1
|
Fu B, Wang Y, Zhao Y, Li Y, Jiang W, Bai W. Antiaromatic Metallacyclopentatriene Complexes. J Am Chem Soc 2024. [PMID: 39495087 DOI: 10.1021/jacs.4c14141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2024]
Abstract
There is no report on the (anti)aromaticity of metallacyclopentatrienes, one kind of common and important five-membered metallacycles. This work presents the novel synthesis of osmium cis-biscarbene complexes and their oxidation to osmacyclopentatrienes. The osmacyclopentatriene unit is antiaromatic, as revealed by experimental and theoretical studies. This finding provides new insight into the discovery of antiaromatic species.
Collapse
Affiliation(s)
- Bingjie Fu
- School of Chemistry, Dalian University of Technology, Dalian 116024, P. R. China
| | - Yarong Wang
- School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, Panjin 124221, P. R. China
| | - Yue Zhao
- School of Chemistry, Dalian University of Technology, Dalian 116024, P. R. China
| | - Yang Li
- School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, Panjin 124221, P. R. China
| | - Wenfeng Jiang
- School of Chemistry, Dalian University of Technology, Dalian 116024, P. R. China
| | - Wei Bai
- School of Chemistry, Dalian University of Technology, Dalian 116024, P. R. China
| |
Collapse
|
2
|
Yang X, Zhang K, Zhang Y, Liu H, Liu S, Fu D, Song J, Ma X, Li N, Liu SH. Osmapentalenofurans Constructed by Reacting Os≡C1 of Osmapentalyne with Phenols. Chemistry 2024:e202402711. [PMID: 39177286 DOI: 10.1002/chem.202402711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/23/2024] [Accepted: 08/23/2024] [Indexed: 08/24/2024]
Abstract
Over the past decade, significant research efforts have focused on osmapentalyne, characterized by the more reactive Os≡C7 (Carbon atoms numbered in a clockwise direction on the osmapentalyne skeleton), across areas encompassing electrophilic, nucleophilic, and addition reactions. Nevertheless, the reactivity of osmapentalyne featuring Os≡C1 remains ripe for further exploration. In this investigation, we effectively synthesized a lineage of osmapentalenofurans through the nucleophilic reaction of osmapentalyne incorporating Os≡C1 with phenols. These resulting complexes demonstrate near-infrared luminescence traits in both solid and liquid states. Particularly noteworthy is the osmapentalenofuran derived from tetraphenylethane (TPE) unit, which showcases remarkable aggregation-induced emission (AIE) property in the aggregated state. These osmapentalenofurans are also able to further extend their range of reactions, including reactions with base and isonitrile. This study not only broadens the scope of applications for metal aromatics but also furnishes valuable insights into the realm of specialized functional materials.
Collapse
Affiliation(s)
- Xiaofei Yang
- State Key Laboratory of Green Pesticide, Central China Normal University, Wuhan, 430079, P. R. China
| | - Kunming Zhang
- State Key Laboratory of Green Pesticide, Central China Normal University, Wuhan, 430079, P. R. China
| | - Yuteng Zhang
- State Key Laboratory of Green Pesticide, Central China Normal University, Wuhan, 430079, P. R. China
| | - Hui Liu
- State Key Laboratory of Green Pesticide, Central China Normal University, Wuhan, 430079, P. R. China
| | - Shanting Liu
- State Key Laboratory of Green Pesticide, Central China Normal University, Wuhan, 430079, P. R. China
| | - Debin Fu
- State Key Laboratory of Green Pesticide, Central China Normal University, Wuhan, 430079, P. R. China
| | - Jie Song
- State Key Laboratory of Green Pesticide, Central China Normal University, Wuhan, 430079, P. R. China
| | - Xuexue Ma
- State Key Laboratory of Green Pesticide, Central China Normal University, Wuhan, 430079, P. R. China
| | - Ning Li
- State Key Laboratory of Green Pesticide, Central China Normal University, Wuhan, 430079, P. R. China
| | - Sheng Hua Liu
- State Key Laboratory of Green Pesticide, Central China Normal University, Wuhan, 430079, P. R. China
| |
Collapse
|
3
|
Huang D, Liu W, Zheng Y, Feng R, Chai Z, Wei J, Zhang WX. Nonplanar Aromaticity of Dinuclear Rare-Earth Metallacycles. J Am Chem Soc 2024; 146:15609-15618. [PMID: 38776637 DOI: 10.1021/jacs.4c04683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
While the concept of metalla-aromaticity has well been extended to transition organometallic compounds in diverse geometries, aromatic rare-earth organometallic complexes are rare due to the special (n - 1)d0 configuration and high-lying (n - 1)d orbitals of rare-earth centers. In particular, nonplanar cases of rare-earth complexes have not been reported so far. Here, we disclose the nonplanar aromaticity of dinuclear scandium and samarium metallacycles characterized by various aromaticity indices (nucleus-independent chemical shift, isochemical shielding surface, anisotropy of induced current density, and isomerization stabilization energy). Bonding analyses (Kohn-Sham molecular orbital, adaptive natural density partitioning, multicenter bond indices, and principal interacting orbital) reveal that three delocalized π orbitals, predominantly contributed by the 2-butene tetraanion ligand, result in the formation of six-electron conjugated systems. Guided by these findings, we predicted that the lutetium and gadolinium analogues of dinuclear rare-earth metallacycles should be aromatic, which have been verified by the successful synthesis of real molecules. This work extends the concept of nonplanar aromaticity to the field of rare-earth metallacycles and illuminates the path for designing and synthesizing various rare-earth metalla-aromatics.
Collapse
Affiliation(s)
- Dajiang Huang
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory of Rare-Earth Materials Chemistry and Applications & Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Wei Liu
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory of Rare-Earth Materials Chemistry and Applications & Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Yu Zheng
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory of Rare-Earth Materials Chemistry and Applications & Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Rui Feng
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory of Rare-Earth Materials Chemistry and Applications & Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Zhengqi Chai
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory of Rare-Earth Materials Chemistry and Applications & Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Junnian Wei
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory of Rare-Earth Materials Chemistry and Applications & Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Wen-Xiong Zhang
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory of Rare-Earth Materials Chemistry and Applications & Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
4
|
Yang J, Xu X, Lin Z, Xie Z. Metallaaromaticity involving a d 0 early transition metal centre: synthesis, structure, and aromaticity of tantallapyridinazirine complexes. Chem Sci 2024; 15:7943-7948. [PMID: 38817586 PMCID: PMC11134392 DOI: 10.1039/d4sc02629b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 05/03/2024] [Indexed: 06/01/2024] Open
Abstract
Though late transition metal aromatic metallabenzenes and related heteroatom-containing analogues have been well studied, the corresponding aromatic early transition metal complexes remain elusive. Herein, we demonstrate the synthesis of aromatic, planar, and delocalised organotantallapyridinium complexes via a simple one-pot process by sequential treatment of tantalum methyl complex [η5:σ-Me2C(C5H4)(C2B10H10)]TaMe3 with alkynes and isocyanide. Single-crystal X-ray analyses, NMR spectroscopic data and DFT calculations suggest that they are aromatic tantallapyridinium complexes, a class of long-sought-after molecules. This work would shed some light on the preparation of metallaaromatics involving early transition metals.
Collapse
Affiliation(s)
- Jingting Yang
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The Chinese University of Hong Kong Shatin New Territories Hong Kong China
| | - Xin Xu
- Department of Chemistry, The Hong Kong University of Science and Technology Clear Water Bay Kowloon Hong Kong China
| | - Zhenyang Lin
- Department of Chemistry, The Hong Kong University of Science and Technology Clear Water Bay Kowloon Hong Kong China
| | - Zuowei Xie
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The Chinese University of Hong Kong Shatin New Territories Hong Kong China
- Shenzhen Grubbs Institute, Department of Chemistry, Southern University of Science and Technology Shenzhen 518055 China
| |
Collapse
|
5
|
Xu B, Mao W, Lu Z, Cai Y, Chen D, Xia H. Syntheses and reactivities of strained fused-ring metallaaromatics containing planar eleven-carbon chains. Nat Commun 2024; 15:4378. [PMID: 38782900 PMCID: PMC11116401 DOI: 10.1038/s41467-024-48835-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 05/14/2024] [Indexed: 05/25/2024] Open
Abstract
Carbolong complexes are one of the primary types of metallaaromatics, and they include metallapentalynes and metallapentalenes. A series of 7C-10C and 12C-carbolong complexes with planar ligand skeletons respectively containing 7-10 and 12 carbon atoms in their backbones, have been previously reported. Herein, two classes of strained substances, metallabenzyne-fused metallapentalenes and metallabenzene-fused metallapentalynes, were prepared, both representing 11C-carbolong complexes with a planar carbon-chain ligand. Furthermore, the former type is also the carbolong derivatives containing a metallabenzyne skeleton, another primary metallaaromatic framework. Metallabenzyne-fused metallapentalenes show versatile reactivities, and the most interesting one is the metal carbyne bond shift from a 6-membered to a more strained 5-membered ring, affording the above-mentioned metallabenzene-fused metallapentalyne. This work makes carbolong chemistry more complete, and provides a method to achieve metallabenzynes, which is anticipated to concurrently advance the development of these two types of metallaaromatics.
Collapse
Affiliation(s)
- Binbin Xu
- Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Catalysis, Department of Chemistry, Southern University of Science and Technology, Shenzhen, China
| | - Wei Mao
- Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Catalysis, Department of Chemistry, Southern University of Science and Technology, Shenzhen, China
| | - Zhengyu Lu
- Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Catalysis, Department of Chemistry, Southern University of Science and Technology, Shenzhen, China
| | - Yuanting Cai
- Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Catalysis, Department of Chemistry, Southern University of Science and Technology, Shenzhen, China
| | - Dafa Chen
- Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Catalysis, Department of Chemistry, Southern University of Science and Technology, Shenzhen, China.
| | - Haiping Xia
- Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Catalysis, Department of Chemistry, Southern University of Science and Technology, Shenzhen, China.
- Southern University of Science and Technology Guangming Advanced Research Institute, Shenzhen, China.
| |
Collapse
|
6
|
Watson LJ, Hill AF. Stable cyclopropenylvinyl ligands via insertion into a transient cyclopropenyl metal bond. Dalton Trans 2024; 53:3629-3637. [PMID: 38289268 DOI: 10.1039/d3dt03997h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
Treatment of the rhodium pincer complexes [RhCl(RPm)] (RPm = N,N'-bis(di-R-phosphinomethyl)perimidinylidene, R = Ph, Cy) with triphenylcyclopropenium hexafluorophosphate affords rhodacyclobutadiene complexes. These in turn react with activated alkynes (RCCCO2Me, R = H, CO2Me) to afford unusually stable cyclopropenylvinyls, implicating the intermediacy of σ-cyclopropenyl isomers. In contrast, treatment of [RhCl{py(NHPtBu2)2-2,6}] with the same reagent instead results in double functionalisation (SEAr) at the pincer backbone.
