1
|
Imaoka T, Antoku N, Narita Y, Nishiyama K, Takada K, Saito S, Tanaka M, Okochi M, Huda M, Tanabe M, Chun WJ, Yamamoto K. Synthesis of atom-precise supported metal clusters via solid-phase peptide synthesis. Chem Sci 2024:d4sc04400b. [PMID: 39246354 PMCID: PMC11376025 DOI: 10.1039/d4sc04400b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 08/14/2024] [Indexed: 09/10/2024] Open
Abstract
While the utility of supported metal and alloy clusters as catalytic materials is widely recognized, their precise synthesis remains a challenge. Here, we demonstrate the precise synthesis of these clusters via metallopeptides. This technique is characterized by its ability to be automated using Merrifield's solid-phase peptide synthesis (SPPS). Metallopeptides with iron and platinum complexes in their side chains have been prepared using this SPPS. These metallopeptides were successfully transformed into the corresponding supported metal clusters by heating in a hydrogen atmosphere.
Collapse
Affiliation(s)
- Takane Imaoka
- Laboratory for Chemistry and Life Science, Tokyo Institute of Technology Yokohama 226-8503 Japan
- Department of Chemical Science and Engineering, Tokyo Institute of Technology Tokyo 152-8552 Japan
| | - Nanami Antoku
- Laboratory for Chemistry and Life Science, Tokyo Institute of Technology Yokohama 226-8503 Japan
- Department of Chemical Science and Engineering, Tokyo Institute of Technology Tokyo 152-8552 Japan
| | - Yusuke Narita
- Laboratory for Chemistry and Life Science, Tokyo Institute of Technology Yokohama 226-8503 Japan
- Department of Chemical Science and Engineering, Tokyo Institute of Technology Tokyo 152-8552 Japan
| | - Kazuki Nishiyama
- Laboratory for Chemistry and Life Science, Tokyo Institute of Technology Yokohama 226-8503 Japan
- Department of Chemical Science and Engineering, Tokyo Institute of Technology Tokyo 152-8552 Japan
| | - Kenji Takada
- Laboratory for Chemistry and Life Science, Tokyo Institute of Technology Yokohama 226-8503 Japan
| | - Shogo Saito
- Department of Chemical Science and Engineering, Tokyo Institute of Technology Tokyo 152-8552 Japan
| | - Masayoshi Tanaka
- Department of Chemical Science and Engineering, Tokyo Institute of Technology Tokyo 152-8552 Japan
| | - Mina Okochi
- Department of Chemical Science and Engineering, Tokyo Institute of Technology Tokyo 152-8552 Japan
| | - Miftakhul Huda
- Laboratory for Chemistry and Life Science, Tokyo Institute of Technology Yokohama 226-8503 Japan
| | - Makoto Tanabe
- Laboratory for Chemistry and Life Science, Tokyo Institute of Technology Yokohama 226-8503 Japan
| | - Wang-Jae Chun
- Graduate School of Arts and Sciences, International Christian University Mitaka Tokyo 181-8585 Japan
| | - Kimihisa Yamamoto
- Laboratory for Chemistry and Life Science, Tokyo Institute of Technology Yokohama 226-8503 Japan
- Department of Chemical Science and Engineering, Tokyo Institute of Technology Tokyo 152-8552 Japan
| |
Collapse
|
2
|
Xiao Y, Chen Y, Wang W, Bu X, Feng P. Advancing Pore-Space-Partitioned Metal-Organic Frameworks with Isoreticular Cluster Concept. Angew Chem Int Ed Engl 2024; 63:e202403698. [PMID: 38720517 DOI: 10.1002/anie.202403698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Indexed: 06/16/2024]
Abstract
Trigonal planar M3(O/OH) trimers are among the most important clusters in inorganic chemistry and are the foundational features of multiple high-impact MOF platforms. Here we introduce a concept called isoreticular cluster series and demonstrate that M3(O/OH), as the first member of a supertrimer series, can be combined with a higher hierarchical member (double-deck trimer here) to advance isoreticular chemistry. We report here an isoreticular series of pore-space-partitioned MOFs called M3M6 pacs made from co-assembly between M3 single-deck trimer and M3x2 double-deck trimer. Important factors were identified on this multi-modular MOF platform to guide optimization of each module, which enables the phase selection of M3M6 pacs by overcoming the formation of previously-always-observed same-cluster phases. The new pacs materials exhibit high surface area and high uptake capacity for CO2 and small hydrocarbons, as well as selective adsorption properties relevant to separation of industrially important mixtures such as C2H2/CO2 and C2H2/C2H4. Furthermore, new M3M6 pacs materials show electrocatalytic properties with high activity.
Collapse
Affiliation(s)
- Yuchen Xiao
- Department of Chemistry, University of California, Riverside, 900 University Ave, Riverside, CA 92521, USA
| | - Yichong Chen
- Department of Chemistry, University of California, Riverside, 900 University Ave, Riverside, CA 92521, USA
| | - Wei Wang
- Department of Chemistry, University of California, Riverside, 900 University Ave, Riverside, CA 92521, USA
| | - Xianhui Bu
- Department of Chemistry and Biochemistry, California State University Long Beach, 1250 Bellflower Boulevard, Long Beach, CA 90840, USA
| | - Pingyun Feng
- Department of Chemistry, University of California, Riverside, 900 University Ave, Riverside, CA 92521, USA
| |
Collapse
|
3
|
Townrow OPE, Weller AS, Goicoechea JM. Controlled cluster expansion at a Zintl cluster surface. Angew Chem Int Ed Engl 2024; 63:e202316120. [PMID: 38010628 DOI: 10.1002/anie.202316120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/23/2023] [Accepted: 11/24/2023] [Indexed: 11/29/2023]
Abstract
Reaction of the tris-hypersilyl nonagermanide Zintl cluster salt, K[Ge9 (Hyp)3 ] (Hyp=Si(SiMe3 )3 ) with [Rh(η2 ,η2 -L)Cl]2 (L=1,5-cyclooctadiene, COD; norbornadiene, NBD) afforded eleven- and twelve-vertex homo-multimetallic clusters by cluster core expansion. Using a stepwise procedure, starting from the Zintl cluster [Rh(COD){Ge9 (Hyp)3 }] and [Ir(COD)Cl]2 , this methodology was expanded for the synthesis of eleven-vertex hetero-multimetallic clusters. A mechanism for the formation of these first examples of closo eleven-vertex Zintl clusters is proposed, informed by density functional theory calculations.
