1
|
Szymaszek P, Tyszka-Czochara M, Ortyl J. Iridium(III) complexes as novel theranostic small molecules for medical diagnostics, precise imaging at a single cell level and targeted anticancer therapy. Eur J Med Chem 2024; 276:116648. [PMID: 38968786 DOI: 10.1016/j.ejmech.2024.116648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/01/2024] [Accepted: 07/02/2024] [Indexed: 07/07/2024]
Abstract
Medical applications of iridium (III) complexes include their use as state-of-the-art theranostic agents - molecules that combine therapeutic and diagnostic functions into a single entity. These complexes offer a promising avenue in medical diagnostics, precision imaging at single-cell resolution and targeted anticancer therapy due to their unique properties. In this review we report a short summary of their application in medical diagnostics, imaging at single-cell level and targeted anticancer therapy. The exceptional photophysical properties of Iridium (III) complexes, including their brightness and photostability, make them excellent candidates for bioimaging. They can be used to image cellular processes and the microenvironment within single cells with unprecedented clarity, aiding in the understanding of disease mechanisms at the molecular level. Moreover the iridium (III) complexes can be designed to selectively target cancer cells,. Upon targeting, these complexes can act as photosensitizers for photodynamic therapy (PDT), generating reactive oxygen species (ROS) upon light activation to induce cell death. The integration of diagnostic and therapeutic capabilities in Iridium (III) complexes offers the potential for a holistic approach to cancer treatment, enabling not only the precise eradication of cancer cells but also the real-time monitoring of treatment efficacy and disease progression. This aligns with the goals of personalized medicine, offering hope for more effective and less invasive cancer treatment strategies.
Collapse
Affiliation(s)
- Patryk Szymaszek
- Department of Biotechnology and Physical Chemistry, Faculty of Chemical Engineering and Technology, Cracow University of Technology, Warszawska 24, 31-155, Kraków, Poland
| | | | - Joanna Ortyl
- Department of Biotechnology and Physical Chemistry, Faculty of Chemical Engineering and Technology, Cracow University of Technology, Warszawska 24, 31-155, Kraków, Poland; Photo HiTech Ltd., Bobrzyńskiego 14, 30-348, Kraków, Poland; Photo4Chem ltd., Juliusza Lea 114/416A-B, 31-133, Kraków, Poland.
| |
Collapse
|
2
|
Kasparkova J, Novohradsky V, Ruiz J, Brabec V. Photoactivatable, mitochondria targeting dppz iridium(III) complex selectively interacts and damages mitochondrial DNA in cancer cells. Chem Biol Interact 2024; 392:110921. [PMID: 38382705 DOI: 10.1016/j.cbi.2024.110921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 02/05/2024] [Accepted: 02/18/2024] [Indexed: 02/23/2024]
Abstract
Cyclometalated Ir(III) complex [Ir(L)2(dppz)]PF6 (where L = 1-methyl-2-(thiophen-2-yl)-1H-benzo[d]imidazole and dppz = dipyrido [3,2-a:2',3'-c]phenazine) (Ir1) is potent anticancer agent whose potency can be significantly increased by irradiation with blue light. Structural features of the cyclometalated Ir(III) complex Ir1 investigated in this work, particularly the presence of dppz ligand possessing an extended planar area, suggest that this complex could interact with DNA. Here, we have shown that Ir1 accumulates predominantly in mitochondria of cancer cells where effectively and selectively binds mitochondrial (mt)DNA. Additionally, the results demonstrated that Ir1 effectively suppresses transcription of mitochondria-encoded genes, especially after irradiation, which may further affect mitochondrial (and thus also cellular) functions. The observation that Ir1 binds selectively to mtDNA implies that the mechanism of its biological activity in cancer cells may also be connected with its interaction and damage to mtDNA. Further investigations revealed that Ir1 tightly binds DNA in a cell-free environment, with sequence preference for GC over AT base pairs. Although the dppz ligand itself or as a ligand in structurally similar DNA-intercalating Ru polypyridine complexes based on dppz ligand intercalates into DNA, the DNA binding mode of Ir1 comprises surprisingly a groove binding rather than an intercalation. Also interestingly, after irradiation with visible (blue) light, Ir1 was capable of cleaving DNA, likely due to the production of superoxide anion radical. The results of this study show that mtDNA damage by Ir1 plays a significant role in its mechanism of antitumor efficacy. In addition, the results of this work are consistent with the hypothesis and support the view that targeting the mitochondrial genome is an effective strategy for anticancer (photo)therapy and that the class of photoactivatable dipyridophenazine Ir(III) compounds may represent prospective substances suitable for further testing.
Collapse
Affiliation(s)
- Jana Kasparkova
- Department of Biophysics, Faculty of Science, Palacky University, CZ-783 71, Olomouc, Czech Republic
| | - Vojtech Novohradsky
- Czech Academy of Sciences, Institute of Biophysics, CZ-61200, Brno, Czech Republic
| | - José Ruiz
- Departamento de Química Inorgánica, Universidad de Murcia, And Murcia BioHealth Research Institute (IMIB-Arrixaca), E-30100, Murcia, Spain
| | - Viktor Brabec
- Department of Biophysics, Faculty of Science, Palacky University, CZ-783 71, Olomouc, Czech Republic.
| |
Collapse
|
3
|
Gonzalo-Navarro C, Zafon E, Organero JA, Jalón FA, Lima JC, Espino G, Rodríguez AM, Santos L, Moro AJ, Barrabés S, Castro J, Camacho-Aguayo J, Massaguer A, Manzano BR, Durá G. Ir(III) Half-Sandwich Photosensitizers with a π-Expansive Ligand for Efficient Anticancer Photodynamic Therapy. J Med Chem 2024; 67:1783-1811. [PMID: 38291666 PMCID: PMC10859961 DOI: 10.1021/acs.jmedchem.3c01276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 12/12/2023] [Accepted: 01/11/2024] [Indexed: 02/01/2024]
Abstract
One approach to reduce the side effects of chemotherapy in cancer treatment is photodynamic therapy (PDT), which allows spatiotemporal control of the cytotoxicity. We have used the strategy of coordinating π-expansive ligands to increase the excited state lifetimes of Ir(III) half-sandwich complexes in order to facilitate the generation of 1O2. We have obtained derivatives of formulas [Cp*Ir(C∧N)Cl] and [Cp*Ir(C∧N)L]BF4 with different degrees of π-expansion in the C∧N ligands. Complexes with the more π-expansive ligand are very effective photosensitizers with phototoxic indexes PI > 2000. Furthermore, PI values of 63 were achieved with red light. Time-dependent density functional theory (TD-DFT) calculations nicely explain the effect of the π-expansion. The complexes produce reactive oxygen species (ROS) at the cellular level, causing mitochondrial membrane depolarization, cleavage of DNA, nicotinamide adenine dinucleotide (NADH) oxidation, as well as lysosomal damage. Consequently, cell death by apoptosis and secondary necrosis is activated. Thus, we describe the first class of half-sandwich iridium cyclometalated complexes active in PDT.