Collapse
Affiliation(s)
- Lachlan J Watson
- Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory, ACT 2601, Australia.
| | - Anthony F Hill
- Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory, ACT 2601, Australia.
| |
Collapse
|
7
|
Ruan K, Lu Z, Rao R, Liu JJ, Chen D, Xia H. Craig-Hückel Hybrid Aromatic Metalla-dehydro[11]annulenes Constructed by a Formal [10+1] Cycloaddition Reaction. Angew Chem Int Ed Engl 2024; 63:e202316885. [PMID: 38135661 DOI: 10.1002/anie.202316885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/20/2023] [Accepted: 12/22/2023] [Indexed: 12/24/2023]
Abstract
Aromatic metalla-annulenes are important aromatic compounds, research into which has been mainly concentrated on metal-benzenes and their lower homologues. Reports on their superior homologs are rare, and this has greatly limited the systematic study of their properties. In this work, a series of osma-dehydro[11]annulenes with good air and thermal stability were prepared in high yields through a simple [10+1] strategy, by incorporating a metal fragment into conjugated ten-carbon chains in a one-pot reaction. They are the first monometallic aromatic metalla-[n]annulenes with the ring size larger than 6, and their Craig-Hückel hybrid aromaticity is supported by various physical and computational parameters. Besides, these complexes show versatile reactivities, not only giving further evidence for their aromaticity, but also demonstrating their physical and chemical properties can easily be regulated. This work enriches the metalla-aromatic chemistry, and provides a new avenue for the synthesis of large metalla-annulenes with different ring sizes.
Collapse
Affiliation(s)
- Kaidong Ruan
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
- Shenzhen Grubbs Institute, Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Zhengyu Lu
- Shenzhen Grubbs Institute, Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Ren Rao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
- Shenzhen Grubbs Institute, Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Jiao-Jiao Liu
- Shenzhen Grubbs Institute, Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Dafa Chen
- Shenzhen Grubbs Institute, Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Haiping Xia
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
- Shenzhen Grubbs Institute, Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
| |
Collapse
|
8
|
Yang XF, Zhang MX, Liu SH, Hartl F. Metallaaromatic Complexes as Candidates for Future Molecular Materials and Electronic Devices: Recent Advancements. Chem Asian J 2024; 19:e202300860. [PMID: 37997007 DOI: 10.1002/asia.202300860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/23/2023] [Accepted: 11/23/2023] [Indexed: 11/25/2023]
Abstract
In recent years, the field of organometallic chemistry has made a great progress and diverse types of metallaaromatics have successively been reported. In those studies, incorporation of ligated osmium centers into metallaaromatic systems played a prominent role. The reviewed literature documents that certain metallaaromatics with unconventional photophysical properties, redox and electronic transport properties and magnetism, have potential to be widely used in diverse practical applications, with selected examples of amino acid and fluoride anion identification, photothermal effects, functional materials, photodynamic therapy (PDT) in biomedicine, single-molecule junction conductors, and electron-transport layer materials (ETLs) in solar cells.
Collapse
Affiliation(s)
- Xiao Fei Yang
- National Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
| | - Ming-Xing Zhang
- National Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
- Hubei Key Laboratory of Purification and Application of Plant Anti-cancer Active Ingredients, College of Chemistry and Life Science, Hubei University of Education, Wuhan, 430205, P. R. China
| | - Sheng Hua Liu
- National Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
| | - František Hartl
- Department of Chemistry, University of Reading, Whiteknights, Reading, RG6 6DX, United Kingdom
| |
Collapse
|
9
|
Hua Y, Luo M, Lu Z, Zhang H, Chen D, Xia H. Experimental and theoretical evidences for the formation of transition metal complexes with five coplanar metal-carbon σ bonds. Natl Sci Rev 2023; 10:nwad325. [PMID: 38226366 PMCID: PMC10789241 DOI: 10.1093/nsr/nwad325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/31/2023] [Accepted: 09/13/2023] [Indexed: 01/17/2024] Open
Abstract
The σ bond is an important concept in chemistry, and the metal-carbon (M-C) σ bond in particular is a central feature in organometallic chemistry. Synthesis of stable complexes with five coplanar M-C σ bonds is challenging. Here, we describe the synthesis of two different types of stable complexes with five coplanar M-C σ bonds, and examine the stability of such complexes which use rigid conjugated carbon chains to chelate with the metal center. Density functional theory (DFT) calculations show that the M-C σ bonds in these complexes have primarily a covalent character. Besides the σ nature, there are also a π conjugation component among the metal center and carbons, which causes delocalization. This work expanded the coplanar M-C σ bonds to five.
Collapse
Affiliation(s)
- Yuhui Hua
- Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Catalysis, Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Ming Luo
- Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Catalysis, Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Zhengyu Lu
- Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Catalysis, Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Hong Zhang
- Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Dafa Chen
- Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Catalysis, Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Haiping Xia
- Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Catalysis, Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
10
|
Nakanishi K, Lugo-Fuentes LI, Manabe J, Guo R, Kikkawa S, Yamazoe S, Komaguchi K, Kume S, Szczepanik DW, Solà M, Jimenez-Halla JOC, Nishihara S, Kubo K, Nakamoto M, Yamamoto Y, Mizuta T, Shang R. Redox Activity of Ir III Complexes with Multidentate Ligands Based on Dipyrido-Annulated N-Heterocyclic Carbenes: Access to High Valent and High Spin State with Carbon Donors. Chemistry 2023; 29:e202302303. [PMID: 37553318 DOI: 10.1002/chem.202302303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/08/2023] [Accepted: 08/08/2023] [Indexed: 08/10/2023]
Abstract
Synthetic strategies to access high-valent iridium complexes usually require use of π donating ligands bearing electronegative atoms (e. g. amide or oxide) or σ donating electropositive atoms (e. g. boryl or hydride). Besides the η5 -(methyl)cyclopentadienyl derivatives, high-valent η1 carbon-ligated iridium complexes are challenging to synthesize. To meet this challenge, this work reports the oxidation behavior of an all-carbon-ligated anionic bis(CCC-pincer) IrIII complex. Being both σ and π donating, the diaryl dipyrido-annulated N-heterocyclic carbene (dpa-NHC) IrIII complex allowed a stepwise 4e- oxidation sequence. The first 2e- oxidation led to an oxidative coupling of two adjacent aryl groups, resulting in formation of a cationic chiral IrIII complex bearing a CCCC-tetradentate ligand. A further 2e- oxidation allowed isolation of a high-valent tricationic complex with a triplet ground state. These results close a synthetic gap for carbon-ligated iridium complexes and demonstrate the electronic tuning potential of organic π ligands for unusual electronic properties.
Collapse
Affiliation(s)
- Kazuki Nakanishi
- Department of Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, 739-8526, Japan
| | - Leonardo I Lugo-Fuentes
- Department of Chemistry, Division of Natural and Exact Sciences, University of Guanajuato, Campus Gto, Noria Alta s/n, 36050, Guanajuato, Mexico
| | - Jun Manabe
- Department of Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, 739-8526, Japan
| | - Ronghao Guo
- Department of Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, 739-8526, Japan
| | - Soichi Kikkawa
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Hachioji, Tokyo, 192-0397, Japan
| | - Seiji Yamazoe
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Hachioji, Tokyo, 192-0397, Japan
| | - Kenji Komaguchi
- Department of Applied Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima, 739-8527, Japan
| | - Shoko Kume
- Department of Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, 739-8526, Japan
| | - Dariusz W Szczepanik
- K. Guminski Department of Theoretical Chemistry, Faculty of Chemistry, Jagiellonian University, Gronostajowa, 2, 30-387, Kraków, Poland
| | - Miquel Solà
- Institut de Química Computacional i Catàlisi and Departament de Química, Universitat de Girona, C/Maria Aurèlia Capmany, 69, 17003, Girona, Catalonia, Spain
| | - J Oscar C Jimenez-Halla
- Department of Chemistry, Division of Natural and Exact Sciences, University of Guanajuato, Campus Gto, Noria Alta s/n, 36050, Guanajuato, Mexico
| | - Sadafumi Nishihara
- Department of Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, 739-8526, Japan
| | - Kazuyuki Kubo
- Department of Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, 739-8526, Japan
| | - Masaaki Nakamoto
- Department of Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, 739-8526, Japan
| | - Yohsuke Yamamoto
- Department of Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, 739-8526, Japan
| | - Tsutomu Mizuta
- Department of Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, 739-8526, Japan
| | - Rong Shang
- Department of Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, 739-8526, Japan
| |
Collapse
|
11
|
Tang J, Zhang S, Zhou BW, Wang W, Zhao L. Hyperconjugative Aromaticity-Based Circularly Polarized Luminescence Enhancement in Polyaurated Heterocycles. J Am Chem Soc 2023; 145:23442-23451. [PMID: 37870916 DOI: 10.1021/jacs.3c04953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2023]
Abstract
Hyperconjugative aromaticity (HA) frequently appears in metalla-aromatics, but its effect on photophysical properties remains unexplored to date. Herein, we reveal two different HA scenarios in nearly isostructural triaurated indolium and benzofuranylium compounds. The biased HAs show a discernible effect on the spatial arrangement of metal atoms and thus tailor metal parentage in frontier orbitals and the HOMO-LUMO energy gap. Theoretical calculations and structural analyses demonstrate that HA not only influences the degree of electron delocalization over the trimetalated aromatic rings but also affects π-coordination of Au(I) and intercluster aurophilic interaction. Consequently, the triaurated benzofuranylium complex shows better photoluminescence performance (quantum yield up to 49.7%) over the indolium analogue. Furthermore, four pairs of axially chiral bibenzofuran-centered trinuclear and hexanuclear gold clusters were purposefully synthesized to correlate their HA-involved structures with the chiroptical response. The triaurated benzofuranylium complexes exhibit strong circular dichroism (CD) response in solution but CPL silence even in solid film. In contrast, the hexa-aurated homologues display strong CD and intense CPL signals in both aggregated state and solid film (luminescence anisotropy factor glum up to 10-3). Their amplified chiroptical response is finally ascribed to the dominant intermolecular exciton couplings of large assemblies formed through the HA-tailored aggregation of hexanuclear compounds.