Collapse
Affiliation(s)
- Oliver P E Townrow
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford, OX1 3TA, UK
| | - Andrew S Weller
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK
| | - Jose M Goicoechea
- Department of Chemistry, Indiana University, 800 E. Kirkwood Ave., Bloomington, IN 47405, USA
| |
Collapse
|
4
|
Báez-Grez R, Inostroza D, Vásquez-Espinal A, Islas R, Pino-Rios R. Exploration of the potential energy surface in mixed Zintl clusters applying an automatic Johnson polyhedra generator: the case of arachno E 6M 24- (E = Si, Ge, Sn; M = Sb, Bi). RSC Adv 2023; 13:24499-24504. [PMID: 37588980 PMCID: PMC10426391 DOI: 10.1039/d3ra04308h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 08/08/2023] [Indexed: 08/18/2023] Open
Abstract
A new algorithm called Automatic Johnson Cluster Generator (AJCG) is presented, which, as its name indicates, allows the definition of the desired Johnson polyhedron to subsequently carry out all the possible permutations between the atoms that form this polyhedron. This new algorithm allows the exhaustive study of the structures' potential energy surface (PES). In addition, the AJCG algorithm is helpful for the study of three-dimensional compounds such as boranes or Zintl clusters and their structural derivatives with two or more different atoms. The automatic filling of vertices is particularly useful in mixed compounds because of the possibility of taking into account all possible configurations in the structure. As a test system, we investigated the arachno-type E6M24- (E = Si, Ge, Sn; M = Sb, Bi) structure which has eight vertices and complies with Wade-Mingos rules. Initially, we defined a bipyramidal structure (10 vertices), and filled the vertices with the atoms in all possible configurations. Since the selected system has eight atoms, the two remaining vertices were filled with pseudo atoms to complete the structure. After re-optimizing the initial population generated with AJCG, a large number of isomers with energy below 10 kcal mol-1 are identified. These results show that the most stable isomers possess homonuclear M-M bonds, except Sn6Bi24-. Although the overall putative minima differ at the PBE0-D3 and DLPNO-CCSD(T) levels, they are always competitive minima. In addition to using high-precision methodologies to correctly study relative energies, applying solvent effects in highly charged systems becomes mandatory. The aromatic character of these studied systems was demonstrated qualitatively with two- and three-dimensional mapping and quantitatively by calculating the value of the z-component of the induced magnetic field at the cage center, including scalar and spin-orbit correction for relativistic effects. The compounds studied have a high degree of aromaticity, which allows us to establish that despite structural modifications (i.e., from closo to arachno), the aromaticity is preserved.
Collapse
Affiliation(s)
- Rodrigo Báez-Grez
- Departamento de Ciencias Químicas, Facultad de Ciencias Exactas, Universidad Andres Bello República 275 Santiago Chile 8370146
| | - Diego Inostroza
- Departamento de Ciencias Químicas, Facultad de Ciencias Exactas, Universidad Andres Bello República 275 Santiago Chile 8370146
- Doctorado en Fisicoquímica Molecular, Facultad de Ciencias Exactas, Universidad Andres Bello República 275 Santiago Chile
| | - Alejandro Vásquez-Espinal
- Química y Farmacia, Facultad de Ciencias de la Salud, Universidad Arturo Prat Casilla 121 Iquique Chile 1100000
| | - Rafael Islas
- Departamento de Ciencias Químicas, Facultad de Ciencias Exactas, Universidad Andres Bello República 275 Santiago Chile 8370146
- Centro de Química Teórica & Computacional (CQT&C), Facultad de Ciencias Exactas, Universidad Andres Bello República 275 Santiago Chile 8370146
| | - Ricardo Pino-Rios
- Química y Farmacia, Facultad de Ciencias de la Salud, Universidad Arturo Prat Casilla 121 Iquique Chile 1100000
- Instituto de Estudios de la Salud, Universidad Arturo Prat Casilla 121 Iquique Chile 1100000
| |
Collapse
|
5
|
Beuthert K, Peerless B, Dehnen S. Insight into the formation of bismuth-tungsten carbonyl clusters. Commun Chem 2023; 6:109. [PMID: 37277548 DOI: 10.1038/s42004-023-00905-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 05/17/2023] [Indexed: 06/07/2023] Open
Abstract
Multimetallic clusters play a key role as models to doped metals, as candidates to new types of superatomic catalysts and as precursors to new multimetallic solids. Understanding formation pathways is an essential and necessary step forward in the development of cluster synthesis and research, yet remains considerably lacking owing to difficulty in identification of intermediates and the ill-defined nature of common starting materials. Here we show progress in this regard by investigating the reactivity of an intermetallic solid of nominal composition 'K5Ga2Bi4' with [W(cod)(CO)4] upon extraction with ethane-1,2-diamine (en) and 4,7,13,16,21,24-hexaoxa-1,10-diazabicyclo[8.8.8]hexacosane (crypt-222). Several polybismuthide intermediates and by-products were identified along the reaction pathway, ultimately forming the new polybismuthide salt [K(crypt-222)]3[µ:η3-Bi3{W(CO)3}2]∙en∙tol. DFT calculations revealed plausible reaction schemes for the transformations taking place in the reaction mixture providing insight into the complex reactivity of 'K5Ga2Bi4' on the basis of in situ generation of Bi22-.
Collapse
Affiliation(s)
- Katrin Beuthert
- Karlsruhe Institute of Technology (KIT), Institute of Nanotechnology (INT), 76021, Karlsruhe, Germany
| | - Benjamin Peerless
- Karlsruhe Institute of Technology (KIT), Institute of Nanotechnology (INT), 76021, Karlsruhe, Germany
| | - Stefanie Dehnen
- Karlsruhe Institute of Technology (KIT), Institute of Nanotechnology (INT), 76021, Karlsruhe, Germany.
| |
Collapse
|
6
|
Beuthert K, Weinert B, Wilson RJ, Weigend F, Dehnen S. [M@Sn 14-xSb x] q- (M = La, Ce, or U; x = 6-8; q = 3, 4): Interaction of 4f or 5f Metal Ions with 5p Metal Atoms in Intermetalloid Clusters. Inorg Chem 2023; 62:1885-1890. [PMID: 35639728 DOI: 10.1021/acs.inorgchem.2c01298] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The impact of 4f metal ions Ln3+ (Ln = La or Ce) versus 5f metal ions Un+ (n = 3 or 4) on the compositions and distribution of 5p metal atoms in the cluster shells of endohedral species [M@Sn14-xSbx]q- (M = La, Ce, or U; x = 6-8; q = 3, 4) was studied by means of combined experimental and quantum chemical investigations. While all known f-block metal ion-centered endohedral clusters possessed combinations of larger main group metal atoms so far (Sn/Bi or Pb/Bi), resulting in mixtures of 13- and 14-atom cages, the 14-atom cages reported herein comprise exclusively Sn and Sb atoms and therefore are challenged in accommodating the large 4f and 5f ions. We show that the clusters form in reactions of (Sn2Sb2)2- anions with [Ln(C5Me4H)3] or [U(C5Me4H)3Cl], and that salts of [La@Sn6Sb8]3-, [La@Sn7Sb7]4-, [U@Sn8Sb6]4-, and [U@Sn7Sb7]3- can be isolated from them. The assignment of Sn versus Sb in the encapsulating cage follows a simple rule. Different central atoms cause only slight differences in this regard and with respect to distortions of the cluster shells. The reactions also yielded the salt of the new binary anion (Sn4Sb4)2- that was recently predicted by quantum chemical studies.
