1
|
Kawashiro M, Mori T, Ito M, Ando N, Yamaguchi S. Photodissociative Modules that Control Dual-Emission Properties in Donor-π-Acceptor Organoborane Fluorophores. Angew Chem Int Ed Engl 2023; 62:e202303725. [PMID: 37014627 DOI: 10.1002/anie.202303725] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 03/31/2023] [Accepted: 04/03/2023] [Indexed: 04/05/2023]
Abstract
Donor-π-acceptor fluorophores that consist of an electron-donating amino group and an electron-accepting triarylborane moiety generally exhibit substantial solvatochromism in their fluorescence while retaining high fluorescence quantum yields even in polar media. Herein, we report a new family of this compound class, which bears ortho-P(=X)R2 -substituted phenyl groups (X=O or S) as a photodissociative module. The P=X moiety that intramolecularly coordinates to the boron atom undergoes dissociation in the excited state, giving rise to dual emission from the corresponding tetra- and tricoordinate boron species. The susceptibility of the systems to photodissociation depends on the coordination ability of the P=O and P=S moieties, whereby the latter facilitates dissociation. The intensity ratios of the dual emission bands are sensitive to environmental parameters, including temperature, solution polarity, and the viscosity of the medium. Moreover, precise tuning of the P(=X)R2 group and the electron-donating amino moiety led to single-molecule white emission in solution.
Collapse
Affiliation(s)
- Midori Kawashiro
- Department of Chemistry, Graduate School of Science and Integrated Research Consortium on Chemical Sciences (IRCCS), Nagoya University, Furo, Chikusa, Nagoya, 464-8602, Japan
| | - Tatsuya Mori
- Department of Chemistry, Graduate School of Science and Integrated Research Consortium on Chemical Sciences (IRCCS), Nagoya University, Furo, Chikusa, Nagoya, 464-8602, Japan
| | - Masato Ito
- Department of Chemistry, Graduate School of Science and Integrated Research Consortium on Chemical Sciences (IRCCS), Nagoya University, Furo, Chikusa, Nagoya, 464-8602, Japan
| | - Naoki Ando
- Department of Chemistry, Graduate School of Science and Integrated Research Consortium on Chemical Sciences (IRCCS), Nagoya University, Furo, Chikusa, Nagoya, 464-8602, Japan
| | - Shigehiro Yamaguchi
- Department of Chemistry, Graduate School of Science and Integrated Research Consortium on Chemical Sciences (IRCCS), Nagoya University, Furo, Chikusa, Nagoya, 464-8602, Japan
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo, Chikusa, Nagoya, 464-8601, Japan
| |
Collapse
|
2
|
Zhou QD, Hu GF, Sarfaraz S, Ayub K, Xiao B, Liu K, Yin X, Wang N. Internal B ← O Bond Facilitated Photo/Thermal Isomerization of Tetra-Coordinated Boranes. Inorg Chem 2023; 62:7061-7068. [PMID: 37121904 DOI: 10.1021/acs.inorgchem.3c00450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
A new series of O∧C-chelate tetra-coordinated boranes with naphtha-aldehyde as the chelate backbone have been synthesized. Their photophysical and photochemical properties have been examined, which show that all of the compounds can undergo both photo and thermal transformations, generating aryl-migrated [1,2]oxaborinine derivatives as the major products. 1,3-Sigmatropic shifts and an intramolecular nucleophilic addition mechanism are proposed for the photochemical and thermal conversion pathways, respectively.
Collapse
Affiliation(s)
- Qing-Dong Zhou
- Key Laboratory of Cluster Science, Ministry of Education of China, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, P. R. China
| | - Guo-Fei Hu
- Key Laboratory of Cluster Science, Ministry of Education of China, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, P. R. China
| | - Sehrish Sarfaraz
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, KPK 22060, Pakistan
| | - Khurshid Ayub
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, KPK 22060, Pakistan
| | - Beibei Xiao
- Key Laboratory of Cluster Science, Ministry of Education of China, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, P. R. China
| | - Kanglei Liu
- Key Laboratory of Cluster Science, Ministry of Education of China, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, P. R. China
| | - Xiaodong Yin
- Key Laboratory of Cluster Science, Ministry of Education of China, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, P. R. China
| | - Nan Wang
- Key Laboratory of Cluster Science, Ministry of Education of China, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, P. R. China
| |
Collapse
|
3
|
Shi Y, Zeng Y, Kucheryavy P, Yin X, Zhang K, Meng G, Chen J, Zhu Q, Wang N, Zheng X, Jäkle F, Chen P. Dynamic B/N Lewis Pairs: Insights into the Structural Variations and Photochromism via Light-Induced Fluorescence to Phosphorescence Switching. Angew Chem Int Ed Engl 2022; 61:e202213615. [PMID: 36287039 DOI: 10.1002/anie.202213615] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Indexed: 11/18/2022]
Abstract
Ultralong afterglow emissions due to room-temperature phosphorescence (RTP) are of paramount importance in the advancement of smart sensors, bioimaging and light-emitting devices. We herein present an efficient approach to achieve rarely accessible phosphorescence of heavy atom-free organoboranes via photochemical switching of sterically tunable fluorescent Lewis pairs (LPs). LPs are widely applied in and well-known for their outstanding performance in catalysis and supramolecular soft materials but have not thus far been exploited to develop photo-responsive RTP materials. The intramolecular LP M1BNM not only shows a dynamic response to thermal treatment due to reversible N→B coordination but crystals of M1BNM also undergo rapid photochromic switching. As a result, unusual emission switching from short-lived fluorescence to long-lived phosphorescence (rad-M1BNM, τRTP =232 ms) is observed. The reported discoveries in the field of Lewis pairs chemistry offer important insights into their structural dynamics, while also pointing to new opportunities for photoactive materials with implications for fast responsive detectors.
Collapse
Affiliation(s)
- Yafei Shi
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology of China, Beijing, 102488, China
| | - Yi Zeng
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology of China, Beijing, 102488, China
| | - Pavel Kucheryavy
- Department of Chemistry, Rutgers University-Newark, 73 Warren Street, Newark, NJ 07102, USA
| | - Xiaodong Yin
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology of China, Beijing, 102488, China
| | - Kai Zhang
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology of China, Beijing, 102488, China
| | - Guoyun Meng
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology of China, Beijing, 102488, China
| | - Jinfa Chen
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology of China, Beijing, 102488, China
| | - Qian Zhu
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology of China, Beijing, 102488, China
| | - Nan Wang
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology of China, Beijing, 102488, China
| | - Xiaoyan Zheng
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology of China, Beijing, 102488, China
| | - Frieder Jäkle
- Department of Chemistry, Rutgers University-Newark, 73 Warren Street, Newark, NJ 07102, USA
| | - Pangkuan Chen
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology of China, Beijing, 102488, China
| |
Collapse
|
4
|
Tian G, Chen JF, Zhang K, Shi Y, Li C, Yin X, Liu K, Chen P. Applying the B/N Lewis Pair Approach to Access Fusion-Expanded Binaphthyl-Based Chiral Analogues. Inorg Chem 2022; 61:15315-15319. [PMID: 36135458 DOI: 10.1021/acs.inorgchem.2c02875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We herein describe the synthesis of two axially chiral systems (HBN and BBN) by the incorporation of B centers into binaphthyl derivatives (HPy and BPy). Heteroatom-doped chiral polycyclic aromatic hydrocarbons were thus formed by fusion of the azaboroles to binaphthyls with the formation of B-N dative bonds. The resulting B-N Lewis pairs that serve as attractive fluorophores enabled modulation of the chiroptical properties both in solution and in the solid state.
