1
|
Schleisiek J, Michaltsis E, Mayer S, Montesdeoca N, Karges J. Necrosis inducing tetranuclear Ru(II)-Re(I) metal complex for anticancer therapy. Dalton Trans 2025; 54:942-950. [PMID: 39714107 DOI: 10.1039/d4dt02992e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Chemotherapy is one of the most widely used anticancer treatments worldwide. However, despite its clinical effectiveness, most chemotherapeutic agents are associated with severe side effects. To address this limitation, there is an urgent need for the development of novel anticancer agents. Among the promising alternatives, Ruthenium and Rhenium complexes have garnered significant attention in the scientific literature. This study proposes combining these two metal moieties into a single tetranuclear complex, bridged by a 2,2'-bipyrimidine ligand. Cytotoxicity tests revealed broad activity of the novel metal complex against multiple cancer cell lines. Mechanistic studies suggested that the complex induces cell death by necrosis. Further analyses demonstrated its ability to eradicate colon carcinoma tumor spheroids at micromolar concentrations. To the best of our knowledge, this represents the first example of a Ru(II)-Re(I) tetranuclear metal complex as an anticancer agent.
Collapse
Affiliation(s)
- Julia Schleisiek
- Faculty of Chemistry and Biochemistry, Ruhr-University Bochum, Universitätsstrasse 150, 44780 Bochum, Germany.
| | - Eleni Michaltsis
- Faculty of Chemistry and Biochemistry, Ruhr-University Bochum, Universitätsstrasse 150, 44780 Bochum, Germany.
| | - Stephan Mayer
- Faculty of Chemistry and Biochemistry, Ruhr-University Bochum, Universitätsstrasse 150, 44780 Bochum, Germany.
| | - Nicolás Montesdeoca
- Faculty of Chemistry and Biochemistry, Ruhr-University Bochum, Universitätsstrasse 150, 44780 Bochum, Germany.
| | - Johannes Karges
- Faculty of Chemistry and Biochemistry, Ruhr-University Bochum, Universitätsstrasse 150, 44780 Bochum, Germany.
| |
Collapse
|
2
|
Marco A, Kasparkova J, Bautista D, Kostrhunova H, Cutillas N, Markova L, Novohradsky V, Ruiz J, Brabec V. A Novel Substituted Benzo[ g]quinoxaline-Based Cyclometalated Ru(II) Complex as a Biocompatible Membrane-Targeted PDT Colon Cancer Stem Cell Agent. J Med Chem 2024; 67:21470-21485. [PMID: 39620973 DOI: 10.1021/acs.jmedchem.4c02357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
Herein, we describe and investigate biological activity of three octahedral ruthenium(II) complexes of the type [Ru(C∧N)(phen)2]+, RuL1-RuL3, containing a π-expansive cyclometalating substituted benzo[g]quinoxaline ligand (C∧N ligand) (phen = 1,10-phenanthroline). Compounds RuL1-RuL3 in cervical, melanoma, and colon human cancer cells exhibit high phototoxicity after irradiation with light (particularly blue), with the phototoxicity index reaching 100 for the complex RuL2 in most sensitive HCT116 cells. RuL2 accumulates in the cellular membranes. If irradiated, it induces lipid peroxidation, likely connected with photoinduced ROS generation. Oxidative damage to the fatty acids leads to the attenuation of the membranes, the activation of caspase 3, and the triggering of the apoptotic pathway, thus implementing membrane-localized photodynamic therapy. RuL2 is the first photoactive ruthenium-based complex capable of killing the hardly treatable colon cancer stem cells, a highly resilient subpopulation within a heterogeneous tumor mass, responsible for tumor recurrence and the metastatic progression of cancer.
Collapse
Affiliation(s)
- Alicia Marco
- Departamento de Química Inorgánica, Universidad de Murcia and Murcia BioHealth Research Institute (IMIB-Arrixaca), E-30100 Murcia, Spain
| | - Jana Kasparkova
- Czech Academy of Sciences, Institute of Biophysics, Kralovopolska 135, CZ-61 200 Brno, Czech Republic
- Department of Biophysics, Faculty of Science, Palacky University, Slechtitelu 27, CZ-783 71 Olomouc, Czech Republic
| | | | - Hana Kostrhunova
- Czech Academy of Sciences, Institute of Biophysics, Kralovopolska 135, CZ-61 200 Brno, Czech Republic
| | - Natalia Cutillas
- Departamento de Química Inorgánica, Universidad de Murcia and Murcia BioHealth Research Institute (IMIB-Arrixaca), E-30100 Murcia, Spain
| | - Lenka Markova
- Czech Academy of Sciences, Institute of Biophysics, Kralovopolska 135, CZ-61 200 Brno, Czech Republic
| | - Vojtech Novohradsky
- Czech Academy of Sciences, Institute of Biophysics, Kralovopolska 135, CZ-61 200 Brno, Czech Republic
| | - José Ruiz
- Departamento de Química Inorgánica, Universidad de Murcia and Murcia BioHealth Research Institute (IMIB-Arrixaca), E-30100 Murcia, Spain
| | - Viktor Brabec
- Czech Academy of Sciences, Institute of Biophysics, Kralovopolska 135, CZ-61 200 Brno, Czech Republic
- Department of Biophysics, Faculty of Science, Palacky University, Slechtitelu 27, CZ-783 71 Olomouc, Czech Republic
| |
Collapse
|
3
|
Lavrova MA, Verzun SA, Mishurinskiy SA, Sirotin MA, Bykova SK, Gontcharenko VE, Mariasina SS, Korshunov VM, Taydakov IV, Belousov YA, Dolzhenko VD. Fine-Tuning of the Optical and Electrochemical Properties of Ruthenium(II) Complexes with 2-Arylbenzimidazoles and 4,4'-Dimethoxycarbonyl-2,2'-bipyridine. Molecules 2023; 28:6541. [PMID: 37764316 PMCID: PMC10536653 DOI: 10.3390/molecules28186541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/28/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
A series of cyclometalated complexes of ruthenium (II) with four different substituents in the aryl fragment of benzimidazole was synthesized in order to study the effect of substituent donation on the electronic structure of the substances. The resulting complexes were studied using X-ray diffraction, NMR spectroscopy, MALDI mass spectrometry, electron absorption spectroscopy, luminescence spectroscopy, and cyclic voltammetry as well as DFT/TDDFT was also used to interpret the results. All the complexes have intense absorption in the range of up to 700 nm, the triplet nature of the excited state was confirmed by measurement of luminescence decay. With an increase in substituent donation, a red shift of the absorption and emission bands occurs, and the lifetime of the excited state and the redox potential of the complex decrease. The combination of these properties shows that the complexes are excellent dyes and can be used as photosensitizers.