Collapse
Affiliation(s)
- Katrin Beuthert
- Fachbereich Chemie and Wissenschaftliches Zentrum für Materialwissenschaften (WZMW), Philipps-Universität Marburg, Hans-Meerwein-Strasse 4, 35043 Marburg, Germany
| | - Bastian Weinert
- Fachbereich Chemie and Wissenschaftliches Zentrum für Materialwissenschaften (WZMW), Philipps-Universität Marburg, Hans-Meerwein-Strasse 4, 35043 Marburg, Germany
| | - Robert J Wilson
- Fachbereich Chemie and Wissenschaftliches Zentrum für Materialwissenschaften (WZMW), Philipps-Universität Marburg, Hans-Meerwein-Strasse 4, 35043 Marburg, Germany
| | - Florian Weigend
- Fachbereich Chemie and Wissenschaftliches Zentrum für Materialwissenschaften (WZMW), Philipps-Universität Marburg, Hans-Meerwein-Strasse 4, 35043 Marburg, Germany
| | - Stefanie Dehnen
- Fachbereich Chemie and Wissenschaftliches Zentrum für Materialwissenschaften (WZMW), Philipps-Universität Marburg, Hans-Meerwein-Strasse 4, 35043 Marburg, Germany
| |
Collapse
|
7
|
Klementyeva SV, Schrenk C, Schnepf A. Oxidation of [Ge 9{Si(SiMe 3) 3} 3] − with LnI 3 (Ln = Eu, Sm, Yb): Isomerism of Metalloid Germanium Clusters. Inorg Chem 2022; 61:11787-11795. [DOI: 10.1021/acs.inorgchem.2c01501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | - Claudio Schrenk
- Chemistry Department, University Tübingen, Auf der Morgenstelle 18, 72076 Tübingen Germany
| | - Andreas Schnepf
- Chemistry Department, University Tübingen, Auf der Morgenstelle 18, 72076 Tübingen Germany
| |
Collapse
|
8
|
Bussoli G, Cesari C, Femoni C, Carmela Iapalucci M, Ruggieri S, Tiozzo C, Zacchini S. Atomically precise rhodium nanoclusters: synthesis and characterization of the heterometallic [Rh18Sn3Cl2(CO)33]4− and [Rh7Sn4Cl10(CO)14]5− carbonyl compounds. RESULTS IN CHEMISTRY 2022. [DOI: 10.1016/j.rechem.2022.100435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
9
|
Zhang WQ, Morgan HWT, McGrady JE, Sun ZM. Synthesis and characterisation of the ternary intermetalloid clusters {M@[As8(ZnMes)4]}3– (M = Nb, Ta) from binary [M@As8]3– precursors. Chem Sci 2022; 13:6744-6748. [PMID: 35756517 PMCID: PMC9172560 DOI: 10.1039/d2sc01748b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 05/15/2022] [Indexed: 11/21/2022] Open
Abstract
The development of rational synthetic routes to inorganic arsenide compounds is an important goal because these materials are finding applications in many areas of materials science. In this paper, we show that the binary crown clusters [M@As8]3− (M = Nb, Ta) can be used as synthetic precursors which, when combined with ZnMes2, generate ternary intermetalloid clusters with 12-vertex cages, {M@[As8(ZnMes)4]}3− (M = Nb, Ta). Structural studies are complemented by mass spectrometry and an analysis of the electronic structure using DFT. The synthesis of these clusters presents new opportunities for the construction of As-based nanomaterials. Two ternary intermetalloid clusters were constructed through binary intermetalloid clusters with a low valent group 12 metal salt. These clusters represent the first example of the structural transformation for intermetalloid clusters.![]()
Collapse
Affiliation(s)
- Wei-Qiang Zhang
- State Key Laboratory of Elemento-Organic Chemistry, Tianjin Key Lab of Rare Earth Materials and Applications, School of Materials Science and Engineering, Nankai University Tianjin 300350 China
| | - Harry W T Morgan
- Department of Chemistry, University of Oxford South Parks Road Oxford OX1 3QR UK
| | - John E McGrady
- Department of Chemistry, University of Oxford South Parks Road Oxford OX1 3QR UK
| | - Zhong-Ming Sun
- State Key Laboratory of Elemento-Organic Chemistry, Tianjin Key Lab of Rare Earth Materials and Applications, School of Materials Science and Engineering, Nankai University Tianjin 300350 China
| |
Collapse
|
10
|
Lips F, Helmer J, Droste J, Hansen MR, Hepp A. Unsaturated Amido-Substituted Six-Vertex Mixed Silicon Germanium Clusters. Dalton Trans 2022; 51:10535-10542. [DOI: 10.1039/d2dt01746f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The synthesis of mixed silicon and germanium clusters SixGe6-x{N(SiMe3)Dipp}4 1-3 (x = 3.7, 3.1, 2.1) with amido-substituents and two unsubstituted germanium atoms was achieved in co-reductions using the tribromosilane {N(SiMe3)Dipp}SiBr3...
Collapse
|
11
|
McGrady JE, Weigend F, Dehnen S. Electronic structure and bonding in endohedral Zintl clusters. Chem Soc Rev 2021; 51:628-649. [PMID: 34931207 DOI: 10.1039/d1cs00775k] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Endohedral Zintl clusters-multi-metallic anionic molecules in which a d-block or f-block metal atom is enclosed by p-block (semi)metal atoms-are very topical in contemporary inorganic chemistry. Not only do they provide insight into the embryonic states of intermetallic compounds and show promise in catalytic applications, they also shed light on the nature of chemical bonding between metal atoms. Over the past two decades, a plethora of endohedral Zintl clusters have been synthesized, revealing a fascinating diversity of molecular architectures. Many different perspectives on the bonding in them have emerged in the literature, sometimes complementary and sometimes conflicting, and there has been no concerted effort to classify the entire family based on a small number of unifying principles. A closer look, however, reveals distinct patterns in structure and bonding that reflect the extent to which valence electrons are shared between the endohedral atom and the cluster shell. We show that there is a much more uniform relationship between the total valence electron count and the structure and bonding patterns of these clusters than previously anticipated. All of the p-block (semi)metal shells can be placed on a ladder of total valence electron count that ranges between 4n+2 (closo deltahedra), 5n (closed, three-bonded polyhedra) and 6n (crown-like structures). Although some structural isomerism can occur for a given electron count, the presence of a central metal cation imposes a preference for rather regular and approximately spherical structures which maximise electrostatic interactions between the metal and the shell. In cases where the endohedral metal has relatively accessible valence electrons (from the d or f shells), it can also contribute its valence electrons to the total electron count of the cluster shell, raising the effective electron count and often altering the structural preferences. The electronic situation in any given cluster is considered from different perspectives, some more physical and some more chemical, in a way that highlights the important point that, in the end, they explain the same situation. This article provides a unifying perspective of bonding that captures the structural diversity across this diverse family of multimetallic clusters.
Collapse
Affiliation(s)
- John E McGrady
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, OX1 3QZ, UK.
| | - Florian Weigend
- Fachbereich Chemie and Wissenschaftliches Zentrum für Materialwissenschaften, Philipps University Marburg, Hans-Meerwein-Straße 4, 35043 Marburg, Germany.
| | - Stefanie Dehnen
- Fachbereich Chemie and Wissenschaftliches Zentrum für Materialwissenschaften, Philipps University Marburg, Hans-Meerwein-Straße 4, 35043 Marburg, Germany.
| |
Collapse
|
12
|
Kauzlarich SM, Ju Z, Tseng E, Lundervold J. Recent developments in germanium containing clusters in intermetallics and nanocrystals. Chem Soc Rev 2021; 50:13236-13252. [PMID: 34726681 DOI: 10.1039/d1cs00538c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Multimetallic clusters can be described as building blocks in intermetallics, compounds prepared from all metals and/or semi-metals, and in Zintl phases, a subset of intermetallics containing metals with large differences in electronegativity. In many cases, these intermetallic and Zintl phases provide the first clue for the possibilities of bond formation between metals and semi-metals. Recent advances in multimetallic clusters found in Zintl phases and nanoparticles focusing on Ge with transition metals and semi-metals is presented. Colloidal routes to Ge nanocrystals provide an opportunity for kinetically stabilized Ge-metal and Ge-semi-metal bonding. These routes provide crystalline nanoclusters of Ge, hereafter referred to as nanocrystals, that can be structurally characterized. Compositions of Ge nanocrystals containing transition metals, and the semi-metals, Sb, Bi, and Sn, whose structures have recently been elucidated through EXAFS, will be presented along with potential applications.