Collapse
Affiliation(s)
- Guoqing Tian
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, and Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology of China, Beijing 102488, China
| | - Jin-Fa Chen
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, and Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology of China, Beijing 102488, China
| | - Kai Zhang
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, and Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology of China, Beijing 102488, China
| | - Yafei Shi
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, and Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology of China, Beijing 102488, China
| | - Chenglong Li
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, and Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology of China, Beijing 102488, China
| | - Xiaodong Yin
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, and Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology of China, Beijing 102488, China
| | - Kanglei Liu
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, and Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology of China, Beijing 102488, China
| | - Pangkuan Chen
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, and Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology of China, Beijing 102488, China
| |
Collapse
|
5
|
Shi Y, Li C, Ma H, Cao Z, Liu K, Yin X, Wang N, Chen P. Two-in-One Approach toward White-Light Emissions of Dimeric B/N Lewis Pairs by Tuning the Ortho-Substitution Effect. Org Lett 2022; 24:5497-5502. [PMID: 35856805 DOI: 10.1021/acs.orglett.2c02344] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A new family of dimeric B/N Lewis pairs with sterically tunable substitutions has been accomplished using the Two-in-One design strategy. Their structures are characteristic of doubly B/N-containing cores, and the electronic interactions between B and N centers can be modulated by the steric effects of ortho-substitutions from methyl groups. Interestingly, unique white-light emissions were achieved for 2M'2BNM and 1M2BNM, ascribed to the integration of two triarylborane species (Bsp2- and Bsp3-hybridization) into one single molecule.
Collapse
Affiliation(s)
- Yafei Shi
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology of China, Beijing 102488, People's Republic of China
| | - Chenglong Li
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology of China, Beijing 102488, People's Republic of China
| | - Hongwei Ma
- Analysis & Testing Centre, Beijing Institute of Technology of China, Beijing 102488, China
| | - Zhao Cao
- School of Material Science & Engineering, Beijing Institute of Technology of China, Beijing 102488, China
| | - Kanglei Liu
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology of China, Beijing 102488, People's Republic of China
| | - Xiaodong Yin
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology of China, Beijing 102488, People's Republic of China
| | - Nan Wang
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology of China, Beijing 102488, People's Republic of China
| | - Pangkuan Chen
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology of China, Beijing 102488, People's Republic of China
| |
Collapse
|
6
|
Mondal D, Sardar G, Kabra D, Balakrishna MS. 2,2'-Bipyridine derived doubly B ← N fused bisphosphine-chalcogenides, [C 5H 3N(BF 2){NCH 2P(E)Ph 2}] 2 (E = O, S, Se): tuning of structural features and photophysical studies. Dalton Trans 2022; 51:6884-6898. [PMID: 35441638 DOI: 10.1039/d2dt00287f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
2,2'-Bipyridine based bisphosphine [C5H3N{N(H)CH2PPh2}]2 (1) and its bischalcogenide derivatives [C5H3N{N(H)CH2P(E)Ph2}]2 (2, E = O; 3, E = S; 4, E = Se) were synthesized, and further reacted with BF3·Et2O/Et3N to form doubly B ← N fused compounds [C5H3N(BF2){NCH2P(E)Ph2}]2 (5, E = O; 6, E = S; 7, E = Se) in excellent yields. The influence of the PE bonds on the electronic properties of the doubly B ← N fused systems and their structural features were investigated in detail, supported by extensive experimental and computational studies. Compound 6 exhibited a very high quantum yield of ϕ = 0.56 in CH2Cl2, whereas compound 7 showed a least quantum yield of ϕ = 0.003 in acetonitrile. Density functional theory (DFT) calculations demonstrated that the LUMO/HOMO of compounds 5-7 mostly delocalized over the entire π-conjugated frameworks. The involvement of PE bonds in the HOMO energy level of these compounds follows the order: PO < PS < PSe. Time-correlated single photon counting (TCSPC) experiments of compounds 5-7 revealed the singlet lifetime of 4.26 ns for 6, followed by 4.03 ns for 5 and a lowest value of 2.18 ns (τ1) and 0.47 ns (τ2) with a double decay profile for 7. Our findings provide important strategies for the design of highly effective B ← N bridged compounds and tuning their photophysical properties by oxidizing phosphorus with different chalcogens. Compounds 5 and 6 have been employed as green emitters (λem = 515 nm) in fluorescent organic light-emitting diodes (OLEDs). For compound 5, doped into the poly(9-vinylcarbazole) (PVK) matrix with 5 wt% doping concentration, nearly 90 Cd m-2 luminance with 0.022% external quantum efficiency (EQE) was achieved. The best performance was observed for compound 6 doped into PVK by 1 wt% having a maximum luminance of 350 Cd m-2 and a similar EQE value.
Collapse
Affiliation(s)
- Dipanjan Mondal
- Phosphorus Laboratory, Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.
| | - Gopa Sardar
- Department of Physics, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.
| | - Dinesh Kabra
- Department of Physics, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.
| | - Maravanji S Balakrishna
- Phosphorus Laboratory, Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.
| |
Collapse
|
7
|
Murali AC, Nayak P, Venkatasubbaiah K. Recent advances in the synthesis of luminescent tetra-coordinated boron compounds. Dalton Trans 2022; 51:5751-5771. [PMID: 35343524 DOI: 10.1039/d2dt00160h] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Tetra-coordinated boron compounds offer a plethora of luminescent materials. Different chelation around the boron center (O,O-, N,C-, N,O-, and N,N-) has been explored to tune the electronic and photophysical properties of tetra-coordinated boron compounds. A number of fascinating molecules with interesting properties such as aggregation induced emission, mechanochromism and tunable emission by changing the solvent polarity were realised. Owing to their rich and unique properties, some of the molecules have shown applications in making optoelectronic devices, probes and so on. This perspective provides an overview of the recent developments of tetra-coordinated boron compounds and their potential applications.
Collapse
Affiliation(s)
- Anna Chandrasekar Murali
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), an OCC of Homi Bhabha National Institute, Bhubaneswar-752050, Odisha, India.
| | - Prakash Nayak
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), an OCC of Homi Bhabha National Institute, Bhubaneswar-752050, Odisha, India.
| | - Krishnan Venkatasubbaiah
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), an OCC of Homi Bhabha National Institute, Bhubaneswar-752050, Odisha, India.
| |
Collapse
|
8
|
Vanga M, Sahoo A, Lalancette RA, Jäkle F. Linear Extension of Anthracene via B←N Lewis Pair Formation: Effects on Optoelectronic Properties and Singlet O
2
Sensitization. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202113075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Mukundam Vanga
- Department of Chemistry Rutgers University-Newark 73 Warren Street Newark NJ 07102 USA
| | - Ashutosh Sahoo
- Department of Chemistry Rutgers University-Newark 73 Warren Street Newark NJ 07102 USA
| | - Roger A. Lalancette
- Department of Chemistry Rutgers University-Newark 73 Warren Street Newark NJ 07102 USA
| | - Frieder Jäkle
- Department of Chemistry Rutgers University-Newark 73 Warren Street Newark NJ 07102 USA
| |
Collapse
|
9
|
Vanga M, Sahoo A, Lalancette RA, Jäkle F. Linear Extension of Anthracene via B←N Lewis Pair Formation: Effects on Optoelectronic Properties and Singlet O 2 Sensitization. Angew Chem Int Ed Engl 2021; 61:e202113075. [PMID: 34847268 DOI: 10.1002/anie.202113075] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Indexed: 11/12/2022]
Abstract
The functionalization of polycyclic aromatic hydrocarbons (PAHs) via B←N Lewis pair formation offers an opportunity to judiciously fine-tune the structural features and optoelectronic properties, to suit the demands of applications in organic electronic devices, bioimaging, and as sensitizers for singlet oxygen generation. We demonstrate that the N-directed electrophilic borylation of 2,6-di(pyrid-2-yl)anthracene offers access to linearly extended acene derivatives Py-BR (R=Et, Ph, C6 F5 ). In comparison to indeno-fused 9,10-diphenylanthracene, the formal "BN for CC" replacement in Py-BR selectively lowers the LUMO, resulting in a much reduced HOMO-LUMO gap. An even more extended conjugated system with seven six-membered rings in a row (Qu-BEt) is obtained by borylation of 2,6-di(quinolin-8-yl)anthracene. Fluorinated Py-BPf shows particularly advantageous properties, including relatively lower-lying HOMO and LUMO levels, strong yellow-green fluorescence, and effective singlet oxygen sensitization, while resisting self-sensitized conversion to its endoperoxide.
