1
|
Suh JM, Kim M, Yoo J, Han J, Paulina C, Lim MH. Intercommunication between metal ions and amyloidogenic peptides or proteins in protein misfolding disorders. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
2
|
Kerkadi A, Alkudsi DS, Hamad S, Alkeldi HM, Salih R, Agouni A. The Association between Zinc and Copper Circulating Levels and Cardiometabolic Risk Factors in Adults: A Study of Qatar Biobank Data. Nutrients 2021; 13:nu13082729. [PMID: 34444889 PMCID: PMC8398315 DOI: 10.3390/nu13082729] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 07/26/2021] [Accepted: 07/28/2021] [Indexed: 11/16/2022] Open
Abstract
Cardiometabolic risk (CMR) factors increase the likelihood of developing cardiovascular diseases (CVD). In Qatar, 24% of the total deaths are attributed to CVDs. Several nutritional disturbances have been linked to high risk of CVD. Many studies have discussed the effects of zinc (Zn) and copper (Cu) on CMR factors; however, evidence has been controversial. This investigated the association between CMR factors and the status of Zn and Cu, in addition to Zn/Cu ratio. A total of 575 Qatari men and women aged 18 years and older were obtained from Qatar Biobank. Plasma levels of Zn and Cu were determined using inductively coupled plasma mass spectrometry (ICP-MS). Anthropometric data and CMR factors were determined using standard methods. Adjusted associations between trace minerals and CMR were estimated by logistic regression. Partial correlation was performed to test the strength of the associations. Zn was not strongly correlated (p-value ˃ 0.01) or significantly associated with CMR factors and metabolic syndrome (MetS). Cu levels correlated positively with body mass index (BMI) (0.23; p ˂ 0.001), pulse rate (PR) (0.18; p ˂ 0.001), total cholesterol (0.13; p = 0.01), and high-density lipoproteins (HDL) (0.27; p ˂ 0.001); and negatively with diastolic blood pressure (DBP) (−0.13; p = 0.01). High plasma Cu significantly decreased the risk of metabolic syndrome (MetS) (0.121; p ˂ 0.001). Furthermore, Zn/Cu ratio positively correlated with waist circumference (0.13; p = 0.01), systolic blood pressure (0.13; p ˂ 0.01), and DBP (0.14; p ˂ 0.01); and negatively with BMI (−0.19; p ˂ 0.001), PR (−0.17; p ˂ 0.001), and HDL (−0.27; p ˂ 0.001). High Zn/Cu ratio increased the prevalence of low HDL (4.508; p ˂ 0.001) and MetS (5.570; p ˂ 0.01). These findings suggest that high plasma Cu levels are associated with a protective effect on DBP, HDL and MetS and that high plasma Zn/Cu ratio is associated with the risk of having low HDL and MetS.
Collapse
Affiliation(s)
- Abdelhamid Kerkadi
- Human Nutrition Department, College of Health Sciences, QU Health, Qatar University, Doha P.O. Box 2713, Qatar; (D.S.A.); (S.H.); (H.M.A.); (R.S.)
- Correspondence: ; Tel.: +974-4403-4806; Fax: +974-4403-4801
| | - Dana Samir Alkudsi
- Human Nutrition Department, College of Health Sciences, QU Health, Qatar University, Doha P.O. Box 2713, Qatar; (D.S.A.); (S.H.); (H.M.A.); (R.S.)
| | - Sara Hamad
- Human Nutrition Department, College of Health Sciences, QU Health, Qatar University, Doha P.O. Box 2713, Qatar; (D.S.A.); (S.H.); (H.M.A.); (R.S.)
| | - Hanan Mohamed Alkeldi
- Human Nutrition Department, College of Health Sciences, QU Health, Qatar University, Doha P.O. Box 2713, Qatar; (D.S.A.); (S.H.); (H.M.A.); (R.S.)
| | - Reem Salih
- Human Nutrition Department, College of Health Sciences, QU Health, Qatar University, Doha P.O. Box 2713, Qatar; (D.S.A.); (S.H.); (H.M.A.); (R.S.)
| | - Abdelali Agouni
- Pharmaceutical Sciences Department, College of Pharmacy, QU Health, Qatar University, Doha P.O. Box 2713, Qatar;
- Biomedical and Pharmaceutical Research Unit (BPRU), QU Health, Qatar University, Doha P.O. Box 2713, Qatar
| |
Collapse
|
3
|
Salimi A, Chatterjee S, Yong Lee J. Histidine Tautomerism Driving Human Islet Amyloid Polypeptide Aggregation in the Early Stages of Diabetes Mellitus Progression: Insight at the Atomistic Level. Chem Asian J 2021; 16:2453-2462. [PMID: 34231327 DOI: 10.1002/asia.202100641] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/04/2021] [Indexed: 12/19/2022]
Abstract
Early oligomerization of human islet amyloid polypeptide (hIAPP), which is accountable for β-cell death, has been implicated in the progression of type 2 diabetes mellitus. Some researches have shown the connection between hIAPP and Alzheimer's disease as well. However, the mechanism of peptide accumulation and associated cytotoxicity remains unclear. Due to the unique properties and significant role of histidine in protein sequences, here for the first time, the tautomeric effect of histidine at the early stages of amylin misfolding was investigated via molecular dynamics simulations. Considering Tau and Pi tautomeric forms of histidine (Tau and Pi tautomers are denoted as ϵ and δ, respectively), simulations were performed on two possible isomers of amylin. Our analysis revealed a higher probability of transient α-helix generation in the δ isomer in monomeric form. In dimeric forms, the δδ and δϵ conformations showed an elevated amount of α-helix and lower coil in comparison to the ϵϵ dimer. Due to the significant role of α-helix in membrane disruption and transition to β-sheet structure, these results may imply a noticeable contribution of the δ isomer and the δδ and δϵ dimers rather than ϵ and ϵϵ conformations in the early stages of diabetes initiation. Our results may aid in elucidating the hIAPP self-association process in the etiology of amyloidosis.