Collapse
Affiliation(s)
- Jian Tang
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China
- Sinopec (Beijing) Research Institute of Chemical Industry, Beijing 100013, China
| | - Siqi Zhang
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Bo-Wei Zhou
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Wan Wang
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Liang Zhao
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
12
|
Esteruelas MA, Leon F, Moreno-Blázquez S, Oliván M, Oñate E. Preparation, Aromaticity, and Bromination of Spiro Iridafurans. Inorg Chem 2023; 62:16810-16824. [PMID: 37782299 DOI: 10.1021/acs.inorgchem.3c02228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Iridium centers of [Ir(μ-Cl)(C8H14)2]2 (1) activate the Cβ(sp2)-H bond of benzylideneacetone to give [Ir(μ-Cl){κ2-C,O-[C(Ph)CHC(Me)O]}2]2 (2), which is the starting point for the preparation of the spiro iridafurans IrCl{κ2-C,O-[C(Ph)CHC(Me)O]}2(PiPr3) (3), [Ir{κ2-C,O-[C(Ph)CHC(Me)O]}2(MeCN)2]BF4 (4), [Ir(μ-OH){κ2-C,O-[C(Ph)CHC(Me)O]}2]2 (5), Ir{κ2-C,O-[C(Ph)CHC(Me)O]}2{κ2-C,N-[C6MeH3-py]} (6), and Ir{κ2-C,O-[C(Ph)CHC(Me)O]}2{κ2-O,O-[acac]} (7). The five-membered rings are orthogonally arranged with the oxygen atoms in trans in an octahedral environment of the iridium atom. Spiro iridafurans are aromatic. The degree of aromaticity and the negative charge of the CH-carbon of the rings depend on ligand trans to the carbon directly attached to the metal. Aromaticity has been experimentally confirmed by bromination of iridafurans with N-bromosuccinimide (NBS). Reactions are sensitive to the degree of aromaticity of the ring and the negative charge of the attacked CH-carbon. Iridafurans can be selectively brominated, when different ligands lie trans to metalated carbons. Bromination of 3 occurs in the ring with the metalated carbon trans to chloride, whereas the bromination of 6 takes place in the ring with the metalated carbon trans to pyridyl. The first gives IrCl{κ2-C,O-[C(Ph)CBrC(Me)O]}{κ2-C,O-[C(Ph)CHC(Me)O]}(PiPr3) (8), which reacts with more NBS to form IrCl{κ2-C,O-[C(Ph)CBrC(Me)O]}2(PiPr3) (9). The second yields Ir{κ2-C,O-[C(Ph)CBrC(Me)O]}{κ2-C,O-[C(Ph)CHC(Me)O]}{κ2-C,N-[C6MeH3-py]} (10). The origin of the selectivity is kinetic, with the rate-determining step of the reaction being the NBS attack. The activation energy depends on the negative charge of the attacked atom; a higher negative charge allows for a lower activation energy. Accordingly, complex 7 undergoes bromination in the acetylacetonate ligand, giving Ir{κ2-C,O-[C(Ph)CHC(Me)O]}2{κ2-O,O-[acacBr]} (11).
Collapse
Affiliation(s)
- Miguel A Esteruelas
- Departamento de Química Inorgánica - Instituto de Síntesis Química y Catálisis Homogénea (ISQCH) - Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universidad de Zaragoza - CSIC, 50009 Zaragoza, Spain
| | - Félix Leon
- Departamento de Química Inorgánica - Instituto de Síntesis Química y Catálisis Homogénea (ISQCH) - Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universidad de Zaragoza - CSIC, 50009 Zaragoza, Spain
| | - Sonia Moreno-Blázquez
- Departamento de Química Inorgánica - Instituto de Síntesis Química y Catálisis Homogénea (ISQCH) - Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universidad de Zaragoza - CSIC, 50009 Zaragoza, Spain
| | - Montserrat Oliván
- Departamento de Química Inorgánica - Instituto de Síntesis Química y Catálisis Homogénea (ISQCH) - Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universidad de Zaragoza - CSIC, 50009 Zaragoza, Spain
| | - Enrique Oñate
- Departamento de Química Inorgánica - Instituto de Síntesis Química y Catálisis Homogénea (ISQCH) - Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universidad de Zaragoza - CSIC, 50009 Zaragoza, Spain
| |
Collapse
|
13
|
Iwamoto T, Suzuki M, Hasegawa H, Abeta H, Matsuo Y, Tanaka T, Yasuda N, Ishii Y. One-pot Syntheses of Benzo- and Benzofuran-fused Iridaoxabenzenes via CH Bond Activations of Alkyl-bridged Diphenol Derivatives. Chem Asian J 2023; 18:e202300640. [PMID: 37610036 DOI: 10.1002/asia.202300640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/17/2023] [Accepted: 08/21/2023] [Indexed: 08/24/2023]
Abstract
One-pot syntheses of new π-extended metallaaromatic compounds have been developed by utilizing Ir-mediated CH bond activation of ethylene- or ethylidene-bridged diphenol derivatives. Depending on the bridging alkyl groups, two types of iridaoxabenzenes, both of which are doubly fused with benzo and benzofuran units, have been obtained. Studies on their structures and electronic characters indicate that both complexes have an aromatic character on the iridaoxacycles, and their π-conjugated systems are fully delocalized over the whole molecular skeletons. These novel metallaaromatic complexes exhibited some reactivities which are distinct from those reported for the non-fused metallaaromatic compounds.
Collapse
Affiliation(s)
- Takahiro Iwamoto
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo, 112-8551, Japan
| | - Mika Suzuki
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo, 112-8551, Japan
| | - Hibiki Hasegawa
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo, 112-8551, Japan
| | - Hinako Abeta
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo, 112-8551, Japan
| | - Yusuke Matsuo
- Department of Chemistry, Graduate School of Science, Kyoto University Sakyo-ku, Kyoto, 606-8502, Japan
| | - Takayuki Tanaka
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510 (Japan)
| | - Nobuhiro Yasuda
- Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo, 679-5198, Japan
| | - Youichi Ishii
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo, 112-8551, Japan
| |
Collapse
|
14
|
Liu HC, Ruan K, Ma K, Fei J, Lin YM, Xia H. Synthesis of metalla-dual-azulenes with fluoride ion recognition properties. Nat Commun 2023; 14:5583. [PMID: 37696902 PMCID: PMC10495402 DOI: 10.1038/s41467-023-41250-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 08/28/2023] [Indexed: 09/13/2023] Open
Abstract
Azulene-based conjugated systems are of great interests due to their unusual structures and photophysical properties. Incorporation of a transition metal into azulene skeleton presents an intriguing opportunity to combine the dπ-pπ and pπ-pπ conjugated properties. No such metallaazulene skeleton however has been reported to date. Here, we describe our development of an efficient [5 + 2] annulation reaction to rapid construction of a unique metal-containing [5-5-7] scaffold, termed metalla-dual-azulene (MDA), which includes a metallaazulene and a metal-free organic azulene intertwined by sharing the tropylium motif. The two azulene motifs in MDA exhibit distinct reactivities. The azulene motif readily undergoes nucleophilic addition, leading to N-, O- and S-substituted cycloheptanetrienyl species. Demetalation of the metallaazulene moiety occurs when it reacts with nBu4NF, which enables highly selective recognition of fluoride anion and a noticeable color change. The practical [5 + 2] annulation methodology, facile functional-group modification, high and selective fluoride detection make this new π-conjugated polycyclic system very suitable for potential applications in photoelectric and sensing materials.
Collapse
Affiliation(s)
- Hai-Cheng Liu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, 361005, Xiamen, Fujian, China
| | - Kaidong Ruan
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, 361005, Xiamen, Fujian, China
| | - Kexin Ma
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, 361005, Xiamen, Fujian, China
| | - Jiawei Fei
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, 361005, Xiamen, Fujian, China
| | - Yu-Mei Lin
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, 361005, Xiamen, Fujian, China.
| | - Haiping Xia
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, 361005, Xiamen, Fujian, China.
- Department of Chemistry, Shenzhen Grubbs Institute, Southern University of Science and Technology, 518055, Shenzhen, China.
| |
Collapse
|
15
|
Watson LJ, Hill AF. A Metallabicycle From Thiocarbonyl-Cyclopropenium Coupling. Chemistry 2023; 29:e202301753. [PMID: 37326005 DOI: 10.1002/chem.202301753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/16/2023] [Accepted: 06/16/2023] [Indexed: 06/17/2023]
Abstract
Addition of triphenylcyclopropenium bromide to the thiocarbonyl complex [RhCl(CS)(PPh3 )2 ] affords novel bicyclic metalla-3-mercapto-thiapyrylliums [Rh(κ2 -C,S-C5 S2 Ph3 )(PPh3 )2 X2 ] (X=Cl, Br) - heterocycles with no metal-free isolobal precedent. Halide abstraction with silver triflate (AgOTf) in acetonitrile affords the salt [Rh(κ2 -C,S-C5 S2 Ph3 )(NCMe)2 (PPh3 )2 {Ag(OH2 )2 }{Ag(OTf)3 }]-OTf which in turn reacts with sodium chloride to return [Rh(κ2 -C,S-C5 S2 Ph3 )(PPh3 )2 Cl2 ].
Collapse
Affiliation(s)
- Lachlan J Watson
- Research School of Chemistry, Australian National University, Sullivans Creek Road, Canberra, ACT, Australia
| | - Anthony F Hill
- Research School of Chemistry, Australian National University, Sullivans Creek Road, Canberra, ACT, Australia
| |
Collapse
|
16
|
Yu W, Zhou Y, Zhao Y, Bai W. Syntheses and characterizations of rhenaindole complexes. Polyhedron 2023. [DOI: 10.1016/j.poly.2023.116359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
|
17
|
Chu Z, Li J, Hua Y, Luo M, Chen D, Xia H. Hetero-carbolong chemistry: experimental and theoretical studies of diaza-metallapentalenes. Chem Commun (Camb) 2023; 59:4173-4176. [PMID: 36939834 DOI: 10.1039/d3cc00029j] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2023]
Abstract
Four diaza-osmapentalenes were prepared by two-step reactions, through the treatment of an alkyne-coordinated osmium complex with azo compounds, followed by the addition of AgSbF6/CO. Their aromaticity was confirmed by crystal parameters, NMR spectra and theoretical calculations. These complexes are the first diaza-metallapentalenes representing a new class of metallaaromatics.