Collapse
Affiliation(s)
- Mukundam Vanga
- Department of Chemistry, Rutgers University-Newark, 73 Warren Street, Newark, NJ, 07102, USA
| | - Ashutosh Sahoo
- Department of Chemistry, Rutgers University-Newark, 73 Warren Street, Newark, NJ, 07102, USA
| | - Roger A Lalancette
- Department of Chemistry, Rutgers University-Newark, 73 Warren Street, Newark, NJ, 07102, USA
| | - Frieder Jäkle
- Department of Chemistry, Rutgers University-Newark, 73 Warren Street, Newark, NJ, 07102, USA
| |
Collapse
|
10
|
Fritze L, Fest M, Helbig A, Bischof T, Krummenacher I, Braunschweig H, Finze M, Helten H. Boron-Doped α-Oligo- and Polyfurans: Highly Luminescent Hybrid Materials, Color-Tunable through the Doping Density. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c01267] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Lars Fritze
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron (ICB), Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Maximilian Fest
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron (ICB), Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Andreas Helbig
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron (ICB), Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Tobias Bischof
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron (ICB), Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Ivo Krummenacher
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron (ICB), Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Holger Braunschweig
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron (ICB), Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Maik Finze
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron (ICB), Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Holger Helten
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron (ICB), Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| |
Collapse
|
11
|
Sukhikh TS, Khisamov RM, Konchenko SN. Unexpectedly Long Lifetime of the Excited State of Benzothiadiazole Derivative and Its Adducts with Lewis Acids. Molecules 2021; 26:molecules26072030. [PMID: 33918327 PMCID: PMC8038179 DOI: 10.3390/molecules26072030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 03/26/2021] [Accepted: 03/30/2021] [Indexed: 11/29/2022] Open
Abstract
We report a study of photoluminescent properties of 4-bromo-7-(3-pyridylamino)-2,1,3-benzothiadiazole (Py-btd) and its novel Lewis adducts: (PyH-btd)2(ZnCl4) and [Cu2Cl2(Py-btd)2{PPO}2]·2C7H8 (PPO = tetraphenyldiphosphine monoxide), whose crystal structure was determined by X-ray diffraction analysis. Py-btd exhibits a lifetime of 9 microseconds indicating its phosphorescent nature, which is rare for purely organic compounds. This phenomenon arises from the heavy atom effect: the presence of a bromine atom in Py-btd promotes mixing of the singlet and triplet states to allow efficient singlet-to-triplet intersystem crossing. The Lewis adducts also feature a microsecond lifetime while emitting in a higher energy range than free Py-btd, which opens up the possibility to color-tune luminescence of benzothiadiazole derivatives.
Collapse
|
12
|
Wu L, Dewhurst RD, Braunschweig H, Lin Z. C–C versus C–H Activation: Understanding How the Carbene π-Accepting Ability Controls the Intramolecular Reactivities of Mono(carbene)-Stabilized Borylenes. Organometallics 2021. [DOI: 10.1021/acs.organomet.1c00016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Linlin Wu
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Rian D. Dewhurst
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
- Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Holger Braunschweig
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
- Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Zhenyang Lin
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| |
Collapse
|
13
|
Yu Z, Lu Y, Wang J, Pei J. Conformation Control of Conjugated Polymers. Chemistry 2020; 26:16194-16205. [DOI: 10.1002/chem.202000220] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 04/13/2020] [Indexed: 01/25/2023]
Affiliation(s)
- Zi‐Di Yu
- College of Chemistry and Molecular Engineering and College of Engineering Peking University Beijing 100871 P. R. China
| | - Yang Lu
- College of Chemistry and Molecular Engineering and College of Engineering Peking University Beijing 100871 P. R. China
| | - Jie‐Yu Wang
- College of Chemistry and Molecular Engineering and College of Engineering Peking University Beijing 100871 P. R. China
| | - Jian Pei
- College of Chemistry and Molecular Engineering and College of Engineering Peking University Beijing 100871 P. R. China
| |
Collapse
|
14
|
Ji G, Wang N, Yin X, Chen P. Substituent Effect Induces Emission Modulation of Stilbene Photoswitches by Spatial Tuning of the N/B Electronic Constraints. Org Lett 2020; 22:5758-5762. [DOI: 10.1021/acs.orglett.0c01777] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Guangqian Ji
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology of China, Beijing 102488, People’s Republic of China
| | - Nan Wang
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology of China, Beijing 102488, People’s Republic of China
| | - Xiaodong Yin
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology of China, Beijing 102488, People’s Republic of China
| | - Pangkuan Chen
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology of China, Beijing 102488, People’s Republic of China
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang 443002, P. R. China
| |
Collapse
|
15
|
Haque A, Al-Balushi RA, Raithby PR, Khan MS. Recent Advances in π-Conjugated N^C-Chelate Organoboron Materials. Molecules 2020; 25:E2645. [PMID: 32517244 PMCID: PMC7321365 DOI: 10.3390/molecules25112645] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 06/03/2020] [Accepted: 06/04/2020] [Indexed: 11/17/2022] Open
Abstract
Boron-containing π-conjugated materials are archetypical candidates for a variety of molecular scale applications. The incorporation of boron into the π-conjugated frameworks significantly modifies the nature of the parent π-conjugated systems. Several novel boron-bridged π-conjugated materials with intriguing structural, photo-physical and electrochemical properties have been reported over the last few years. In this paper, we review the properties and multi-dimensional applications of the boron-bridged fused-ring π-conjugated systems. We critically highlight the properties of π-conjugated N^C-chelate organoboron materials. This is followed by a discussion on the potential applications of the new materials in opto-electronics (O-E) and other areas. Finally, attempts will be made to predict the future direction/outlook for this class of materials.