Collapse
Affiliation(s)
- Abbas Salimi
- Department of Chemistry, Sungkyunkwan University, Suwon, 16419, South Korea
| | | | - Jin Yong Lee
- Department of Chemistry, Sungkyunkwan University, Suwon, 16419, South Korea
| |
Collapse
|
4
|
Undercover Toxic Ménage à Trois of Amylin, Copper (II) and Metformin in Human Embryonic Kidney Cells. Pharmaceutics 2021; 13:pharmaceutics13060830. [PMID: 34204936 PMCID: PMC8229594 DOI: 10.3390/pharmaceutics13060830] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/27/2021] [Accepted: 05/28/2021] [Indexed: 12/14/2022] Open
Abstract
In recent decades, type 2 diabetes complications have been correlated with amylin aggregation, copper homeostasis and metformin side effects. However, each factor was analyzed separately, and only in some rare cases copper/amylin or copper/metformin complexes were considered. We demonstrate for the first time that binary metformin/amylin and tertiary copper (II)/amylin/metformin complexes of high cellular toxicity are formed and lead to the formation of aggregated multi-level lamellar structures on the cell membrane. Considering the increased concentration of amylin, copper (II) and metformin in kidneys of T2DM patients, our findings on the toxicity of amylin and its adducts may be correlated with diabetic nephropathy development.
Collapse
|
5
|
Kant R, Verma V, Patel S, Chandra R, Chaudhary R, Shuldiner AR, Munir KM. Effect of serum zinc and copper levels on insulin secretion, insulin resistance and pancreatic β cell dysfunction in US adults: Findings from the National Health and Nutrition Examination Survey (NHANES) 2011-2012. Diabetes Res Clin Pract 2021; 172:108627. [PMID: 33333205 DOI: 10.1016/j.diabres.2020.108627] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 11/04/2020] [Accepted: 12/09/2020] [Indexed: 01/22/2023]
Abstract
AIM To compare zinc (Zn) and copper (Cu) levels in US adults with normoglycemia, prediabetes and diabetes, and study the association of serum Zn and Cu levels with pancreatic β cell insulin secretion, pancreatic dysfunction and insulin resistance in US adults with normoglycemia and prediabetes. METHOD Homeostatic Model Assessment (HOMA2) calculator was used to compute estimates of steady state β cell insulin secretion (HOMA2-B), peripheral insulin sensitivity (HOMA2-S), insulin resistance (HOMA-IR), and disposition index (HOMA-DI) in 804 adult individuals from the National Health and Nutrition Examination Survey (NHANES 2011-2012). RESULTS There was no significant difference between serum Zn and Cu levels among subjects with normoglycemia, prediabetes, and diabetes. After adjusting for multiple possible confounders, higher serum Zn concentrations were associated with lower β cell insulin secretion (HOMA2-B; p = 0.01) and lower insulin resistance (HOMA-IR; p = 0.04) in the prediabetic subjects. In normoglycemic group, higher serum Zn levels were associated with improved pancreatic function (HOMA-DI; P = 0.02). On the other hand, higher serum Cu levels were associated with increased β cell insulin secretion (HOMA2-B, P = 0.03) only in the subjects with prediabetes. CONCLUSION These findings support the need for further studies to investigate the role of trace elements in diabetes pathogenesis.
Collapse
Affiliation(s)
- Ravi Kant
- Division of Endocrinology, Diabetes and Nutrition, Medical University of South Carolina/AnMed Campus, Anderson, SC 29621, USA.
| | - Vipin Verma
- Department of Medicine, Medical University of South Carolina/AnMed Campus, Anderson, SC 29621, USA.