Collapse
Affiliation(s)
- Zhenwei Chu
- Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Catalysis, Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, People's Republic of China.
| | - Jinhua Li
- Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Catalysis, Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, People's Republic of China.
| | - Yuhui Hua
- Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Catalysis, Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, People's Republic of China.
| | - Ming Luo
- Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Catalysis, Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, People's Republic of China.
| | - Dafa Chen
- Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Catalysis, Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, People's Republic of China.
| | - Haiping Xia
- Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Catalysis, Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, People's Republic of China.
| |
Collapse
|
18
|
Abstract
The occurrence of aromaticity in organic molecules is widely accepted, but its occurrence in purely metallic systems is less widespread. Molecules comprising only metal atoms (M) are known to be able to exhibit aromatic behaviour, sustaining ring currents inside an external magnetic field along M-M connection axes (σ-aromaticity) or above and below the plane (π-aromaticity) for cyclic or cage-type compounds. However, all-metal compounds provide an extension of the electrons' mobility also in other directions. Here, we show that regular {Bi6} prisms exhibit a non-localizable molecular orbital of f-type symmetry and generate a strong ring current that leads to a behaviour referred to as φ-aromaticity. The experimentally observed heterometallic cluster [{CpRu}3Bi6]-, based on a regular prismatic {Bi6} unit, displays aromatic behaviour; according to quantum chemical calculations, the corresponding hypothetical Bi62- prism shows a similar behaviour. By contrast, [{(cod)Ir}3Bi6] features a distorted Bi6 moiety that inhibits φ-aromaticity.
Collapse
|
19
|
Luo M, Chen D, Li Q, Xia H. Unique Properties and Emerging Applications of Carbolong Metallaaromatics. Acc Chem Res 2023; 56:924-937. [PMID: 36718118 DOI: 10.1021/acs.accounts.2c00750] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
ConspectusAromatic compounds are important in synthetic chemistry, biomedicines, and materials science. As a special type of aromatic complex, transition-metal-based metallaaromatics contain at least one transition metal in an aromatic framework. The chemistry of metallaaromatics has seen much progress in computational studies and synthetic methods, but their properties and applications are still emerging. In recent years, we have disclosed a series of metal-centered conjugated polycyclic metallacycles in which a carbon chain is chelated to a metal center through at least three metal-carbon bonds. These are termed carbolong complexes and exhibit good stability to water, oxygen, light, and heat on account of their polydentate chelation and aromaticity, making them easy to handle. Carbolong complexes are not only special π-conjugated aromatics but also organometallics; therefore, they have the properties of both species. In this Account, we showcase the recent advances in their applications based on their different properties.First, carbolong complexes are a special kind of π-conjugated aromatic, with the ability to transmit electrons, allowing them to function as single-molecule conductors and candidates for electron transporting layer materials (ETLs) in solar cells. A series of carbolong complexes have been proved to be useful as achievable ETLs which enhance device performance in both organic solar cells and perovskite solar cells.Second, due to the involvement of d orbitals in the conjugation, carbolong complexes normally exhibit strong and broad absorption, even in some cases extending to the near-infrared region (NIR). The absorbed optical energy can be converted into light, heat, and ultrasound; consequently, carbolong compounds can be used as core moieties in smart materials. For example, 7C carbolong complexes were found to exhibit aggregation-enhanced near-infrared emission (AIEE). Some 12C carbolong complexes have been designed into the core moieties of NIR-responsive polymers, such as cylindrical NIR-responsive materials, self-healing materials, and shape memory materials. In contrast to the stereotypically toxic osmium compounds such as the highly toxic OsO4, some osmium carbolong complexes exhibit low cell cytotoxicity and good biocompatibility; consequently, they also have potential applications in the biomedical area. For example, benefiting from broad absorption in the NIR, 9C and 12C carbolong complexes have been used in photoacoustic imaging and photothermal therapy, respectively. In addition, photodynamic therapeutic applications which take advantage of a carbolong peroxo complex are discussed.Third, as special transition-metal complexes chelated by carbon-based ligands, a carbolong peroxo complex has displayed catalytic activity in the dehydrogenation of alcohols and a bimetallic carbolong complex has been used to catalyze difunctionalization reactions of unactivated alkenes.Overall, aromatic carbolong complexes have been applied to photovoltaics, smart materials, phototherapy, and catalytic reactions. Moving forward, we hope that this Account will shed light on future studies and theoretical research and encourage more discoveries of the properties of other metallaaromatics.
Collapse
Affiliation(s)
- Ming Luo
- Shenzhen Grubbs Institute, Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Dafa Chen
- Shenzhen Grubbs Institute, Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Qian Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Haiping Xia
- Shenzhen Grubbs Institute, Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China.,State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
20
|
Talavera M, Pereira-Cameselle R, Peña-Gallego Á, Vázquez-Carballo I, Prieto I, Alonso-Gómez JL, Bolaño S. Optical and electrochemical properties of spirobifluorene iridanaphthalene complexes. Dalton Trans 2023; 52:487-493. [PMID: 36504193 DOI: 10.1039/d2dt03465d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Three new spirobifluorene iridaaromatic compounds bearing electron-withdrawing or electron-donor substituents or another iridanaphthalene moiety have been synthesized and structurally characterized. Thorough experimental and theoretical evaluation revealed that these novel systems present a high thermal, air and electrochemical stability as well as low optical and electronic energy gap values with a significant redshift of the absorption maximum in the UV-Vis spectra and predicted remarkably higher first hyperpolarizabilities compared to their organic counterparts. Therefore, the combination of a metallaaromatic system with a spirobifluorene moiety leads to the design and development of new spirobifluorene derivatives. These new systems have shown interesting optical and electronic properties making them of interest for future applications in optoelectronics.
Collapse
Affiliation(s)
- Maria Talavera
- Universidade de Vigo, Departamento de Química Inorgánica, Campus Universitario, 36310, Vigo, Spain.
| | - Raquel Pereira-Cameselle
- Universidade de Vigo, Departamento de Química Orgánica, Campus Universitario, 36310, Vigo, Spain
| | - Ángeles Peña-Gallego
- Universidade de Vigo, Departamento de Química Física, Campus Universitario, 36310, Vigo, Spain
| | - Irene Vázquez-Carballo
- Universidade de Vigo, Departamento de Química Inorgánica, Campus Universitario, 36310, Vigo, Spain.
| | - Inmaculada Prieto
- Universidade de Vigo, Departamento de Química Física, Campus Universitario, 36310, Vigo, Spain.,Metallosupramolecular Chemistry Group Galicia South Health Research Institute (IIS Galicia Sur) SERGAS-UVIGO, Galicia, Spain
| | - J Lorenzo Alonso-Gómez
- Universidade de Vigo, Departamento de Química Orgánica, Campus Universitario, 36310, Vigo, Spain
| | - Sandra Bolaño
- Universidade de Vigo, Departamento de Química Inorgánica, Campus Universitario, 36310, Vigo, Spain.
| |
Collapse
|
21
|
Fei Yang X, Zhang MX, Bin Fu D, Wang Y, Yin J, Hua Liu S. Pentacyclic and Hexacyclic Osmaarynes and Their Derivatives. Chemistry 2022; 28:e202202334. [PMID: 36198664 DOI: 10.1002/chem.202202334] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Indexed: 11/07/2022]
Abstract
Although osmabenzyne, osmanaphthalyne, osmaphenanthryne, and osmaanthracyne have been previously reported, the synthesis of polycyclic osmaarynes is still a challenge. Herein, we report the successful synthesis of the first pentacyclic osmaarynes (pyreno[b]osmabenzynes 1 a and 2 a) and hexacyclic osmaaryne (peryleno[b]osmabenzyne 3 a). Nucleophilic reaction of osmaarynes was used to obtain the corresponding pyreno[b]osmium complexes (1 and 2) and peryleno[b] osmium complex (3), which exhibited near-infrared luminescence and aggregation-induced emission (AIE) properties. Complexes 2 and 3 are resistant to photodegradation, and complex 2 has better photothermal conversion properties than 3.
Collapse
Affiliation(s)
- Xiao Fei Yang
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, 430079, Wuhan, P. R. China
| | - Ming-Xing Zhang
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, 430079, Wuhan, P. R. China
- Hubei Key Laboratory of Purification and Application of, Plant Anti-cancer Active Ingredients, College of Chemistry and Life Science, Hubei University of Education, 430205, Wuhan, P. R. China
| | - De Bin Fu
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, 430079, Wuhan, P. R. China
| | - Yang Wang
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, 430079, Wuhan, P. R. China
| | - Jun Yin
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, 430079, Wuhan, P. R. China
| | - Sheng Hua Liu
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, 430079, Wuhan, P. R. China
| |
Collapse
|
22
|
Bai W, Tsang LY, Wang Y, Li Y, Sung HHY, Williams ID, Jia G. Synthesis and characterization of bi(metallacycloprop-1-ene) complexes. Chem Sci 2022; 14:96-102. [PMID: 36605739 PMCID: PMC9769101 DOI: 10.1039/d2sc05378k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 11/15/2022] [Indexed: 11/18/2022] Open
Abstract
In all previously reported metallacycloprop-1-ene or η2-vinyl complexes, the metal center bears only one vinyl moiety. We have now successfully synthesized and structurally characterized the first complexes bearing two η2-vinyl moieties or spiro bi(metallacycloprop-1-ene) complexes from reactions of alkynes with rhenium phosphine complexes. Computational studies indicate that the metallacycloprop-1-ene rings are aromatic and the complexes represent a rare σ-type spirometalla-aromatic system.