Collapse
Affiliation(s)
- Ashanul Haque
- Department of Chemistry, College of Science, University of Hail, Ha’il 81451, Saudi Arabia
| | - Rayya A. Al-Balushi
- Department of Basic Sciences, College of Applied and Health Sciences, A’Sharqiyah University, P.O. Box 42, Ibra 400, Sultanate of Oman;
| | - Paul R. Raithby
- Department of Chemistry, University of Bath, Claverton Down BA2 7AY, UK
| | - Muhammad S. Khan
- Department of Chemistry, Sultan Qaboos University, P.O. Box 36, Al-Khod 123, Sultanate of Oman
| |
Collapse
|
16
|
Zhao Z, Yin X, Peng T, Wang N, Wang S. Triarylboron/Triarylamine-Functionalized 2,2′-Bipyridine Ligands and Their Copper(I) Complexes. Inorg Chem 2020; 59:7426-7434. [DOI: 10.1021/acs.inorgchem.0c00102] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Zhenhui Zhao
- Key Laboratory of Cluster Science of the Ministry of Education, Beijing Key Laboratory of Photoelectronic/ Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, P. R. China
| | - Xiaodong Yin
- Key Laboratory of Cluster Science of the Ministry of Education, Beijing Key Laboratory of Photoelectronic/ Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, P. R. China
| | - Tai Peng
- School of Materials Science & Engineering, Jiamusi University, Jiamusi, Heilongjiang 154007, P. R. China
| | - Nan Wang
- Key Laboratory of Cluster Science of the Ministry of Education, Beijing Key Laboratory of Photoelectronic/ Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, P. R. China
- State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China
| | - Suning Wang
- Department of Chemistry, Queen’s University, Kingston, Ontario K7L 3N6, Canada
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| |
Collapse
|
17
|
Chen J, Yin X, Wang B, Zhang K, Meng G, Zhang S, Shi Y, Wang N, Wang S, Chen P. Planar Chiral Organoboranes with Thermoresponsive Emission and Circularly Polarized Luminescence: Integration of Pillar[5]arenes with Boron Chemistry. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202001145] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Jin‐Fa Chen
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials Key Laboratory of Cluster Science of the Ministry of Education School of Chemistry and Chemical Engineering Beijing Institute of Technology of China Beijing 102488 China
| | - Xiaodong Yin
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials Key Laboratory of Cluster Science of the Ministry of Education School of Chemistry and Chemical Engineering Beijing Institute of Technology of China Beijing 102488 China
| | - Bowen Wang
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials Key Laboratory of Cluster Science of the Ministry of Education School of Chemistry and Chemical Engineering Beijing Institute of Technology of China Beijing 102488 China
| | - Kai Zhang
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials Key Laboratory of Cluster Science of the Ministry of Education School of Chemistry and Chemical Engineering Beijing Institute of Technology of China Beijing 102488 China
| | - Guoyun Meng
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials Key Laboratory of Cluster Science of the Ministry of Education School of Chemistry and Chemical Engineering Beijing Institute of Technology of China Beijing 102488 China
| | - Songhe Zhang
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials Key Laboratory of Cluster Science of the Ministry of Education School of Chemistry and Chemical Engineering Beijing Institute of Technology of China Beijing 102488 China
| | - Yafei Shi
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials Key Laboratory of Cluster Science of the Ministry of Education School of Chemistry and Chemical Engineering Beijing Institute of Technology of China Beijing 102488 China
| | - Nan Wang
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials Key Laboratory of Cluster Science of the Ministry of Education School of Chemistry and Chemical Engineering Beijing Institute of Technology of China Beijing 102488 China
| | - Suning Wang
- Department of Chemistry Queen's University Kingston Ontario K7L 3N6 Canada
| | - Pangkuan Chen
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials Key Laboratory of Cluster Science of the Ministry of Education School of Chemistry and Chemical Engineering Beijing Institute of Technology of China Beijing 102488 China
| |
Collapse
|
18
|
Chen J, Yin X, Wang B, Zhang K, Meng G, Zhang S, Shi Y, Wang N, Wang S, Chen P. Planar Chiral Organoboranes with Thermoresponsive Emission and Circularly Polarized Luminescence: Integration of Pillar[5]arenes with Boron Chemistry. Angew Chem Int Ed Engl 2020; 59:11267-11272. [PMID: 32220121 DOI: 10.1002/anie.202001145] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 03/27/2020] [Indexed: 11/11/2022]
Affiliation(s)
- Jin‐Fa Chen
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials Key Laboratory of Cluster Science of the Ministry of Education School of Chemistry and Chemical Engineering Beijing Institute of Technology of China Beijing 102488 China
| | - Xiaodong Yin
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials Key Laboratory of Cluster Science of the Ministry of Education School of Chemistry and Chemical Engineering Beijing Institute of Technology of China Beijing 102488 China
| | - Bowen Wang
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials Key Laboratory of Cluster Science of the Ministry of Education School of Chemistry and Chemical Engineering Beijing Institute of Technology of China Beijing 102488 China
| | - Kai Zhang
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials Key Laboratory of Cluster Science of the Ministry of Education School of Chemistry and Chemical Engineering Beijing Institute of Technology of China Beijing 102488 China
| | - Guoyun Meng
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials Key Laboratory of Cluster Science of the Ministry of Education School of Chemistry and Chemical Engineering Beijing Institute of Technology of China Beijing 102488 China
| | - Songhe Zhang
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials Key Laboratory of Cluster Science of the Ministry of Education School of Chemistry and Chemical Engineering Beijing Institute of Technology of China Beijing 102488 China
| | - Yafei Shi
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials Key Laboratory of Cluster Science of the Ministry of Education School of Chemistry and Chemical Engineering Beijing Institute of Technology of China Beijing 102488 China
| | - Nan Wang
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials Key Laboratory of Cluster Science of the Ministry of Education School of Chemistry and Chemical Engineering Beijing Institute of Technology of China Beijing 102488 China
| | - Suning Wang
- Department of Chemistry Queen's University Kingston Ontario K7L 3N6 Canada
| | - Pangkuan Chen
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials Key Laboratory of Cluster Science of the Ministry of Education School of Chemistry and Chemical Engineering Beijing Institute of Technology of China Beijing 102488 China
| |
Collapse
|
19
|
Echeverri M, Ruiz C, Gámez-Valenzuela S, Alonso-Navarro M, Gutierrez-Puebla E, Serrano JL, Ruiz Delgado MC, Gómez-Lor B. Stimuli-Responsive Benzothiadiazole Derivative as a Dopant for Rewritable Polymer Blends. ACS APPLIED MATERIALS & INTERFACES 2020; 12:10929-10937. [PMID: 32043874 DOI: 10.1021/acsami.9b21209] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A new rod-shaped benzothiadiazole fluorophore, namely, 4,7-di-(4-nonylphenyl)benzo[c][1,2,5]thiadiazole, which strongly emits fluorescence both in solution and in solid state has been synthesized, and its photophysical properties were rationalized with the help of density functional theory calculations. This molecule crystallizes in two distinct light-emitting crystalline phases, which can be interconverted in response to pressure, temperature, and solvent vapors. Powder X-ray diffraction indicates that in both polymorph, molecules adopt a lamellar packing, the different interlayer spacing being the main difference between the two structures. Single-crystal analysis of one of the polymorphs allows us to identify weak interaction planes, which presumably facilitates the polymorphic transformation through mechanically or thermally induced sliding processes. The polymorphic transformation and the origin of the switchable fluorescence have been rationalized through a spectroscopic and theoretical study. This study suggests that the different colors observed are due to different intermolecular aromatic interactions owing to the displacement of the molecules with respect to the layer normal. Interestingly, blending this molecule with a biodegradable polymer such as poly(vinyl alcohol) gives rise to a thermally activated reversible switchable fluorescent system, which entitles this material as an attractive candidate for technological applications, such as thermal sensors, security inks, or rewritable paper.
Collapse
Affiliation(s)
- Marcelo Echeverri
- Instituto de Ciencia de Materiales de Madrid, CSIC Cantoblanco, 28049 Madrid, Spain
| | - Constanza Ruiz
- Instituto de Ciencia de Materiales de Madrid, CSIC Cantoblanco, 28049 Madrid, Spain
| | | | | | | | - José L Serrano
- Departamento de Química Orgánica, Instituto de Ciencia de Materiales de Aragón, Universidad de Zaragoza-CSIC, 50009 Zaragoza, Spain
| | | | - Berta Gómez-Lor
- Instituto de Ciencia de Materiales de Madrid, CSIC Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
20
|
Koch R, Sun Y, Orthaber A, Pierik AJ, Pammer F. Turn-on fluorescence sensors based on dynamic intramolecular N→B-coordination. Org Chem Front 2020. [DOI: 10.1039/d0qo00267d] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
A series of ten aryl-triazole-functionalized boranes bearing BMes2-groups and capable of forming intramolecular five-membered N→B-coordinated heterocycles, has been prepared by 1,3-dipolar cycloaddition.