Collapse
Affiliation(s)
- Carlos Gonzalo-Navarro
- Departamento
de Química Inorgánica, Orgánica y Bioquímica-
IRICA, Facultad de Ciencias y Tecnologías Químicas, Universidad de Castilla-La Mancha, Avda. C. J. Cela, 10, 13071 Ciudad Real, Spain
| | - Elisenda Zafon
- Departament
de Biologia, Facultat de Ciències, Universitat de Girona, Maria Aurèlia Capmany 40, 17003 Girona, Spain
| | - Juan Angel Organero
- Departamento
de Química Física, Facultad de Ciencias Ambientales
y Bioquímicas and INAMOL, Universidad
de Castilla-La Mancha, 45071 Toledo, Spain
| | - Félix A. Jalón
- Departamento
de Química Inorgánica, Orgánica y Bioquímica-
IRICA, Facultad de Ciencias y Tecnologías Químicas, Universidad de Castilla-La Mancha, Avda. C. J. Cela, 10, 13071 Ciudad Real, Spain
| | - Joao Carlos Lima
- LAQV-REQUIMTE,
Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Gustavo Espino
- Departamento
de Química, Facultad de Ciencias, Universidad de Burgos, Pza. Misael Bañuelos, s/n, 09001 Burgos, Spain
| | - Ana María Rodríguez
- Departamento
de Química Inorgánica, Orgánica y Bioquímica-
IRICA, Escuela Técnica Superior de Ingenieros Industriales, Universidad de Castilla-La Mancha, Avda. C. J. Cela, 3, 13071 Ciudad Real, Spain
| | - Lucía Santos
- Departamento
de Química Física, Facultad de Ciencias y Tecnologías
Químicas, Universidad de Castilla-La
Mancha, Avda. C. J. Cela,
s/n, 13071 Ciudad
Real, Spain
| | - Artur J. Moro
- LAQV-REQUIMTE,
Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Sílvia Barrabés
- Departament
de Biologia, Facultat de Ciències, Universitat de Girona, Maria Aurèlia Capmany 40, 17003 Girona, Spain
| | - Jessica Castro
- Departament
de Biologia, Facultat de Ciències, Universitat de Girona, Maria Aurèlia Capmany 40, 17003 Girona, Spain
| | - Javier Camacho-Aguayo
- Analytical
Chemistry Department, Analytic Biosensors Group, Instituto de Nanociencia
y Nanomateriales de Aragon, Faculty of Sciences, University of Zaragoza, 50009 Zaragoza, Spain
| | - Anna Massaguer
- Departament
de Biologia, Facultat de Ciències, Universitat de Girona, Maria Aurèlia Capmany 40, 17003 Girona, Spain
| | - Blanca R. Manzano
- Departamento
de Química Inorgánica, Orgánica y Bioquímica-
IRICA, Facultad de Ciencias y Tecnologías Químicas, Universidad de Castilla-La Mancha, Avda. C. J. Cela, 10, 13071 Ciudad Real, Spain
| | - Gema Durá
- Departamento
de Química Inorgánica, Orgánica y Bioquímica-
IRICA, Facultad de Ciencias y Tecnologías Químicas, Universidad de Castilla-La Mancha, Avda. C. J. Cela, 10, 13071 Ciudad Real, Spain
| |
Collapse
|
4
|
Kasparkova J, Hernández-García A, Kostrhunova H, Goicuría M, Novohradsky V, Bautista D, Markova L, Santana MD, Brabec V, Ruiz J. Novel 2-(5-Arylthiophen-2-yl)-benzoazole Cyclometalated Iridium(III) dppz Complexes Exhibit Selective Phototoxicity in Cancer Cells by Lysosomal Damage and Oncosis. J Med Chem 2024; 67:691-708. [PMID: 38141031 PMCID: PMC10788912 DOI: 10.1021/acs.jmedchem.3c01978] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/06/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023]
Abstract
A second-generation series of biscyclometalated 2-(5-aryl-thienyl)-benzimidazole and -benzothiazole Ir(III) dppz complexes [Ir(C^N)2(dppz)]+, Ir1-Ir4, were rationally designed and synthesized, where the aryl group attached to the thienyl ring was p-CF3C6H4 or p-Me2NC6H4. These new Ir(III) complexes were assessed as photosensitizers to explore the structure-activity correlations for their potential use in biocompatible anticancer photodynamic therapy. When irradiated with blue light, the complexes exhibited high selective potency across several cancer cell lines predisposed to photodynamic therapy; the benzothiazole derivatives (Ir1 and Ir2) were the best performers, Ir2 being also activatable with green or red light. Notably, when irradiated, the complexes induced leakage of lysosomal content into the cytoplasm of HeLa cancer cells and induced oncosis-like cell death. The capability of the new Ir complexes to photoinduce cell death in 3D HeLa spheroids has also been demonstrated. The investigated Ir complexes can also catalytically photo-oxidate NADH and photogenerate 1O2 and/or •OH in cell-free media.
Collapse
Affiliation(s)
- Jana Kasparkova
- Czech
Academy of Sciences, Institute of Biophysics, Kralovopolska 135, Brno CZ-61200, Czech Republic
| | - Alba Hernández-García
- Departamento
de Química Inorgánica, Universidad de Murcia, and Biomedical
Research Institute of Murcia (IMIB-Arrixaca), Murcia E-30100, Spain
| | - Hana Kostrhunova
- Czech
Academy of Sciences, Institute of Biophysics, Kralovopolska 135, Brno CZ-61200, Czech Republic
| | - Marta Goicuría
- Departamento
de Química Inorgánica, Universidad de Murcia, and Biomedical
Research Institute of Murcia (IMIB-Arrixaca), Murcia E-30100, Spain
| | - Vojtěch Novohradsky
- Czech
Academy of Sciences, Institute of Biophysics, Kralovopolska 135, Brno CZ-61200, Czech Republic
| | | | - Lenka Markova
- Czech
Academy of Sciences, Institute of Biophysics, Kralovopolska 135, Brno CZ-61200, Czech Republic
| | - María Dolores Santana
- Departamento
de Química Inorgánica, Universidad de Murcia, and Biomedical
Research Institute of Murcia (IMIB-Arrixaca), Murcia E-30100, Spain
| | - Viktor Brabec
- Czech
Academy of Sciences, Institute of Biophysics, Kralovopolska 135, Brno CZ-61200, Czech Republic
| | - José Ruiz
- Departamento
de Química Inorgánica, Universidad de Murcia, and Biomedical
Research Institute of Murcia (IMIB-Arrixaca), Murcia E-30100, Spain
| |
Collapse
|
5
|
Gómez de Segura D, Giménez N, Rincón-Montón D, Moreno MT, Pichel JG, López IP, Lalinde E. A new family of luminescent [Pt(pbt) 2(C 6F 5)L] n+ ( n = 1, 0) complexes: synthesis, optical and cytotoxic studies. Dalton Trans 2023; 52:12390-12403. [PMID: 37594064 DOI: 10.1039/d3dt01759a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Abstract
Given the widely recognized bioactivity of 2-arylbenzothiazoles against tumor cells, we have designed a new family of luminescent heteroleptic pentafluorophenyl-bis(2-phenylbenzothiazolyl) PtIV derivatives, fac-[Pt(pbt)2(C6F5)L]n+ (n = 1, 0) [L = 4-Mepy 1, 4-pyridylbenzothiazole (pybt) 2, 4,4'-bipyridine (4,4'-bpy) 3, 1,2-bis-(4-pyridyl)ethylene (bpe) 4 (E/Z ratio: 90/10), 1,4-bis-(pyridyl)butadiyne (bpyb) 5, trifluoroacetate (-OCOCF3) 6] and a dinuclear complex [{Pt(pbt)2(C6F5)}2(μ-bpyb)](PF6)27, in which the trans ligand to the metalated C-(pbt) was varied to modify the optical properties and lipophilicity. Their photophysical properties were systematically studied through experimental and theoretical investigations, which were strongly dependent on the identity of the N-bonded ligand. Thus, complexes 1, 3 and 6 display, in different media, emission from the triplet excited states of primarily intraligand 3ILCT nature localized on the pbt ligand, while the emissions of 2, 5 and 7 were ascribed to a mixture of close 3IL'(N donor)/3ILCT(pbt) excited states, as supported by lifetime measurements and theoretical calculations. Irradiation of the initial E/Z mixture of 4 (15 min) led to a steady state composed of roughly 1 : 1.15 (E : Z) and this complex was not emissive at room temperature due to an enhanced intramolecular E to Z isomerization process of the 1,2-bis-(4-pyridyl)ethylene ligand. Complexes 1-3 and 6 showed excellent quantum yields for the generation of singlet oxygen in aerated MeCN solution with the values of ϕ(1O2) ranging from 0.66 to 0.86 using phenalenone as a reference. Cationic complexes 1-3 exhibited remarkable efficacy in the nanomolar range against A549 (lung carcinoma) and HeLa (cervix carcinoma) cell lines with notable selectivity relative to the non-tumorigenic BEAS-2B (bronchial epithelium) cells. In the A549 cell line, the neutral complex 6 showed low cytotoxicity (IC50: 29.40 μM) and high photocytotoxicity (IC50: 5.75) when cells were irradiated with blue light for 15 min. These complexes do not show evidence of DNA interaction.
Collapse
Affiliation(s)
- David Gómez de Segura
- Departamento de Química-Centro de Síntesis Química de La Rioja (CISQ), Universidad de La Rioja, 26006, Logroño, Spain.
| | - Nora Giménez
- Departamento de Química-Centro de Síntesis Química de La Rioja (CISQ), Universidad de La Rioja, 26006, Logroño, Spain.
| | - David Rincón-Montón
- Departamento de Química-Centro de Síntesis Química de La Rioja (CISQ), Universidad de La Rioja, 26006, Logroño, Spain.
| | - M Teresa Moreno
- Departamento de Química-Centro de Síntesis Química de La Rioja (CISQ), Universidad de La Rioja, 26006, Logroño, Spain.
| | - José G Pichel
- Lung Cancer and Respiratory Diseases Unit (CIBIR), Fundación Rioja Salud, 26006, Logroño, Spain.
- Spanish Biomedical Research Networking Centre in Respiratory Diseases (CIBERES), ISCIII, E-28029, Madrid, Spain
| | - Icíar P López
- Lung Cancer and Respiratory Diseases Unit (CIBIR), Fundación Rioja Salud, 26006, Logroño, Spain.
| | - Elena Lalinde
- Departamento de Química-Centro de Síntesis Química de La Rioja (CISQ), Universidad de La Rioja, 26006, Logroño, Spain.
| |
Collapse
|
6
|
Ćwiklińska-Jurkowska M, Wiese-Szadkowska M, Janciauskiene S, Paprocka R. Disparities in Cisplatin-Induced Cytotoxicity-A Meta-Analysis of Selected Cancer Cell Lines. Molecules 2023; 28:5761. [PMID: 37570731 PMCID: PMC10421281 DOI: 10.3390/molecules28155761] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/22/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023] Open
Abstract
Cisplatin is a classic anticancer drug widely used as a reference drug to test new metal complex drug candidates. We found an unexpected diversity in cisplatin-related cytotoxicity values, expressed as IC50 (the half-maximal inhibitory concentration) in tumour cell lines, such as MCF-7, HepG2 and HeLa. We reviewed the data published from 2018 to 2022. A total of 41 articles based on 56 in vitro experiments met our eligibility criteria. Using a meta-analysis based on a random effect model, we evaluated the cytotoxicity of cisplatin (IC50) after 48- or 72-h cell exposure. We found large differences between studies using a particular cell line. According to the random effect model, the 95% confidence intervals for IC50 were extremely wide. The heterogeneity of cisplatin IC50, as measured by the I2 index for all cancer cell lines, was over 99.7% at culture times of 48 or 72 h. Therefore, the variability between studies is due to experimental heterogeneity rather than chance. Despite the higher IC50 values after 48 h than after 72 h, the heterogeneity between the two culture periods did not differ significantly. This indicates that the duration of cultivation is not the main cause of heterogeneity. Therefore, the available data is diverse and not useful as a reference. We discuss possible reasons for the IC50 heterogeneity and advise researchers to conduct preliminary testing before starting experiments and not to solely rely on the published data. We hope that this systematic meta-analysis will provide valuable information for researchers searching for new cancer drugs using cisplatin as a reference drug.