Collapse
Affiliation(s)
- Maria A. Lavrova
- Chemistry Department, M.V. Lomonosov Moscow State University, Leninskie Gory Street, Building 1/3, 119234 Moscow, Russia; (S.A.V.); (S.A.M.); (M.A.S.); (S.S.M.); (Y.A.B.)
| | - Stepan A. Verzun
- Chemistry Department, M.V. Lomonosov Moscow State University, Leninskie Gory Street, Building 1/3, 119234 Moscow, Russia; (S.A.V.); (S.A.M.); (M.A.S.); (S.S.M.); (Y.A.B.)
| | - Sergey A. Mishurinskiy
- Chemistry Department, M.V. Lomonosov Moscow State University, Leninskie Gory Street, Building 1/3, 119234 Moscow, Russia; (S.A.V.); (S.A.M.); (M.A.S.); (S.S.M.); (Y.A.B.)
| | - Maxim A. Sirotin
- Chemistry Department, M.V. Lomonosov Moscow State University, Leninskie Gory Street, Building 1/3, 119234 Moscow, Russia; (S.A.V.); (S.A.M.); (M.A.S.); (S.S.M.); (Y.A.B.)
- N.N. Semenov Federal Research Center for Chemical Physics, Kosygina Street 4, 119991 Moscow, Russia
| | - Sofya K. Bykova
- Higher Chemical College of RAS, Mendeleev University of Chemical Technology, Miusskaya Square, 9, 125047 Moscow, Russia;
| | - Victoria E. Gontcharenko
- Faculty of Chemistry, National Research University Higher School of Economics, 20 Miasnitskaya Street, 101000 Moscow, Russia;
- P.N. Lebedev Physical Institute of the Russian Academy of Sciences, 119991 Moscow, Russia; (V.M.K.); (I.V.T.)
| | - Sofia S. Mariasina
- Chemistry Department, M.V. Lomonosov Moscow State University, Leninskie Gory Street, Building 1/3, 119234 Moscow, Russia; (S.A.V.); (S.A.M.); (M.A.S.); (S.S.M.); (Y.A.B.)
- Faculty of Fundamental Medicine, Lomonosov Moscow State University, 119991 Moscow, Russia
- Institute of Functional Genomics, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Vladislav M. Korshunov
- P.N. Lebedev Physical Institute of the Russian Academy of Sciences, 119991 Moscow, Russia; (V.M.K.); (I.V.T.)
- Faculty of Fundamental Sciences, Bauman Moscow State Technical University, 105005 Moscow, Russia
| | - Ilya V. Taydakov
- P.N. Lebedev Physical Institute of the Russian Academy of Sciences, 119991 Moscow, Russia; (V.M.K.); (I.V.T.)
- Academic Department of Innovational Materials and Technologies Chemistry, G.V. Plekhanov Russian University of Economics, 36 Stremyannoy per., 117997 Moscow, Russia
| | - Yury A. Belousov
- Chemistry Department, M.V. Lomonosov Moscow State University, Leninskie Gory Street, Building 1/3, 119234 Moscow, Russia; (S.A.V.); (S.A.M.); (M.A.S.); (S.S.M.); (Y.A.B.)
- P.N. Lebedev Physical Institute of the Russian Academy of Sciences, 119991 Moscow, Russia; (V.M.K.); (I.V.T.)
| | - Vladimir D. Dolzhenko
- Chemistry Department, M.V. Lomonosov Moscow State University, Leninskie Gory Street, Building 1/3, 119234 Moscow, Russia; (S.A.V.); (S.A.M.); (M.A.S.); (S.S.M.); (Y.A.B.)
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky pr. 47, 119991 Moscow, Russia
| |
Collapse
|
4
|
Second and third-row transition metal compounds containing benzimidazole ligands: An overview of their anticancer and antitumour activity. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214790] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
5
|
Cervinka J, Gobbo A, Biancalana L, Markova L, Novohradsky V, Guelfi M, Zacchini S, Kasparkova J, Brabec V, Marchetti F. Ruthenium(II)-Tris-pyrazolylmethane Complexes Inhibit Cancer Cell Growth by Disrupting Mitochondrial Calcium Homeostasis. J Med Chem 2022; 65:10567-10587. [PMID: 35913426 PMCID: PMC9376960 DOI: 10.1021/acs.jmedchem.2c00722] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
![]()
While ruthenium arene complexes have been widely investigated
for
their medicinal potential, studies on homologous compounds containing
a tridentate tris(1-pyrazolyl)methane ligand are almost absent in
the literature. Ruthenium(II) complex 1 was obtained
by a modified reported procedure; then, the reactions with a series
of organic molecules (L) in boiling alcohol afforded novel complexes 2–9 in 77–99% yields. Products 2–9 were fully structurally characterized. They are
appreciably soluble in water, where they undergo partial chloride/water
exchange. The antiproliferative activity was determined using a panel
of human cancer cell lines and a noncancerous one, evidencing promising
potency of 1, 7, and 8 and
significant selectivity toward cancer cells. The tested compounds
effectively accumulate in cancer cells, and mitochondria represent
a significant target of biological action. Most notably, data provide
convincing evidence that the mechanism of biological action is mediated
by the inhibiting of mitochondrial calcium intake.
Collapse
Affiliation(s)
- Jakub Cervinka
- Czech Academy of Sciences, Institute of Biophysics, Kralovopolska 135, CZ-61265 Brno, Czech Republic.,Faculty of Science, Department of Biochemistry, Masaryk University, Kamenice 5, CZ-62500 Brno, Czech Republic
| | - Alberto Gobbo
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 13, I-56124 Pisa, Italy.,Department of Industrial Chemistry "Toso Montanari", University of Bologna, Viale Risorgimento 4, I-40136 Bologna, Italy
| | - Lorenzo Biancalana
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 13, I-56124 Pisa, Italy
| | - Lenka Markova
- Czech Academy of Sciences, Institute of Biophysics, Kralovopolska 135, CZ-61265 Brno, Czech Republic
| | - Vojtech Novohradsky
- Czech Academy of Sciences, Institute of Biophysics, Kralovopolska 135, CZ-61265 Brno, Czech Republic
| | - Massimo Guelfi
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 13, I-56124 Pisa, Italy
| | - Stefano Zacchini
- Department of Industrial Chemistry "Toso Montanari", University of Bologna, Viale Risorgimento 4, I-40136 Bologna, Italy
| | - Jana Kasparkova
- Czech Academy of Sciences, Institute of Biophysics, Kralovopolska 135, CZ-61265 Brno, Czech Republic.,Faculty of Science, Department of Biophysics, Palacky University in Olomouc, Slechtitelu 27, CZ-78371 Olomouc, Czech Republic
| | - Viktor Brabec
- Czech Academy of Sciences, Institute of Biophysics, Kralovopolska 135, CZ-61265 Brno, Czech Republic
| | - Fabio Marchetti
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 13, I-56124 Pisa, Italy
| |
Collapse
|
6
|
Xu C, Du K, Wu Y, Tan L, Li X. A Cycloruthenated Complex: Detecting Hg
2+
by Hg
2+
‐promoted Coordination Switch and Cu
2+
by Coordination. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Ce Xu
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South‐Central Minzu University Wuhan China
| | - Kang Du
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South‐Central Minzu University Wuhan China
| | - Yuhao Wu
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South‐Central Minzu University Wuhan China
| | - Lin Tan
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South‐Central Minzu University Wuhan China
| | - Xianghong Li
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South‐Central Minzu University Wuhan China
| |
Collapse
|
7
|
Lavrova MA, Lunev AM, Goncharenko VE, Taidakov IV, Dolzhenko VD, Belousov YA. Cyclometallated Ruthenium Complex with 3,3',5,5'-Tetramethyl-1,1'-biphenyl-4,4'-bipyrazole and 2,2'-Dicarboxybipyridine: Synthesis, Optical Properties, and Quantum Chemical Modeling. RUSS J COORD CHEM+ 2022. [DOI: 10.1134/s1070328422060033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Abstract
New complex [RuL(Dmdcbp)2]PF6 (I) is synthesized by the consecutive reactions of [Ru-p-cymene]2Cl4 with 3,3',5,5'-tetramethyl-1,1'-biphenyl-4,4'-bipyrazole (L) and 4,4'-dicarboxy-2,2'-bipyridine in a methanol–chloroform medium. The composition of complex I is confirmed by NMR and elemental analysis, and the optical and luminescence properties of the complex are studied. Ligand L is characterized for the first time by X-ray diffraction (CIF file CCDC no. 2118676). Quantum chemical calculations in terms of the density functional theory are performed for the interpretation of the absorption and emission spectra. Complex I is promising for using as a photosensitizer.