Collapse
Affiliation(s)
- Susan M Kauzlarich
- Chemistry Department, One Shields Ave, University of California, Davis, CA 95616, USA.
| | - Zheng Ju
- Chemistry Department, One Shields Ave, University of California, Davis, CA 95616, USA.
| | - Emily Tseng
- Chemistry Department, One Shields Ave, University of California, Davis, CA 95616, USA.
| | - Jesse Lundervold
- Chemistry Department, One Shields Ave, University of California, Davis, CA 95616, USA.
| |
Collapse
|
13
|
Pan F, Lukanowski M, Weigend F, Dehnen S. Tetrahedral [Sb(AuMe)
4
]
3−
Occurring in Multimetallic Cluster Syntheses: About the Structure‐Directing Role of Methyl Groups. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202110526] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Fuxing Pan
- Fachbereich Chemie and Wissenschaftliches Zentrum für Materialwissenschaften (WZMW) Philipps-Universität Marburg Hans-Meerwein-Straße 4 35043 Marburg Germany
| | - Marcel Lukanowski
- Fachbereich Chemie and Wissenschaftliches Zentrum für Materialwissenschaften (WZMW) Philipps-Universität Marburg Hans-Meerwein-Straße 4 35043 Marburg Germany
| | - Florian Weigend
- Fachbereich Chemie and Wissenschaftliches Zentrum für Materialwissenschaften (WZMW) Philipps-Universität Marburg Hans-Meerwein-Straße 4 35043 Marburg Germany
| | - Stefanie Dehnen
- Fachbereich Chemie and Wissenschaftliches Zentrum für Materialwissenschaften (WZMW) Philipps-Universität Marburg Hans-Meerwein-Straße 4 35043 Marburg Germany
| |
Collapse
|
14
|
Pan F, Lukanowski M, Weigend F, Dehnen S. Tetrahedral [Sb(AuMe) 4 ] 3- Occurring in Multimetallic Cluster Syntheses: About the Structure-Directing Role of Methyl Groups. Angew Chem Int Ed Engl 2021; 60:25042-25047. [PMID: 34476877 PMCID: PMC9298313 DOI: 10.1002/anie.202110526] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Indexed: 01/26/2023]
Abstract
The anion of [K(crypt-222)]3 [Sb(AuMe)4 ]⋅py (1; crypt-222=4,7,13,16,21,24-hexaoxa-1,10-diazabicyclo[8.8.8]hexacosane; py=pyridine) represents a rare example of a homoleptic heavy p-block metal atom being surrounded by four free-standing transition metal complex fragments, and the third example for a corresponding Sb compound. In contrast to all reported complexes of this type, the transition metal atoms possess twofold coordination only, hence the complex as a whole does not exhibit significant steric shielding or further linkage of the metal atoms. This is reflected in a high flexibility, as confirmed by slight deviations from a tetrahedral coordination of the Sb atom in the crystal and soft vibrational modes. An alternative pyramidal conformer, observed for a related arsenic compound with terminal phosphine ligands, is apparently disfavored owing to electron correlation effects. The compound is formed in a reaction that in another solvent or at other reactant concentrations yields salts of ternary cluster anions. By a combined experimental and theoretical study of different reaction conditions and previously unidentified side-products, we provide insight into multimetallic cluster synthesis reactions.
Collapse
Affiliation(s)
- Fuxing Pan
- Fachbereich Chemie and Wissenschaftliches Zentrum für Materialwissenschaften (WZMW)Philipps-Universität MarburgHans-Meerwein-Straße 435043MarburgGermany
| | - Marcel Lukanowski
- Fachbereich Chemie and Wissenschaftliches Zentrum für Materialwissenschaften (WZMW)Philipps-Universität MarburgHans-Meerwein-Straße 435043MarburgGermany
| | - Florian Weigend
- Fachbereich Chemie and Wissenschaftliches Zentrum für Materialwissenschaften (WZMW)Philipps-Universität MarburgHans-Meerwein-Straße 435043MarburgGermany
| | - Stefanie Dehnen
- Fachbereich Chemie and Wissenschaftliches Zentrum für Materialwissenschaften (WZMW)Philipps-Universität MarburgHans-Meerwein-Straße 435043MarburgGermany
| |
Collapse
|
15
|
Virovets AV, Peresypkina E, Scheer M. Structural Chemistry of Giant Metal Based Supramolecules. Chem Rev 2021; 121:14485-14554. [PMID: 34705437 DOI: 10.1021/acs.chemrev.1c00503] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The review presents a bird-eye view on the state of research in the field of giant nonbiological discrete metal complexes and ions of nanometer size, which are structurally characterized by means of single-crystal X-ray diffraction, using the crystal structure as a common key feature. The discussion is focused on the main structural features of the metal clusters, the clusters containing compact metal oxide/hydroxide/chalcogenide core, ligand-based metal-organic cages, and supramolecules as well as on the aspects related to the packing of the molecules or ions in the crystal and the methodological aspects of the single-crystal neutron and X-ray diffraction of these compounds.
Collapse
Affiliation(s)
- Alexander V Virovets
- Institute of Inorganic Chemistry, University of Regensburg, Universitaetsstr. 31, 93053 Regensburg, Germany
| | - Eugenia Peresypkina
- Institute of Inorganic Chemistry, University of Regensburg, Universitaetsstr. 31, 93053 Regensburg, Germany
| | - Manfred Scheer
- Institute of Inorganic Chemistry, University of Regensburg, Universitaetsstr. 31, 93053 Regensburg, Germany
| |
Collapse
|
16
|
Pan F, Wei S, Guggolz L, Eulenstein AR, Tambornino F, Dehnen S. Insights into Formation and Relationship of Multimetallic Clusters: On the Way toward Bi-Rich Nanostructures. J Am Chem Soc 2021; 143:7176-7188. [PMID: 33905232 DOI: 10.1021/jacs.1c02653] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Bismuth-rich polyanions show a unique potential in constructing nanostructured bismuth-based materials, but they are still poorly investigated. We use a ternary precursor of the nominal composition "K5Ga2Bi4" for the formation of [K(crypt-222)]+ salts of novel Bi-rich polyanions [Bi@Ga8(Bi2)6]q- (q = 3, 5; in 1), (Ga2Bi16)4- (in 2), and [{Ru(cod)}4Bi18]4- (in 3). Their bismuth contents exceed that of the largest homoatomic polyanion, Bi113-. The numbers of bismuth atoms in the anions in 2 and 3 furthermore surmount that of the Bi-richest binary main-group anion, (Ge4Bi14)4-, and they equal (2) or surmount (3) that reported for the anion and the cations with the largest number of Bi atoms so far, [K2Zn20Bi16]6-, [(Bi8)Ru(Bi8)]6+, and [(Bi8)Au(Bi8)]5+. Compounds 1 and 2 were obtained from reaction mixtures that contain [La(C5Me4H)3], apparently assisting in the network formation without being included in the products. In the presence of [Ru(cod)(H2CC(Me)CH2)2], yet another reaction pathway leads to the formation of the anions in 3 (conformers 3a and 3b), which are Bi-Bi linked dimers of two "[{Ru(cod)}2Bi9]2-" subunits. They comprise the largest connected assemblies of Bi atoms within one molecule and may be viewed as snapshots on the way toward even larger polybismuthide units and, ultimately, new bismuth modifications. Mass spectrometry allowed insight into the processes in solution that precede the cluster formation. In-depth quantum chemical studies were applied to explain structural peculiarities, stabilities of the observed isomers, and bonding characteristics of these bismuth-rich nanoarchitectures. The work demonstrates the high potential of the method for the access of new Bi-based materials.