Collapse
Affiliation(s)
- Małgorzata Ćwiklińska-Jurkowska
- Department of Biostatistics and Biomedical Systems Theory, Faculty of Pharmacy, Ludwik Rydygier Collegium Medicum, Nicolaus Copernicus University in Toruń, Jagiellońska Str. 15, 87-067 Bydgoszcz, Poland;
| | - Małgorzata Wiese-Szadkowska
- Department of Immunology, Faculty of Pharmacy, Ludwik Rydygier Collegium Medicum, Nicolaus Copernicus University in Toruń, M. Curie-Sklodowska Str. 9, 85-094 Bydgoszcz, Poland
| | - Sabina Janciauskiene
- Department of Respiratory Medicine, Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), Hannover Medical School, 30625 Hannover, Germany;
| | - Renata Paprocka
- Department of Organic Chemistry, Faculty of Pharmacy, Ludwik Rydygier Collegium Medicum, Nicolaus Copernicus University in Toruń, Jurasza Str. 2, 85-089 Bydgoszcz, Poland
| |
Collapse
|
7
|
Borah ST, Das B, Biswas P, Mallick AI, Gupta P. Aqua-friendly organometallic Ir-Pt complexes: pH-responsive AIPE-guided imaging of bacterial cells. Dalton Trans 2023; 52:2282-2292. [PMID: 36723088 DOI: 10.1039/d2dt03390a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
In this work, the aggregation-induced photoluminescence emission (AIPE) of three water-soluble heterobimetallic Ir-Pt complexes was reported with insight into their photophysical and electrochemical properties and imaging of bacterial cells. An alkyne appended Schiff's base L, bridges bis-cyclometalated iridium(III) and platinum(II) terpyridine centre. The Schiff's base (N-N fragment) serves as the ancillary ligand to the iridium(III) centre, while the alkynyl end is coordinated to platinum(II). The pH and ionic strength influence the aggregation kinetics of the alkynylplatinum(II) fragment, leading to metal-metal and π-π interactions with the emergence of a triplet metal-metal-to-ligand charge transfer (3MMLCT) emission. The excellent reversibility and photostability of aggregation-induced emission (AIE) of these aqua-friendly complexes were tested for their ability to sense and selectively image E. coli cells at various pH values.
Collapse
Affiliation(s)
- Sakira Tabassum Borah
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India.
| | - Bishnu Das
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India.
| | - Prakash Biswas
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India
| | - Amirul I Mallick
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India
| | - Parna Gupta
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India.
| |
Collapse
|
8
|
Second and third-row transition metal compounds containing benzimidazole ligands: An overview of their anticancer and antitumour activity. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214790] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
9
|
Patra SA, Sahu G, Pattanayak PD, Sasamori T, Dinda R. Mitochondria-Targeted Luminescent Organotin(IV) Complexes: Synthesis, Photophysical Characterization, and Live Cell Imaging. Inorg Chem 2022; 61:16914-16928. [PMID: 36239464 DOI: 10.1021/acs.inorgchem.2c02959] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Five fluorescent ONO donor-based organotin(IV) complexes, [SnIV(L1-5)Ph2] (1-5), were synthesized by the one-pot reaction method and fully characterized spectroscopically including the single-crystal X-ray diffraction studies of 2-4. Detailed photophysical characterization of all compounds was performed. All the compounds exhibited high luminescent properties with a quantum yield of 17-53%. Additionally, the results of cellular permeability analysis suggest that they are lipophilic and easily absorbed by cells. Confocal microscopy was used to examine the live cell imaging capability of 1-5, and the results show that the compounds are mostly internalized in mitochondria and exhibit negligible cytotoxicity at imaging concentration. Also, 1-5 exhibited high photostability as compared to the commercial dye and can be used in long-term real-time tracking of cell organelles. Also, it is found that the probes (1-5) are highly tolerable during the changes in mitochondrial morphology. Thus, this kind of low-toxic organotin-based fluorescent probe can assist in imaging of mitochondria within living cells and tracking changes in their morphology.
Collapse
Affiliation(s)
- Sushree Aradhana Patra
- Department of Chemistry, National Institute of Technology, Rourkela, 769008 Odisha, India
| | - Gurunath Sahu
- Department of Chemistry, National Institute of Technology, Rourkela, 769008 Odisha, India
| | | | - Takahiro Sasamori
- Division of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571, Japan
| | - Rupam Dinda
- Department of Chemistry, National Institute of Technology, Rourkela, 769008 Odisha, India
| |
Collapse
|
10
|
Synthesis, physicochemical studies, fluorescence behavior, and anticancer properties of transition metal complexes with the pyridyl ligand. POLISH JOURNAL OF CHEMICAL TECHNOLOGY 2022. [DOI: 10.2478/pjct-2022-0020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Abstract
A novel series of complexes with the formula [MLCl] [M = Co(II) (1), Ni(II) (2), Cu(II) (3), Zn(II) (4)] arising from Pyridyl ligand, N,N’-bis(1-(2-pyridyl)ethylidene)-2,2-dimethylpropane-1,3-diamine), ligand, L, was synthesized and investigated by elemental analyses, FT-IR, 1H and 13C NMR, Powder XRD, and thermal analyses. TGA analysis indicated that all complexes degraded in three different steps, while the PXRD examination showed well-defined sharp crystalline peaks for the complexes, indicating significant crystallinity. The antiproliferative activity of the ligand and its complexes were also evaluated in vitro against the HeLa (Human Cervical Cancer Cells) and HCT116 (Colon Cancer Cells) cell lines. The findings suggested complex 4 to be potential anticancer agent against these cell lines. In addition, ligand and its complexes also exhibited considerable emission properties.
Collapse
|
11
|
Yang T, Zhu M, Jiang M, Yang F, Zhang Z. Current status of iridium-based complexes against lung cancer. Front Pharmacol 2022; 13:1025544. [PMID: 36210835 PMCID: PMC9538862 DOI: 10.3389/fphar.2022.1025544] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 09/09/2022] [Indexed: 11/22/2022] Open
Abstract
Lung cancer is one of the most common malignant tumors, with the highest mortality rate in the world, and its incidence is second only to breast cancer. It has posed a serious threat to human health. Cisplatin, a metal-based drug, is one of the most widely used chemotherapeutic agents for the treatment of various cancers. However, its clinical efficacy is seriously limited by numerous side effects and drug resistance. This has led to the exploration and development of other transition metal complexes for the treatment of malignant tumors. In recent years, iridium-based complexes have attracted extensive attention due to their potent anticancer activities, limited side effects, unique antitumor mechanisms, and rich optical properties, and are expected to be potential antitumor drugs. In this review, we summarize the recent progress of iridium complexes against lung cancer and introduce their anti-tumor mechanisms, including apoptosis, cycle arrest, inhibition of lung cancer cell migration, induction of immunogenic cell death, etc.
Collapse
Affiliation(s)
- Tongfu Yang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, Guangxi, China
| | - Minghui Zhu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, Guangxi, China
| | - Ming Jiang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, Guangxi, China
- School of food and biochemical engineering, Guangxi Science and Technology Normal University, Laibin, Guangxi, China
| | - Feng Yang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, Guangxi, China
| | - Zhenlei Zhang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, Guangxi, China
- *Correspondence: Zhenlei Zhang,
| |
Collapse
|
12
|
Ortega-Forte E, Hernández-García S, Vigueras G, Henarejos-Escudero P, Cutillas N, Ruiz J, Gandía-Herrero F. Potent anticancer activity of a novel iridium metallodrug via oncosis. Cell Mol Life Sci 2022; 79:510. [PMID: 36066676 PMCID: PMC9448686 DOI: 10.1007/s00018-022-04526-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/27/2022] [Accepted: 08/10/2022] [Indexed: 11/25/2022]
Abstract
Oncosis (from Greek ónkos, meaning "swelling") is a non-apoptotic cell death process related to energy depletion. In contrast to apoptosis, which is the main form of cell death induced by anticancer drugs, oncosis has been relatively less explored but holds potential to overcome drug resistance phenomena. In this study, we report a novel rationally designed mitochondria-targeted iridium(III) complex (OncoIr3) with advantageous properties as a bioimaging agent. OncoIr3 exhibited potent anticancer activity in vitro against cancer cells and displayed low toxicity to normal dividing cells. Flow cytometry and fluorescence-based assays confirmed an apoptosis-independent mechanism involving energy depletion, mitochondrial dysfunction and cellular swelling that matched with the oncotic process. Furthermore, a Caenorhabditis elegans tumoral model was developed to test this compound in vivo, which allowed us to prove a strong oncosis-derived antitumor activity in animals (with a 41% reduction of tumor area). Indeed, OncoIr3 was non-toxic to the nematodes and extended their mean lifespan by 18%. Altogether, these findings might shed new light on the development of anticancer metallodrugs with non-conventional modes of action such as oncosis, which could be of particular interest for the treatment of apoptosis-resistant cancers.