Collapse
Affiliation(s)
- Raphael Koch
- Institute of Organic Chemistry II and Advanced Materials
- University of Ulm
- 89081 Ulm
- Germany
| | - Yu Sun
- Fachbereich Chemie
- Technische Universität Kaiserslautern
- D-67663 Kaiserslautern
- Germany
| | - Andreas Orthaber
- Department of Chemistry – Ångström laboratories
- Uppsala University
- 75120 Uppsala
- Sweden
| | - Antonio J. Pierik
- Fachbereich Chemie
- Technische Universität Kaiserslautern
- D-67663 Kaiserslautern
- Germany
| | - Frank Pammer
- Institute of Organic Chemistry II and Advanced Materials
- University of Ulm
- 89081 Ulm
- Germany
| |
Collapse
|
21
|
Qian G, Wang X, Wang S, Zheng Y, Wang S, Zhu W, Wang Y. Polymorphous Luminescent Materials Based on 'T'-Shaped Molecules Bearing 4,7-Diphenylbenzo[c][1,2,5]thiadiazole Skeletons: Effect of Substituents on the Photophysical Properties. Chemistry 2019; 25:15401-15410. [PMID: 31670429 DOI: 10.1002/chem.201904026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 09/29/2019] [Indexed: 01/17/2023]
Abstract
Polymorphism, the intrinsic character of one chemical compound with at least two distinct phase arrangements, plays a very key role in the photophysical properties. In this contribution, four 'T'-shaped molecules bearing the 2,1,3-benzothiadiazole (BTD) skeleton, named 5 a-5 d, were prepared and characterized. All compounds exhibited excellent thermal stability and polymorphism in the solid state, evident from thermogravimetric analysis, differential scanning calorimetry, and polarized optical microscopy results. Intense emissions with high photoluminescent quantum yields were achieved both in solution (56-97 %) and neat films (33-98 %). All compounds possessed clearly pH-dependent luminescence properties in solution. Additionally, compound 5 d showed useful mechanochromic luminescence owing to the transformation between the crystal and amorphous state. Employing compounds 5 a-5 d as the dopant, solution-processable organic light-emitting diodes (OLEDs) were fabricated and presented a highest external quantum efficiency of 6.15 %, which is higher than the theoretical value of fluorescence-based OLEDs (∼5 %). This research provided a novel strategy for designing high-efficiency BTD-based polymorphic luminescent materials.
Collapse
Affiliation(s)
- Gaowei Qian
- National Experimental Demonstration Center, for Materials Science and Engineering, Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, Jiangsu Collaborative Innovation Center of Photovoltaic Science, and Engineering, Jiangsu Engineering Laboratory of, Light-Electricity-Heat Energy Converting Materials and Applications, School of Materials Science & Engineering, Changzhou University, Changzhou, 213164, P. R. China
| | - Xiangbing Wang
- National Experimental Demonstration Center, for Materials Science and Engineering, Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, Jiangsu Collaborative Innovation Center of Photovoltaic Science, and Engineering, Jiangsu Engineering Laboratory of, Light-Electricity-Heat Energy Converting Materials and Applications, School of Materials Science & Engineering, Changzhou University, Changzhou, 213164, P. R. China
| | - Shengyue Wang
- National Experimental Demonstration Center, for Materials Science and Engineering, Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, Jiangsu Collaborative Innovation Center of Photovoltaic Science, and Engineering, Jiangsu Engineering Laboratory of, Light-Electricity-Heat Energy Converting Materials and Applications, School of Materials Science & Engineering, Changzhou University, Changzhou, 213164, P. R. China
| | - Yanqiong Zheng
- Key Laboratory of Advanced Display and System Applications of Ministry of Education, Shanghai University, 149 Yanchang Rd., Shanghai, 200072, P. R. China
| | - Song Wang
- Hubei University of Arts and Science, Xiangyang, 441053, P. R. China
| | - Weiguo Zhu
- National Experimental Demonstration Center, for Materials Science and Engineering, Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, Jiangsu Collaborative Innovation Center of Photovoltaic Science, and Engineering, Jiangsu Engineering Laboratory of, Light-Electricity-Heat Energy Converting Materials and Applications, School of Materials Science & Engineering, Changzhou University, Changzhou, 213164, P. R. China
| | - Yafei Wang
- National Experimental Demonstration Center, for Materials Science and Engineering, Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, Jiangsu Collaborative Innovation Center of Photovoltaic Science, and Engineering, Jiangsu Engineering Laboratory of, Light-Electricity-Heat Energy Converting Materials and Applications, School of Materials Science & Engineering, Changzhou University, Changzhou, 213164, P. R. China
| |
Collapse
|
22
|
Chen S, Liu F, Wang C, Shen J, Wu Y. Simple Route to Synthesize Fully Conjugated Ladder Isomer Copolymers with Carbazole Units. Polymers (Basel) 2019; 11:polym11101619. [PMID: 31591357 PMCID: PMC6835825 DOI: 10.3390/polym11101619] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Revised: 09/30/2019] [Accepted: 10/02/2019] [Indexed: 11/25/2022] Open
Abstract
Two isomer polymers, P3 and P6, with fully conjugated ladder structures are presented by simple synthetic routes. The well-defined structures of fully conjugated ladder polymers P3 and P6 were ensured by the high yields of every reaction step. The fully rigid ladder structures were confirmed by nuclear magnetic resonance (NMR), fourier transform infrared spectroscopy (FTIR), and photophysical test. Polymers P3 and P6 with bulky alkyl side chains exhibit good solution processability and desirable thermostable properties. After the intramolecular cyclization reaction, the band gaps of polymers P3 and P6 become lower (2.86 eV and 2.66 eV, respectively) compared with polymers P1 and P4. This initial study provides insight for the rational design of fully ladder-conjugated isomeric polymers with well-defined structures.
Collapse
Affiliation(s)
- Shuang Chen
- College of Chemistry and Environmental Science, Hebei University, Baoding, 071002, China.
| | - Feng Liu
- College of Chemistry and Environmental Science, Hebei University, Baoding, 071002, China.
- College of Physics Science and Technology, Hebei University, Baoding 071002, China.
| | - Chao Wang
- College of Chemistry and Environmental Science, Hebei University, Baoding, 071002, China.
| | - Jinghui Shen
- College of Chemistry and Environmental Science, Hebei University, Baoding, 071002, China.
| | - Yonggang Wu
- College of Chemistry and Environmental Science, Hebei University, Baoding, 071002, China.
| |
Collapse
|
23
|
Dong L, Saraci F, Yuan K, Wang X, Wang S. Push-pull isomers of indolizino[6,5,4,3-def]phenanthridine decorated with a triarylboron moiety. Org Biomol Chem 2019; 17:6470-6477. [PMID: 31206123 DOI: 10.1039/c9ob00923j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
1,3-Dipolar cycloaddition reactions between a new azomethine ylide and three BPhMes2-functionalized internal alkynes produced three pairs of fluorescent push-pull regioisomers, which show distinct electronic and photophysical properties. All the six compounds are found to exhibit charge-transfer (CT) fluorescence, and some of which show rare and interesting temperature "turn-on" fluorescence.
Collapse
Affiliation(s)
- Lei Dong
- Department of Chemistry, Queen's University, Kingston, Ontario K7L 3N6, Canada.
| | - Felix Saraci
- Department of Chemistry, Queen's University, Kingston, Ontario K7L 3N6, Canada.
| | - Kang Yuan
- Department of Chemistry, Queen's University, Kingston, Ontario K7L 3N6, Canada.
| | - Xiang Wang
- Department of Chemistry, Queen's University, Kingston, Ontario K7L 3N6, Canada.
| | - Suning Wang
- Department of Chemistry, Queen's University, Kingston, Ontario K7L 3N6, Canada.