Collapse
|
8
|
Pete S, Roy N, Kar B, Paira P. Construction of homo and heteronuclear Ru(II), Ir(III) and Re(I) complexes for target specific cancer therapy. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214462] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
9
|
Novel cis-Pt(II) Complexes with Alkylpyrazole Ligands: Synthesis, Characterization, and Unusual Mode of Anticancer Action. Bioinorg Chem Appl 2022; 2022:1717200. [PMID: 35281329 PMCID: PMC8906972 DOI: 10.1155/2022/1717200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 01/26/2022] [Indexed: 12/30/2022] Open
Abstract
One concept of improving anticancer effects of conventional platinum-based antitumor drugs consists of conjugating these compounds with other biologically (antitumor) active agents, acting by a different mechanism. Here, we present synthesis, physicochemical characterization, biological effects, and mechanisms of action of four new analogs of conventional cisplatin, namely, cis-Pt(II) complexes containing either methyl or ethyl pyrazole N-donor ligands and chlorido or iodido ligands. It is noteworthy that while chlorido complexes display activity in a variety of cancer cell lines comparable to cisplatin, iodido complexes are considerably more potent due to their enhanced hydrophobicity and consequently enhanced cellular accumulation. Moreover, all of the studied Pt(II) alkylpyrazole complexes display a higher selectivity for tumor cells and effectively overcome the acquired resistance to cisplatin. Further results focused on the mechanism of action of the studied complexes and showed that in contrast to cisplatin and several platinum-based antitumor drugs, DNA damage by the investigated Pt(II)-alkylpyrazole complexes does not play a major role in their mechanism of action. Our findings demonstrate that inhibition of the tubulin kinesin Eg5, which is essential for forming a functional mitotic spindle, plays an important role in their mechanism of antiproliferative action.
Collapse
|
10
|
Novohradsky V, Markova L, Kostrhunova H, Svitelova M, Kasparkova J, Barbanente A, Papadia P, Margiotta N, Hoeschele JD, Brabec V. Pt( ii) complex containing the 1 R,2 R enantiomer of trans-1,2-diamino-4-cyclohexene ligand effectively and selectively inhibits the viability of aggressive pancreatic adenocarcinoma cells and alters their lipid metabolism. Inorg Chem Front 2022. [DOI: 10.1039/d2qi00778a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
New compounds structurally derived from oxaliplatin exhibit high potency in malignant pancreatic adenocarcinoma cells. Their mechanism of antiproliferative action in pancreatic cancer cells involves inhibition of de novo lipid synthesis.
Collapse
Affiliation(s)
- Vojtech Novohradsky
- Czech Academy of Sciences, Institute of Biophysics, Kralovopolska 135, CZ-61265 Brno, Czech Republic
| | - Lenka Markova
- Czech Academy of Sciences, Institute of Biophysics, Kralovopolska 135, CZ-61265 Brno, Czech Republic
| | - Hana Kostrhunova
- Czech Academy of Sciences, Institute of Biophysics, Kralovopolska 135, CZ-61265 Brno, Czech Republic
| | - Marie Svitelova
- Czech Academy of Sciences, Institute of Biophysics, Kralovopolska 135, CZ-61265 Brno, Czech Republic
| | - Jana Kasparkova
- Czech Academy of Sciences, Institute of Biophysics, Kralovopolska 135, CZ-61265 Brno, Czech Republic
- Department of Biophysics, Faculty of Science, Palacky University in Olomouc, Slechtitelu 27, CZ-78371 Olomouc, Czech Republic
| | - Alessandra Barbanente
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, Via Orabona, 4, I-70125 Bari, Italy
| | - Paride Papadia
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, 73100 Lecce, Italy
| | - Nicola Margiotta
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, Via Orabona, 4, I-70125 Bari, Italy
| | - James D. Hoeschele
- Department of Chemistry, Eastern Michigan University, Ypsilanti, MI 48197, USA
| | - Viktor Brabec
- Czech Academy of Sciences, Institute of Biophysics, Kralovopolska 135, CZ-61265 Brno, Czech Republic
| |
Collapse
|
11
|
|
12
|
Das U, Kar B, Pete S, Paira P. Ru(ii), Ir(iii), Re(i) and Rh(iii) based complexes as next generation anticancer metallopharmaceuticals. Dalton Trans 2021; 50:11259-11290. [PMID: 34342316 DOI: 10.1039/d1dt01326b] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Several anticancer drugs such as cisplatin, and its analogues, epirubicin, and doxorubicin are well known for their anticancer activity but the therapeutic value of these drugs comes with certain side effects and they cannot distinguish between normal and cancer cells. Thus, a major challenge for researchers around the world is to develop an anticancer drug with the least toxicity and more target specificity. With the successful reporting of NAMI-A and KP1019, a new path has emerged in the anticancer field. Recently, several Ru(ii) complexes have been reported for their anticancer activity due to their enhanced cellular uptake and selectivity towards cancer cells. Apart from the Ru(ii) complexes, a large amount of research has been carried out with Ir(iii), Re(i), and Rh(iii) based complexes, which exhibited promising anticancer activity. The present review reports various Ru(ii), Ir(iii), Re(i), and Rh(iii) based complexes for their anticancer activity based on their cytotoxicity profiles, biological targets and mechanism of action.