| | - Siddharth Patel
- Department of Medicine, Decatur Morgan Hospital Decatur Campus, Decatur, AL, USA
| | - Rashmi Chandra
- Department of Medicine, Medical University of South Carolina/AnMed Campus, Anderson, SC 29621, USA
| | | | - Alan R Shuldiner
- Division of Endocrinology, Diabetes and Nutrition, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Kashif M Munir
- Division of Endocrinology, Diabetes and Nutrition, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
6
|
Wang Y, Meng F, Lu T, Wang C, Li F. Regulation of divalent metal ions to the aggregation and membrane damage of human islet amyloid polypeptide oligomers. RSC Adv 2021; 11:12815-12825. [PMID: 35423832 PMCID: PMC8697352 DOI: 10.1039/d1ra00354b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 03/21/2021] [Indexed: 11/21/2022] Open
Abstract
The accumulation of human islet amyloid polypeptide (hIAPP) on the surface of pancreatic β cells is closely related to the death of the cells. Divalent metal ions play a significant role in the cytotoxicity of hIAPP. In this study, we examined the roles played by the divalent metal ions of zinc, copper and calcium in the aggregation of both hIAPP18-27 fragment and full-length hIAPP and the ability of their oligomers to damage the membrane of POPC/POPG 4 : 1 LUVs using the ThT fluorescence, TEM, AFM, CD, ANS binding fluorescence and dye leakage experiments. We prepared metal-free and metal-associated oligomers that are similar in size and aggregate slowly using the short peptide and confirmed that the ability of the peptide oligomers to damage the lipid membrane is reduced by the binding to the metal ions, which is closely linked to the reducing hydrophobic exposure of the metal-associated oligomers. The study on the full-length hIAPP showed that the observed membrane damage induced by hIAPP oligomers is either mitigated at a peptide-to-metal ratio of 1 : 0.33 or aggravated at a peptide-to-metal ratio of 1 : 1 in the presence of Zn(ii) and Cu(ii), while the surface hydrophobicity of hIAPP oligomers was reduced at both peptide-to-metal ratios. The observed results of the membrane damage were attributed to the counteraction between a decrease in the disruptive ability of metal-associated oligomer species and an increase in the quantity of oligomers promoted by the binding of the metal ions to hIAPP oligomers. The former could play a predominant role in reducing the membrane damage at a peptide-to-metal ratio of 1 : 0.33, while the latter could play a predominant role in enhancing the membrane damage at a peptide-to-metal ratio of 1 : 1. This study shows that an enhanced membrane damage could be caused by the oligomer species with a decreased instead of an increased disruptive ability, given that the abundance of the oligomer species is high enough. Their is a counteraction between a decrease in the disruptive ability of metal-associated oligomer species and an increase in the quantity of oligomers promoted by the metal binding in the activity of hIAPP induced membrane damage.![]()
Collapse
Affiliation(s)
- Yajie Wang
- State Key Laboratory of Supramolecular Structure and Materials
- Jilin University
- Changchun 130012
- P. R. China
| | - Feihong Meng
- State Key Laboratory of Supramolecular Structure and Materials
- Jilin University
- Changchun 130012
- P. R. China
| | - Tong Lu
- State Key Laboratory of Supramolecular Structure and Materials
- Jilin University
- Changchun 130012
- P. R. China
| | - Chunyun Wang
- State Key Laboratory of Supramolecular Structure and Materials
- Jilin University
- Changchun 130012
- P. R. China
| | - Fei Li
- State Key Laboratory of Supramolecular Structure and Materials
- Jilin University
- Changchun 130012
- P. R. China
| |
Collapse
|
7
|
Magrì A, Tabbì G, Di Natale G, La Mendola D, Pietropaolo A, Zoroddu MA, Peana M, Rizzarelli E. Zinc Interactions with a Soluble Mutated Rat Amylin to Mimic Whole Human Amylin: An Experimental and Simulation Approach to Understand Stoichiometry, Speciation and Coordination of the Metal Complexes. Chemistry 2020; 26:13072-13084. [DOI: 10.1002/chem.202002114] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/29/2020] [Indexed: 01/27/2023]
Affiliation(s)
- Antonio Magrì
- Consiglio Nazionale delle Ricerche Istituto di Cristallografia Via P. Gaifami 18 95126 Catania Italy
| | - Giovanni Tabbì
- Consiglio Nazionale delle Ricerche Istituto di Cristallografia Via P. Gaifami 18 95126 Catania Italy
| | - Giuseppe Di Natale
- Consiglio Nazionale delle Ricerche Istituto di Cristallografia Via P. Gaifami 18 95126 Catania Italy
| | - Diego La Mendola
- Dipartimento di Farmacia Università di Pisa Via Bonanno Pisano, 6 56126 Pisa Italy
- Consorzio Interuniversitario di Ricerca in Chimica dei, Metalli nei Sistemi Biologici (CIRCMSB) Via Celso Ulpiani 27 70126 Bari Italy
| | - Adriana Pietropaolo
- Dipartimento di Scienze della Salute Università “Magna Graecia” di Catanzaro Campus Universitario, Viale Europa 88100 Catanzaro Italy
| | | | - Massimiliano Peana
- Dipartimento di Chimica e Farmacia University of Sassari Via Vienna 2 07100 Sassari Italy
| | - Enrico Rizzarelli
- Consiglio Nazionale delle Ricerche Istituto di Cristallografia Via P. Gaifami 18 95126 Catania Italy