Collapse
Affiliation(s)
- Enrique Ortega-Forte
- Departamento de Química Inorgánica, Universidad de Murcia, and Murcia BioHealth Research Institute (IMIB-Arrixaca), 30071 Murcia, Spain
| | - Samanta Hernández-García
- Departamento de Bioquímica y Biología Molecular A. Unidad Docente de Biología, Facultad de Veterinaria, Universidad de Murcia, 30071 Murcia, Spain
| | - Gloria Vigueras
- Departamento de Química Inorgánica, Universidad de Murcia, and Murcia BioHealth Research Institute (IMIB-Arrixaca), 30071 Murcia, Spain
| | - Paula Henarejos-Escudero
- Departamento de Bioquímica y Biología Molecular A. Unidad Docente de Biología, Facultad de Veterinaria, Universidad de Murcia, 30071 Murcia, Spain
| | - Natalia Cutillas
- Departamento de Química Inorgánica, Universidad de Murcia, and Murcia BioHealth Research Institute (IMIB-Arrixaca), 30071 Murcia, Spain
| | - José Ruiz
- Departamento de Química Inorgánica, Universidad de Murcia, and Murcia BioHealth Research Institute (IMIB-Arrixaca), 30071 Murcia, Spain
| | - Fernando Gandía-Herrero
- Departamento de Bioquímica y Biología Molecular A. Unidad Docente de Biología, Facultad de Veterinaria, Universidad de Murcia, 30071 Murcia, Spain
| |
Collapse
|
13
|
Novel 4-/5-bromo-8-hydroxyquinoline cyclometalated iridium(III) complexes as highly potent anticancer and bioimaging agents. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
14
|
Wang MM, Li HM, Deng DP, Su Y, Su Z. Anticancer performance of Ir(III)-based anticancer agents in the treatment of cisplatin resistant cancer cells. ChemMedChem 2022; 17:e202200273. [PMID: 35726053 DOI: 10.1002/cmdc.202200273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/16/2022] [Indexed: 11/07/2022]
Abstract
The resistance to cisplatin of cancer cells have dramatically blocked its further application in the practical treatment. The generation of cisplatin resistance was a complicated physiological process, even several mechanisms have been reported. New metal-based agents with distinct anticancer mechanisms were still highly desired. In this concept, we have described Ir(III)-based anticancer agents and the underlying anticancer mechanisms, which could inhibit the antiproliferation of cisplatin resistant tumors. This work could benefit the society to develop more effective Ir(III)-based agents to combat cisplatin resistance.
Collapse
Affiliation(s)
| | | | | | - Yan Su
- Nanjing Normal University, Chemistry, CHINA
| | - Zhi Su
- Nanjing Normal University, Chemistry, Wenyuan Rd. #1, 210093, Nanjing, CHINA
| |
Collapse
|
15
|
Rational design of mitochondria targeted thiabendazole-based Ir(III) biscyclometalated complexes for a multimodal photodynamic therapy of cancer. J Inorg Biochem 2022; 231:111790. [DOI: 10.1016/j.jinorgbio.2022.111790] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 02/25/2022] [Accepted: 03/07/2022] [Indexed: 12/13/2022]
|
16
|
Markova L, Novohradsky V, Kasparkova J, Ruiz J, Brabec V. Dipyridophenazine iridium(III) complex as a phototoxic cancer stem cell selective, mitochondria targeting agent. Chem Biol Interact 2022; 360:109955. [PMID: 35447138 DOI: 10.1016/j.cbi.2022.109955] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 04/06/2022] [Accepted: 04/14/2022] [Indexed: 12/20/2022]
Abstract
In this work, the mechanism underlying the anticancer activity of a photoactivatable Ir(III) compound of the type [Ir(CˆN)2(dppz)][PF6] where CˆN = 1-methyl-2-(2'-thienyl)benzimidazole (complex 1) was investigated. Complex 1 photoactivated by visible light shows potent activity against highly aggressive and poorly treatable Rhabdomyosarcoma (RD) cells, the most frequent soft tissue sarcomas of children. This remarkable activity of 1 was observed not only in RD cells cultured in 2D monolayers but, more importantly, also in 3D spheroids, which resemble in many aspects solid tumors and serve as a promising model to mimic the in vivo situation. Importantly, photoactivated 1 kills not only differentiated RD cells but also even more effectively cancer stem cells (CSCs) of RD. One of the factors responsible for the activity of irradiated 1 in RD CSCs is its ability to produce ROS in these cells more effectively than in differentiated RD cells. Moreover, photoactivated 1 caused in RD differentiated cells and CSCs a significant decrease of mitochondrial membrane potential and promotes opening mitochondrial permeability transition pores in these cells, a mechanism that has never been demonstrated for any other metal-based anticancer complex. The results of this work give evidence that 1 has a potential for further evaluation using in vivo models as a promising chemotherapeutic agent for photodynamic therapy of hardly treatable human Rhabdomyosarcoma, particularly for its activity in both stem and differentiated cancer cells.
Collapse
Affiliation(s)
- Lenka Markova
- Czech Academy of Sciences, Institute of Biophysics, Brno, CZ-61265, Czech Republic
| | - Vojtech Novohradsky
- Czech Academy of Sciences, Institute of Biophysics, Brno, CZ-61265, Czech Republic
| | - Jana Kasparkova
- Czech Academy of Sciences, Institute of Biophysics, Brno, CZ-61265, Czech Republic
| | - Jose Ruiz
- Departamento de Quimica Inorganica, Universidad de Murcia and Institute for Bio- Health Research of Murcia (IMIB-Arrixaca), E-30071, Murcia, Spain
| | - Viktor Brabec
- Czech Academy of Sciences, Institute of Biophysics, Brno, CZ-61265, Czech Republic.
| |
Collapse
|
17
|
Gong J, Zhang X. Coordination-based circularly polarized luminescence emitters: Design strategy and application in sensing. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214329] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
18
|
Paprocka R, Wiese-Szadkowska M, Janciauskiene S, Kosmalski T, Kulik M, Helmin-Basa A. Latest developments in metal complexes as anticancer agents. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214307] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
19
|
Bonelli J, Ortega-Forte E, Vigueras G, Bosch M, Cutillas N, Rocas J, Ruiz J, Marchan V. Polyurethane-polyurea hybrid nanocapsules as efficient delivery systems of anticancer Ir(III) metallodrugs. Inorg Chem Front 2022. [DOI: 10.1039/d1qi01542g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cyclometalated Ir(III) complexes hold great promise as an alternative to platinum metallodrugs for therapy and diagnosis of cancer. However, low aqueous solubility and poor cell membrane permeability difficult in vivo...
Collapse
|
20
|
Zafon E, Echevarría I, Barrabés S, Manzano BR, Jalón FA, Rodríguez AM, Massaguer A, Espino G. Photodynamic therapy with mitochondria-targeted biscyclometallated Ir(III) complexes. Multi-action mechanism and strong influence of the cyclometallating ligand. Dalton Trans 2021; 51:111-128. [PMID: 34873601 DOI: 10.1039/d1dt03080a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Photodynamic therapy is an alternative to classical chemotherapy due to its potential to reduce side effects by a controlled activation of a photosensitizer through local irradiation with light. The photosensitizer then interacts with oxygen and generates reactive oxygen species. Iridium biscyclometallated complexes are very promising photosensitizers due to their exceptional photophysical properties and their ability to target mitochondria. Four Ir(III) biscyclometallated complexes of formula [Ir(C^N)2(N^N')]Cl, where N^N' is a ligand containing a benzimidazolyl fragment, have been synthesized and characterized. The C^N ligands were 2-phenylpyridinate (ppy) and 2-(2,4-difluorophenyl)pyridinate (dfppy). The complexes exhibited high photostability. The electrochemical and photophysical properties were modulated by both the cyclometallating and the ancillary ligands. The dfppy derivatives yielded the highest emission energy values, quantum yields of phosphorescence and excited state lifetimes. All complexes generated 1O2 in aerated solutions upon irradiation. Biological studies revealed that these complexes have a moderate cytotoxicity in the dark against different human cancer cell lines: prostate (PC-3), colon (CACO-2) and melanoma (SK-MEL-28), and against non-malignant fibroblasts (CCD-18Co). However, derivatives with ppy ligands ([1a]Cl, [2a]Cl) yielded a relevant photodynamic activity upon light irradiation (450 nm, 24.1 J cm-2), with phototoxicity indexes (EC50,dark/EC50,light) of 20.8 and 17.3, respectively, achieved in PC-3 cells. Mechanistic studies showed that these complexes are taken up by the cells through endocytosis and preferentially accumulate in mitochondria. Upon photoactivation, the complexes induced mitochondrial membrane depolarization and DNA damage, thus triggering cell death, mainly by apoptosis. Complex [1a]Cl is also able to oxidize NADH. This mitochondria-targeted photodynamic mechanism greatly inhibited the reproductive capacity of cancer cells and provides a valuable alternative to traditional chemotherapy for the controlled treatment of cancer.