Collapse
Affiliation(s)
- Utpal Das
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore-632014, Tamilnadu, India.
| | | | | | | |
Collapse
|
13
|
Zhang Y, Zhou Y, Zhang H, Tian L, Hao J, Yuan Y, Li W, Liu Y. DNA binding and evaluation of anticancer activity in vitro and in vivo of iridium(III) polypyridyl complexes. J Inorg Biochem 2021; 224:111580. [PMID: 34438219 DOI: 10.1016/j.jinorgbio.2021.111580] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 08/01/2021] [Accepted: 08/11/2021] [Indexed: 01/25/2023]
Abstract
In this report, we synthesized three new iridium(III) complexes: [Ir(piq)2(apip)]PF6 (Ir1, piq = 1-phenylisoquinoline, apip = 2-aminophenyl-1H-imidazo[4,5-f][1,10]phenanthroline), [Ir(piq)2(maip)]PF6 (Ir2, maip = 3-aminophenyl-1H-imidazo[4,5-f][1,10]phenanthroline) and [Ir(piq)2(paip)]PF6 (Ir3, paip = 4-aminophenyl-1H-imidazo[4,5-f][1,10]phenanthroline). The DNA binding was investigated. 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) method was used to detect the cytotoxic activity of Ir1, Ir2 and Ir3, the complexes show highly active against B16 cells with IC50 values of 0.3 ± 0.2 μM, 3.7 ± 0.2 μM and 4.6 ± 1.1 μM, respectively. Subsequently, cellular uptake suggested that the cytotoxicity of the complexes is attributed to their differences in cellular uptake levels. In addition, complexes Ir1, Ir2 and Ir3 induce cell cycle arrest at the G0/G1 phase and regulate the cell cycle mediators such as cyclin D1, CDK6 (cyclin-dependent kinase 6), CDK4 and p21, leading to the inhibition of B16 cells proliferation. The autophagy was investigated by monodansylcadaverine (MDC) staining. The complexes can promote the change from LC3-I to LC3-II, up-regulate levels of Beclin-1 and down-regulate expression of p62. The complexes induced apoptosis by regulating the expression levels of related indicators such as PARP (poly ADP-ribose polymerase), PI3K (phosphoinositide-3 kinase), AKT (protein kinase B), Caspase, Bcl-2 (B-cell lymphoma-2), Bad (Bcl2 associated death promoter), Bax (Bcl2-associated X) and Cyto C (cytochrome C). Additionally, Ir1 exerted significant antitumor activity in the suppression of malignant melanoma proliferation in vivo. As indicated in the above results, these complexes were highly effective for malignant melanoma treatment through the intrinsic pathway and provided much insight into anticancer drugs for tumor therapy.
Collapse
Affiliation(s)
- Yuanyuan Zhang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Yi Zhou
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Huiwen Zhang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Li Tian
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Jing Hao
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Yuhan Yuan
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Wenlong Li
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Yunjun Liu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China.
| |
Collapse
|
14
|
Wei W, Jia G. Metal-Carbon Bonds of Heavier Group 7 and 8 Metals (Tc, Re, Ru, Os): Mononuclear Tc/Re/Ru/Os Complexes With Metal-Carbon Bonds. COMPREHENSIVE COORDINATION CHEMISTRY III 2021:123-439. [DOI: 10.1016/b978-0-08-102688-5.00049-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
15
|
Ortega E, Ballester FJ, Hernández-García A, Hernández-García S, Guerrero-Rubio MA, Bautista D, Santana MD, Gandía-Herrero F, Ruiz J. Novel organo-osmium(ii) proteosynthesis inhibitors active against human ovarian cancer cells reduce gonad tumor growth inCaenorhabditis elegans. Inorg Chem Front 2021. [DOI: 10.1039/c9qi01704f] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Novel Os(ii) arene complexes with a deprotonated ppy or ppy-CHO C^N ligand have been synthesized to selectively act on cancer cells as proteosynthesis inhibitorsin vitroand exert antitumor activityin vivoinC. elegansmodels.
Collapse
Affiliation(s)
- Enrique Ortega
- Departamento de Química Inorgánica
- Universidad de Murcia
- and Institute for Bio-Health Research of Murcia (IMIB-Arrixaca)
- E-30071 Murcia
- Spain
| | - Francisco J. Ballester
- Departamento de Química Inorgánica
- Universidad de Murcia
- and Institute for Bio-Health Research of Murcia (IMIB-Arrixaca)
- E-30071 Murcia
- Spain
| | - Alba Hernández-García
- Departamento de Química Inorgánica
- Universidad de Murcia
- and Institute for Bio-Health Research of Murcia (IMIB-Arrixaca)
- E-30071 Murcia
- Spain
| | - Samanta Hernández-García
- Departamento de Bioquímica y Biología Molecular A
- Unidad Docente de Biología
- Facultad de Veterinaria
- Universidad de Murcia
- E-30071 Murcia
| | - M. Alejandra Guerrero-Rubio
- Departamento de Bioquímica y Biología Molecular A
- Unidad Docente de Biología
- Facultad de Veterinaria
- Universidad de Murcia
- E-30071 Murcia
| | | | - M. Dolores Santana
- Departamento de Química Inorgánica
- Universidad de Murcia
- and Institute for Bio-Health Research of Murcia (IMIB-Arrixaca)
- E-30071 Murcia
- Spain
| | - Fernando Gandía-Herrero
- Departamento de Bioquímica y Biología Molecular A
- Unidad Docente de Biología
- Facultad de Veterinaria
- Universidad de Murcia
- E-30071 Murcia
| | - José Ruiz
- Departamento de Química Inorgánica
- Universidad de Murcia
- and Institute for Bio-Health Research of Murcia (IMIB-Arrixaca)
- E-30071 Murcia
- Spain
| |
Collapse
|
16
|
Sudhindra P, Ajay Sharma S, Roy N, Moharana P, Paira P. Recent advances in cytotoxicity, cellular uptake and mechanism of action of ruthenium metallodrugs: A review. Polyhedron 2020. [DOI: 10.1016/j.poly.2020.114827] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
17
|
Martínez-Carmona M, Ho QP, Morand J, García A, Ortega E, Erthal LCS, Ruiz-Hernandez E, Santana MD, Ruiz J, Vallet-Regí M, Gun'ko YK. Amino-Functionalized Mesoporous Silica Nanoparticle-Encapsulated Octahedral Organoruthenium Complex as an Efficient Platform for Combatting Cancer. Inorg Chem 2020; 59:10275-10284. [PMID: 32628466 DOI: 10.1021/acs.inorgchem.0c01436] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
In the process of synthesis of a new drug, as important as the drug itself is the formulation used, because the same compound can present a very different efficacy depending on how it is administered. In this work, we demonstrate how the antitumor capacity of a new octahedral organoruthenium complex, [Ru(ppy-CHO)(phen)2][PF6] is affected by its encapsulation in different types of mesoporous silica nanoparticles. The interactions between the Ru complex and the silica matrix and how these interactions are affected at two different pHs (7.4 and 5.4, mimicking physiological and endolysosomal acidic conditions, respectively) have been studied. The encapsulation has also been shown to affect the induction of apoptosis and necrosis and progression of the cell cycle compared to the free drug. The encapsulation of the Ru complex in nanoparticles functionalized with amino groups produced very high anticancer activity in cancer cells in vitro, especially against U87 glioblastoma cells, favoring cellular internalization and significantly increasing the anticancer capacity of the initial non-encapsulated Ru complex.