Collapse
Affiliation(s)
- Wei Bai
- Department of Chemistry, The Hong Kong University of Science and TechnologyClear Water BayKowloonHong KongP. R. China,State Key Laboratory of Fine Chemicals, Department of Chemistry, School of Chemical Engineering, Dalian University of TechnologyLiaoning 116024P. R. China
| | - Long Yiu Tsang
- Department of Chemistry, The Hong Kong University of Science and TechnologyClear Water BayKowloonHong KongP. R. China
| | - Yilun Wang
- State Key Laboratory of Fine Chemicals, Department of Chemistry, School of Chemical Engineering, Dalian University of TechnologyLiaoning 116024P. R. China,School of Chemical Engineering, Dalian University of TechnologyPanjinLiaoning 124221P. R. China
| | - Yang Li
- State Key Laboratory of Fine Chemicals, Department of Chemistry, School of Chemical Engineering, Dalian University of TechnologyLiaoning 116024P. R. China,School of Chemical Engineering, Dalian University of TechnologyPanjinLiaoning 124221P. R. China
| | - Herman H. Y. Sung
- Department of Chemistry, The Hong Kong University of Science and TechnologyClear Water BayKowloonHong KongP. R. China
| | - Ian D. Williams
- Department of Chemistry, The Hong Kong University of Science and TechnologyClear Water BayKowloonHong KongP. R. China
| | - Guochen Jia
- Department of Chemistry, The Hong Kong University of Science and TechnologyClear Water BayKowloonHong KongP. R. China
| |
Collapse
|
23
|
Benítez M, Buil ML, Esteruelas MA, Izquierdo S, Oñate E, Tsai JY. Acetylides for the Preparation of Phosphorescent Iridium(III) Complexes: Iridaoxazoles and Their Transformation into Hydroxycarbenes and N,C(sp3),C(sp2),O-Tetradentate Ligands. Inorg Chem 2022; 61:19597-19611. [PMID: 36416194 PMCID: PMC9949702 DOI: 10.1021/acs.inorgchem.2c03522] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The preparation of three families of phosphorescent iridium(III) emitters, including iridaoxazole derivatives, hydroxycarbene compounds, and N,C(sp3),C(sp2),O-tetradentate containing complexes, has been performed starting from dimers cis-[Ir(μ2-η2-C≡CR){κ2-C,N-(MeC6H3-py)}2]2 (R = tBu (1a), Ph (1b)). Reactions of 1a with benzamide, acetamide, phenylacetamide, and trifluoroacetamide lead to the iridaoxazole derivatives Ir{κ2-C,O-[C(CH2tBu)NC(R)O]}{κ2-C,N-(MeC6H3-py)}2 (R = Ph (2), Me (3), CH2Ph (4), CF3 (5)) with a fac disposition of carbons and heteroatoms around the metal center. In 2-methyltetrahydrofuran and dichloromethane, water promotes the C-N rupture of the IrC-N bond of the iridaoxazole ring of 3-5 to form amidate-iridium(III)-hydroxycarbene derivatives Ir{κ1-N-[NHC(R)O]}{κ2-C,N-(MeC6H3-py)}2{═C(CH2tBu)OH} (R = Me (6), CH2Ph (7), CF3 (8)). In contrast to 1a, dimer 1b reacts with benzamide and acetamide to give Ir{κ4-N,C,C',O-[py-MeC6H3-C(CH2-C6H4)NHC(R)O]}{κ2-C,N-(MeC6H3-py)}(R = Ph (9), Me (10)), which bear a N,C(sp3),C(sp2),O-tetradentate ligand resulting from a triple coupling (an alkynyl ligand, an amide, and a coordinated aryl group) and a C-H bond activation at the metal coordination sphere. Complexes 2-4 and 6-10 are emissive upon photoexcitation, in orange (2-4), green (6-8), and yellow (9 and 10) regions, with quantum yields between low and moderate (0.01-0.50) and short lifetimes (0.2-9.0 μs).
Collapse
Affiliation(s)
- María Benítez
- Departamento
de Química Inorgánica, Instituto de Síntesis
Química y Catálisis Homogénea (ISQCH), Centro
de Innovación en Química Avanzada (ORFEO-CINQA), Universidad de Zaragoza−CSIC, 50009 Zaragoza, Spain
| | - María L. Buil
- Departamento
de Química Inorgánica, Instituto de Síntesis
Química y Catálisis Homogénea (ISQCH), Centro
de Innovación en Química Avanzada (ORFEO-CINQA), Universidad de Zaragoza−CSIC, 50009 Zaragoza, Spain
| | - Miguel A. Esteruelas
- Departamento
de Química Inorgánica, Instituto de Síntesis
Química y Catálisis Homogénea (ISQCH), Centro
de Innovación en Química Avanzada (ORFEO-CINQA), Universidad de Zaragoza−CSIC, 50009 Zaragoza, Spain,
| | - Susana Izquierdo
- Departamento
de Química Inorgánica, Instituto de Síntesis
Química y Catálisis Homogénea (ISQCH), Centro
de Innovación en Química Avanzada (ORFEO-CINQA), Universidad de Zaragoza−CSIC, 50009 Zaragoza, Spain
| | - Enrique Oñate
- Departamento
de Química Inorgánica, Instituto de Síntesis
Química y Catálisis Homogénea (ISQCH), Centro
de Innovación en Química Avanzada (ORFEO-CINQA), Universidad de Zaragoza−CSIC, 50009 Zaragoza, Spain
| | - Jui-Yi Tsai
- Universal
Display Corporation, Ewing, New Jersey 08618, United States
| |
Collapse
|
24
|
Synthesis of iridaoxaphospholane complexes. Polyhedron 2022. [DOI: 10.1016/j.poly.2022.116193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
25
|
Li J, Chu Z, Lu Z, Luo M, Chen D, Xia H. Reactivity Studies of a Hydroxy-Substituted Irida-carbolong Complex. Organometallics 2022. [DOI: 10.1021/acs.organomet.2c00306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jinhua Li
- Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Catalysis, Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, People’s Republic of China
- Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People’s Republic of China
| | - Zhenwei Chu
- Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Catalysis, Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, People’s Republic of China
| | - Zhengyu Lu
- Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Catalysis, Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, People’s Republic of China
| | - Ming Luo
- Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Catalysis, Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, People’s Republic of China
| | - Dafa Chen
- Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Catalysis, Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, People’s Republic of China
| | - Haiping Xia
- Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Catalysis, Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, People’s Republic of China
- Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People’s Republic of China
| |
Collapse
|
26
|
Richards CA, Rath NP, Neely JM. Carbene-Like Reactivity in an Iron Azametallacyclobutene Complex: Insights from Electronic Structure. Inorg Chem 2022; 61:13266-13270. [PMID: 35969221 DOI: 10.1021/acs.inorgchem.2c01980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Herein we describe our investigation into the electronic structure of the first isolated monometallic iron azametallacyclobutene complex. Computational analysis through density functional theory calculations reveals electron delocalization throughout the four atoms of the ring system, in line with experimental observations and supporting the classification of this complex as a conjugated metallacycle. The results of this study also point to significant contribution from an imine-substituted iron carbene resonance structure to the overall bonding picture for the azametallacyclobutene. Accordingly, this complex participates in carbene-like reactivity in the presence of an isocyanide substrate to generate a ketenimine product. The related reaction with carbon monoxide leads to the isolation of a five-membered metallacycle that is analogous to the proposed intermediate in ketenimine formation, and confirms the α-carbon as the site of reactivity.
Collapse
Affiliation(s)
- Corey A Richards
- Department of Chemistry, Saint Louis University, St. Louis, Missouri 63103, United States
| | - Nigam P Rath
- Department of Chemistry and Biochemistry, University of Missouri─St. Louis, St. Louis, Missouri 63121, United States
| | - Jamie M Neely
- Department of Chemistry, Saint Louis University, St. Louis, Missouri 63103, United States
| |
Collapse
|
27
|
Chen S, Peng L, Liu Y, Gao X, Zhang Y, Tang C, Zhai Z, Yang L, Wu W, He X, Liu LL, He F, Xia H. Conjugated polymers based on metalla-aromatic building blocks. Proc Natl Acad Sci U S A 2022; 119:e2203701119. [PMID: 35858304 PMCID: PMC9303910 DOI: 10.1073/pnas.2203701119] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 05/31/2022] [Indexed: 12/12/2022] Open
Abstract
Conjugated polymers usually require strategies to expand the range of wavelengths absorbed and increase solubility. Developing effective strategies to enhance both properties remains challenging. Herein, we report syntheses of conjugated polymers based on a family of metalla-aromatic building blocks via a polymerization method involving consecutive carbyne shuttling processes. The involvement of metal d orbitals in aromatic systems efficiently reduces band gaps and enriches the electron transition pathways of the chromogenic repeat unit. These enable metalla-aromatic conjugated polymers to exhibit broad and strong ultraviolet-visible (UV-Vis) absorption bands. Bulky ligands on the metal suppress π-π stacking of polymer chains and thus increase solubility. These conjugated polymers show robust stability toward light, heat, water, and air. Kinetic studies using NMR experiments and UV-Vis spectroscopy, coupled with the isolation of well-defined model oligomers, revealed the polymerization mechanism.
Collapse
Affiliation(s)
- Shiyan Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518005, China
| | - Lixia Peng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yanan Liu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Xiang Gao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Ying Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Chun Tang
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518005, China
| | - Zhenghao Zhai
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Liulin Yang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Weitai Wu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Xumin He
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Liu Leo Liu
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518005, China
| | - Feng He
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518005, China
| | - Haiping Xia
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518005, China
| |
Collapse
|
28
|
Shek HL, Tam KT, Yiu SM, Tse MK, Morris RH, Wong CY. Osmium(II)-Induced Rearrangement of Allenols for Metallafuran Complexes. Organometallics 2022. [DOI: 10.1021/acs.organomet.2c00113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Hau-Lam Shek
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, China
| | - King-Ting Tam
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, China
| | - Shek-Man Yiu
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, China
| | - Man-Kit Tse
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, China
| | - Robert H. Morris
- Department of Chemistry, University of Toronto, 80 Saint George Street, Toronto, Ontario M5S 3H6, Canada
| | - Chun-Yuen Wong
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, China
- State Key Laboratory of Terahertz and Millimeter Waves, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, China
| |
Collapse
|
29
|
Wei W, Xu X, Sung HHY, Williams ID, Lin Z, Jia G. Dewar Metallabenzenes from Reactions of Metallacyclobutadienes with Alkynes. Angew Chem Int Ed Engl 2022; 61:e202202886. [DOI: 10.1002/anie.202202886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Wei Wei
- Department of Chemistry Hong Kong University of Science and Technology Clear Water Bay, Kowloon Hong Kong China
| | - Xin Xu
- Department of Chemistry Hong Kong University of Science and Technology Clear Water Bay, Kowloon Hong Kong China
| | - Herman H. Y. Sung
- Department of Chemistry Hong Kong University of Science and Technology Clear Water Bay, Kowloon Hong Kong China
| | - Ian D. Williams
- Department of Chemistry Hong Kong University of Science and Technology Clear Water Bay, Kowloon Hong Kong China
| | - Zhenyang Lin
- Department of Chemistry Hong Kong University of Science and Technology Clear Water Bay, Kowloon Hong Kong China
| | - Guochen Jia
- Department of Chemistry Hong Kong University of Science and Technology Clear Water Bay, Kowloon Hong Kong China
| |
Collapse
|
30
|
Sun Q, Mateo LM, Robles R, Ruffieux P, Bottari G, Torres T, Fasel R, Lorente N. Magnetic Interplay between π-Electrons of Open-Shell Porphyrins and d-Electrons of Their Central Transition Metal Ions. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2105906. [PMID: 35302718 PMCID: PMC9259720 DOI: 10.1002/advs.202105906] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/09/2022] [Indexed: 06/14/2023]
Abstract
Magnetism is typically associated with d- or f-block elements, but can also appear in organic molecules with unpaired π-electrons. This has considerably boosted the interest in such organic materials with large potential for spintronics and quantum applications. While several materials showing either d/f or π-electron magnetism have been synthesized, the combination of both features within the same structure has only scarcely been reported. Open-shell porphyrins (Pors) incorporating d-block transition metal ions represent an ideal platform for the realization of such architectures. Herein, the preparation of a series of open-shell, π-extended Pors that contain magnetically active metal ions (i.e., CuII , CoII , and FeII ) through a combination of in-solution and on-surface synthesis is reported. A detailed study of the magnetic interplay between π- and d-electrons in these metalloPors has been performed by scanning probe methods and density functional theory calculations. For the Cu and FePors, ferromagnetically coupled π-electrons are determined to be delocalized over the Por edges. For the CoPor, the authors find a Kondo resonance resulting from the singly occupied CoII dz 2 orbital to dominate the magnetic fingerprint. The Fe derivative exhibits the highest magnetization of 3.67 μB (S≈2) and an exchange coupling of 16 meV between the π-electrons and the Fe d-states.