| |
Collapse
|
24
|
Vanga M, Lalancette RA, Jäkle F. Controlling the Optoelectronic Properties of Pyrene by Regioselective Lewis Base‐Directed Electrophilic Aromatic Borylation. Chemistry 2019; 25:10133-10140. [DOI: 10.1002/chem.201901231] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Indexed: 11/10/2022]
Affiliation(s)
- Mukundam Vanga
- Department of Chemistry Rutgers University-Newark 73 Warren Street Newark NJ 07102 USA
| | - Roger A. Lalancette
- Department of Chemistry Rutgers University-Newark 73 Warren Street Newark NJ 07102 USA
| | - Frieder Jäkle
- Department of Chemistry Rutgers University-Newark 73 Warren Street Newark NJ 07102 USA
| |
Collapse
|
25
|
Cao Y, Arsenault NE, Hean D, Wolf MO. Fluorescence Switching of Intramolecular Lewis Acid–Base Pairs on a Flexible Backbone. J Org Chem 2019; 84:5394-5403. [DOI: 10.1021/acs.joc.9b00398] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Yang Cao
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Nicole E. Arsenault
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Duane Hean
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Michael O. Wolf
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| |
Collapse
|
26
|
Liu K, Lalancette RA, Jäkle F. Tuning the Structure and Electronic Properties of B–N Fused Dipyridylanthracene and Implications on the Self-Sensitized Reactivity with Singlet Oxygen. J Am Chem Soc 2019; 141:7453-7462. [DOI: 10.1021/jacs.9b01958] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Kanglei Liu
- Department of Chemistry, Rutgers University−Newark, 73 Warren Street, Newark, New Jersey 07102, United States
| | - Roger A. Lalancette
- Department of Chemistry, Rutgers University−Newark, 73 Warren Street, Newark, New Jersey 07102, United States
| | - Frieder Jäkle
- Department of Chemistry, Rutgers University−Newark, 73 Warren Street, Newark, New Jersey 07102, United States
| |
Collapse
|
27
|
Zhu C, Kalin AJ, Fang L. Covalent and Noncovalent Approaches to Rigid Coplanar π-Conjugated Molecules and Macromolecules. Acc Chem Res 2019; 52:1089-1100. [PMID: 30943015 DOI: 10.1021/acs.accounts.9b00022] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Molecular conformation and rigidity are essential factors in determining the properties of individual molecules, the associated supramolecular assemblies, and bulk materials. This correlation is particularly important for π-conjugated molecular and macromolecular systems. Within such an individual molecule, a coplanar conformation facilitates the delocalization of not only molecular orbitals but also charges, excitons, and spins, leading to synergistically ensembled properties of the entire conjugated system. A rigid backbone, meanwhile, imposes a high energy cost to disrupt such a favorable conformation, ensuring the robustness and persistence of coplanarity. From a supramolecular and material point of view, coplanarity and rigidity often promote strong intermolecular electronic coupling and reduce the energy barrier for the intermolecular transport of charges, excitons, and phonons, affording advanced materials properties in bulk. In this context, pursuing a rigid and coplanar molecular conformation often represents one of the primary objectives when designing and synthesizing conjugated molecules for electronic and optical applications. Two general bottom-up strategies-covalent annulation and noncovalent conformational control-are often employed to construct rigid coplanar π systems. These strategies have afforded various classes of such molecules and macromolecules, including so-called conjugated ladder polymers, graphene nanoribbons, polyacenes, and conformationally locked organic semiconductors. While pursuing these targets, however, one often confronts challenges associated with precise synthesis and limited solubility of the rigid coplanar systems, which could further impede their large-scale preparation, characterization, processing, and application. To address these issues, we developed and utilized a number of synthetic methods and molecular engineering approaches to construct and to process rigid coplanar conjugated molecules and macromolecules. Structure-property correlations of this unique class of organic materials were established, providing important chemical principles for molecular design and materials applications. In this Account, we first describe our efforts to synthesize rigid coplanar π systems fused by various types of bonds, including kinetically formed covalent bonds, thermodynamically formed covalent bonds, N→B coordinate bonds, and hydrogen bonds, in order of increasing dynamic character. The subsequent section discusses the characteristic properties of selected examples of these rigid coplanar π systems in comparison with control compounds that are not rigid and coplanar, particularly focusing on the optical, electronic, and electrochemical properties. For systems bridged with noncovalent interactions, active manipulation of the dynamic bonds can tune variable properties at the molecular or collective level. Intermolecular interactions, solid-state packing, and processing of several cases are then discussed to lay the foundation for future materials applications of rigid coplanar π conjugated compounds.
Collapse
Affiliation(s)
- Congzhi Zhu
- Department of Chemistry, Texas A&M University, 3255 TAMU, College Station, Texas 77843, United States
| | - Alexander J. Kalin
- Department of Chemistry, Texas A&M University, 3255 TAMU, College Station, Texas 77843, United States
| | - Lei Fang
- Department of Chemistry, Texas A&M University, 3255 TAMU, College Station, Texas 77843, United States
| |
Collapse
|
28
|
Zeng C, Yuan K, Wang N, Peng T, Wu G, Wang S. The opposite and amplifying effect of B ← N coordination on photophysical properties of regioisomers with an unsymmetrical backbone. Chem Sci 2019; 10:1724-1734. [PMID: 30842837 PMCID: PMC6369733 DOI: 10.1039/c8sc04210a] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 11/27/2018] [Indexed: 01/28/2023] Open
Abstract
1,3-Dipolar cycloaddition of pyrido[2,1-a]isoindole with internal alkynes functionalized by a BMes2ph and an N-aromatic heterocycle leads to the formation of two types of regioisomers (major a and minor b) that have distinct physical and photophysical properties. Examination on 5 pairs of regioisomers unveils that the major isomers consistently have a smaller optical energy gap and emission energy than the corresponding minor isomers, which is greatly amplified by the formation of an internal B ← N bond. The regioisomers with a B ← N bond display contrasting temperature-dependent structural dynamics and response to fluoride ions, owing to an entropy-driven or fluoride initiated B ← N bond rupture/ring-opening process and the different B ← N bond strength. The opposite inductive effect and the Lewis pair properties of the dichotomic substituent units are responsible for the contrasting properties of the regioisomers in this system.
Collapse
Affiliation(s)
- Chao Zeng
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials , School of Chemistry and Chemical Engineering , Beijing Institute of Technology of China , Beijing, 102488 , People's Republic of China . ;
| | - Kang Yuan
- Department of Chemistry , Queen's University , Kingston , Ontario K7L 3N6 , Canada
| | - Nan Wang
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials , School of Chemistry and Chemical Engineering , Beijing Institute of Technology of China , Beijing, 102488 , People's Republic of China . ;
| | - Tai Peng
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials , School of Chemistry and Chemical Engineering , Beijing Institute of Technology of China , Beijing, 102488 , People's Republic of China . ;
| | - Gang Wu
- Department of Chemistry , Queen's University , Kingston , Ontario K7L 3N6 , Canada
| | - Suning Wang
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials , School of Chemistry and Chemical Engineering , Beijing Institute of Technology of China , Beijing, 102488 , People's Republic of China . ;
- Department of Chemistry , Queen's University , Kingston , Ontario K7L 3N6 , Canada
| |
Collapse
|
29
|
Abstract
Representative types of boron-based molecular systems that respond to external stimuli such as temperature, pressure, light, or chemicals (oxygen, acid, base etc.) are described in this review article. The boron molecules are classified according to their operating mechanisms, with emphasis on systems, which are based on switchable boron-donor bonds and switchable excited states.
Collapse
Affiliation(s)
- Soren K. Mellerup
- Department of Chemistry
- Queen's University
- Kingston
- Canada
- Institut für Anorganische Chemie
| | - Suning Wang
- Department of Chemistry
- Queen's University
- Kingston
- Canada
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials
| |
Collapse
|
30
|
Nakamura T, Ishikura Y, Arakawa N, Hori M, Satou M, Endo M, Masui H, Fuse S, Takahashi T, Murata Y, Murdey R, Wakamiya A. Donor–acceptor polymers containing thiazole-fused benzothiadiazole acceptor units for organic solar cells. RSC Adv 2019; 9:7107-7114. [PMID: 35519982 PMCID: PMC9061114 DOI: 10.1039/c9ra00229d] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 02/26/2019] [Indexed: 12/15/2022] Open
Abstract
Two p-type semiconducting donor–acceptor polymers were designed and synthesized for use in organic solar cells. The polymers combine a benzodithiophene (BDT) donor and a thiazole-fused benzothiadiazole (TzBT) acceptor. Two TzBT acceptor units are compared, one with an alkylthio group (P1) and the other with a more strongly electron-withdrawing alkylsulfonyl group (P2) at the fused thiazole ring. The strongly electron-accepting nature of the TzBT unit lowers the lowest unoccupied molecular orbital (LUMO) energy of P1 and P2 relative to that of the BT analog (PBDT-BT), without altering the energy of the highest occupied molecular orbital (HOMO). Despite the smaller optical band gaps, bulk heterojunction organic solar cells fabricated using these polymers in a PC71BM blend showed high open-circuit voltages. The power conversion efficiency (PCE) of the P1-based device reached 6.13%. Though efficiency of the P2-based device was lower, photoelectric conversion extended into the near-IR region up to 950 nm. Two p-type semiconducting donor–acceptor polymers were designed and synthesized for use in organic solar cells.![]()
Collapse
Affiliation(s)
| | | | | | - Megumi Hori
- Institute for Chemical Research
- Kyoto University
- Uji
- Japan
| | - Motoi Satou
- Institute for Chemical Research
- Kyoto University
- Uji
- Japan
| | - Masaru Endo
- Institute for Chemical Research
- Kyoto University
- Uji
- Japan
| | - Hisashi Masui
- Department of Pharmaceutical Sciences
- Yokohama University of Pharmacy
- Yokohama 245-0066
- Japan
| | - Shinichiro Fuse
- Laboratory for Chemistry and Life Science
- Institute of Innovative Research
- Tokyo Institute of Technology
- Yokohama
- Japan
| | - Takashi Takahashi
- Department of Pharmaceutical Sciences
- Yokohama University of Pharmacy
- Yokohama 245-0066
- Japan
| | | | | | | |
Collapse
|
31
|
Min Y, Dou C, Tian H, Liu J, Wang L. A disk-type polyarene containing four B←N units. Chem Commun (Camb) 2019; 55:3638-3641. [DOI: 10.1039/c9cc00769e] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A disk-type polyarene containing four B←N units is reported, which exhibits both intensive red fluorescence and n-type semiconductor characteristics.