Collapse
Affiliation(s)
- Marina Martínez-Carmona
- School of Chemistry and CRANN, Trinity College, The University of Dublin (TCD), Dublin 2, Ireland
| | - Quy P Ho
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin (TCD), Dublin 2, Ireland.,Trinity Biomedical Sciences Institute, TCD, Dublin 2, Ireland
| | - Jérémy Morand
- School of Chemistry and CRANN, Trinity College, The University of Dublin (TCD), Dublin 2, Ireland
| | - Ana García
- Department of Chemistry in Pharmaceutical Sciences, School of Pharmacy, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Hospital 12 de Octubre i+12, 28040 Madrid, Spain.,Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Avenida Monforte de Lemos, 3-5, 28029 Madrid, Spain
| | - Enrique Ortega
- Departamento de Química Inorgánica, Universidad de Murcia, and Biomedical Research Institute of Murcia (IMIB-Arrixaca), E-30071 Murcia, Spain
| | - Luiza C S Erthal
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin (TCD), Dublin 2, Ireland.,Trinity Biomedical Sciences Institute, TCD, Dublin 2, Ireland
| | - Eduardo Ruiz-Hernandez
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin (TCD), Dublin 2, Ireland.,Trinity Biomedical Sciences Institute, TCD, Dublin 2, Ireland
| | - M Dolores Santana
- Departamento de Química Inorgánica, Universidad de Murcia, and Biomedical Research Institute of Murcia (IMIB-Arrixaca), E-30071 Murcia, Spain
| | - José Ruiz
- Departamento de Química Inorgánica, Universidad de Murcia, and Biomedical Research Institute of Murcia (IMIB-Arrixaca), E-30071 Murcia, Spain
| | - Maria Vallet-Regí
- Department of Chemistry in Pharmaceutical Sciences, School of Pharmacy, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Hospital 12 de Octubre i+12, 28040 Madrid, Spain.,Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Avenida Monforte de Lemos, 3-5, 28029 Madrid, Spain
| | - Yurii K Gun'ko
- School of Chemistry and CRANN, Trinity College, The University of Dublin (TCD), Dublin 2, Ireland
| |
Collapse
|
18
|
Crlikova H, Malina J, Novohradsky V, Kostrhunova H, Vasdev RAS, Crowley JD, Kasparkova J, Brabec V. Antiproliferative Activity and Associated DNA Interactions of [Co2L3]6+ Cylinders Derived from Bis(bidentate) 2-Pyridyl-1,2,3-triazole Ligands. Organometallics 2020. [DOI: 10.1021/acs.organomet.0c00146] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Hana Crlikova
- Department of Biophysics, Faculty of Science, Palacky University, Slechtitelu 27, CZ-783-71 Olomouc, Czech Republic
| | - Jaroslav Malina
- Czech Academy of Sciences, Institute of Biophysics, Kralovopolska 135, CZ-61265 Brno, Czech Republic
| | - Vojtech Novohradsky
- Czech Academy of Sciences, Institute of Biophysics, Kralovopolska 135, CZ-61265 Brno, Czech Republic
| | - Hana Kostrhunova
- Czech Academy of Sciences, Institute of Biophysics, Kralovopolska 135, CZ-61265 Brno, Czech Republic
| | - Roan A. S. Vasdev
- Department of Chemistry, University of Otago, P.O. Box 56, Dunedin 9016, Otago, New Zealand
| | - James D. Crowley
- Department of Chemistry, University of Otago, P.O. Box 56, Dunedin 9016, Otago, New Zealand
| | - Jana Kasparkova
- Department of Biophysics, Faculty of Science, Palacky University, Slechtitelu 27, CZ-783-71 Olomouc, Czech Republic
- Czech Academy of Sciences, Institute of Biophysics, Kralovopolska 135, CZ-61265 Brno, Czech Republic
| | - Viktor Brabec
- Czech Academy of Sciences, Institute of Biophysics, Kralovopolska 135, CZ-61265 Brno, Czech Republic
| |
Collapse
|
19
|
Ballester FJ, Ortega E, Bautista D, Santana MD, Ruiz J. Ru(ii) photosensitizers competent for hypoxic cancers via green light activation. Chem Commun (Camb) 2020; 56:10301-10304. [DOI: 10.1039/d0cc02417a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ru(ii) complexes exhibit phototherapeutic indexes higher than 750 in cancer HeLa cells with low nanomolar IC50 values under low doses of non-harmful green light and are active in normoxia and hypoxia conditions.
Collapse
Affiliation(s)
- Francisco J. Ballester
- Departamento de Química Inorgánica
- Universidad de Murcia
- and Biomedical Research Institute of Murcia (IMIB-Arrixaca)
- E-30071 Murcia
- Spain
| | - Enrique Ortega
- Departamento de Química Inorgánica
- Universidad de Murcia
- and Biomedical Research Institute of Murcia (IMIB-Arrixaca)
- E-30071 Murcia
- Spain
| | | | - M. Dolores Santana
- Departamento de Química Inorgánica
- Universidad de Murcia
- and Biomedical Research Institute of Murcia (IMIB-Arrixaca)
- E-30071 Murcia
- Spain
| | - José Ruiz
- Departamento de Química Inorgánica
- Universidad de Murcia
- and Biomedical Research Institute of Murcia (IMIB-Arrixaca)
- E-30071 Murcia
- Spain
| |
Collapse
|
20
|
Song H, Rogers NJ, Allison SJ, Brabec V, Bridgewater H, Kostrhunova H, Markova L, Phillips RM, Pinder EC, Shepherd SL, Young LS, Zajac J, Scott P. Discovery of selective, antimetastatic and anti-cancer stem cell metallohelices via post-assembly modification. Chem Sci 2019; 10:8547-8557. [PMID: 31803429 PMCID: PMC6839601 DOI: 10.1039/c9sc02651g] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 07/16/2019] [Indexed: 12/17/2022] Open
Abstract
Helicates and related metallofoldamers, synthesised by dynamic self-assembly, represent an area of chemical space inaccessible by traditional organic synthesis, and yet with potential for discovery of new classes of drug. Here we report that water-soluble, optically pure Fe(ii)- and even Zn(ii)-based triplex metallohelices are an excellent platform for post-assembly click reactions. By these means, the in vitro anticancer activity and most importantly the selectivity of a triplex metallohelix Fe(ii) system are dramatically improved. For one compound, a remarkable array of mechanistic and pharmacological behaviours is discovered: inhibition of Na+/K+ ATPase with potency comparable to the drug ouabain, antimetastatic properties (including inhibition of cell migration, re-adhesion and invasion), cancer stem cell targeting, and finally colonosphere inhibition competitive with the drug salinomycin.