- Consorzio Interuniversitario di Ricerca in Chimica dei, Metalli nei Sistemi Biologici (CIRCMSB) Via Celso Ulpiani 27 70126 Bari Italy
- Dipartimento di Scienze Chimiche Università degli Studi di Catania Viale A. Doria 6 95125 Catania Italy
| |
Collapse
|
8
|
Huo G, Chen W, Wang J, Chu X, Xu W, Li B, Zhang Y, Xu B, Zhou X. His18 promotes reactive oxidative stress production in copper-ion mediated human islet amyloid polypeptide aggregation. RSC Adv 2020; 10:5566-5571. [PMID: 35497413 PMCID: PMC9049296 DOI: 10.1039/c9ra09943c] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 01/23/2020] [Indexed: 01/20/2023] Open
Abstract
Copper ions play a critical role in human islet amyloid polypeptide (hIAPP) aggregation, which has been found in more than 90% of patients with type-2 diabetes (T2D). The role of Cu(ii) in the cell cytotoxicity with hIAPP has been explored in two aspects: inhibiting the formation of fibrillar structures and stimulating the generation of reactive oxygen species (ROS). In this work, we carried out spectroscopic studies of Cu(ii) interacting with several hIAPP fragments and their variants as well. Electron paramagnetic resonance (EPR) measurements and Amplex Red analysis showed that the amount of H2O2 generated in hIAPP(11-28) solution co-incubated with Cu(ii) was remarkably more than hIAPP(1-11) and hIAPP(28-37). Furthermore, the H2O2 level was seriously reduced when His18 of hIAPP(11-28) was replaced by Arg(R) or Ser(S), indicating that His18 is the key residue of Cu(ii) binding to hIAPP(11-28) to promote H2O2 generation. This is likely because the donation of electrons from the peptide to Cu(ii) ions would result in the formation of the redox-active complexes, which could stimulate the formation of H2O2. Overall, this study provides further insight into the molecular mechanism of Cu(ii) induced ROS generation. His18 promotes H2O2 production in copper-ion mediated hIAPP aggregation.![]()
Collapse
Affiliation(s)
- Gengyang Huo
- School of Physics Science and Technology
- Ningbo University
- China
| | - Wenyong Chen
- School of Physics Science and Technology
- Ningbo University
- China
| | - Jianhua Wang
- School of Physics Science and Technology
- Ningbo University
- China
| | - Xinxing Chu
- School of Physics Science and Technology
- Ningbo University
- China
- Shanghai Advanced Research Institute
- Chinese Academy of Sciences
| | - Wei Xu
- School of Physics Science and Technology
- Ningbo University
- China
| | - Bin Li
- Shanghai Advanced Research Institute
- Chinese Academy of Sciences
- China
| | - Yi Zhang
- Shanghai Advanced Research Institute
- Chinese Academy of Sciences
- China
| | - Binqian Xu
- Single Molecule Study Laboratory
- College of Engineering
- University of Georgia
- Athens
- USA
| | - Xingfei Zhou
- School of Physics Science and Technology
- Ningbo University
- China
| |
Collapse
|
9
|
Naletova I, Grasso GI, Satriano C, Travaglia A, La Mendola D, Arena G, Rizzarelli E. Copper complexes of synthetic peptides mimicking neurotrophin-3 enhance neurite outgrowth and CREB phosphorylation. Metallomics 2019; 11:1567-1578. [PMID: 31482903 DOI: 10.1039/c9mt00045c] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this work we report on the synthesis and physiochemical/biological characterization of a peptide encompassing the first thirteen residues of neurotrophin-3 (NT-3). The protein capability to promote neurite outgrowth and axonal branching by a downstream mechanism that involves the increase of the cAMP response element-binding level (CREB) was found for the NT3(1-13) peptide, thus validating its protein mimetic behaviour. Since copper ions are also involved in neurotransmission and their internalization may be an essential step in neuron differentiation and CREB phosphorylation, the peptide and its copper complexes were characterized by potentiometric and spectroscopic techniques, including UV-visible, CD and EPR. To have a detailed picture of the coordination features of the copper complexes with NT3(1-13), we also scrutinized the two peptide fragments encompassing the shorter sequences 1-5 and 5-13, respectively, showing that the amino group is the main anchoring site for Cu(ii) at physiological pH. The peptide activity increased in the presence of copper ions. The effect of copper(ii) addition is more marked for NT3(1-13) than the other two peptide fragments, in agreement with its higher affinity for metal ions. Confocal microscopy measurements carried out on fluorescently labelled NT3(1-13) indicated that copper ions increase peptide internalization.
Collapse
Affiliation(s)
- Irina Naletova
- Department of Chemical Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy.
| | - Giuseppa Ida Grasso
- Department of Chemical Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy.
| | - Cristina Satriano
- Department of Chemical Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy.
| | - Alessio Travaglia
- Department of Chemical Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy.
| | - Diego La Mendola
- Department of Pharmacy, University of Pisa, Via Bonanno Pisano 6, 56126 Pisa, Italy.
| | - Giuseppe Arena
- Department of Chemical Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy.