Collapse
Affiliation(s)
- Yang Min
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences
- Changchun 130022
- People's Republic of China
- University of Chinese Academy of Sciences
- Beijing 100049
| | - Chuandong Dou
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences
- Changchun 130022
- People's Republic of China
| | - Hongkun Tian
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences
- Changchun 130022
- People's Republic of China
| | - Jun Liu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences
- Changchun 130022
- People's Republic of China
| | - Lixiang Wang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences
- Changchun 130022
- People's Republic of China
| |
Collapse
|
32
|
Arsenault NE, Xu Z, Wolf MO. Solvent- and Temperature-Responsive Platinum(II)-Functionalized Flexible Lewis Pairs. Inorg Chem 2018; 58:65-68. [DOI: 10.1021/acs.inorgchem.8b03053] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Nicole E. Arsenault
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Zhen Xu
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Michael O. Wolf
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| |
Collapse
|
33
|
Zhu C, Ji X, You D, Chen TL, Mu AU, Barker KP, Klivansky LM, Liu Y, Fang L. Extraordinary Redox Activities in Ladder-Type Conjugated Molecules Enabled by B ← N Coordination-Promoted Delocalization and Hyperconjugation. J Am Chem Soc 2018; 140:18173-18182. [PMID: 30507169 DOI: 10.1021/jacs.8b11337] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The introduction of B ← N coordinate bond-isoelectronic to C-C single bond-into π-systems represents a promising strategy to impart exotic redox and electrochromic properties into conjugated organic molecules and macromolecules. To achieve both reductive and oxidative activities using this strategy, a cruciform ladder-type molecular constitution was designed to accommodate oxidation-active, reduction-active, and B ← N coordination units into a compact structure. Two such compounds (BN-F and BN-Ph) were synthesized via highly efficient N-directed borylation. These molecules demonstrated well-separated, two reductive and two oxidative electron-transfer processes, corresponding to five distinct yet stable oxidation states, including a rarely observed boron-containing radical cation. Spectroelectrochemical measurements revealed unique optical characteristics for each of these reduced/oxidized species, demonstrating multicolor electrochromism with excellent recyclability. Distinct color changes were observed between each redox state with clear isosbestic points on the absorption spectra. The underlying redox mechanism was elucidated by a combination of computational and experimental investigations. Single-crystal X-ray diffraction analysis on the neutral state, the oxidized radical cation, and the reduced dianion of BN-Ph revealed structural transformations into two distinct quinonoid constitutions during the oxidation and reduction processes, respectively. B ← N coordination played an important role in rendering the robust and reversible multistage redox properties, by extending the charge and spin delocalization, by modulating the π-electron density, and by a newly established hyperconjugation mechanism.
Collapse
Affiliation(s)
| | | | | | - Teresa L Chen
- The Molecular Foundry , Lawrence Berkeley National Laboratory , One Cyclotron Road, Berkeley , California 94720 , United States
| | | | | | - Liana M Klivansky
- The Molecular Foundry , Lawrence Berkeley National Laboratory , One Cyclotron Road, Berkeley , California 94720 , United States
| | - Yi Liu
- The Molecular Foundry , Lawrence Berkeley National Laboratory , One Cyclotron Road, Berkeley , California 94720 , United States
| | | |
Collapse
|
34
|
Hou Q, Liu L, Mellerup SK, Wang N, Peng T, Chen P, Wang S. Stimuli-Responsive B/N Lewis Pairs Based on the Modulation of B–N Bond Strength. Org Lett 2018; 20:6467-6470. [DOI: 10.1021/acs.orglett.8b02774] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Qinggao Hou
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology of China, Beijing 102488, China
| | - Lijie Liu
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology of China, Beijing 102488, China
| | - Soren K. Mellerup
- Department of Chemistry, Queen’s University, Kingston, Ontario K7L 3N6, Canada
| | - Nan Wang
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology of China, Beijing 102488, China
| | - Tai Peng
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology of China, Beijing 102488, China
| | - Pangkuan Chen
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology of China, Beijing 102488, China
| | - Suning Wang
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology of China, Beijing 102488, China
- Department of Chemistry, Queen’s University, Kingston, Ontario K7L 3N6, Canada
| |
Collapse
|
35
|
Shimogawa H, Murata Y, Wakamiya A. NIR-Absorbing Dye Based on BF2-Bridged Azafulvene Dimer as a Strong Electron-Accepting Unit. Org Lett 2018; 20:5135-5138. [DOI: 10.1021/acs.orglett.8b02056] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Hiroyuki Shimogawa
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Yasujiro Murata
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Atsushi Wakamiya
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| |
Collapse
|
36
|
Alahmadi AF, Lalancette RA, Jäkle F. Highly Luminescent Ladderized Fluorene Copolymers Based on B-N Lewis Pair Functionalization. Macromol Rapid Commun 2018; 39:e1800456. [PMID: 30073729 DOI: 10.1002/marc.201800456] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 07/05/2018] [Indexed: 11/08/2022]
Abstract
A new B-N functionalized polyaromatic building block for conjugated hybrid polymers is developed. Bromine-functionalized dipyridylfluorene is first subjected to Lewis-base-directed electrophilic borylation and subsequently incorporated into conjugated polymers via transition-metal-catalyzed cross-coupling reactions. The borane monomer exhibits bright blue luminescence in solution, as a result of the rigid ladder-type structure generated upon electrophilic borylation. Yamamoto coupling gives rise to a homopolymer and Stille coupling to a vinylene-bridged copolymer. Polymerization of the BN-fused ladder molecules leads to large bathochromic shifts in absorption and emission, which are most pronounced for the vinylene-bridged copolymer. The polymers display strong luminescence in solution with quantum yields of 55% and 78% and sub-ns fluorescence lifetimes; the copolymer also exhibits bright yellow luminescence in the solid state when precipitated from solution.
Collapse
Affiliation(s)
- Abdullah F Alahmadi
- Department of Chemistry, Rutgers University-Newark, 73 Warren Street, Newark, NJ, 07102, USA
| | - Roger A Lalancette
- Department of Chemistry, Rutgers University-Newark, 73 Warren Street, Newark, NJ, 07102, USA
| | - Frieder Jäkle
- Department of Chemistry, Rutgers University-Newark, 73 Warren Street, Newark, NJ, 07102, USA
| |
Collapse
|
37
|
Shi YG, Wang JW, Li H, Hu GF, Li X, Mellerup SK, Wang N, Peng T, Wang S. A simple multi-responsive system based on aldehyde functionalized amino-boranes. Chem Sci 2018; 9:1902-1911. [PMID: 29675236 PMCID: PMC5890792 DOI: 10.1039/c7sc03617e] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 01/02/2018] [Indexed: 11/21/2022] Open
Abstract
An aldehyde functionalized amino-borane has been found to respond to multiple external stimuli such as temperature, pressure and solvents, producing distinct patterns and colours.