Collapse
Affiliation(s)
- Qiang Sun
- nanotech@surfaces LaboratoryEmpa ‐ Swiss Federal Laboratories for Materials Science and TechnologyDübendorf8600Switzerland
- Materials Genome InstituteShanghai UniversityShanghai200444China
| | - Luis M. Mateo
- Departamento de Química OrgánicaUniversidad Autónoma de MadridMadrid28049Spain
- IMDEA‐NanocienciaCampus de CantoblancoMadrid28049Spain
| | - Roberto Robles
- Centro de Física de Materiales CFM/MPC (CSIC‐UPV/EHU)Paseo de Manuel de Lardizabal 5Donostia‐San Sebastián20018Spain
| | - Pascal Ruffieux
- nanotech@surfaces LaboratoryEmpa ‐ Swiss Federal Laboratories for Materials Science and TechnologyDübendorf8600Switzerland
| | - Giovanni Bottari
- Departamento de Química OrgánicaUniversidad Autónoma de MadridMadrid28049Spain
- IMDEA‐NanocienciaCampus de CantoblancoMadrid28049Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem)Universidad Autónoma de MadridMadrid28049Spain
| | - Tomás Torres
- Departamento de Química OrgánicaUniversidad Autónoma de MadridMadrid28049Spain
- IMDEA‐NanocienciaCampus de CantoblancoMadrid28049Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem)Universidad Autónoma de MadridMadrid28049Spain
| | - Roman Fasel
- nanotech@surfaces LaboratoryEmpa ‐ Swiss Federal Laboratories for Materials Science and TechnologyDübendorf8600Switzerland
- Department of ChemistryBiochemistry and Pharmaceutical SciencesUniversity of BernBern3012Switzerland
| | - Nicolás Lorente
- Centro de Física de Materiales CFM/MPC (CSIC‐UPV/EHU)Paseo de Manuel de Lardizabal 5Donostia‐San Sebastián20018Spain
- Donostia International Physics Center (DIPC)Donostia‐San Sebastián20018Spain
| |
Collapse
|
31
|
Tang J, Wang Y, Bai W, Zhou Y, Yu W, Li Y. α-Rhenabenzofuran with nonaromatic T 0 and aromatic S 1 states. Dalton Trans 2022; 51:9495-9500. [PMID: 35686950 DOI: 10.1039/d2dt01001a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The first α-rhenabenzofuran complexes 2-5 are obtained from one-pot reactions of ReCl3(PMePh2)3 with o-ethynyl phenols. With a delocalized structure, these paramagnetic compounds are nonaromatic at the ground state, which is a triplet. But they exhibit an aromatic singlet excited state, revealed by DFT studies.
Collapse
Affiliation(s)
- Junping Tang
- State Key Laboratory of Fine Chemicals, Department of Chemistry, School of Chemical Engineering, Dalian University of Technology, Liaoning 116024, P.R. China.
| | - Yilun Wang
- State Key Laboratory of Fine Chemicals, Department of Chemistry, School of Chemical Engineering, Dalian University of Technology, Liaoning 116024, P.R. China. .,School of Chemical Engineering, Dalian University of Technology, Panjin, Liaoning 124221, P.R. China
| | - Wei Bai
- State Key Laboratory of Fine Chemicals, Department of Chemistry, School of Chemical Engineering, Dalian University of Technology, Liaoning 116024, P.R. China.
| | - Yan Zhou
- School of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Key Laboratory of Guangxi Colleges and Universities for Food Safety and Pharmaceutical Analytical Chemistry, Nanning, 530008, P.R. China
| | - Wenyan Yu
- State Key Laboratory of Fine Chemicals, Department of Chemistry, School of Chemical Engineering, Dalian University of Technology, Liaoning 116024, P.R. China.
| | - Yang Li
- State Key Laboratory of Fine Chemicals, Department of Chemistry, School of Chemical Engineering, Dalian University of Technology, Liaoning 116024, P.R. China. .,School of Chemical Engineering, Dalian University of Technology, Panjin, Liaoning 124221, P.R. China
| |
Collapse
|
32
|
Wei W, Sung HHY, Williams ID, Jia G. Reactions of Alkyl‐Substituted Rhenacyclobutadiene Complexes with Electron‐Rich Alkynes. Eur J Inorg Chem 2022. [DOI: 10.1002/ejic.202200279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Wei Wei
- Department of Chemistry Hong Kong University of Science and Technology Clear Water Bay Hong Kong China
| | - Herman H. Y. Sung
- Department of Chemistry Hong Kong University of Science and Technology Clear Water Bay Hong Kong China
| | - Ian D. Williams
- Department of Chemistry Hong Kong University of Science and Technology Clear Water Bay Hong Kong China
| | - Guochen Jia
- Department of Chemistry Hong Kong University of Science and Technology Clear Water Bay Hong Kong China
| |
Collapse
|
33
|
Bai W, Sun Y, Wang Y, Zhou Y, Zhao Y, Bao X, Li Y. An aromatic dimetallapolycyclic complex with two rhenapyrylium rings. Chem Commun (Camb) 2022; 58:6409-6412. [PMID: 35543294 DOI: 10.1039/d2cc01789j] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Extension of the polycyclic benzo-rhenapyrylium structure by a fused metallaaromatic ring and a benzene unit are reported. The dirhena-aromatic complex 4 shows strong absorption in the visible region and a significant absorption in the near-infrared (NIR) region (λmax = 842 nm). DFT calculations are performed to understand its aromatic nature and electronic behavior.
Collapse
Affiliation(s)
- Wei Bai
- State Key Laboratory of Fine Chemicals, Department of Chemistry, School of Chemical Engineering, Dalian University of Technology, Liaoning 116024, P. R. China.
| | - Yue Sun
- State Key Laboratory of Fine Chemicals, Department of Chemistry, School of Chemical Engineering, Dalian University of Technology, Liaoning 116024, P. R. China.
| | - Yilun Wang
- State Key Laboratory of Fine Chemicals, Department of Chemistry, School of Chemical Engineering, Dalian University of Technology, Liaoning 116024, P. R. China. .,School of Chemical Engineering, Dalian University of Technology, Panjin, Liaoning 124221, P. R. China
| | - Yan Zhou
- School of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Key Laboratory of Guangxi Colleges and Universities for Food Safety and Pharmaceutical Analytical Chemistry, Nanning, 530008, P. R. China
| | - Yue Zhao
- State Key Laboratory of Fine Chemicals, Department of Chemistry, School of Chemical Engineering, Dalian University of Technology, Liaoning 116024, P. R. China.
| | - Xiao Bao
- State Key Laboratory of Fine Chemicals, Department of Chemistry, School of Chemical Engineering, Dalian University of Technology, Liaoning 116024, P. R. China.
| | - Yang Li
- State Key Laboratory of Fine Chemicals, Department of Chemistry, School of Chemical Engineering, Dalian University of Technology, Liaoning 116024, P. R. China. .,School of Chemical Engineering, Dalian University of Technology, Panjin, Liaoning 124221, P. R. China
| |
Collapse
|
34
|
Masada K, Kusumoto S, Nozaki K. Atom Swapping on Aromatic Rings: Conversion from Phosphinine Pincer Metal Complexes to Metallabenzenes Triggered by O 2 Oxidation. Angew Chem Int Ed Engl 2022; 61:e202117096. [PMID: 35191160 DOI: 10.1002/anie.202117096] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Indexed: 11/08/2022]
Abstract
Herein, we report a novel method for the synthesis of metallabenzenes by swapping the phosphorus atom in an aromatic phosphinine ring with transition metal fragments. The oxidation of a phosphine-phosphinine-phosphine pincer iridium complex by O2 triggered the replacement of the phosphorus atom of the phosphinine ring by an iridium fragment to afford iridabenzene. Dianionic rhodabenzene was also synthesized from a phosphinine rhodium complex by oxidation of the phosphorus atom, followed by subsequent reduction using metallic potassium. The aromaticity of the newly synthesized irida- and rhoda-benzenes was evaluated both experimentally and theoretically.
Collapse
Affiliation(s)
- Koichiro Masada
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan
| | - Shuhei Kusumoto
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan
| | - Kyoko Nozaki
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
35
|
Wei W, Xu X, Sung HHY, Williams ID, Lin Z, Jia G. Dewar Metallabenzenes from Reactions of Metallacyclobutadienes with Alkynes. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202202886] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Wei Wei
- Department of Chemistry Hong Kong University of Science and Technology Clear Water Bay, Kowloon Hong Kong China
| | - Xin Xu
- Department of Chemistry Hong Kong University of Science and Technology Clear Water Bay, Kowloon Hong Kong China
| | - Herman H. Y. Sung
- Department of Chemistry Hong Kong University of Science and Technology Clear Water Bay, Kowloon Hong Kong China
| | - Ian D. Williams
- Department of Chemistry Hong Kong University of Science and Technology Clear Water Bay, Kowloon Hong Kong China
| | - Zhenyang Lin
- Department of Chemistry Hong Kong University of Science and Technology Clear Water Bay, Kowloon Hong Kong China
| | - Guochen Jia
- Department of Chemistry Hong Kong University of Science and Technology Clear Water Bay, Kowloon Hong Kong China
| |
Collapse
|
36
|
Xu B, Mao W, Wu C, Li J, Lu Z, Luo M, Chen D, Xia H. A
One‐Pot
Strategy for the Synthesis of
β
‐Substituted
Rhoda‐ and
Irida‐Carbolong
Complexes. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202200179] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Binbin Xu
- Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Catalysis, Department of Chemistry Southern University of Science and Technology Shenzhen 518055 People's Republic of China
| | - Wei Mao
- Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Catalysis, Department of Chemistry Southern University of Science and Technology Shenzhen 518055 People's Republic of China
| | - Chengcheng Wu
- Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Catalysis, Department of Chemistry Southern University of Science and Technology Shenzhen 518055 People's Republic of China
| | - Jinhua Li
- Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Catalysis, Department of Chemistry Southern University of Science and Technology Shenzhen 518055 People's Republic of China
| | - Zhengyu Lu
- Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Catalysis, Department of Chemistry Southern University of Science and Technology Shenzhen 518055 People's Republic of China
| | - Ming Luo
- Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Catalysis, Department of Chemistry Southern University of Science and Technology Shenzhen 518055 People's Republic of China
| | - Dafa Chen
- Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Catalysis, Department of Chemistry Southern University of Science and Technology Shenzhen 518055 People's Republic of China
| | - Haiping Xia
- Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Catalysis, Department of Chemistry Southern University of Science and Technology Shenzhen 518055 People's Republic of China
| |
Collapse
|
37
|
Masada K, Kusumoto S, Nozaki K. Atom Swapping on Aromatic Rings: Conversion from Phosphinine Pincer Metal Complexes to Metallabenzenes Triggered by O
2
Oxidation. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202117096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Koichiro Masada
- Department of Chemistry and Biotechnology Graduate School of Engineering The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo Japan
| | - Shuhei Kusumoto
- Department of Chemistry and Biotechnology Graduate School of Engineering The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo Japan
| | - Kyoko Nozaki
- Department of Chemistry and Biotechnology Graduate School of Engineering The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo Japan
| |
Collapse
|
38
|
Wang Y, Sun Y, Bai W, Zhou Y, Bao X, Li Y. Synthesis, structure and aromaticity of metallapyridinium complexes. Dalton Trans 2022; 51:2876-2882. [PMID: 35099489 DOI: 10.1039/d1dt04096k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The first rhena-analogues of pyridinium (cyclopropametalla-2-isoquinolinium complexes) are obtained from o-ethynyl benzonitriles. Structural analysis and DFT calculations confirm their aromatic nature. Compared to rhenapyrylium, rhenapyridinium has a slightly stronger Hückel π-aromaticity, while a chlorine substituent on the rhenapyridinium ring decreases its aromaticity, which is revealed by NICS, EDDB, MCI and ΔBV(ELFπ) analysis.