| | - Enrico Rizzarelli
- Department of Chemical Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy. and Institute of Crystallography UOS Catania, National Council of Research (IC-CNR), Via Paolo Gaifami 18, I-95126 Catania, Italy
| |
Collapse
|
10
|
Stevenson MJ, Uyeda KS, Harder NHO, Heffern MC. Metal-dependent hormone function: the emerging interdisciplinary field of metalloendocrinology. Metallomics 2019; 11:85-110. [PMID: 30270362 PMCID: PMC10249669 DOI: 10.1039/c8mt00221e] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
For over 100 years, there has been an incredible amount of knowledge amassed concerning hormones in the endocrine system and their central role in human health. Hormones represent a diverse group of biomolecules that are released by glands, communicate signals to their target tissue, and are regulated by feedback loops to maintain organism health. Many disease states, such as diabetes and reproductive disorders, stem from misregulation or dysfunction of hormones. Increasing research is illuminating the intricate roles of metal ions in the endocrine system where they may act advantageously in concert with hormones or deleteriously catalyze hormone-associated disease states. As the critical role of metal ions in the endocrine system becomes more apparent, it is increasingly important to untangle the complex mechanisms underlying the connections between inorganic biochemistry and hormone function to understand and control endocrinological phenomena. This tutorial review harmonizes the interdisciplinary fields of endocrinology and inorganic chemistry in the newly-termed field of "metalloendocrinology". We describe examples linking metals to both normal and aberrant hormone function with a focus on highlighting insight to molecular mechanisms. Hormone activities related to both essential metal micronutrients, such as copper, iron, zinc, and calcium, and disruptive nonessential metals, such as lead and cadmium are discussed.
Collapse
Affiliation(s)
- Michael J Stevenson
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA.
| | | | | | | |
Collapse
|
11
|
Atrián-Blasco E, Gonzalez P, Santoro A, Alies B, Faller P, Hureau C. Cu and Zn coordination to amyloid peptides: From fascinating chemistry to debated pathological relevance. Coord Chem Rev 2018; 375:38-55. [PMID: 30262932 DOI: 10.1016/j.ccr.2018.04.007] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Several diseases share misfolding of different peptides and proteins as a key feature for their development. This is the case of important neurodegenerative diseases such as Alzheimer's and Parkinson's diseases and type II diabetes mellitus. Even more, metal ions such as copper and zinc might play an important role upon interaction with amyloidogenic peptides and proteins, which could impact their aggregation and toxicity abilities. In this review, the different coordination modes proposed for copper and zinc with amyloid-β, α-synuclein and IAPP will be reviewed as well as their impact on the aggregation, and ROS production in the case of copper. In addition, a special focus will be given to the mutations that affect metal binding and lead to familial cases of the diseases. Different modifications of the peptides that have been observed in vivo and could be relevant for the coordination of metal ions are also described.
Collapse
Affiliation(s)
- Elena Atrián-Blasco
- CNRS, LCC (Laboratoire de Chimie de Coordination), 205 route de Narbonne, BP 44099 31077 Toulouse Cedex 4, France
- University of Toulouse, UPS, INPT, 31077 Toulouse Cedex 4, France
| | - Paulina Gonzalez
- Biometals and Biology Chemistry, Institut de Chimie (CNRS UMR7177), Université de Strasbourg, 4 rue B. Pascal, 67081 Strasbourg, France
- University of Strasbourg Institute for Advanced Study (USIAS), Strasbourg, France
| | - Alice Santoro
- Biometals and Biology Chemistry, Institut de Chimie (CNRS UMR7177), Université de Strasbourg, 4 rue B. Pascal, 67081 Strasbourg, France
- University of Strasbourg Institute for Advanced Study (USIAS), Strasbourg, France
| | - Bruno Alies
- Université de Bordeaux, ChemBioPharm INSERM U1212 CNRS UMR 5320, Bordeaux, France
| | - Peter Faller
- Biometals and Biology Chemistry, Institut de Chimie (CNRS UMR7177), Université de Strasbourg, 4 rue B. Pascal, 67081 Strasbourg, France
- University of Strasbourg Institute for Advanced Study (USIAS), Strasbourg, France
| | - Christelle Hureau
- CNRS, LCC (Laboratoire de Chimie de Coordination), 205 route de Narbonne, BP 44099 31077 Toulouse Cedex 4, France
- University of Toulouse, UPS, INPT, 31077 Toulouse Cedex 4, France
| |
Collapse
|
12
|
Magrì A, La Mendola D. Copper Binding Features of Tropomyosin-Receptor-Kinase-A Fragment: Clue for Neurotrophic Factors and Metals Link. Int J Mol Sci 2018; 19:ijms19082374. [PMID: 30103559 PMCID: PMC6121459 DOI: 10.3390/ijms19082374] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 08/01/2018] [Accepted: 08/07/2018] [Indexed: 12/31/2022] Open
Abstract
The nerve growth factor (NGF) is a neurotrophin essential for the development and maintenance of neurons, whose activity is influenced by copper ions. The NGF protein exerts its action by binding to its specific receptor, TrkA. In this study, a specific domain of the TrkA receptor, region 58⁻64, was synthesized and its copper(II) complexes characterized by means of potentiometric and spectroscopic studies. The two vicinal histidine residues provide excellent metal anchoring sites and, at physiological pH, a complex with the involvement of the peptide backbone amide nitrogen is the predominant species. The TrkA peptide is competitive for metal binding with analogous peptides due to the N-terminal domain of NGF. These data provide cues for future exploration of the effect of metal ions on the activity of the NGF and its specific cellular receptor.