Collapse
Affiliation(s)
- Elisenda Zafon
- Universitat de Girona, Departament de Biologia, Facultat de Ciències, Maria Aurelia Capmany 40, 17003 Girona, Spain.
| | - Igor Echevarría
- Universidad de Burgos, Departamento de Química, Facultad de Ciencias, Plaza Misael Bañuelos s/n, 09001, Burgos, Spain.
| | - Sílvia Barrabés
- Universitat de Girona, Departament de Biologia, Facultat de Ciències, Maria Aurelia Capmany 40, 17003 Girona, Spain.
| | - Blanca R Manzano
- Universidad de Castilla-La Mancha, Departamento de Química Inorgánica, Orgánica y Bioquímica, Facultad de Químicas, Avda. Camilo J. Cela 10, 13071 Ciudad Real, Spain
| | - Félix A Jalón
- Universidad de Castilla-La Mancha, Departamento de Química Inorgánica, Orgánica y Bioquímica, Facultad de Químicas, Avda. Camilo J. Cela 10, 13071 Ciudad Real, Spain
| | - Ana M Rodríguez
- Universidad de Castilla-La Mancha, Departamento de Química Inorgánica, Orgánica y Bioquímica. Escuela Técnica Superior de Ingenieros Industriales de Ciudad Real, Avda. Camilo J. Cela, 2, 13071 Ciudad Real, Spain
| | - Anna Massaguer
- Universitat de Girona, Departament de Biologia, Facultat de Ciències, Maria Aurelia Capmany 40, 17003 Girona, Spain.
| | - Gustavo Espino
- Universidad de Burgos, Departamento de Química, Facultad de Ciencias, Plaza Misael Bañuelos s/n, 09001, Burgos, Spain.
| |
Collapse
|
21
|
Lara R, Millán G, Moreno MT, Lalinde E, Alfaro‐Arnedo E, López IP, Larráyoz IM, Pichel JG. Investigation on Optical and Biological Properties of 2-(4-Dimethylaminophenyl)benzothiazole Based Cycloplatinated Complexes. Chemistry 2021; 27:15757-15772. [PMID: 34379830 PMCID: PMC9293083 DOI: 10.1002/chem.202102737] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Indexed: 11/08/2022]
Abstract
The optical and biological properties of 2-(4-dimethylaminophenyl)benzothiazole cycloplatinated complexes featuring bioactive ligands ([{Pt(Me2 N-pbt)(C6 F5 )}L] [L=Me2 N-pbtH 1, p-dpbH (4-(diphenylphosphino)benzoic acid) 2, o-dpbH (2-(diphenylphosphino)benzoic acid) 3), [Pt(Me2 N-pbt)(o-dpb)] 4, [{Pt(Me2 N-pbt)(C6 F5 )}2 (μ-PRn P)] [PR4 P=O(CH2 CH2 OC(O)C6 H4 PPh2 )2 5, PR12 P=O{(CH2 CH2 O)3 C(O)C6 H4 PPh2 }2 6] are presented. Complexes 1-6 display 1 ILCT and metal-perturbed 3 ILCT dual emissions. The ratio between both bands is excitation dependent, accomplishing warm-white emissions for 2, 5 and 6. The phosphorescent emission is lost in aerated solutions owing to photoinduced electron transfer to 3 O2 and the formation of 1 O2 , as confirmed in complexes 2 and 4. They also exhibit photoinduced phosphorescence enhancement in non-degassed DMSO due to local oxidation of DMSO by sensitized 1 O2 , which causes a local degassing. Me2 N-pbtH and the complexes specifically accumulate in the Golgi apparatus, although only 2, 3 and 6 were active against A549 and HeLa cancer cell lines, 6 being highly selective in respect to nontumoral cells. The potential photodynamic property of these complexes was demonstrated with complex 4.
Collapse
Affiliation(s)
- Rebeca Lara
- Departamento de Química-Centro de Síntesis Química de La Rioja, (CISQ)Universidad de La Rioja26006LogroñoSpain
| | - Gonzalo Millán
- Departamento de Química-Centro de Síntesis Química de La Rioja, (CISQ)Universidad de La Rioja26006LogroñoSpain
| | - M. Teresa Moreno
- Departamento de Química-Centro de Síntesis Química de La Rioja, (CISQ)Universidad de La Rioja26006LogroñoSpain
| | - Elena Lalinde
- Departamento de Química-Centro de Síntesis Química de La Rioja, (CISQ)Universidad de La Rioja26006LogroñoSpain
| | - Elvira Alfaro‐Arnedo
- Lung Cancer and Respiratory Diseases Unit (CIBIR)Fundación Rioja Salud26006LogroñoSpain
| | - Icíar P. López
- Lung Cancer and Respiratory Diseases Unit (CIBIR)Fundación Rioja Salud26006LogroñoSpain
| | - Ignacio M. Larráyoz
- Biomarkers and Molecular Signaling Unit (CIBIR)Fundación Rioja Salud26006LogroñoSpain
| | - José G. Pichel
- Lung Cancer and Respiratory Diseases Unit (CIBIR)Fundación Rioja Salud26006LogroñoSpain
- Biomedical Research Networking Center in Respiratory Diseases (CIBERES)ISCIII Av. Monforte de Lemos, 3-5. Pab. 11.28029 MadridSpain
| |
Collapse
|
22
|
|
23
|
Dual Emissive Ir(III) Complexes for Photodynamic Therapy and Bioimaging. Pharmaceutics 2021; 13:pharmaceutics13091382. [PMID: 34575458 PMCID: PMC8472790 DOI: 10.3390/pharmaceutics13091382] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/26/2021] [Accepted: 08/29/2021] [Indexed: 01/12/2023] Open
Abstract
Photodynamic therapy (PDT) is a cancer treatment still bearing enormous prospects of improvement. Within the toolbox of PDT, developing photosensitizers (PSs) that can specifically reach tumor cells and promote the generation of high concentration of reactive oxygen species (ROS) is a constant research goal. Mitochondria is known as a highly appealing target for PSs, thus being able to assess the biodistribution of the PSs prior to its light activation would be crucial for therapeutic maximization. Bifunctional Ir(III) complexes of the type [Ir(C^N)2(N^N-R)]+, where N^C is either phenylpyridine (ppy) or benzoquinoline (bzq), N^N is 2,2'-dipyridylamine (dpa) and R either anthracene (1 and 3) or acridine (2 and 4), have been developed as novel trackable PSs agents. Activation of the tracking or therapeutic function could be achieved specifically by irradiating the complex with a different light wavelength (405 nm vs. 470 nm respectively). Only complex 4 ([Ir(bzq)2(dpa-acr)]+) clearly showed dual emissive pattern, acridine based emission between 407-450 nm vs. Ir(III) based emission between 521 and 547 nm. The sensitivity of A549 lung cancer cells to 4 evidenced the importance of involving the metal center within the activation process of the PS, reaching values of photosensitivity over 110 times higher than in dark conditions. Moreover, complex 4 promoted apoptotic cell death and possibly the paraptotic pathway, as well as higher ROS generation under irradiation than in dark conditions. Complexes 2-4 accumulated in the mitochondria but species 2 and 4 also localizes in other subcellular organelles.
Collapse
|
24
|
Zhang H, Tian L, Xiao R, Zhou Y, Zhang Y, Hao J, Liu Y, Wang J. Anticancer effect evaluation in vitro and in vivo of iridium(III) polypyridyl complexes targeting DNA and mitochondria. Bioorg Chem 2021; 115:105290. [PMID: 34426145 DOI: 10.1016/j.bioorg.2021.105290] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/30/2021] [Accepted: 08/16/2021] [Indexed: 12/26/2022]
Abstract
To investigate the antitumor effect of iridium complexes, three iridium (III) complexes [Ir(ppy)2(dcdppz)]PF6 (ppy = 2-phenylpyridine, dcdppz = 11,12-dichlorodipyrido[3,2-a:2',3'-c]phenazine) (Ir1), [Ir(bzq)2(dcdppz)]PF6 (bzq = benzo[h]quinoline) (Ir2) and [Ir(piq)2(dcdppz)]PF6 (piq = 1-phenylisoquinoline) (Ir3) were synthesized and characterized. Geometry optimization, molecular dynamics simulation and docking studies have been performed to further explore the antitumor mechanism. The cytotoxicity of Ir1-3 toward cancer cells was studied by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) method. The localization of complexes Ir1-3 in the mitochondria, intracellular accumulation of reactive oxygen species (ROS) levels, the changes of mitochondrial membrane potential and morphological changes in apoptosis were investigated. Flow cytometry was applied to quantify fluorescence intensity and determine cell cycle distribution. Western blotting was used to detect the expression of apoptosis-related proteins. The anti-tumor effect of Ir1 in vivo was evaluated. The results showed that Ir1-3 had high cytotoxicity to most tumor cells, especially to SGC-7901 cells with a low IC50 value. Ir1-3 can increase the intracellular ROS levels, reduce the mitochondrial membrane potential. Additionally, the complexes induce an increase of apoptosis-related protein expression, enhance the percentage of apoptosis. The complexes inhibit the cell proliferation at G0/G1 phase. The results obtained from antitumor in vivo indicate that Ir1 can significantly inhibit the growth of tumors with an inhibitory rate of 54.08%. The docking studies show that complexes Ir1-3 interact with DNA through minor-groove intercalation, which increases the distance of DNA base pairs, leading to a change of DNA helix structure. These experimental and theoretical findings indicate that complexes Ir1-3 can induce apoptosis in SGC-7901 cells through the mitochondrial dysfunction and DNA damage pathways, and then exerting anti-tumor activity in vitro and vivo.