Collapse
Affiliation(s)
- Fuxing Pan
- Fachbereich Chemie and Wissenschaftliches Zentrum für Materialwissenschaften, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35043 Marburg, Germany
| | - Shangxin Wei
- Fachbereich Chemie and Wissenschaftliches Zentrum für Materialwissenschaften, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35043 Marburg, Germany
| | - Lukas Guggolz
- Fachbereich Chemie and Wissenschaftliches Zentrum für Materialwissenschaften, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35043 Marburg, Germany
| | - Armin R Eulenstein
- Fachbereich Chemie and Wissenschaftliches Zentrum für Materialwissenschaften, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35043 Marburg, Germany
| | - Frank Tambornino
- Fachbereich Chemie and Wissenschaftliches Zentrum für Materialwissenschaften, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35043 Marburg, Germany
| | - Stefanie Dehnen
- Fachbereich Chemie and Wissenschaftliches Zentrum für Materialwissenschaften, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35043 Marburg, Germany
| |
Collapse
|
17
|
Wallach C, Geitner FS, Karttunen AJ, Fässler TF. Boranyl-Functionalized [Ge 9 ] Clusters: Providing the Idea of Intramolecular Ge/B Frustrated Lewis Pairs. Angew Chem Int Ed Engl 2021; 60:2648-2653. [PMID: 33090635 PMCID: PMC7898805 DOI: 10.1002/anie.202012336] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/03/2020] [Indexed: 12/14/2022]
Abstract
The unique three-dimensional structure of spherical, homoatomic nine-atom germanium clusters opens various possibilities for the spatial arrangement of functional groups. Ligands comprising lone pairs have recently been introduced in the cluster sphere, and we now report the addition of a boranyl group to the cluster featuring a Ge-B exo-cluster bond. The reaction of the twofold-silylated cluster [Ge9 {Si(TMS)3 }2 ]2- (TMS=trimethylsilyl) with 2-chloro-1,3,2-diazaborolidines DABR -Cl leads to the first boranyl-functionalized [Ge9 ] clusters [Ge9 {Si(TMS)3 }2 DABR ]- (R=methyl (1 a), iso-propyl (2 a), ortho-tolyl (3 a)). The anions 2 a and 3 a were structurally characterized as [NHCDipp Cu]+ complexes (NHCDipp =1,3-di(2,6-diisopropylphenyl)imidazolylidine) through single crystal X-ray structure determination. Quantum-chemical calculations manifest the frustrated Lewis pair (FLP) character of the boranyl-functionalized cluster [Ge9 {Si(TMS)3 }2 BCy2 ]- (4 a).
Collapse
Affiliation(s)
- Christoph Wallach
- Department ChemieTechnische Universität MünchenLichtenbergstraße 485747Garching b. MünchenGermany
| | - Felix S. Geitner
- Department ChemieTechnische Universität MünchenLichtenbergstraße 485747Garching b. MünchenGermany
| | - Antti J. Karttunen
- Department of Chemistry and Materials ScienceAalto University00076AaltoFinland
| | - Thomas F. Fässler
- Department ChemieTechnische Universität MünchenLichtenbergstraße 485747Garching b. MünchenGermany
| |
Collapse
|
18
|
Wallach C, Geitner FS, Karttunen AJ, Fässler TF. Boranyl‐Functionalized [Ge
9
] Clusters: Providing the Idea of Intramolecular Ge/B Frustrated Lewis Pairs. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202012336] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Christoph Wallach
- Department Chemie Technische Universität München Lichtenbergstraße 4 85747 Garching b. München Germany
| | - Felix S. Geitner
- Department Chemie Technische Universität München Lichtenbergstraße 4 85747 Garching b. München Germany
| | - Antti J. Karttunen
- Department of Chemistry and Materials Science Aalto University 00076 Aalto Finland
| | - Thomas F. Fässler
- Department Chemie Technische Universität München Lichtenbergstraße 4 85747 Garching b. München Germany
| |
Collapse
|
19
|
Townrow OPE, Weller AS, Goicoechea JM. Cluster expansion and vertex substitution pathways in nickel germanide Zintl clusters. Chem Commun (Camb) 2021; 57:7132-7135. [PMID: 34180473 DOI: 10.1039/d1cc02912f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
We describe the reactivity of the hypersilyl-functionalized Zintl cluster salt K[Ge9(Hyp)3] towards the nickel reagents Ni(COD)2 and Ni(Cp)2, which gives rise to markedly different complexes. In the case of Ni(COD)2 (COD = 1,5-cyclooctadiene), a dianionic sandwich-like cluster [Ni{Ge9(Hyp)3}2]2- (1) was obtained, in line with a simple ligand substitution reaction of COD by [Ge9(Hyp)3]-. By contrast, when an analogous reaction with Ni(Cp)2 (Cp = cyclopentadienyl) was performed, vertex substitution of the [Ge9(Hyp)3]- precursor was observed, giving rise to the nine-vertex nido-cluster (Cp)Ni[Ge8(Hyp)3] (2). This is the first instance of vertex substitution at a hypersilyl-functionalized Zintl cluster cage. The electrochemical behavior of these compounds was explored and showed reversible redox behaviour for both clusters.
Collapse
Affiliation(s)
- Oliver P E Townrow
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford, OX1 3TA, UK.
| | | | - Jose M Goicoechea
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford, OX1 3TA, UK.
| |
Collapse
|
20
|
Paderina AV, Koshevoy IO, Grachova EV. Keep it tight: a crucial role of bridging phosphine ligands in the design and optical properties of multinuclear coinage metal complexes. Dalton Trans 2021; 50:6003-6033. [PMID: 33913991 DOI: 10.1039/d1dt00749a] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Copper subgroup metal ions in the +1 oxidation state are classical candidates for aggregation via non-covalent metal-metal interactions, which are supported by a number of bridging ligands. The bridging phosphines, soft donors with a relatively labile coordination to coinage metals, serve as convenient and essential components of the ligand environment that allow for efficient self-assembly of discrete polynuclear aggregates. Simultaneously, accessible and rich modification of the organic spacer of such P-donors has been used to generate many fascinating structures with attractive photoluminescent behavior. In this work we consider the development of di- and polynuclear complexes of M(i) (M = Cu, Ag, Au) and their photophysical properties, focusing on the effect of phosphine bridging ligands, their flexibility and denticity.