Collapse
Affiliation(s)
- Antonio Magrì
- Institute of Biostructures and Bioimages, National Council of Research (CNR), Via Paolo Gaifami 18, 95126 Catania, Italy.
- Consorzio Interuniversitario di Ricerca in Chimica dei Metalli nei Sistemi Biologici (CIRCMSB), via Celso Ulpiani, 27, 70125 Bari, Italy.
| | - Diego La Mendola
- Consorzio Interuniversitario di Ricerca in Chimica dei Metalli nei Sistemi Biologici (CIRCMSB), via Celso Ulpiani, 27, 70125 Bari, Italy.
- Department of Pharmacy, University of Pisa, Via Bonanno Pisano 6, 56126 Pisa, Italy.
| |
Collapse
|
13
|
Magrì A, Tabbì G, Breglia R, De Gioia L, Fantucci P, Bruschi M, Bonomo RP, La Mendola D. Copper ion interaction with the RNase catalytic site fragment of the angiogenin protein: an experimental and theoretical investigation. Dalton Trans 2018. [PMID: 28636006 DOI: 10.1039/c7dt01209h] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The angiogenin protein (Ang) is a member of the vertebrate-specific secreted ribonucleases and one of the most potent angiogenic factors known. Ang is a normal constituent of human plasma and its concentration increases under some physiological and pathological conditions to promote neovascularization. Ang was originally identified as an angiogenic tumour factor, but its biological activity has been found to extend from inducing angiogenesis to promoting cell survival in different neurodegenerative diseases. Ang exhibits weak ribonucleolytic activity, which is critical for its biological functions. The RNase catalytic sites are two histidine residues, His-13 and His-114, and the lysine Lys-40. Copper is also an essential cofactor in angiogenesis and influences angiogenin's biological properties. The main Cu(ii) anchoring site of Ang is His-114, where metal binding inhibits RNase activity of the protein. To reveal the Cu(ii) coordination environment in the C-terminal domain of the Ang protein, we report on the characterization, by means of potentiometric, voltammetric, and spectroscopic (CD, UV-Vis and EPR) methods and DFT calculations, of Cu(ii) complexes formed with a peptide fragment including the Ang sequence 112-117 (PVHLDQ). Potentiometric titrations indicated that [CuLH-2] is the predominant species at physiological pH. EPR, voltammetric data and DFT calculations are consistent with a CuN3O2 coordination mode in which a distorted square pyramidal arrangement of the peptide was observed with the equatorial positions occupied by the nitrogen atoms of the deprotonated amides of the Asp and Leu residues, the δ-N atom of histidine and the oxygen atom of the aspartic carboxylic group. Moreover, two analogous peptides encompassing the PVHLNQ and LVHLDQ sequences were also characterized by using thermodynamic, spectroscopic and DFT studies to reveal the role they play in Cu(ii) complex formation by the carboxylate side chain of the Asp and Pro residues, a known breaking-point in metal coordination.
Collapse
Affiliation(s)
- Antonio Magrì
- Consiglio Nazionale delle Ricerche, Istituto di Biostrutture e Bioimmagini (IBB-CNR), Via P. Gaifami 18, 95126 Catania, Italy
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Dávid Á, Hartman ÉT, Lihi N, Sóvágó I, Várnagy K. Complex formation of nickel(ii) and zinc(ii) ions with peptide fragments of rat amylin. NEW J CHEM 2018. [DOI: 10.1039/c7nj04605g] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
For nickel(ii)-SSNX-NH2 an equilibrium between the common (NH2,3N−(peptide)) and (NH2,2N−(peptide),N−(asparagine)) coordination modes was observed in a basic solution resulting in an increased stability of the complexes.
Collapse
Affiliation(s)
- Ágnes Dávid
- Department of Inorganic and Analytical Chemistry
- University of Debrecen
- Egyetem tér 1
- Hungary
| | - Éva Tünde Hartman
- Department of Inorganic and Analytical Chemistry
- University of Debrecen
- Egyetem tér 1
- Hungary
| | - Norbert Lihi
- MTA-DE Redox and Homogeneous Catalytic Reaction Mechanisms Research Group
- University of Debrecen
- Egyetem tér 1
- Hungary
| | - Imre Sóvágó
- Department of Inorganic and Analytical Chemistry
- University of Debrecen
- Egyetem tér 1
- Hungary
| | - Katalin Várnagy
- Department of Inorganic and Analytical Chemistry
- University of Debrecen
- Egyetem tér 1
- Hungary
| |
Collapse
|
15
|
Magrì A, Grasso G, Corti F, Finetti F, Greco V, Santoro AM, Sciuto S, La Mendola D, Morbidelli L, Rizzarelli E. Peptides derived from the histidine–proline rich glycoprotein bind copper ions and exhibit anti-angiogenic properties. Dalton Trans 2018; 47:9492-9503. [DOI: 10.1039/c8dt01560k] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A peptide belonging to the histidine–proline rich glycoprotein binds copper(ii), inhibiting metal angiogenic responses in endothelial cells.