Collapse
Affiliation(s)
- Yilun Wang
- State Key Laboratory of Fine Chemicals, Department of Chemistry, School of Chemical Engineering, Dalian University of Technology, Liaoning 116024, P.R. China. .,School of Chemical Engineering, Dalian University of Technology, Panjin, Liaoning 124221, P.R. China
| | - Yue Sun
- State Key Laboratory of Fine Chemicals, Department of Chemistry, School of Chemical Engineering, Dalian University of Technology, Liaoning 116024, P.R. China.
| | - Wei Bai
- State Key Laboratory of Fine Chemicals, Department of Chemistry, School of Chemical Engineering, Dalian University of Technology, Liaoning 116024, P.R. China.
| | - Yan Zhou
- School of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Key Laboratory of Guangxi Colleges and Universities for Food Safety and Pharmaceutical Analytical Chemistry, Nanning, 530008, P.R. China
| | - Xiao Bao
- State Key Laboratory of Fine Chemicals, Department of Chemistry, School of Chemical Engineering, Dalian University of Technology, Liaoning 116024, P.R. China.
| | - Yang Li
- State Key Laboratory of Fine Chemicals, Department of Chemistry, School of Chemical Engineering, Dalian University of Technology, Liaoning 116024, P.R. China. .,School of Chemical Engineering, Dalian University of Technology, Panjin, Liaoning 124221, P.R. China
| |
Collapse
|
39
|
Chen TT, Cheung LF, Wang LS. Probing the Nature of the Transition-Metal-Boron Bonds and Novel Aromaticity in Small Metal-Doped Boron Clusters Using Photoelectron Spectroscopy. Annu Rev Phys Chem 2022; 73:233-253. [PMID: 35044792 DOI: 10.1146/annurev-physchem-082820-113041] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Photoelectron spectroscopy combined with quantum chemistry has been a powerful approach to elucidate the structures and bonding of size-selected boron clusters (Bn-), revealing a prevalent planar world that laid the foundation for borophenes. Investigations of metal-doped boron clusters not only lead to novel structures but also provide important information about the metal-boron bonds that are critical to understanding the properties of boride materials. The current review focuses on recent advances in transition-metal-doped boron clusters, including the discoveries of metal-boron multiple bonds and metal-doped novel aromatic boron clusters. The study of the RhB- and RhB2O- clusters led to the discovery of the first quadruple bond between boron and a transition-metal atom, whereas a metal-boron triple bond was found in ReB2O- and IrB2O-. The ReB4- cluster was shown to be the first metallaborocycle with Möbius aromaticity, and the planar ReB6- cluster was found to exhibit aromaticity analogous to metallabenzenes. Expected final online publication date for the Annual Review of Physical Chemistry, Volume 73 is April 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Teng-Teng Chen
- Department of Chemistry, Brown University, Providence, Rhode Island, USA; .,Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California, USA
| | - Ling Fung Cheung
- Department of Chemistry, Brown University, Providence, Rhode Island, USA; .,Hitachi Ltd., Research and Development Group, Center for Technology Innovation-Decarbonized Energy, Hitachi-shi, Ibaraki-ken, Japan
| | - Lai-Sheng Wang
- Department of Chemistry, Brown University, Providence, Rhode Island, USA;
| |
Collapse
|
40
|
Cao Q, Wang P, Cai Y, Hua Y, Zheng S, Cheng X, HE G, Wen TB, Chen J. Synthesis and Characterization of Rhena[10]annulynes. Inorg Chem Front 2022. [DOI: 10.1039/d2qi00463a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Most of the reported metallacycles were limited to small cyclic complexes that contain six-membered or smaller rings. Larger-membered metallacycles are still rare and mainly focus on the dimetallacycles. Herein, we...
Collapse
|
41
|
Buil M, Esteruelas MA, Oñate E, Picazo NR. Dissimilarity in the Chemical Behavior of Osmaoxazolium Salts and Osmaoxazoles: Two Different Aromatic Metalladiheterocycles. Organometallics 2021; 40:4150-4162. [PMID: 35264819 PMCID: PMC8895684 DOI: 10.1021/acs.organomet.1c00621] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Indexed: 12/15/2022]
Abstract
The preparation of aromatic hydride-osmaoxazolium and hydride-oxazole compounds is reported and their reactivity toward phenylacetylene investigated. Complex [OsH(OH)(≡CPh)(IPr)(PiPr3)]OTf (1; IPr = 1,3-bis(2,6-diisopropylphenyl)imidazolylidene, OTf = CF3SO3) reacts with acetonitrile and benzonitrile to give [OsH{κ2-C,O-[C(Ph)NHC(R)O]}(NCR)(IPr)(PiPr3)]OTf (R = Me (2), Ph (3)) via amidate intermediates, which are generated by addition of the hydroxide ligand to the nitrile. In agreement with this, the addition of 2-phenylacetamide to acetonitrile solutions of 1 gives [OsH{κ2-C,O-[C(Ph)NHC(CH2Ph)O]}(NCCH3)(IPr)(PiPr3)]OTf (4). The deprotonation of the osmaoxazolium ring of 2 and 4 leads to the oxazole derivatives OsH{κ2-C,O-[C(Ph)NC(R)O]}(IPr)(PiPr3) (R = Me (5), CH2Ph (6)). Complexes 2 and 4 add their Os-H and Os-C bonds to the C-C triple bond of phenylacetylene to afford [Os{η3-C 3 ,κ1-O-[CH2C(Ph)C(Ph)NHC(R)O]}(NCCH3)2(IPr)]OTf (R = Me (7), CH2Ph (8)), bearing a tridentate amide-N-functionalized allyl ligand, while complexes 5 and 6 undergo a vicarious nucleophilic substitution of the hydride at the metal center with the alkyne, via the compressed dihydride adduct intermediates OsH2(C≡CPh){κ2-C,O-[C(Ph)NC(R)O]}(IPr)(PiPr3) (R = Me (9), CH2Ph (10)), which reductively eliminate H2 to yield the acetylide-osmaoxazoles Os(C≡CPh){κ2-C,O-[C(Ph)NC(R)O]}(IPr)(PiPr3) (R = Me (11), CH2Ph (12)).
Collapse
Affiliation(s)
- María
L. Buil
- Departamento de Química Inorgánica,
Instituto de Síntesis Química y Catálisis Homogénea
(ISQCH), Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universidad de Zaragoza-CSIC, 50009 Zaragoza, Spain
| | - Miguel A. Esteruelas
- Departamento de Química Inorgánica,
Instituto de Síntesis Química y Catálisis Homogénea
(ISQCH), Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universidad de Zaragoza-CSIC, 50009 Zaragoza, Spain
| | - Enrique Oñate
- Departamento de Química Inorgánica,
Instituto de Síntesis Química y Catálisis Homogénea
(ISQCH), Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universidad de Zaragoza-CSIC, 50009 Zaragoza, Spain
| | - Nieves R. Picazo
- Departamento de Química Inorgánica,
Instituto de Síntesis Química y Catálisis Homogénea
(ISQCH), Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universidad de Zaragoza-CSIC, 50009 Zaragoza, Spain
| |
Collapse
|
42
|
Sun Y, Zhou Y, Bai W, Li Y, Wang Y. Metalla-phenalene complexes: synthesis, structure and aromaticity. Chem Commun (Camb) 2021; 58:435-438. [PMID: 34901974 DOI: 10.1039/d1cc05855j] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Metallaaromatics show a diversity of aromaticity. In this work, we report the synthesis and structural characterization of the first rhena-phenalene complexes. In addition to the Hückel aromaticity and σ-aromaticity, pseudo π anti-aromaticity is observed. DFT computations show that this anti-aromaticity (paramagnetic properties) is induced by the fused aromatic naphthyl ring.
Collapse
Affiliation(s)
- Yue Sun
- State Key Laboratory of Fine Chemicals, Department of Chemistry, School of Chemical Engineering, Dalian University of Technology, Liaoning 116024, P. R. China.
| | - Yan Zhou
- School of Chemistry and Chemical Engineering, Guangxi University for Nationalities, 188 Daxue East Road, Nanning, Guangxi 530006, P. R. China
| | - Wei Bai
- State Key Laboratory of Fine Chemicals, Department of Chemistry, School of Chemical Engineering, Dalian University of Technology, Liaoning 116024, P. R. China.
| | - Yang Li
- State Key Laboratory of Fine Chemicals, Department of Chemistry, School of Chemical Engineering, Dalian University of Technology, Liaoning 116024, P. R. China. .,School of Chemical Engineering, Dalian University of Technology, Panjin, Liaoning 124221, P. R. China
| | - Yilun Wang
- State Key Laboratory of Fine Chemicals, Department of Chemistry, School of Chemical Engineering, Dalian University of Technology, Liaoning 116024, P. R. China. .,School of Chemical Engineering, Dalian University of Technology, Panjin, Liaoning 124221, P. R. China
| |
Collapse
|
43
|
Tkachenko NV, Muñoz-Castro A, Boldyrev AI. Occurrence of Double Bond in π-Aromatic Rings: An Easy Way to Design Doubly Aromatic Carbon-Metal Structures. Molecules 2021; 26:molecules26237232. [PMID: 34885812 PMCID: PMC8659221 DOI: 10.3390/molecules26237232] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 11/24/2021] [Accepted: 11/26/2021] [Indexed: 11/16/2022] Open
Abstract
A chemical bonding of several metallabenzenes and metallabenzynes was studied via an adaptive natural density partitioning (AdNDP) algorithm and the induced magnetic field analysis. A unique chemical bonding pattern was discovered where the M=C (M: Os, Re) double bond coexists with the delocalized 6c-2e π-bonding elements responsible for aromatic properties of the investigated complexes. In opposition to the previous description where 8 delocalized π-electrons were reported in metallabenzenes and metallabenzynes, we showed that only six delocalized π-electrons are present in those molecules. Thus, there is no deviation from Hückel's aromaticity rule for metallabenzynes/metallabenzenes complexes. Based on the discovered bonding pattern, we propose two thermodynamically stable novel molecules that possess not only π-delocalization but also retain six σ-delocalized electrons, rendering them as doubly aromatic species. As a result, our investigation gives a new direction for the search for carbon-metal doubly aromatic molecules.