Collapse
Affiliation(s)
- Hualong Song
- Department of Chemistry , University of Warwick , Coventry CV4 7AL , UK .
| | - Nicola J Rogers
- Department of Chemistry , University of Warwick , Coventry CV4 7AL , UK .
| | - Simon J Allison
- School of Applied Sciences , University of Huddersfield , Huddersfield , HD1 3DH , UK
| | - Viktor Brabec
- The Czech Academy of Sciences , Institute of Biophysics , Kralovopolska 135 , CZ-61265 Brno , Czech Republic
| | | | - Hana Kostrhunova
- The Czech Academy of Sciences , Institute of Biophysics , Kralovopolska 135 , CZ-61265 Brno , Czech Republic
| | - Lenka Markova
- The Czech Academy of Sciences , Institute of Biophysics , Kralovopolska 135 , CZ-61265 Brno , Czech Republic
| | - Roger M Phillips
- School of Applied Sciences , University of Huddersfield , Huddersfield , HD1 3DH , UK
| | - Emma C Pinder
- School of Applied Sciences , University of Huddersfield , Huddersfield , HD1 3DH , UK
| | - Samantha L Shepherd
- School of Applied Sciences , University of Huddersfield , Huddersfield , HD1 3DH , UK
| | - Lawrence S Young
- Warwick Medical School , University of Warwick , Coventry CV4 7AL , UK
| | - Juraj Zajac
- The Czech Academy of Sciences , Institute of Biophysics , Kralovopolska 135 , CZ-61265 Brno , Czech Republic
| | - Peter Scott
- Department of Chemistry , University of Warwick , Coventry CV4 7AL , UK .
| |
Collapse
|
21
|
González JJ, Ortega E, Rothemund M, Gold M, Vicente C, de Haro C, Bautista D, Schobert R, Ruiz J. Luminescent Gold(I) Complexes of 1-Pyridyl-3-anthracenylchalcone Inducing Apoptosis in Colon Carcinoma Cells and Antivascular Effects. Inorg Chem 2019; 58:12954-12963. [DOI: 10.1021/acs.inorgchem.9b01901] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Juan Jesús González
- Departamento de Química Inorgánica, Facultad de Química, Biomedical Research Institute of Murcia (IMIB-Arrixaca-UMU), Universidad de Murcia, E-30071 Murcia, Spain
| | - Enrique Ortega
- Departamento de Química Inorgánica, Facultad de Química, Biomedical Research Institute of Murcia (IMIB-Arrixaca-UMU), Universidad de Murcia, E-30071 Murcia, Spain
| | - Matthias Rothemund
- Organic Chemistry Laboratory, University Bayreuth, Universitaetsstrasse 30 95440 Bayreuth, Germany
| | - Madeleine Gold
- Organic Chemistry Laboratory, University Bayreuth, Universitaetsstrasse 30 95440 Bayreuth, Germany
| | - Consuelo Vicente
- Departamento de Química Inorgánica, Facultad de Química, Biomedical Research Institute of Murcia (IMIB-Arrixaca-UMU), Universidad de Murcia, E-30071 Murcia, Spain
| | - Concepción de Haro
- Departamento de Química Inorgánica, Facultad de Química, Biomedical Research Institute of Murcia (IMIB-Arrixaca-UMU), Universidad de Murcia, E-30071 Murcia, Spain
| | | | - Rainer Schobert
- Organic Chemistry Laboratory, University Bayreuth, Universitaetsstrasse 30 95440 Bayreuth, Germany
| | - José Ruiz
- Departamento de Química Inorgánica, Facultad de Química, Biomedical Research Institute of Murcia (IMIB-Arrixaca-UMU), Universidad de Murcia, E-30071 Murcia, Spain
| |
Collapse
|
22
|
Janzen DE, Bruening MA, Mamiya AA, Driscoll LE, da Silva Filho DA. Hemilabile bonding of 1-oxa-4,7-dithiacyclononane in cyclometallated palladium(ii) complexes. Dalton Trans 2019; 48:11520-11535. [PMID: 31294426 DOI: 10.1039/c9dt02059d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The synthesis and characterization of a series of cyclometallated complexes of Pd(ii) incorporating the mixed donor ligand 1-oxa-4,7-dithiacyclononane ([9]aneS2O) are presented in this study. Complexes of the form [Pd(C^N)([9]aneS2O)](PF6) (C^N = 2-phenylpyridine (ppy) 1b, 4-(2-pyridyl)benzaldehyde (ppyCHO) 2b, 7,8-benzoquinoline (bzq) 3b, 2-benzothienylpyridine (btp) 4b, 2-phenylbenzothiazole (pbt) 5b), were obtained in high-yield from a simple two-step synthetic scheme. All of these complexes were fully characterized by NMR, ESI-MS, IR, combustion analyses, and most (1b, 2b, 4b, 5b) by X-ray crystallography. Solution 1H and 13C NMR studies of [Pd(C^N)([9]aneS2O)](PF6) complexes demonstrate complicated [9]aneS2O behavior at room temperature. Variable temperature NMR reveals dynamic bonding of the [9]aneS2O ligand consistent with the presence of both endodentate and exodentate bonding modes. This is in stark contrast to the related [9]aneS3 (1,4,7-trithiacyclononane) cogeners that demonstrate fluxional endodentate bonding only in solution. X-ray structures reveal only exodenate [9]aneS2O bonding in this series, unlike the related [9]aneS3 complexes that show endodenate bonding with an axial PdS interaction. DFT calculations performed on endo and exo [9]aneS2O bonding forms of 4b, as well as a transition state calculation for interconversion, suggest reasonable access to both bonding forms based on the energy barrier. Natural bond order calculations provide further evidence for a weak axial PdO interaction in the endo form of 4b.
Collapse
Affiliation(s)
- Daron E Janzen
- Department of Chemistry and Biochemistry, St. Catherine University, St. Paul, MN, USA.
| | - Meaghan A Bruening
- Department of Chemistry and Biochemistry, St. Catherine University, St. Paul, MN, USA.
| | - Arthur A Mamiya
- Departamento de Matemática, Universidade Federal do Mato Grosso - Campus Rondonópolis, Rondonópolis, Brazil and Institute of Physics, University of Brasilia, 70910-900, Brasilia, Brazil
| | - Laura E Driscoll
- Department of Chemistry and Biochemistry, St. Catherine University, St. Paul, MN, USA.
| | - Demetrio A da Silva Filho
- Institute of Physics, University of Brasilia, 70910-900, Brasilia, Brazil and International Center for Condensed Matter Physics, Universidade de Brasilia, CP 04455, 70919-970 - Brasilia, Brazil
| |
Collapse
|
23
|
Kostrhunova H, Zajac J, Novohradsky V, Kasparkova J, Malina J, Aldrich-Wright JR, Petruzzella E, Sirota R, Gibson D, Brabec V. A Subset of New Platinum Antitumor Agents Kills Cells by a Multimodal Mechanism of Action Also Involving Changes in the Organization of the Microtubule Cytoskeleton. J Med Chem 2019; 62:5176-5190. [PMID: 31030506 DOI: 10.1021/acs.jmedchem.9b00489] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The substitution inert platinum agent [Pt(1 S,2 S-diaminocyclohexane)(5,6-dimethyl-1,10-phenanthroline)]2+ (56MeSS, 5) is a potent cytotoxic metallodrug. In contrast to conventional cisplatin or oxaliplatin, the mechanism of action (MoA) of 5 is fundamentally different. However, details of the mechanism by which the 5,6-dimethyl-1,10-phenanthroline ligand contributes to the cytotoxicity of 5 and its derivatives have not been sufficiently clarified so far. Here, we show that 5 and its Pt(IV) derivatives exhibit an intriguing potency in the triple-negative breast cancer cells MDA-MB-231. Moreover, we show that the Pt(IV) derivatives of 5 act by multimodal MoA resulting in the global biological effects, that is, they damage nuclear DNA, reduce the mitochondrial membrane potential, induce the epigenetic processes, and last but not least, the data provide evidence that changes in the organization of cytoskeleton networks are functionally important for 5 and its derivatives, in contrast to clinically used platinum cytostatics, to kill cancer cells.
