturing, Ian Wark Laboratory, Melbourne, 3168, Victoria (VIC, Australia
| | - Glen M Boyle
- QIMR Berghofer Medical Research Institute, PO Royal Brisbane Hospital, Brisbane, 4029, QLD, Australia
| | - James J De Voss
- School of Chemistry and Molecular Biosciences, University of Queensland (UQ), Brisbane, 4072, Queensland (QLD, Australia
| | - James McCarthy
- QIMR Berghofer Medical Research Institute, PO Royal Brisbane Hospital, Brisbane, 4029, QLD, Australia
| | - Gimme H Walter
- School of Biological Sciences, University of Queensland (UQ), Australia
| | - Thomas H J Burne
- Queensland Brain Institute, University of Queensland (UQ), Australia
| | - Maree T Smith
- Centre for Integrated Preclinical Drug Development, University of Queensland (UQ), Australia
| | - Jian-Ke Tie
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Craig M Williams
- School of Chemistry and Molecular Biosciences, University of Queensland (UQ), Brisbane, 4072, Queensland (QLD, Australia
| |
Collapse
|
14
|
Houston SD, Chalmers BA, Savage GP, Williams CM. Enantioselective synthesis of (R)-2-cubylglycine including unprecedented rhodium mediated C–H insertion of cubane. Org Biomol Chem 2019; 17:1067-1070. [DOI: 10.1039/c8ob02959h] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
An enantioselective synthesis of the non-proteinogenic amino acid (R)-2-cubylglycine and the first examples of cubane C–H insertion are reported.
Collapse
Affiliation(s)
- Sevan D. Houston
- School of Chemistry and Molecular Biosciences
- University of Queensland
- Brisbane
- Australia
| | - Benjamin A. Chalmers
- School of Chemistry and Molecular Biosciences
- University of Queensland
- Brisbane
- Australia
| | - G. Paul Savage
- CSIRO Manufacturing
- Ian Wark Laboratory
- Melbourne
- Australia
| | - Craig M. Williams
- School of Chemistry and Molecular Biosciences
- University of Queensland
- Brisbane
- Australia
| |
Collapse
|
15
|
Alkhalaf LM, Barry SM, Rea D, Gallo A, Griffiths D, Lewandowski JR, Fulop V, Challis GL. Binding of Distinct Substrate Conformations Enables Hydroxylation of Remote Sites in Thaxtomin D by Cytochrome P450 TxtC. J Am Chem Soc 2018; 141:216-222. [DOI: 10.1021/jacs.8b08864] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Lona M. Alkhalaf
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, U.K
| | - Sarah M. Barry
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, U.K
| | - Dean Rea
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, U.K
| | - Angelo Gallo
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, U.K
| | - Daniel Griffiths
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, U.K
| | | | - Vilmos Fulop
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, U.K
| | - Gregory L. Challis
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, U.K
- Warwick Integrative Synthetic Biology Centre, University of Warwick, Coventry, CV4 7AL, U.K
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| |
Collapse
|
16
|
Abstract
Cubane is a highly strained saturated hydrocarbon system that has historically been of interest in theoretical organic chemistry. More recently it has become a molecule of interest for biological applications due to its inherent stability and limited toxicity. Of greater significance is the ability to potentially functionalize cubane at each of its carbon atoms, providing complex biologically active molecules with unique spatial arrangements for probing active sites. These characteristics have led to an increased use of cubane in pharmaceutically relevant molecules. In this Perspective we describe synthetic methodology for accessing a range of functionalized cubanes and their applications in pharmaceuticals. We also provide some perspectives on challenges and future directions in the advancement of this field.
Collapse
Affiliation(s)
- Tristan A Reekie
- School of Chemistry , The University of Sydney , Sydney , NSW 2006 , Australia
| | - Craig M Williams
- School of Chemistry and Molecular Biosciences , University of Queensland , Brisbane , QLD 4072 , Australia
| | - Louis M Rendina
- School of Chemistry , The University of Sydney , Sydney , NSW 2006 , Australia
| | - Michael Kassiou
- School of Chemistry , The University of Sydney , Sydney , NSW 2006 , Australia
| |
Collapse
|
17
|
Affiliation(s)
- Yujie Liang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road 38, Beijing 100191, China
| | - Jialiang Wei
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road 38, Beijing 100191, China
| | - Xu Qiu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road 38, Beijing 100191, China
| | - Ning Jiao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road 38, Beijing 100191, China
- State Key Laboratory of Organometallic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
18
|
Munday SD, Dezvarei S, Lau IC, Bell SG. Examination of Selectivity in the Oxidation of
ortho
‐ and
meta
‐Disubstituted Benzenes by CYP102A1 (P450 Bm3) Variants. ChemCatChem 2017. [DOI: 10.1002/cctc.201700116] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Samuel D. Munday
- Department of Chemistry University of Adelaide Adelaide. SA 5005 Australia
| | | | - Ian C.‐K. Lau
- Department of Chemistry University of Adelaide Adelaide. SA 5005 Australia
| | - Stephen G. Bell
- Department of Chemistry University of Adelaide Adelaide. SA 5005 Australia
| |
Collapse
|
19
|
Ragini K, Fromont J, Piggott AM, Karuso P. Enantiodivergence in the Biosynthesis of Bromotyrosine Alkaloids from Sponges? JOURNAL OF NATURAL PRODUCTS 2017; 80:215-219. [PMID: 28085276 DOI: 10.1021/acs.jnatprod.6b01038] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The isolation of bromotyrosine alkaloids, some of which are enantiomers of previously isolated compounds, has highlighted a possible enantiodivergence in their biosynthesis. Two new (1, 2) and six known bromotyrosine alkaloids (4-9), and the enantiomer (10) of a known compound, have been isolated from a Western Australian marine sponge, Pseudoceratina cf. verrucosa. The compounds inhibited the growth of multidrug-resistant and methicillin-resistant Staphylococcus aureus with comparable activity to vancomycin. In addition, one possible artifact of extraction (3) containing an ethoxy group was isolated. From analysis of the known bromotyrosine alkaloids, a biogenesis is proposed that explains the formation of antipodal natural products within this family of sponges.
Collapse
Affiliation(s)
- Kavita Ragini
- Department of Chemistry and Biomolecular Sciences, Macquarie University , Sydney, NSW 2109, Australia
| | - Jane Fromont
- Department of Aquatic Zoology, Western Australian Museum , Western Australia 6106, Australia
| | - Andrew M Piggott
- Department of Chemistry and Biomolecular Sciences, Macquarie University , Sydney, NSW 2109, Australia
| | - Peter Karuso
- Department of Chemistry and Biomolecular Sciences, Macquarie University , Sydney, NSW 2109, Australia
| |
Collapse
|