Collapse
Affiliation(s)
- Nikolay V. Tkachenko
- Department of Chemistry and Biochemistry, Utah State University, 0300 Old Main Hill, Logan, UT 84322-0300, USA;
- Grupo de Química Inorgánica y Materiales Moleculares, Facultad de Ingeniería, Universidad Autonoma de Chile, El Llano Subercaseaux, Santiago 2801, Chile;
| | - Alvaro Muñoz-Castro
- Grupo de Química Inorgánica y Materiales Moleculares, Facultad de Ingeniería, Universidad Autonoma de Chile, El Llano Subercaseaux, Santiago 2801, Chile;
| | - Alexander I. Boldyrev
- Department of Chemistry and Biochemistry, Utah State University, 0300 Old Main Hill, Logan, UT 84322-0300, USA;
- Correspondence:
| |
Collapse
|
44
|
Huang Z, Zheng Y, Zhong M. Transmetalation Reactions of Aromatic Dilithionickelole: Synthesis of Heterobimetallic Complexes Featuring Metalloles as Diene Ligands. Chemistry 2021; 27:15967-15972. [PMID: 34569115 DOI: 10.1002/chem.202102037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Indexed: 11/08/2022]
Abstract
The aromatic metallole dianions are important metallaaromatic compounds because of their various reactivities and extensive synthetic applications. Herein we report the reactions of dilithionickelole with MgCl2 , EtAlCl2 , Cp*ScCl2 , Cp*LuCl2 and Pt(COD)Cl2 (COD=1,5-cyclooctadiene) affording a series of Ni/M heterobimetallic complexes of the general formula (η4 -C4 R4 M)Ni(COD), in which the metalloles act as diene ligands, as suggested by single-crystal X-ray, NMR and theoretical analyses. In these reactions, two electrons of the nickelole dianion transferred to Ni, representing different reactivity compared with main-group metallole dianions.
Collapse
Affiliation(s)
- Zhe Huang
- College of Chemistry, Peking University, Beijing, 100871, China
| | - Yu Zheng
- College of Chemistry, Peking University, Beijing, 100871, China
| | - Mingdong Zhong
- College of Chemistry, Peking University, Beijing, 100871, China.,Tianjin Key Laboratory of Structure and Performance for Functional Molecules College of Chemistry, Tianjin Normal University, Tianjin, 300387, China
| |
Collapse
|
45
|
Wei W, Xu X, Lee KH, Lin R, Sung HHY, Williams ID, Lin Z, Jia G. Reactions of Rhenacyclobutadiene Complexes with Allenes. Organometallics 2021. [DOI: 10.1021/acs.organomet.1c00493] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Wei Wei
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 0000, People’s Republic of China
| | - Xin Xu
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 0000, People’s Republic of China
| | - Ka-Ho Lee
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 0000, People’s Republic of China
| | - Ran Lin
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 0000, People’s Republic of China
| | - Herman H. Y. Sung
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 0000, People’s Republic of China
| | - Ian D. Williams
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 0000, People’s Republic of China
| | - Zhenyang Lin
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 0000, People’s Republic of China
| | - Guochen Jia
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 0000, People’s Republic of China
| |
Collapse
|
46
|
Wang H, Lin Y, Chen S, Ruan Y, Xia H. Metallacycle Expansion and Annulation: Access to
Tetrazolo‐Fused
Osmacycles by Reaction of Cyclic Osmium Carbyne with Sodium Azide. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202100589] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Hongjian Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Yu‐Mei Lin
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Siyuan Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Yonghong Ruan
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Haiping Xia
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
- Shenzhen Grubbs Institute, Department of Chemistry Southern University of Science and Technology Shenzhen Guangdong 518055 China
| |
Collapse
|
47
|
Serafino A, Camedda N, Lanzi M, Della Ca' N, Cera G, Maestri G. Inter/Intramolecular Cascade of 1,6-Enynes Catalyzed by All-Metal Aromatic Tripalladium Complexes and Carboxylic Acids. J Org Chem 2021; 86:15433-15452. [PMID: 34657418 DOI: 10.1021/acs.joc.1c01962] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Trinuclear all-metal aromatic clusters are an original class of molecules with a cyclic and planar metal core. Characterized by peculiar metal-metal delocalized bonds, they represent a new frontier in transition-metal catalysis. We report a study on C-C-forming reactions of polyunsaturated substrates catalyzed by trinuclear all-metal aromatic palladium clusters. The synthesis of two new families of tricyclic compounds was obtained with a broad functional group tolerance under mild reaction conditions. A peculiar regio- and diastereoselectivity characterized the method, demonstrating that trinuclear palladium complexes are complementary to their popular mononuclear peers. Furthermore, preliminary studies on the mechanism of these polycyclization reactions revealed unique features of the homogeneous catalytic system.
Collapse
Affiliation(s)
- Andrea Serafino
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Università di Parma, Parco Area delle Scienze 17/A, 43124 Parma, Italy
| | - Nicola Camedda
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Università di Parma, Parco Area delle Scienze 17/A, 43124 Parma, Italy
| | - Matteo Lanzi
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Università di Parma, Parco Area delle Scienze 17/A, 43124 Parma, Italy
| | - Nicola Della Ca'
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Università di Parma, Parco Area delle Scienze 17/A, 43124 Parma, Italy
| | - Gianpiero Cera
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Università di Parma, Parco Area delle Scienze 17/A, 43124 Parma, Italy
| | - Giovanni Maestri
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Università di Parma, Parco Area delle Scienze 17/A, 43124 Parma, Italy
| |
Collapse
|
48
|
Abstract
Even though metallacyclopentadienes (MCPs) are among the most common metallacycles, their electron delocalization (aromaticity) has received far less attention than other metallacycles, such as metallabenzenes. We systematically studied the aromaticity of MCPs with energetic (isomerization stabilization energy), density (delocalization index) and magnetic (current density) aromaticity indices. The indices agree that metallacyclopentadienes are, in general, weakly aromatic at most. The 18e− complexes showed the expected weak aromaticity, and only the d8 molecules are somewhat anti-aromatic. However, the theoretical account of the aromaticity of the 16e− MCPs is more convoluted. We find that the aromatic criteria for a 16e−d4 ruthenacyclopentadiene disagree. The lack of agreement shows that significant electron delocalization is not always related to great stability or to strong diatropic currents.
Collapse
|
49
|
Tang C, Zhao Y, Wu J, Chen Z, Liu LL, Tan YZ, Zhu J, Xia H. Releasing Antiaromaticity in Metal-Bridgehead Naphthalene. J Am Chem Soc 2021; 143:15587-15592. [PMID: 34533932 DOI: 10.1021/jacs.1c08106] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
As a fundamental chemical property, aromaticity guides the synthesis of novel structures and materials. Replacing the carbon moieties of aromatic hydrocarbons with transition metal fragments is a promising strategy to synthesize intriguing organometallic counterparts with a similar aromaticity to their organic parents. However, since antiaromaticity will endow compound instability, it is a great challenge to obtain an antiaromatic organometallic counterpart based on such transition metal replacement in aromatic hydrocarbons. Here, we report an efficient aromaticity transformation on aromatic naphthalene through the bridgehead replacement of an osmium fragment, leading to the unprecedented synthesis of metal-bridgehead naphthalene featuring a highly twisted structure as confirmed by X-ray crystallography characterization. Such a twisted conformation works together with its phosphonium substituents to release the antiaromaticity in the planar conformation of the metal-bridgehead naphthalene. Our findings prove the bridgehead involvement of transition metals in unexpected aromaticity modifications and open an avenue for novel metal-bridgehead complexes.
Collapse
Affiliation(s)
- Chun Tang
- Shenzhen Grubbs Institute, Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, P. R. China.,State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yu Zhao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.,Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Jingjing Wu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.,Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Zhixin Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Liu Leo Liu
- Shenzhen Grubbs Institute, Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, P. R. China
| | - Yuan-Zhi Tan
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Jun Zhu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.,Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Haiping Xia
- Shenzhen Grubbs Institute, Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, P. R. China.,State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
50
|
Cai Y, Hua Y, Lu Z, Lan Q, Lin Z, Fei J, Chen Z, Zhang H, Xia H. Electrophilic aromatic substitution reactions of compounds with Craig-Möbius aromaticity. Proc Natl Acad Sci U S A 2021; 118:e2102310118. [PMID: 34544859 PMCID: PMC8488665 DOI: 10.1073/pnas.2102310118] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/03/2021] [Indexed: 11/18/2022] Open
Abstract
Electrophilic aromatic substitution (EAS) reactions are widely regarded as characteristic reactions of aromatic species, but no comparable reaction has been reported for molecules with Craig-Möbius aromaticity. Here, we demonstrate successful EAS reactions of Craig-Möbius aromatics, osmapentalenes, and fused osmapentalenes. The highly reactive nature of osmapentalene makes it susceptible to electrophilic attack by halogens, thus osmapentalene, osmafuran-fused osmapentalene, and osmabenzene-fused osmapentalene can undergo typical EAS reactions. In addition, the selective formation of a series of halogen substituted metalla-aromatics via EAS reactions has revealed an unprecedented approach to otherwise elusive compounds such as the unsaturated cyclic chlorirenium ions. Density functional theory calculations were conducted to study the electronic effect on the regioselectivity of the EAS reactions.
Collapse
Affiliation(s)
- Yuanting Cai
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China 361005
| | - Yuhui Hua
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China 361005
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen, China 518005
| | - Zhengyu Lu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China 361005
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen, China 518005
| | - Qing Lan
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China 361005
| | - Zuzhang Lin
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China 361005
| | - Jiawei Fei
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China 361005
| | - Zhixin Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China 361005
| | - Hong Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China 361005;
| | - Haiping Xia
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China 361005;
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen, China 518005
| |
Collapse
|