Collapse
Affiliation(s)
- Huiwen Zhang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Li Tian
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Rongxing Xiao
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Yi Zhou
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Yuanyuan Zhang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Jing Hao
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Yunjun Liu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China.
| | - Juping Wang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China.
| |
Collapse
|
25
|
Liu B, Jiao J, Xu W, Zhang M, Cui P, Guo Z, Deng Y, Chen H, Sun W. Highly Efficient Far-Red/NIR-Absorbing Neutral Ir(III) Complex Micelles for Potent Photodynamic/Photothermal Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2100795. [PMID: 34219286 DOI: 10.1002/adma.202100795] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 05/14/2021] [Indexed: 06/13/2023]
Abstract
A critical issue in photodynamic therapy (PDT) is inadequate reactive oxygen species (ROS) generation in tumors, causing inevitable survival of tumor cells that usually results in tumor recurrence and metastasis. Existing photosensitizers frequently suffer from relatively low light-to-ROS conversion efficiency with far-red/near-infrared (NIR) light excitation due to low-lying excited states that lead to rapid non-radiative decays. Here, a neutral Ir(III) complex bearing distyryl boron dipyrromethene (BODIPY-Ir) is reported to efficiently produce both ROS and hyperthermia upon far-red light activation for potentiating in vivo tumor suppression through micellization of BODIPY-Ir to form "Micelle-Ir". BODIPY-Ir absorbs strongly at 550-750 nm with a band maximum at 685 nm, and possesses a long-lived triplet excited state with sufficient non-radiative decays. Upon micellization, BODIPY-Ir forms J-type aggregates within Micelle-Ir, which boosts both singlet oxygen generation and the photothermal effect through the high molar extinction coefficient and amplification of light-to-ROS/heat conversion, causing severe cell apoptosis. Bifunctional Micelle-Ir that accumulates in tumors completely destroys orthotopic 4T1 breast tumors via synergistic PDT/photothermal therapy (PTT) damage under light irradiation, and enables remarkable suppression of metastatic nodules in the lungs, together without significant dark cytotoxicity. The present study offers an emerging approach to develop far-red/NIR photosensitizers toward potent cancer therapy.
Collapse
Affiliation(s)
- Bingqing Liu
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, ND, 58108, USA
| | - Jian Jiao
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, P. R. China
- Department of Pharmaceutics, College of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, P. R. China
| | - Wan Xu
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, ND, 58108, USA
- Engineering Research Center for Nanomaterials, Henan University, Kaifeng, 475004, P. R. China
| | - Miya Zhang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, P. R. China
| | - Peng Cui
- Key Laboratory of Eco-textiles, Ministry of Education, Jiangnan University, Wuxi, 214122, P. R. China
| | - Zhengqing Guo
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, P. R. China
| | - Yibin Deng
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, P. R. China
| | - Huabing Chen
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, P. R. China
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, P. R. China
| | - Wenfang Sun
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, ND, 58108, USA
| |
Collapse
|
26
|
Hohlfeld BF, Gitter B, Kingsbury CJ, Flanagan KJ, Steen D, Wieland GD, Kulak N, Senge MO, Wiehe A. Dipyrrinato-Iridium(III) Complexes for Application in Photodynamic Therapy and Antimicrobial Photodynamic Inactivation. Chemistry 2021; 27:6440-6459. [PMID: 33236800 PMCID: PMC8248005 DOI: 10.1002/chem.202004776] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/24/2020] [Indexed: 12/24/2022]
Abstract
The generation of bio-targetable photosensitizers is of utmost importance to the emerging field of photodynamic therapy and antimicrobial (photo-)therapy. A synthetic strategy is presented in which chelating dipyrrin moieties are used to enhance the known photoactivity of iridium(III) metal complexes. Formed complexes can thus be functionalized in a facile manner with a range of targeting groups at their chemically active reaction sites. Dipyrrins with N- and O-substituents afforded (dipy)iridium(III) complexes via complexation with the respective Cp*-iridium(III) and ppy-iridium(III) precursors (dipy=dipyrrinato, Cp*=pentamethyl-η5 -cyclopentadienyl, ppy=2-phenylpyridyl). Similarly, electron-deficient [IrIII (dipy)(ppy)2 ] complexes could be used for post-functionalization, forming alkenyl, alkynyl and glyco-appended iridium(III) complexes. The phototoxic activity of these complexes has been assessed in cellular and bacterial assays with and without light; the [IrIII (Cl)(Cp*)(dipy)] complexes and the glyco-substituted iridium(III) complexes showing particular promise as photomedicine candidates. Representative crystal structures of the complexes are also presented.
Collapse
Affiliation(s)
- Benjamin F. Hohlfeld
- Institut für Chemie u. BiochemieFreie Universität BerlinTakustr. 314195BerlinGermany
- biolitec research GmbHOtto-Schott-Str. 1507745JenaGermany
| | | | - Christopher J. Kingsbury
- Medicinal Chemistry, Trinity Translational Medicine InstituteTrinity Centre for Health SciencesTrinity College Dublin, The University of DublinSt James's HospitalDublin8Ireland
| | - Keith J. Flanagan
- Medicinal Chemistry, Trinity Translational Medicine InstituteTrinity Centre for Health SciencesTrinity College Dublin, The University of DublinSt James's HospitalDublin8Ireland
| | - Dorika Steen
- biolitec research GmbHOtto-Schott-Str. 1507745JenaGermany
| | | | - Nora Kulak
- Institut für Chemie u. BiochemieFreie Universität BerlinTakustr. 314195BerlinGermany
- Institut für ChemieOtto-von-Guericke-Universität MagdeburgUniversitätsplatz 239106MagdeburgGermany
| | - Mathias O. Senge
- Medicinal Chemistry, Trinity Translational Medicine InstituteTrinity Centre for Health SciencesTrinity College Dublin, The University of DublinSt James's HospitalDublin8Ireland
- Institute for Advanced Study (TUM-IAS)Technical University of MunichLichtenbergstrasse 2a85748GarchingGermany
| | - Arno Wiehe
- Institut für Chemie u. BiochemieFreie Universität BerlinTakustr. 314195BerlinGermany
- biolitec research GmbHOtto-Schott-Str. 1507745JenaGermany
| |
Collapse
|
27
|
Zhao X, Liu J, Fan J, Chao H, Peng X. Recent progress in photosensitizers for overcoming the challenges of photodynamic therapy: from molecular design to application. Chem Soc Rev 2021; 50:4185-4219. [PMID: 33527104 DOI: 10.1039/d0cs00173b] [Citation(s) in RCA: 537] [Impact Index Per Article: 134.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Photodynamic therapy (PDT), a therapeutic mode involving light triggering, has been recognized as an attractive oncotherapy treatment. However, nonnegligible challenges remain for its further clinical use, including finite tumor suppression, poor tumor targeting, and limited therapeutic depth. The photosensitizer (PS), being the most important element of PDT, plays a decisive role in PDT treatment. This review summarizes recent progress made in the development of PSs for overcoming the above challenges. This progress has included PSs developed to display enhanced tolerance of the tumor microenvironment, improved tumor-specific selectivity, and feasibility of use in deep tissue. Based on their molecular photophysical properties and design directions, the PSs are classified by parent structures, which are discussed in detail from the molecular design to application. Finally, a brief summary of current strategies for designing PSs and future perspectives are also presented. We expect the information provided in this review to spur the further design of PSs and the clinical development of PDT-mediated cancer treatments.
Collapse
Affiliation(s)
- Xueze Zhao
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, 116024 Dalian, China.
| | | | | | | | | |
Collapse
|
28
|
Ortega E, Ballester FJ, Hernández-García A, Hernández-García S, Guerrero-Rubio MA, Bautista D, Santana MD, Gandía-Herrero F, Ruiz J. Novel organo-osmium(ii) proteosynthesis inhibitors active against human ovarian cancer cells reduce gonad tumor growth inCaenorhabditis elegans. Inorg Chem Front 2021. [DOI: 10.1039/c9qi01704f] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Novel Os(ii) arene complexes with a deprotonated ppy or ppy-CHO C^N ligand have been synthesized to selectively act on cancer cells as proteosynthesis inhibitorsin vitroand exert antitumor activityin vivoinC. elegansmodels.
Collapse
Affiliation(s)
- Enrique Ortega
- Departamento de Química Inorgánica
- Universidad de Murcia
- and Institute for Bio-Health Research of Murcia (IMIB-Arrixaca)
- E-30071 Murcia
- Spain
| | - Francisco J. Ballester
- Departamento de Química Inorgánica
- Universidad de Murcia
- and Institute for Bio-Health Research of Murcia (IMIB-Arrixaca)
- E-30071 Murcia
- Spain
| | - Alba Hernández-García
- Departamento de Química Inorgánica
- Universidad de Murcia
- and Institute for Bio-Health Research of Murcia (IMIB-Arrixaca)
- E-30071 Murcia
- Spain
| | - Samanta Hernández-García
- Departamento de Bioquímica y Biología Molecular A
- Unidad Docente de Biología
- Facultad de Veterinaria
- Universidad de Murcia
- E-30071 Murcia
| | - M. Alejandra Guerrero-Rubio
- Departamento de Bioquímica y Biología Molecular A
- Unidad Docente de Biología
- Facultad de Veterinaria
- Universidad de Murcia
- E-30071 Murcia
| | | | - M. Dolores Santana
- Departamento de Química Inorgánica
- Universidad de Murcia
- and Institute for Bio-Health Research of Murcia (IMIB-Arrixaca)
- E-30071 Murcia
- Spain
| | - Fernando Gandía-Herrero
- Departamento de Bioquímica y Biología Molecular A
- Unidad Docente de Biología
- Facultad de Veterinaria
- Universidad de Murcia
- E-30071 Murcia
| | - José Ruiz
- Departamento de Química Inorgánica
- Universidad de Murcia
- and Institute for Bio-Health Research of Murcia (IMIB-Arrixaca)
- E-30071 Murcia
- Spain
| |
Collapse
|
29
|
Vigueras G, Markova L, Novohradsky V, Marco A, Cutillas N, Kostrhunova H, Kasparkova J, Ruiz J, Brabec V. A photoactivated Ir(iii) complex targets cancer stem cells and induces secretion of damage-associated molecular patterns in melanoma cells characteristic of immunogenic cell death. Inorg Chem Front 2021. [DOI: 10.1039/d1qi00856k] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The new iridium complex selectively targets cancer stem cells and has potential to induce immunogenic cell death in cancer cells.