Collapse
Affiliation(s)
- Aleksandra V Paderina
- Institute of Chemistry, St Petersburg State University, Universitetskii pr. 26, 198504 St Petersburg, Russia.
| | - Igor O Koshevoy
- Department of Chemistry, University of Eastern Finland, 80101 Joensuu, Finland.
| | - Elena V Grachova
- Institute of Chemistry, St Petersburg State University, Universitetskii pr. 26, 198504 St Petersburg, Russia.
| |
Collapse
|
21
|
Geitner FS, Fässler TF. Cluster Expansion versus Complex Formation: Coinage Metal Coordination to Silylated [Ge 9] Cages. Inorg Chem 2020; 59:15218-15227. [PMID: 33017536 DOI: 10.1021/acs.inorgchem.0c02190] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Deltahedral nine-atom tetrel element Zintl clusters are promising building blocks for the straightforward solution-based synthesis of intermetalloid clusters through the reaction with organometallic compounds. Herein we report on novel coordination sites of metal-N-heterocyclic carbene (NHC) complexes to [Ge9] clusters and unexpected cluster isomerization. We present the synthesis of a series of coinage metal-NHC complexes of silylated [Ge9] clusters [NHCiPrCu(η4-Ge9{Si(TMS)3}3)] (1; TMS = trimethylsilyl) and [NHCRM(η4-Ge9{Si(TMS)3}2)]- (2a, M = Cu, R = iPr; 3a, M = Cu, R = Mes; 4a, M = Cu, R = Dipp; 5a, M = Ag, R = Dipp; 6a, M = Au, R = Dipp), in which the coinage metals coordinate to open rectangular cluster faces and act as additional cluster vertex atoms. Besides representing promising intermediates on the way to larger intermetalloid clusters, the formation of compound 1 shows that Cu-NHC fragments also coordinate to the open-square Ge faces of the tris-silylated [Ge9] clusters, contrasting the typical interactions with triangular faces of tris-silylated [Ge9] clusters. In compounds 3a and 4a bearing bulky NHC moieties, an unusual silyl group substitution pattern is observed in contrast to 2a, which corresponds to the silyl group arrangement of other metal complexes of bis-silylated [Ge9] clusters. In this context, potential silyl group migration mechanisms are discussed.
Collapse
Affiliation(s)
- Felix S Geitner
- Department Chemie, Technische Universität München, Lichtenbergstraße 4, 85747 Garching b. München, Germany
| | - Thomas F Fässler
- Department Chemie, Technische Universität München, Lichtenbergstraße 4, 85747 Garching b. München, Germany
| |
Collapse
|
22
|
Pan F, Guggolz L, Weigend F, Dehnen S. Atom Exchange Versus Reconstruction: (Ge x As 4-x ) x- (x=2, 3) as Building Blocks for the Supertetrahedral Zintl Cluster [Au 6 (Ge 3 As)(Ge 2 As 2 ) 3 ] 3. Angew Chem Int Ed Engl 2020; 59:16638-16643. [PMID: 32648322 PMCID: PMC7540319 DOI: 10.1002/anie.202008108] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Indexed: 12/13/2022]
Abstract
The Zintl anion (Ge2 As2 )2- represents an isostructural and isoelectronic binary counterpart of yellow arsenic, yet without being studied with the same intensity so far. Upon introducing [(PPh3 )AuMe] into the 1,2-diaminoethane (en) solution of (Ge2 As2 )2- , the heterometallic cluster anion [Au6 (Ge3 As)(Ge2 As2 )3 ]3- is obtained as its salt [K(crypt-222)]3 [Au6 (Ge3 As)(Ge2 As2 )3 ]⋅en⋅2 tol (1). The anion represents a rare example of a superpolyhedral Zintl cluster, and it comprises the largest number of Au atoms relative to main group (semi)metal atoms in such clusters. The overall supertetrahedral structure is based on a (non-bonding) octahedron of six Au atoms that is face-capped by four (Gex As4-x )x- (x=2, 3) units. The Au atoms bind to four main group atoms in a rectangular manner, and this way hold the four units together to form this unprecedented architecture. The presence of one (Ge3 As)3- unit besides three (Ge2 As2 )2- units as a consequence of an exchange reaction in solution was verified by detailed quantum chemical (DFT) calculations, which ruled out all other compositions besides [Au6 (Ge3 As)(Ge2 As2 )3 ]3- . Reactions of the heavier homologues (Tt2 Pn2 )2- (Tt=Sn, Pb; Pn=Sb, Bi) did not yield clusters corresponding to that in 1, but dimers of ternary nine-vertex clusters, {[AuTt5 Pn3 ]2 }4- (in 2-4; Tt/Pn=Sn/Sb, Sn/Bi, Pb/Sb), since the underlying pseudo-tetrahedral units comprising heavier atoms do not tend to undergo the said exchange reactions as readily as (Ge2 As2 )2- , according to the DFT calculations.
Collapse
Affiliation(s)
- Fuxing Pan
- Fachbereich Chemie and Wissenschaftliches Zentrum für Materialwissenschaften (WZMW)Philipps-Universität MarburgHans-Meerwein-Straße 435043MarburgGermany
| | - Lukas Guggolz
- Fachbereich Chemie and Wissenschaftliches Zentrum für Materialwissenschaften (WZMW)Philipps-Universität MarburgHans-Meerwein-Straße 435043MarburgGermany
| | - Florian Weigend
- Fachbereich Chemie and Wissenschaftliches Zentrum für Materialwissenschaften (WZMW)Philipps-Universität MarburgHans-Meerwein-Straße 435043MarburgGermany
| | - Stefanie Dehnen
- Fachbereich Chemie and Wissenschaftliches Zentrum für Materialwissenschaften (WZMW)Philipps-Universität MarburgHans-Meerwein-Straße 435043MarburgGermany
| |
Collapse
|
23
|
Wilson RJ, Weigend F, Dehnen S. The
Arachno
‐Zintl Ion (Sn
5
Sb
3
)
3−
and the Effects of Element Composition on the Structures of Isoelectronic Clusters: Another Facet of the Pseudo‐Element Concept. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202002863] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Robert J. Wilson
- Fachbereich Chemie and Wissenschaftliches Zentrum für, Materialwissenschaften Philipps-Universität Marburg Hans-Meerwein Straße 4 35043 Marburg Germany
| | - Florian Weigend
- Fachbereich Chemie and Wissenschaftliches Zentrum für, Materialwissenschaften Philipps-Universität Marburg Hans-Meerwein Straße 4 35043 Marburg Germany
- Institute of Nanotechnology Karlsruhe Institute of Technology Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
| | - Stefanie Dehnen
- Fachbereich Chemie and Wissenschaftliches Zentrum für, Materialwissenschaften Philipps-Universität Marburg Hans-Meerwein Straße 4 35043 Marburg Germany
| |
Collapse
|
24
|
Wilson RJ, Weigend F, Dehnen S. The Arachno-Zintl Ion (Sn 5 Sb 3 ) 3- and the Effects of Element Composition on the Structures of Isoelectronic Clusters: Another Facet of the Pseudo-Element Concept. Angew Chem Int Ed Engl 2020; 59:14251-14255. [PMID: 32449980 PMCID: PMC7496391 DOI: 10.1002/anie.202002863] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 05/09/2020] [Indexed: 12/03/2022]
Abstract
The pseudo-element concept, in its most general formulation, states that isoelectronic atoms form equal numbers of bonds. Hence, clusters such as Zintl ions usually retain their structure upon isoelectronic replacement of some or all atoms. Here, a deviation from this common observation is presented, namely the formation of (Sn5 Sb3 )3- (1), a rare example of an eight-vertex Zintl ion, and an unprecedented example of a Zintl ion synthesized by solution means that has an arachno-type structure according to the Wade-Mingos rules. Three structure-types of interest for (Sn5 Sb3 )3- were identified by DFT calculations: one that matched the X-ray diffraction data, and two that that were reminiscent of fragments of known clusters. A study on the isoelectronic series of clusters, (Snx Sb8-x )2-x (x=0-8), showed that the relative energies of these three isomers vary significantly with composition (independent of electron count) and that each is the global minimum at least once within the series.