Collapse
Affiliation(s)
- Antonio Magrì
- Istituto di Biostrutture eBioimmagini-CNR
- 95126 Catania
- Italy
| | - Giulia Grasso
- Istituto di Biostrutture eBioimmagini-CNR
- 95126 Catania
- Italy
| | - Federico Corti
- Yale Cardiovascular Research Center
- Yale University
- New Haven
- USA
| | - Federica Finetti
- Dipartimento di Biotecnologie
- Chimica e Farmacia
- Università di Siena
- 53100 Siena
- Italy
| | - Valentina Greco
- Dipartimento di Scienze Chimiche
- Università di Catania
- 95125 Catania
- Italy
| | | | - Sebastiano Sciuto
- Dipartimento di Scienze Chimiche
- Università di Catania
- 95125 Catania
- Italy
| | | | - Lucia Morbidelli
- Dipartimento di Scienze della Vita
- Università di Siena
- 53100 Siena
- Italy
| | - Enrico Rizzarelli
- Dipartimento di Scienze Chimiche
- Università di Catania
- 95125 Catania
- Italy
| |
Collapse
|
16
|
Magrì A, Pietropaolo A, Tabbì G, La Mendola D, Rizzarelli E. From Peptide Fragments to Whole Protein: Copper(II) Load and Coordination Features of IAPP. Chemistry 2017; 23:17898-17902. [PMID: 29111583 DOI: 10.1002/chem.201704910] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Indexed: 12/28/2022]
Abstract
The copper-binding features of rat islet amyloid polypeptide (r-IAPP) are herein disclosed through the determination of the stability constants and spectroscopic properties of its copper complex species. To mimic the metal binding sites of the human IAPP (h-IAPP), a soluble, single-point mutated variant of r-IAPP, having a histidine residue in place of Arg18, was synthesized, that is, r-IAPP(1-37; R18H). The peptide IAPP(1-8) was also characterized to have deeper insight into the N-terminus copper(II)-binding features of r-IAPP as well as of its mutated form. A combined experimental (thermodynamic and spectroscopic) and computational approach allowed us to assess the metal loading and the coordination features of the whole IAPP. At physiological pH, the N-terminal amino group is the Cu2+ main binding site both of entire r-IAPP and of its mutated form that mimics h-IAPP. The histidine residue present in this mutated polypeptide accounts for the second Cu2+ binding. We can speculate that the copper driven toxicity of h-IAPP in comparison to that of r-IAPP can be attributed to the different metal loading and the presence of a second metal anchoring site, the His18 , whose role is usually invoked in the process of h-IAPP aggregation.
Collapse
Affiliation(s)
- Antonio Magrì
- Istituto di Biostrutture e Bioimmagini-CNR, Via P. Gaifami 18, 95126, Catania, Italy
| | - Adriana Pietropaolo
- Dipartimento di Scienze della Salute, Università "Magna Graecia" di Catanzaro, Campus Universitario, Viale Europa, 88100, Catanzaro, Italy
| | - Giovanni Tabbì
- Istituto di Biostrutture e Bioimmagini-CNR, Via P. Gaifami 18, 95126, Catania, Italy
| | - Diego La Mendola
- Dipartimento di Farmacia, Università di Pisa, Via Bonanno Pisano 6, 56126, Pisa, Italy
| | - Enrico Rizzarelli
- Istituto di Biostrutture e Bioimmagini-CNR, Via P. Gaifami 18, 95126, Catania, Italy.,Dipartimento di Scienze Chimiche, Università di Catania, Viale A. Doria, 5, 95125, Catania, Italy
| |
Collapse
|
17
|
Sánchez-López C, Cortés-Mejía R, Miotto MC, Binolfi A, Fernández CO, Del Campo JM, Quintanar L. Copper Coordination Features of Human Islet Amyloid Polypeptide: The Type 2 Diabetes Peptide. Inorg Chem 2016; 55:10727-10740. [PMID: 27704849 DOI: 10.1021/acs.inorgchem.6b01963] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Human islet amyloid polypeptide (hIAPP) is the major component of amyloid deposits found in pancreatic β-cells of patients with type 2 diabetes (T2D). Copper ions have an inhibitory effect on the amyloid aggregation of hIAPP, and they may play a role in the etiology of T2D. However, deeper knowledge of the structural details of the copper-hIAPP interaction is required to understand the molecular mechanisms involved. Here, we performed a spectroscopic study of Cu(II) binding to hIAPP and several variants, using electron paramagnetic resonance (EPR), nuclear magnetic resonance (NMR), electronic absorption, and circular dichroism (CD) in the UV-vis region in combination with Born-Oppenheimer molecular dynamics (BOMD) and density functional theory geometry optimizations. We find that Cu(II) binds to the imidazole N1 of His18, the deprotonated amides of Ser19 and Ser20, and an oxygen-based ligand provided by Ser20, either via its hydroxyl group or its backbone carbonyl, while Asn22 might also play a role as an axial ligand. Ser20 plays a crucial role in stabilizing Cu(II) coordination toward the C-terminal, providing a potential link between the S20G mutation associated with early onset of T2D, its impact in Cu binding properties, and hIAPP amyloid aggregation. Our study defines the nature of the coordination environment in the Cu(II)-hIAPP complex, revealing that the amino acid residues involved in metal ion binding are also key residues for the formation of β-sheet structures and amyloid fibrils. Cu(II) binding to hIAPP may lead to the coexistence of more than one coordination mode, which in turn could favor different sets of Cu-induced conformational ensembles. Cu-induced hIAPP conformers would display a higher energetic barrier to form amyloid fibrils, hence explaining the inhibitory effect of Cu ions in hIAPP aggregation. Overall, this study provides further structural insights into the bioinorganic chemistry of T2D.