Collapse
Affiliation(s)
- Gloria Vigueras
- Departamento de Quimica Inorganica, Universidad de Murcia and Institute for Bio-Health Research of Murcia (IMIB-Arrixaca), E-30071 Murcia, Spain
| | - Lenka Markova
- Czech Academy of Sciences, Institute of Biophysics, Kralovopolska 135, CZ-61265 Brno, Czech Republic
| | - Vojtech Novohradsky
- Czech Academy of Sciences, Institute of Biophysics, Kralovopolska 135, CZ-61265 Brno, Czech Republic
| | - Alicia Marco
- Departamento de Quimica Inorganica, Universidad de Murcia and Institute for Bio-Health Research of Murcia (IMIB-Arrixaca), E-30071 Murcia, Spain
| | - Natalia Cutillas
- Departamento de Quimica Inorganica, Universidad de Murcia and Institute for Bio-Health Research of Murcia (IMIB-Arrixaca), E-30071 Murcia, Spain
| | - Hana Kostrhunova
- Czech Academy of Sciences, Institute of Biophysics, Kralovopolska 135, CZ-61265 Brno, Czech Republic
| | - Jana Kasparkova
- Czech Academy of Sciences, Institute of Biophysics, Kralovopolska 135, CZ-61265 Brno, Czech Republic
| | - José Ruiz
- Departamento de Quimica Inorganica, Universidad de Murcia and Institute for Bio-Health Research of Murcia (IMIB-Arrixaca), E-30071 Murcia, Spain
| | - Viktor Brabec
- Czech Academy of Sciences, Institute of Biophysics, Kralovopolska 135, CZ-61265 Brno, Czech Republic
| |
Collapse
|
30
|
Lee LCC, Tsang AWY, Liu HW, Lo KKW. Photofunctional Cyclometalated Iridium(III) Polypyridine Complexes Bearing a Perfluorobiphenyl Moiety for Bioconjugation, Bioimaging, and Phototherapeutic Applications. Inorg Chem 2020; 59:14796-14806. [DOI: 10.1021/acs.inorgchem.0c01343] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Lawrence Cho-Cheung Lee
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Hong Kong, P. R. China
| | - Ada Wun-Yu Tsang
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Hong Kong, P. R. China
| | - Hua-Wei Liu
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Hong Kong, P. R. China
| | - Kenneth Kam-Wing Lo
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Hong Kong, P. R. China
- State Key Laboratory of Terahertz and Millimeter Waves, City University of Hong Kong, Tat Chee Avenue, Hong Kong, P. R. China
- Center of Functional Photonics, City University of Hong Kong, Tat Chee Avenue, Hong Kong, P. R. China
| |
Collapse
|
31
|
Li X, Shi Z, Wu J, Wu J, He C, Hao X, Duan C. Lighting up metallohelices: from DNA binders to chemotherapy and photodynamic therapy. Chem Commun (Camb) 2020; 56:7537-7548. [PMID: 32573609 DOI: 10.1039/d0cc02194f] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The design of novel agents that specifically target DNA and interrupt its normal biological processes is an attractive goal in drug design. Among the promising metallodrugs, metal-directed self-assembled metallohelices with defined three-dimensional stereochemical structures display unique structure-inherent and unprecedented noncovalent targeting abilities towards DNA, resulting in excellent anticancer or antibiotic activities. A newly burgeoning hotspot is focusing on lighting them up by embedding luminescent metal ions as the vertices. The photoactive metallohelices that combine strong interactions toward DNA targets and efficient 1O2 quantum yield may provide new motivation in diagnostic and photodynamic therapy (PDT) areas. This perspective focuses on research progress on metallohelices as DNA binders and chemotherapeutic agents, and highlights recent advances in fabricating luminescent examples for PDT. The relative assembly strategies are also discussed and compared. Finally, perspectives on the future development of the lit-up metallohelices are presented.
Collapse
Affiliation(s)
- Xuezhao Li
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024, China.
| | | | | | | | | | | | | |
Collapse
|
32
|
Ho PY, Ho CL, Wong WY. Recent advances of iridium(III) metallophosphors for health-related applications. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213267] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
33
|
Carrasco AC, Rodríguez-Fanjul V, Habtemariam A, Pizarro AM. Structurally Strained Half-Sandwich Iridium(III) Complexes As Highly Potent Anticancer Agents. J Med Chem 2020; 63:4005-4021. [PMID: 32207946 DOI: 10.1021/acs.jmedchem.9b02000] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Six complexes of formula [Ir(η5:κ1-C5Me4CH2py)(C,N)]PF6, where C5Me4CH2py is 2-((2,3,4,5-tetramethylcyclopentadienyl)methyl)pyridine, and C,N is 2-phenylpyridine (1), 7,8-benzoquinoline (2), 1-phenylisoquinoline (3), 2-(p-tolyl)pyridine (4), 4-chloro-2-phenylquinoline (5), or 2-(2,4-difluorophenyl)pyridine (6), have been synthesized. The cyclopentadienyl ligand bears a tethered pyridine that binds to the metal center, resulting in an Ir(η5:κ1-C5Me4CH2pyN) tether-ring structure, as confirmed by the X-ray crystal structures of 1, 2, 4, 5, and 6. Nontether versions of 1 and 2 were synthesized to aid unambiguous correlation between structure and activity. While nontether complexes are highly potent toward MCF7 cancer cells (similar to cisplatin), complexes bearing the tether-ring structure, 1-6, are exceptionally more potent (1-2 orders of magnitude). Additionally, 1-6 disrupt mitochondrial membrane potential (ΔΨm) and induce oxidative stress. Internalization studies strongly correlate intracellular accumulation and anticancer activity in tether and nontether complexes. We present a new class of organo-iridium drug candidates bearing a structural feature that results in a leap in anticancer potency.
Collapse
Affiliation(s)
| | | | - Abraha Habtemariam
- IMDEA Nanociencia, Faraday 9, 28049 Madrid, Spain.,Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, U.K
| | - Ana M Pizarro
- IMDEA Nanociencia, Faraday 9, 28049 Madrid, Spain.,Unidad Asociada de Nanobiotecnología CNB-CSIC-IMDEA, 28049 Madrid, Spain
| |
Collapse
|
34
|
Karges J, Yempala T, Tharaud M, Gibson D, Gasser G. A Multi-action and Multi-target Ru II -Pt IV Conjugate Combining Cancer-Activated Chemotherapy and Photodynamic Therapy to Overcome Drug Resistant Cancers. Angew Chem Int Ed Engl 2020; 59:7069-7075. [PMID: 32017379 DOI: 10.1002/anie.201916400] [Citation(s) in RCA: 134] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/28/2020] [Indexed: 12/21/2022]
Abstract
PtII complexes are commonly used to treat cancer. To reduce their side effects and improve their pharmacological properties, PtIV complexes are being developed as prodrug candidates that are activated by reduction in cancer cells. Concomitantly, RuII polypyridine complexes have gained much attention as photosensitizers for use in photodynamic therapy due to their attractive characteristics. In this article, a novel PtIV -RuII conjugate, which combines cancer activated chemotherapy with PDT, is presented. Upon entering the cancer cell, the PtIV centre is reduced to PtII and the axial ligands including the RuII complex and phenylbutyrate are released. As each component has its individual targets, the conjugate exerts a multi-target and multi-action effect with (photo-)cytotoxicity values upon irradiation up to 595 nm in the low nanomolar range in various (drug resistant) 2D monolayer cancer cells and 3D multicellular tumour spheroids.