A simple aldehyde functionalized amino-triarylborane donor–acceptor system (BO-1) was found to display distinct responses toward multiple external stimuli including solvent, temperature and pressure, with emission colours changing from blue to red. The operating mechanism most likely involves reversible switching between closed and open structures based on an intramolecular B ← O bond. Imbedded donor–acceptor charge transfer transitions played a key role in the multi-coloured fluorescent response of this new boron system to external stimuli. Multi-coloured and erasable fluorescent images on solid substrates based BO-1's “turn-on” response toward solvents, particularly water, are demonstrated.
Collapse
Affiliation(s)
- Yong-Gang Shi
- Key Laboratory of Cluster Science , Ministry of Education , Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials , School of Chemistry and Chemical Engineering , Beijing Institute of Technology of China , Beijing , 102488 , People's Republic of China .
| | - Jun-Wei Wang
- Key Laboratory of Cluster Science , Ministry of Education , Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials , School of Chemistry and Chemical Engineering , Beijing Institute of Technology of China , Beijing , 102488 , People's Republic of China .
| | - Haijun Li
- Department of Chemistry , Queen's University , Kingston , Ontario , K7L 3N6 , Canada .
| | - Guo-Fei Hu
- Key Laboratory of Cluster Science , Ministry of Education , Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials , School of Chemistry and Chemical Engineering , Beijing Institute of Technology of China , Beijing , 102488 , People's Republic of China .
| | - Xue Li
- Key Laboratory of Cluster Science , Ministry of Education , Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials , School of Chemistry and Chemical Engineering , Beijing Institute of Technology of China , Beijing , 102488 , People's Republic of China .
| | - Soren K Mellerup
- Department of Chemistry , Queen's University , Kingston , Ontario , K7L 3N6 , Canada .
| | - Nan Wang
- Key Laboratory of Cluster Science , Ministry of Education , Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials , School of Chemistry and Chemical Engineering , Beijing Institute of Technology of China , Beijing , 102488 , People's Republic of China .
| | - Tai Peng
- Key Laboratory of Cluster Science , Ministry of Education , Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials , School of Chemistry and Chemical Engineering , Beijing Institute of Technology of China , Beijing , 102488 , People's Republic of China .
| | - Suning Wang
- Key Laboratory of Cluster Science , Ministry of Education , Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials , School of Chemistry and Chemical Engineering , Beijing Institute of Technology of China , Beijing , 102488 , People's Republic of China . .,Department of Chemistry , Queen's University , Kingston , Ontario , K7L 3N6 , Canada .
| |
Collapse
|
38
|
Riensch NA, Fritze L, Schindler T, Kremer M, Helten H. Difuryl(supermesityl)borane: a versatile building block for extended π-conjugated materials. Dalton Trans 2018; 47:10399-10403. [DOI: 10.1039/c8dt01716f] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
B-Doping of oligo(hetarene)s led to very robust, air-stable π-conjugated materials that are strong electron-acceptors and blue light emitters.
Collapse
Affiliation(s)
- Nicolas A. Riensch
- Institute of Inorganic Chemistry
- RWTH Aachen University
- 52056 Aachen
- Germany
| | - Lars Fritze
- Institute of Inorganic Chemistry
- RWTH Aachen University
- 52056 Aachen
- Germany
| | - Tobias Schindler
- Institute of Inorganic Chemistry
- RWTH Aachen University
- 52056 Aachen
- Germany
| | - Marius Kremer
- Institute of Inorganic Chemistry
- RWTH Aachen University
- 52056 Aachen
- Germany
| | - Holger Helten
- Institute of Inorganic Chemistry
- RWTH Aachen University
- 52056 Aachen
- Germany
| |
Collapse
|
39
|
Liu K, Lalancette RA, Jäkle F. B–N Lewis Pair Functionalization of Anthracene: Structural Dynamics, Optoelectronic Properties, and O2 Sensitization. J Am Chem Soc 2017; 139:18170-18173. [DOI: 10.1021/jacs.7b11062] [Citation(s) in RCA: 116] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Kanglei Liu
- Department of Chemistry, Rutgers University Newark, Newark, New Jersey 07102, United States
| | - Roger A. Lalancette
- Department of Chemistry, Rutgers University Newark, Newark, New Jersey 07102, United States
| | - Frieder Jäkle
- Department of Chemistry, Rutgers University Newark, Newark, New Jersey 07102, United States
| |
Collapse
|
40
|
Hecht R, Kade J, Schmidt D, Nowak-Król A. n-Channel Organic Semiconductors Derived from Air-Stable Four-Coordinate Boron Complexes of Substituted Thienylthiazoles. Chemistry 2017; 23:11620-11628. [DOI: 10.1002/chem.201701922] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Indexed: 02/04/2023]
Affiliation(s)
- Reinhard Hecht
- Center for Nanosystems Chemistry (CNC) and Bavarian Polymer Institute (BPI); Universität Würzburg; Theodor-Boveri-Weg 97074 Würzburg Germany
- Institut für Organische Chemie; Universität Würzburg; Am Hubland 97074 Würzburg Germany
| | - Juliane Kade
- Institut für Organische Chemie; Universität Würzburg; Am Hubland 97074 Würzburg Germany
| | - David Schmidt
- Center for Nanosystems Chemistry (CNC) and Bavarian Polymer Institute (BPI); Universität Würzburg; Theodor-Boveri-Weg 97074 Würzburg Germany
- Institut für Organische Chemie; Universität Würzburg; Am Hubland 97074 Würzburg Germany
| | - Agnieszka Nowak-Król
- Center for Nanosystems Chemistry (CNC) and Bavarian Polymer Institute (BPI); Universität Würzburg; Theodor-Boveri-Weg 97074 Würzburg Germany
- Institut für Organische Chemie; Universität Würzburg; Am Hubland 97074 Würzburg Germany
| |
Collapse
|
41
|
Zhu C, Fang L. Locking the Coplanar Conformation of π‐Conjugated Molecules and Macromolecules Using Dynamic Noncovalent Bonds. Macromol Rapid Commun 2017; 39. [DOI: 10.1002/marc.201700241] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Revised: 05/22/2017] [Indexed: 01/28/2023]
Affiliation(s)
- Congzhi Zhu
- Department of Chemistry Texas A&M University College Station TX 77843‐3255 USA
| | - Lei Fang
- Department of Chemistry Texas A&M University College Station TX 77843‐3255 USA
| |
Collapse
|
42
|
Crossley DL, Goh R, Cid J, Vitorica-Yrezabal I, Turner ML, Ingleson MJ. Borylated Arylamine–Benzothiadiazole Donor–Acceptor Materials as Low-LUMO, Low-Band-Gap Chromophores. Organometallics 2017. [DOI: 10.1021/acs.organomet.7b00188] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Daniel L. Crossley
- School of Chemistry, University of Manchester, Manchester M13 9PL, United Kingdom
| | - Rosanne Goh
- School of Chemistry, University of Manchester, Manchester M13 9PL, United Kingdom
| | - Jessica Cid
- School of Chemistry, University of Manchester, Manchester M13 9PL, United Kingdom
| | | | - Michael L. Turner
- School of Chemistry, University of Manchester, Manchester M13 9PL, United Kingdom
| | - Michael J. Ingleson
- School of Chemistry, University of Manchester, Manchester M13 9PL, United Kingdom
| |
Collapse
|
43
|
Nakamura T, Okazaki S, Arakawa N, Satou M, Endo M, Murata Y, Wakamiya A. Synthesis of Azole-fused Benzothiadiazoles as Key Units for Functional π-Conjugated Compounds. J PHOTOPOLYM SCI TEC 2017. [DOI: 10.2494/photopolymer.30.561] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | | | | | - Motoi Satou
- Institute for Chemical Research, Kyoto University
| | - Masaru Endo
- Institute for Chemical Research, Kyoto University
| | | | | |
Collapse
|