Collapse
Affiliation(s)
- Carolina Sánchez-López
- Departamento de Química, Centro de Investigación y de Estudios Avanzados (Cinvestav) , Mexico City, Mexico
| | - Rodrigo Cortés-Mejía
- Departamento de Física y Química Teórica, Facultad de Química, Universidad Nacional Autónoma de México (UNAM) , Mexico City, Mexico
| | - Marco C Miotto
- Max Planck Laboratory for Structural Biology, Chemistry and Molecular Biophysics of Rosario (MPLbioR, UNR-MPIbpC) and Instituto de Investigaciones para el Descubrimiento de Fármacos de Rosario (IIDEFAR, UNR-CONICET), Universidad Nacional de Rosario , Ocampo y Esmeralda, S2002LRK Rosario, Argentina
| | - Andres Binolfi
- Max Planck Laboratory for Structural Biology, Chemistry and Molecular Biophysics of Rosario (MPLbioR, UNR-MPIbpC) and Instituto de Investigaciones para el Descubrimiento de Fármacos de Rosario (IIDEFAR, UNR-CONICET), Universidad Nacional de Rosario , Ocampo y Esmeralda, S2002LRK Rosario, Argentina
| | - Claudio O Fernández
- Max Planck Laboratory for Structural Biology, Chemistry and Molecular Biophysics of Rosario (MPLbioR, UNR-MPIbpC) and Instituto de Investigaciones para el Descubrimiento de Fármacos de Rosario (IIDEFAR, UNR-CONICET), Universidad Nacional de Rosario , Ocampo y Esmeralda, S2002LRK Rosario, Argentina
| | - Jorge M Del Campo
- Departamento de Física y Química Teórica, Facultad de Química, Universidad Nacional Autónoma de México (UNAM) , Mexico City, Mexico
| | - Liliana Quintanar
- Departamento de Química, Centro de Investigación y de Estudios Avanzados (Cinvestav) , Mexico City, Mexico
| |
Collapse
|
18
|
Hamasaki H, Kawashima Y, Yanai H. Serum Zn/Cu Ratio Is Associated with Renal Function, Glycemic Control, and Metabolic Parameters in Japanese Patients with and without Type 2 Diabetes: A Cross-sectional Study. Front Endocrinol (Lausanne) 2016; 7:147. [PMID: 27895622 PMCID: PMC5108809 DOI: 10.3389/fendo.2016.00147] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 11/01/2016] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Zinc (Zn) and copper (Cu) may play a pivotal role in the pathogenesis of diabetes and diabetic complications by mediating oxidative stress. Both Zn deficiency and excess of Cu are associated with an increased risk of type 2 diabetes and cardiovascular disease. We aimed to investigate the relationships between serum Zn/Cu ratio and glycemic status, renal function, and metabolic parameters in patients with and without type 2 diabetes. METHODS We conducted a cross-sectional study on 355 subjects (149 type 2 diabetic and 206 non-diabetic) in whom serum Zn and Cu levels were measured at the same time. Associations between serum Zn/Cu ratio and clinical data were evaluated using multiple regression analysis. We also evaluated associations between serum Zn/Cu ratio and the prevalence of type 2 diabetes and glycemic control by multivariate logistic regression analysis. RESULTS Serum Zn/Cu ratio was positively associated with estimated glomerular filtration rate after adjustment for body mass index (BMI) (β = 0.137, p = 0.014). Plasma B-type natriuretic peptide levels were negatively associated with serum Zn/Cu ratio after adjustment for age, sex, and BMI (β = -0.258, p = 0.032). In patients with type 2 diabetes, serum Zn/Cu ratio was negatively associated with plasma HbA1c levels after adjustment for age, sex, and BMI (β = -0.239, p = 0.003). In addition, multivariate logistic regression analysis revealed that the highest quartile of serum Zn/Cu ratio was associated with a reduced risk of poor (HbA1c ≥ 7%) glycemic control (odds ratio = 0.382; 95% confidence interval, 0.165-0.884; p = 0.025) in patients with type 2 diabetes. CONCLUSION Serum Zn/Cu ratio was favorably associated with renal function in all subjects and glycemic control in patients with type 2 diabetes. The Zn/Cu ratio, in addition to the individual serum levels of trace elements, is important for metabolism in humans.
Collapse
Affiliation(s)
- Hidetaka Hamasaki
- Department of Internal Medicine, National Center for Global Health and Medicine, Kohnodai Hospital, Chiba, Japan
- *Correspondence: Hidetaka Hamasaki,
| | - Yu Kawashima
- Department of Radiology, Chiba University Hospital, Chiba, Japan
| | - Hidekatsu Yanai
- Department of Internal Medicine, National Center for Global Health and Medicine, Kohnodai Hospital, Chiba, Japan
| |
Collapse
|