Collapse
Affiliation(s)
- Robert J. Wilson
- Fachbereich Chemie and Wissenschaftliches Zentrum für, MaterialwissenschaftenPhilipps-Universität MarburgHans-Meerwein Straße 435043MarburgGermany
| | - Florian Weigend
- Fachbereich Chemie and Wissenschaftliches Zentrum für, MaterialwissenschaftenPhilipps-Universität MarburgHans-Meerwein Straße 435043MarburgGermany
- Institute of NanotechnologyKarlsruhe Institute of TechnologyHermann-von-Helmholtz-Platz 176344Eggenstein-LeopoldshafenGermany
| | - Stefanie Dehnen
- Fachbereich Chemie and Wissenschaftliches Zentrum für, MaterialwissenschaftenPhilipps-Universität MarburgHans-Meerwein Straße 435043MarburgGermany
| |
Collapse
|
25
|
Pan F, Guggolz L, Weigend F, Dehnen S. Atom Exchange Versus Reconstruction: (Ge
x
As
4−
x
)
x
−
(
x=
2, 3) as Building Blocks for the Supertetrahedral Zintl Cluster [Au
6
(Ge
3
As)(Ge
2
As
2
)
3
]
3−. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202008108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Fuxing Pan
- Fachbereich Chemie and Wissenschaftliches Zentrum für Materialwissenschaften (WZMW)Philipps-Universität Marburg Hans-Meerwein-Straße 4 35043 Marburg Germany
| | - Lukas Guggolz
- Fachbereich Chemie and Wissenschaftliches Zentrum für Materialwissenschaften (WZMW)Philipps-Universität Marburg Hans-Meerwein-Straße 4 35043 Marburg Germany
| | - Florian Weigend
- Fachbereich Chemie and Wissenschaftliches Zentrum für Materialwissenschaften (WZMW)Philipps-Universität Marburg Hans-Meerwein-Straße 4 35043 Marburg Germany
| | - Stefanie Dehnen
- Fachbereich Chemie and Wissenschaftliches Zentrum für Materialwissenschaften (WZMW)Philipps-Universität Marburg Hans-Meerwein-Straße 4 35043 Marburg Germany
| |
Collapse
|
26
|
Peters B, Lichtenberger N, Dornsiepen E, Dehnen S. Current advances in tin cluster chemistry. Chem Sci 2020; 11:16-26. [PMID: 32110355 PMCID: PMC7012043 DOI: 10.1039/c9sc04363b] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 10/19/2019] [Indexed: 11/21/2022] Open
Abstract
This perspective summarizes highlights and most recent advances in tin cluster chemistry, thereby addressing the whole diversity of (mostly) discrete units containing tin atoms. Although being a (semi-)metallic element, tin is in the position to occur both in formally positive or negative oxidation states in these molecules, which causes a broad range of fundamentally different properties of the corresponding compounds. Tin(iv) compounds are not as oxophilic and not as prone to hydrolysis as related Si or Ge compounds, hence allowing for easier handling and potential application. Nevertheless, their reactivity is high due to an overall reduction of bond energies, which makes tin clusters interesting candidates for functional compounds. Beside aspects that point towards bioactivity or even medical applications, materials composed of naked or ligand-protected tin clusters, with or without bridging ligands, show interesting optical, and ion/molecule-trapping properties.
Collapse
Affiliation(s)
- Bertram Peters
- Fachbereich Chemie , Wissenschaftliches Zentrum für Materialwissenschaften (WZMW) , Philipps-Universität Marburg , Hans-Meerwein-Straße 4 , D-35043 Marburg , Germany .
| | - Niels Lichtenberger
- Fachbereich Chemie , Wissenschaftliches Zentrum für Materialwissenschaften (WZMW) , Philipps-Universität Marburg , Hans-Meerwein-Straße 4 , D-35043 Marburg , Germany .
| | - Eike Dornsiepen
- Fachbereich Chemie , Wissenschaftliches Zentrum für Materialwissenschaften (WZMW) , Philipps-Universität Marburg , Hans-Meerwein-Straße 4 , D-35043 Marburg , Germany .
| | - Stefanie Dehnen
- Fachbereich Chemie , Wissenschaftliches Zentrum für Materialwissenschaften (WZMW) , Philipps-Universität Marburg , Hans-Meerwein-Straße 4 , D-35043 Marburg , Germany .
| |
Collapse
|
27
|
Wallach C, Mayer K, Henneberger T, Klein W, Fässler TF. Intermediates and products of the reaction of Zn(ii) organyls with tetrel element Zintl ions: cluster extension versus complexation. Dalton Trans 2020; 49:6191-6198. [DOI: 10.1039/d0dt01096k] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Upon reactions of Zintl ions with Zn(ii) organyls various Zn-Zintl clusters as well as Zn-amide intermediates were isolated.