Collapse
Affiliation(s)
- Hana Kostrhunova
- Czech Academy of Sciences , Institute of Biophysics , Kralovopolska 135 , CZ-61265 Brno , Czech Republic
| | - Juraj Zajac
- Czech Academy of Sciences , Institute of Biophysics , Kralovopolska 135 , CZ-61265 Brno , Czech Republic
| | - Vojtech Novohradsky
- Czech Academy of Sciences , Institute of Biophysics , Kralovopolska 135 , CZ-61265 Brno , Czech Republic
| | - Jana Kasparkova
- Czech Academy of Sciences , Institute of Biophysics , Kralovopolska 135 , CZ-61265 Brno , Czech Republic
| | - Jaroslav Malina
- Czech Academy of Sciences , Institute of Biophysics , Kralovopolska 135 , CZ-61265 Brno , Czech Republic
| | - Janice R Aldrich-Wright
- School of Science and Health , Western Sydney University , Penrith South DC 1797 , NSW , Australia
| | - Emanuele Petruzzella
- Institute for Drug Research, School of Pharmacy , The Hebrew University , Jerusalem 91120 , Israel
| | - Roman Sirota
- Institute for Drug Research, School of Pharmacy , The Hebrew University , Jerusalem 91120 , Israel
| | - Dan Gibson
- Institute for Drug Research, School of Pharmacy , The Hebrew University , Jerusalem 91120 , Israel
| | - Viktor Brabec
- Czech Academy of Sciences , Institute of Biophysics , Kralovopolska 135 , CZ-61265 Brno , Czech Republic
| |
Collapse
|
24
|
Graf M, Siegmund D, Metzler-Nolte N, Sünkel K, Böttcher HC. Synthesis, characterization and studies on the biological activity of bis-cyclometalated M(III)-complexes (M = Rh, Ir and Ru). Inorganica Chim Acta 2019. [DOI: 10.1016/j.ica.2018.11.050] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
25
|
Novohradsky V, Vigueras G, Pracharova J, Cutillas N, Janiak C, Kostrhunova H, Brabec V, Ruiz J, Kasparkova J. Molecular superoxide radical photogeneration in cancer cells by dipyridophenazine iridium(iii) complexes. Inorg Chem Front 2019. [DOI: 10.1039/c9qi00811j] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The switch from Type II to Type I photochemical mechanism by new Ir(iii) complexes for improved PDT of cancer under hypoxia is demonstrated.
Collapse
Affiliation(s)
| | - Gloria Vigueras
- Departamento de Química Inorgánica
- Universidad de Murcia and Institute for Bio-Health Research of Murcia (IMIB-Arrixaca)
- E-30071 Murcia
- Spain
| | - Jitka Pracharova
- Department of Biophysics
- Centre of the Region Hana for Biotechnological and Agricultural Research
- Palacky University
- 783 71 Olomouc
- Czech Republic
| | - Natalia Cutillas
- Departamento de Química Inorgánica
- Universidad de Murcia and Institute for Bio-Health Research of Murcia (IMIB-Arrixaca)
- E-30071 Murcia
- Spain
| | - Christoph Janiak
- Institut für Anorganische Chemie und Strukturchemie
- Heinrich-Heine-Universität Düsseldorf
- 40225 Düsseldorf
- Germany
| | - Hana Kostrhunova
- Czech Academy of Sciences
- Institute of Biophysics
- CZ-61265 Brno
- Czech Republic
| | - Viktor Brabec
- Czech Academy of Sciences
- Institute of Biophysics
- CZ-61265 Brno
- Czech Republic
| | - Jose Ruiz
- Departamento de Química Inorgánica
- Universidad de Murcia and Institute for Bio-Health Research of Murcia (IMIB-Arrixaca)
- E-30071 Murcia
- Spain
| | - Jana Kasparkova
- Czech Academy of Sciences
- Institute of Biophysics
- CZ-61265 Brno
- Czech Republic
| |
Collapse
|
26
|
Ballester FJ, Ortega E, Porto V, Kostrhunova H, Davila-Ferreira N, Bautista D, Brabec V, Domínguez F, Santana MD, Ruiz J. New half-sandwich ruthenium(ii) complexes as proteosynthesis inhibitors in cancer cells. Chem Commun (Camb) 2019; 55:1140-1143. [DOI: 10.1039/c8cc09211g] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
New Ru(ii) arene anticancer complexes with a non-coordinated CHO group that are able to inhibit the protein synthesis; this is a new mode of action for half-sandwich metal complexes.
Collapse
Affiliation(s)
- Francisco J. Ballester
- Departamento de Química Inorgánica
- Facultad de Química
- Biomedical Research Institute of Murcia (IMIB-Arrixaca-UMU)
- Universidad de Murcia
- E-30071 Murcia
| | - Enrique Ortega
- Departamento de Química Inorgánica
- Facultad de Química
- Biomedical Research Institute of Murcia (IMIB-Arrixaca-UMU)
- Universidad de Murcia
- E-30071 Murcia
| | - Vanesa Porto
- CIMUS
- Universidad de Santiago de Compostela
- Avenida Barcelona s/n
- Santiago de Compostela
- Spain
| | - Hana Kostrhunova
- Institute of Biophysics
- Academy of Sciences of the Czech Republic
- v.v.i
- 612 65 Brno
- Czech Republic
| | - Nerea Davila-Ferreira
- CIMUS
- Universidad de Santiago de Compostela
- Avenida Barcelona s/n
- Santiago de Compostela
- Spain
| | | | - Viktor Brabec
- Institute of Biophysics
- Academy of Sciences of the Czech Republic
- v.v.i
- 612 65 Brno
- Czech Republic
| | - Fernando Domínguez
- CIMUS
- Universidad de Santiago de Compostela
- Avenida Barcelona s/n
- Santiago de Compostela
- Spain
| | - M. Dolores Santana
- Departamento de Química Inorgánica
- Facultad de Química
- Biomedical Research Institute of Murcia (IMIB-Arrixaca-UMU)
- Universidad de Murcia
- E-30071 Murcia
| | - José Ruiz
- Departamento de Química Inorgánica
- Facultad de Química
- Biomedical Research Institute of Murcia (IMIB-Arrixaca-UMU)
- Universidad de Murcia
- E-30071 Murcia
| |
Collapse
|
27
|
Ortega E, Yellol JG, Rothemund M, Ballester FJ, Rodríguez V, Yellol G, Janiak C, Schobert R, Ruiz J. A new C,N-cyclometalated osmium(ii) arene anticancer scaffold with a handle for functionalization and antioxidative properties. Chem Commun (Camb) 2018; 54:11120-11123. [PMID: 30204166 DOI: 10.1039/c8cc06427j] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A series of six osmium(ii) complexes of the type [(η6-p-cymene)Os(C^N)X] (X = chlorido or acetato) containing benzimidazole C^N ligands with an ester group as a handle for further functionalization have been synthesized. They exhibit IC50 values in the low micromolar range in a panel of cisplatin (CDDP)-resistant cancer cells (approximately 10× more cytotoxic than CDDP in MCF-7), decrease the levels of intracellular ROS and reduce the NAD+ coenzyme, and inhibit tubulin polymerization. This discovery could open the door to a new large family of osmium(ii)-based bioconjugates with diverse modes of action.