Collapse
Affiliation(s)
- C. Wallach
- Department Chemie
- Technische Universität München
- 85747 Garching b. München
- Germany
| | - K. Mayer
- Department Chemie
- Technische Universität München
- 85747 Garching b. München
- Germany
| | - T. Henneberger
- Department Chemie
- Technische Universität München
- 85747 Garching b. München
- Germany
| | - W. Klein
- Department Chemie
- Technische Universität München
- 85747 Garching b. München
- Germany
| | - T. F. Fässler
- Department Chemie
- Technische Universität München
- 85747 Garching b. München
- Germany
| |
Collapse
|
28
|
Geitner FS, Klein W, Storcheva O, Tilley TD, Fässler TF. Early-Transition-Metal Complexes of Functionalized Nonagermanide Clusters: Synthesis and Characterization of [Cp2(MeCN)Ti(η1-Ge9{Si(TMS)3}3)] and K3[Cp2Ti(η1-Ge9{Si(TMS)3}2)2]. Inorg Chem 2019; 58:13293-13298. [DOI: 10.1021/acs.inorgchem.9b02158] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Felix S. Geitner
- Department Chemie, Technische Universität München, Lichtenbergstraße 4, 85747 Garching bei München, Germany
| | - Wilhelm Klein
- Department Chemie, Technische Universität München, Lichtenbergstraße 4, 85747 Garching bei München, Germany
| | - Oksana Storcheva
- Department Chemie, Technische Universität München, Lichtenbergstraße 4, 85747 Garching bei München, Germany
| | - T. Don Tilley
- Department of Chemistry, University of California, Berkeley, California 94720-1460, United States
| | - Thomas F. Fässler
- Department Chemie, Technische Universität München, Lichtenbergstraße 4, 85747 Garching bei München, Germany
| |
Collapse
|
29
|
Wilson RJ, Lichtenberger N, Weinert B, Dehnen S. Intermetalloid and Heterometallic Clusters Combining p-Block (Semi)Metals with d- or f-Block Metals. Chem Rev 2019; 119:8506-8554. [DOI: 10.1021/acs.chemrev.8b00658] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Robert J. Wilson
- Fachbereich Chemie und Wissenschaftliches Zentrum für Materialwissenschaften, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35043 Marburg, Germany
| | - Niels Lichtenberger
- Fachbereich Chemie und Wissenschaftliches Zentrum für Materialwissenschaften, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35043 Marburg, Germany
| | - Bastian Weinert
- Fachbereich Chemie und Wissenschaftliches Zentrum für Materialwissenschaften, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35043 Marburg, Germany
| | - Stefanie Dehnen
- Fachbereich Chemie und Wissenschaftliches Zentrum für Materialwissenschaften, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35043 Marburg, Germany
| |
Collapse
|
30
|
Liu C, Jin X, Li LJ, Xu J, McGrady JE, Sun ZM. Synthesis and structure of a family of rhodium polystannide clusters [Rh@Sn 10] 3-, [Rh@Sn 12] 3-, [Rh 2@Sn 17] 6- and the first triply-fused stannide, [Rh 3@Sn 24] 5. Chem Sci 2019; 10:4394-4401. [PMID: 31057766 PMCID: PMC6472436 DOI: 10.1039/c8sc03948h] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 03/10/2019] [Indexed: 12/25/2022] Open
Abstract
Through relatively subtle changes in reaction conditions, we have been able to isolate four distinct Rh/Sn cluster compounds, [Rh@Sn10]3-, [Rh@Sn12]3-, [Rh2@Sn17]6- and [Rh3@Sn24]5-, from the reaction of K4Sn9 with [(COE)2Rh(μ-Cl)]2(COE = cyclooctene). The last of these has a hitherto unknown molecular topology, an edge-fused polyhedron containing three Rh@Sn10 subunits, and represents the largest endohedral Group 14 Zintl cluster yet to have been isolated from solution. DFT has been used to place these new species in the context of known cluster chemistry. ESI-MS experiments on the reaction mixtures reveal the ubiquitous presence of {RhSn8} fragments that may play a role in cluster growth.
Collapse
Affiliation(s)
- Chao Liu
- School of Materials Science and Engineering & National Institute for Advanced Materials , Tianjin Key Lab for Rare Earth Materials and Applications , Center for Rare Earth and Inorganic Functional Materials , State Key Laboratory of Elemento-Organic Chemistry , Nankai University , Tianjin 300350 , China . ; http://zhongmingsun.weebly.com
- State Key Laboratory of Rare Earth Resource Utilization , Changchun Institute of Applied Chemistry , Chinese Academy of Sciences , 5625 Renmin Street , Changchun , Jilin 130022 , China .
| | - Xiao Jin
- Department of Chemistry , University of Oxford , South Parks Road , Oxford OX1 3QR , UK .
| | - Lei-Jiao Li
- School of Chemistry & Environmental Engineering , Changchun University of Science & Technology , Changchun 130022 , China
| | - Jun Xu
- School of Materials Science and Engineering & National Institute for Advanced Materials , Tianjin Key Lab for Rare Earth Materials and Applications , Center for Rare Earth and Inorganic Functional Materials , State Key Laboratory of Elemento-Organic Chemistry , Nankai University , Tianjin 300350 , China . ; http://zhongmingsun.weebly.com
| | - John E McGrady
- Department of Chemistry , University of Oxford , South Parks Road , Oxford OX1 3QR , UK .
| | - Zhong-Ming Sun
- School of Materials Science and Engineering & National Institute for Advanced Materials , Tianjin Key Lab for Rare Earth Materials and Applications , Center for Rare Earth and Inorganic Functional Materials , State Key Laboratory of Elemento-Organic Chemistry , Nankai University , Tianjin 300350 , China . ; http://zhongmingsun.weebly.com
- State Key Laboratory of Rare Earth Resource Utilization , Changchun Institute of Applied Chemistry , Chinese Academy of Sciences , 5625 Renmin Street , Changchun , Jilin 130022 , China .
| |
Collapse
|
31
|
|
32
|
Wilson RJ, Weinert B, Dehnen S. Recent developments in Zintl cluster chemistry. Dalton Trans 2018; 47:14861-14869. [PMID: 30239543 DOI: 10.1039/c8dt03174f] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Zintl anions have been known for more than a century and were studied systematically by Eduard Zintl in the 1930s. Since then, they have been investigated for their interesting structures, bonding, and physical properties - in solid Zintl phases, in solvate salts, and in solution. While their popularity remained limited for several decades, Zintl ion chemistry has recently experienced a renaissance as a result of breakthroughs regarding their modifications into multinary anions that include transition metal atoms, their organic derivatization, and their oxidative linkage. A plethora of reports from the past two decades - demonstrating the ever growing variety of Zintl ion chemistry - have been since summarized in several review articles. Herein, we intend to present the most recent developments, which also shed light on Zintl anions and clusters as useful precursors for materials development, as illustrated by one recent example.
Collapse
Affiliation(s)
- Robert J Wilson
- Fachbereich Chemie and Wissenschaftliches Zentrum für Materialwissenschaften, Philipps-Universität Marburg, Hans-Meerwein-Str. 4, 35043 Marburg, Germany.
| | | | | |
Collapse
|
33
|
Mayer K, Weßing J, Fässler TF, Fischer RA. Intermetalloid Clusters: Molecules and Solids in a Dialogue. Angew Chem Int Ed Engl 2018; 57:14372-14393. [DOI: 10.1002/anie.201805897] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Indexed: 12/26/2022]
Affiliation(s)
- Kerstin Mayer
- Chair of Inorganic Chemistry with Focus on Novel Materials; Department of Chemistry; Technical University of Munich; Lichtenbergstr. 4 85747 Garching Germany
| | - Jana Weßing
- Chair of Inorganic and Metal-Organic Chemistry; Department of Chemistry; Technical University of Munich; Lichtenbergstr. 4 85748 Garching Germany
| | - Thomas F. Fässler
- Chair of Inorganic Chemistry with Focus on Novel Materials; Department of Chemistry; Technical University of Munich; Lichtenbergstr. 4 85747 Garching Germany
| | - Roland A. Fischer
- Chair of Inorganic and Metal-Organic Chemistry; Department of Chemistry; Technical University of Munich; Lichtenbergstr. 4 85748 Garching Germany
| |
Collapse
|
34
|
Mayer K, Weßing J, Fässler TF, Fischer RA. Intermetalloide Cluster: Moleküle und Festkörper im Dialog. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201805897] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Kerstin Mayer
- Lehrstuhl für Anorganische Chemie mit Schwerpunkt Neue Materialien; Department Chemie; Technische Universität München; Lichtenbergstr. 4 85747 Garching Deutschland
| | - Jana Weßing
- Lehrstuhl für Anorganische und Metallorganische Chemie; Department Chemie; Technische Universität München; Lichtenbergstr. 4 85748 Garching Deutschland
| | - Thomas F. Fässler
- Lehrstuhl für Anorganische Chemie mit Schwerpunkt Neue Materialien; Department Chemie; Technische Universität München; Lichtenbergstr. 4 85747 Garching Deutschland
| | - Roland A. Fischer
- Lehrstuhl für Anorganische und Metallorganische Chemie; Department Chemie; Technische Universität München; Lichtenbergstr. 4 85748 Garching Deutschland
| |
Collapse
|