Collapse
Affiliation(s)
- Enrique Ortega
- Departamento de Química Inorgánica and Regional Campus of International Excellence "Campus Mare Nostrum", Universidad de Murcia, and Biomedical Research Institute of Murcia (IMIB-Arrixaca), E-30071 Murcia, Spain.
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Yang Y, Guo L, Tian Z, Liu X, Gong Y, Zheng H, Ge X, Liu Z. Imine-N-Heterocyclic Carbenes as Versatile Ligands in Ruthenium(II) p-Cymene Anticancer Complexes: A Structure-Activity Relationship Study. Chem Asian J 2018; 13:2923-2933. [PMID: 30101417 DOI: 10.1002/asia.201801058] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Revised: 08/03/2018] [Indexed: 12/18/2022]
Abstract
A family of novel imine-N-heterocyclic carbene ruthenium(II) complexes of the general formula [(η6 -p-cymene)Ru(C^N)Cl]PF6 - (where C^N is an imine-N-heterocyclic carbene chelating ligand with varying substituents) have been prepared and characterized. In this imine-N-heterocyclic carbene chelating ligand framework, there are three potential sites that can be modified, which distinguishes this class of ligand and provides a body of flexibilities and opportunities to tune the cytotoxicity of these ruthenium(II) complexes. The influence of substituent effects of three tunable domains on the anticancer activity and catalytic ability in converting coenzyme NADH to NAD+ is investigated. This family of complexes displays an exceedingly distinct anticancer activity against A549 cancer cells, despite their close structural similarity. Complex 9 shows the highest anticancer activity in this series against A549 cancer cells (IC50 =14.36 μm), with an approximately 1.5-fold better activity than the clinical platinum drug cisplatin (IC50 =21.30 μm) in A549 cancer cells. Mechanistic studies reveal that complex 9 mediates cell death mainly through cell stress, including cell cycle arrest, inducing apoptosis, increasing intracellular reactive oxygen species (ROS) levels, and depolarization of the mitochondrial membrane potential (MMP). Furthermore, lysosomal damage is also detected by confocal microscopy.
Collapse
Affiliation(s)
- Yuliang Yang
- Institute of Anticancer Agents Development and Theranostic Application, The Key Laboratory of Life-Organic Analysis and, Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, Department of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, China
| | - Lihua Guo
- Institute of Anticancer Agents Development and Theranostic Application, The Key Laboratory of Life-Organic Analysis and, Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, Department of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, China
| | - Zhenzhen Tian
- Institute of Anticancer Agents Development and Theranostic Application, The Key Laboratory of Life-Organic Analysis and, Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, Department of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, China
| | - Xicheng Liu
- Institute of Anticancer Agents Development and Theranostic Application, The Key Laboratory of Life-Organic Analysis and, Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, Department of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, China
| | - Yuteng Gong
- Institute of Anticancer Agents Development and Theranostic Application, The Key Laboratory of Life-Organic Analysis and, Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, Department of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, China
| | - Hongmei Zheng
- Institute of Anticancer Agents Development and Theranostic Application, The Key Laboratory of Life-Organic Analysis and, Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, Department of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, China
| | - Xingxing Ge
- Institute of Anticancer Agents Development and Theranostic Application, The Key Laboratory of Life-Organic Analysis and, Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, Department of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, China
| | - Zhe Liu
- Institute of Anticancer Agents Development and Theranostic Application, The Key Laboratory of Life-Organic Analysis and, Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, Department of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, China
| |
Collapse
|
29
|
Havrylyuk D, Howerton BS, Nease L, Parkin S, Heidary DK, Glazer EC. Structure-activity relationships of anticancer ruthenium(II) complexes with substituted hydroxyquinolines. Eur J Med Chem 2018; 156:790-799. [DOI: 10.1016/j.ejmech.2018.04.044] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 04/16/2018] [Accepted: 04/21/2018] [Indexed: 12/18/2022]
|
30
|
|
31
|
Pracharova J, Vigueras G, Novohradsky V, Cutillas N, Janiak C, Kostrhunova H, Kasparkova J, Ruiz J, Brabec V. Exploring the Effect of Polypyridyl Ligands on the Anticancer Activity of Phosphorescent Iridium(III) Complexes: From Proteosynthesis Inhibitors to Photodynamic Therapy Agents. Chemistry 2018; 24:4607-4619. [DOI: 10.1002/chem.201705362] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Indexed: 11/10/2022]
Affiliation(s)
- Jitka Pracharova
- Department of Biophysics, Centre of the Region Hana for, Biotechnological and Agricultural ResearchPalacky University Slechtitelu 27 783 71 Olomouc Czech Republic
| | - Gloria Vigueras
- Departamento de Química InorgánicaUniversidad de Murcia and Institute for Bio-Health Research of, Murcia (IMIB-Arrixaca) 30071 Murcia Spain
| | - Vojtech Novohradsky
- Institute of BiophysicsCzech Academy of Sciences Kralovopolska 135 61265 Brno Czech Republic
| | - Natalia Cutillas
- Departamento de Química InorgánicaUniversidad de Murcia and Institute for Bio-Health Research of, Murcia (IMIB-Arrixaca) 30071 Murcia Spain
| | - Christoph Janiak
- Institut für Anorganische Chemie und StrukturchemieHeinrich-Heine-Universität Düsseldorf Universitätsstr 1 40225 Düsseldorf Germany
| | - Hana Kostrhunova
- Institute of BiophysicsCzech Academy of Sciences Kralovopolska 135 61265 Brno Czech Republic
| | - Jana Kasparkova
- Institute of BiophysicsCzech Academy of Sciences Kralovopolska 135 61265 Brno Czech Republic
| | - José Ruiz
- Departamento de Química InorgánicaUniversidad de Murcia and Institute for Bio-Health Research of, Murcia (IMIB-Arrixaca) 30071 Murcia Spain
| | - Viktor Brabec
- Institute of BiophysicsCzech Academy of Sciences Kralovopolska 135 61265 Brno Czech Republic
| |
Collapse
|