Collapse
Affiliation(s)
- Johannes Karges
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology, 75005, Paris, France
| | - Thirumal Yempala
- Institute for Drug Research, School of Pharmacy, The Hebrew University of Jerusalem, 91120, Jerusalem, Israel
| | - Mickaël Tharaud
- Université de Paris, Institut de Physique du Globe de Paris, CNRS, 75005, Paris, France
| | - Dan Gibson
- Institute for Drug Research, School of Pharmacy, The Hebrew University of Jerusalem, 91120, Jerusalem, Israel
| | - Gilles Gasser
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology, 75005, Paris, France
| |
Collapse
|
35
|
Karges J, Yempala T, Tharaud M, Gibson D, Gasser G. A Multi‐action and Multi‐target Ru
II
–Pt
IV
Conjugate Combining Cancer‐Activated Chemotherapy and Photodynamic Therapy to Overcome Drug Resistant Cancers. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201916400] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Johannes Karges
- Chimie ParisTech PSL University CNRS Institute of Chemistry for Life and Health Sciences Laboratory for Inorganic Chemical Biology 75005 Paris France
| | - Thirumal Yempala
- Institute for Drug Research School of Pharmacy The Hebrew University of Jerusalem 91120 Jerusalem Israel
| | - Mickaël Tharaud
- Université de Paris Institut de Physique du Globe de Paris CNRS 75005 Paris France
| | - Dan Gibson
- Institute for Drug Research School of Pharmacy The Hebrew University of Jerusalem 91120 Jerusalem Israel
| | - Gilles Gasser
- Chimie ParisTech PSL University CNRS Institute of Chemistry for Life and Health Sciences Laboratory for Inorganic Chemical Biology 75005 Paris France
| |
Collapse
|
36
|
Li X, Wu J, Wang L, He C, Chen L, Jiao Y, Duan C. Mitochondrial‐DNA‐Targeted Ir
III
‐Containing Metallohelices with Tunable Photodynamic Therapy Efficacy in Cancer Cells. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201915281] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Xuezhao Li
- State Key Laboratory of Fine ChemicalsDalian University of Technology Dalian 116012 China
| | - Jinguo Wu
- State Key Laboratory of Fine ChemicalsDalian University of Technology Dalian 116012 China
| | - Lei Wang
- Department of PharmacyDalian University of Technology Dalian 116012 China
| | - Cheng He
- State Key Laboratory of Fine ChemicalsDalian University of Technology Dalian 116012 China
| | - Liyong Chen
- State Key Laboratory of Fine ChemicalsDalian University of Technology Dalian 116012 China
| | - Yang Jiao
- State Key Laboratory of Fine ChemicalsDalian University of Technology Dalian 116012 China
| | - Chunying Duan
- State Key Laboratory of Fine ChemicalsDalian University of Technology Dalian 116012 China
| |
Collapse
|
37
|
Li X, Wu J, Wang L, He C, Chen L, Jiao Y, Duan C. Mitochondrial‐DNA‐Targeted Ir
III
‐Containing Metallohelices with Tunable Photodynamic Therapy Efficacy in Cancer Cells. Angew Chem Int Ed Engl 2020; 59:6420-6427. [DOI: 10.1002/anie.201915281] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Indexed: 01/01/2023]
Affiliation(s)
- Xuezhao Li
- State Key Laboratory of Fine ChemicalsDalian University of Technology Dalian 116012 China
| | - Jinguo Wu
- State Key Laboratory of Fine ChemicalsDalian University of Technology Dalian 116012 China
| | - Lei Wang
- Department of PharmacyDalian University of Technology Dalian 116012 China
| | - Cheng He
- State Key Laboratory of Fine ChemicalsDalian University of Technology Dalian 116012 China
| | - Liyong Chen
- State Key Laboratory of Fine ChemicalsDalian University of Technology Dalian 116012 China
| | - Yang Jiao
- State Key Laboratory of Fine ChemicalsDalian University of Technology Dalian 116012 China
| | - Chunying Duan
- State Key Laboratory of Fine ChemicalsDalian University of Technology Dalian 116012 China
| |
Collapse
|
38
|
Weynand J, Moreno-Betancourt A, Loiseau F, Berthet N, Defrancq E, Elias B. Redox-Active Bis-Cyclometalated Iridium(III) Complex as a DNA Photo-Cleaving Agent. Inorg Chem 2020; 59:2426-2433. [PMID: 31977196 DOI: 10.1021/acs.inorgchem.9b03312] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The development of new photoactive metal complexes that can trigger oxidative damages to the genetic material is of great interest. In the present paper, we describe the detailed study of a highly photo-oxidant iridium(III) complex that triggers photoinduced electron transfer (PET) with purine DNA bases. The PET has been studied by luminescence and laser flash photolysis experiments. From plasmid DNA agarose gel electrophoresis experiments, we demonstrated the high ability of the iridium complex to induce strand breaks upon light irradiation. Reactive oxygen species (ROS)-specific scavengers and stabilizers were employed to identify that the photocleavage process, the results of which infer singlet oxygen and hydrogen peroxide as the predominant species. To the best of our knowledge, the present work represents one of the few study for highly photo-oxidant bis-cyclometalated iridium(III) complex toward DNA.
Collapse
Affiliation(s)
- Justin Weynand
- Institut de la Matière Condensée et des Nanosciences (IMCN), Molecular Chemistry, Materials and Catalysis Division (MOST) , Université catholique de Louvain (UCLouvain) , Place Louis Pasteur 1, bte L4.01.02 , B-1348 Louvain-la-Neuve , Belgium.,Département de Chimie Moléculaire, UMR CNRS 5250 , Université Grenoble Alpes , CS 40700, 38058 Grenoble , France
| | - Angélica Moreno-Betancourt
- Département de Chimie Moléculaire, UMR CNRS 5250 , Université Grenoble Alpes , CS 40700, 38058 Grenoble , France
| | - Frédérique Loiseau
- Département de Chimie Moléculaire, UMR CNRS 5250 , Université Grenoble Alpes , CS 40700, 38058 Grenoble , France
| | - Nathalie Berthet
- Département de Chimie Moléculaire, UMR CNRS 5250 , Université Grenoble Alpes , CS 40700, 38058 Grenoble , France
| | - Eric Defrancq
- Département de Chimie Moléculaire, UMR CNRS 5250 , Université Grenoble Alpes , CS 40700, 38058 Grenoble , France
| | - Benjamin Elias
- Institut de la Matière Condensée et des Nanosciences (IMCN), Molecular Chemistry, Materials and Catalysis Division (MOST) , Université catholique de Louvain (UCLouvain) , Place Louis Pasteur 1, bte L4.01.02 , B-1348 Louvain-la-Neuve , Belgium
| |
Collapse
|
39
|
Conesa JJ, Carrasco AC, Rodríguez‐Fanjul V, Yang Y, Carrascosa JL, Cloetens P, Pereiro E, Pizarro AM. Unambiguous Intracellular Localization and Quantification of a Potent Iridium Anticancer Compound by Correlative 3D Cryo X‐Ray Imaging. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201911510] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- José Javier Conesa
- MISTRAL beamline ALBA Synchrotron Light Source Cerdanyola del Vallès 08290 Barcelona Spain
- Current address: Department of Structure of Macromolecules Centro Nacional de Biotecnología/CSIC 28049 Madrid Spain
| | | | | | - Yang Yang
- ID16A beamline ESRF-The European Synchrotron 38043 Grenoble France
| | - José L. Carrascosa
- Department of Structure of Macromolecules Centro Nacional de Biotecnología/CSIC 28049 Madrid Spain
- Unidad Asociada de Nanobiotecnología CNB-CSIC-IMDEA 28049 Madrid Spain
| | - Peter Cloetens
- ID16A beamline ESRF-The European Synchrotron 38043 Grenoble France
| | - Eva Pereiro
- MISTRAL beamline ALBA Synchrotron Light Source Cerdanyola del Vallès 08290 Barcelona Spain
| | - Ana M. Pizarro
- IMDEA Nanociencia Faraday 9 28049 Madrid Spain
- Unidad Asociada de Nanobiotecnología CNB-CSIC-IMDEA 28049 Madrid Spain
| |
Collapse
|
40
|
Konkankit CC, Lovett J, Harris HH, Wilson JJ. X-Ray fluorescence microscopy reveals that rhenium(i) tricarbonyl isonitrile complexes remain intact in vitro. Chem Commun (Camb) 2020; 56:6515-6518. [DOI: 10.1039/d0cc02451a] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
An endoplasmic reticulum stress-inducing rhenium isonitrile complex was investigated for its axial ligand stability in living cells using X-ray fluorescence microscopy.
Collapse
Affiliation(s)
| | - James Lovett
- Department of Chemistry
- The University of Adelaide
- Australia
| | - Hugh H. Harris
- Department of Chemistry
- The University of Adelaide
- Australia
| | - Justin J. Wilson
- Department of Chemistry and Chemical Biology
- Cornell University
- Ithaca
- USA
| |
Collapse
|
41
|
Ballester FJ, Ortega E, Bautista D, Santana MD, Ruiz J. Ru(ii) photosensitizers competent for hypoxic cancers via green light activation. Chem Commun (Camb) 2020; 56:10301-10304. [DOI: 10.1039/d0cc02417a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ru(ii) complexes exhibit phototherapeutic indexes higher than 750 in cancer HeLa cells with low nanomolar IC50 values under low doses of non-harmful green light and are active in normoxia and hypoxia conditions.
Collapse
Affiliation(s)
- Francisco J. Ballester
- Departamento de Química Inorgánica
- Universidad de Murcia
- and Biomedical Research Institute of Murcia (IMIB-Arrixaca)
- E-30071 Murcia
- Spain
| | - Enrique Ortega
- Departamento de Química Inorgánica
- Universidad de Murcia
- and Biomedical Research Institute of Murcia (IMIB-Arrixaca)
- E-30071 Murcia
- Spain
| | | | - M. Dolores Santana
- Departamento de Química Inorgánica
- Universidad de Murcia
- and Biomedical Research Institute of Murcia (IMIB-Arrixaca)
- E-30071 Murcia
- Spain
| | - José Ruiz
- Departamento de Química Inorgánica
- Universidad de Murcia
- and Biomedical Research Institute of Murcia (IMIB-Arrixaca)
- E-30071 Murcia
- Spain
| |
Collapse
|
42
|
Conesa JJ, Carrasco AC, Rodríguez‐Fanjul V, Yang Y, Carrascosa JL, Cloetens P, Pereiro E, Pizarro AM. Unambiguous Intracellular Localization and Quantification of a Potent Iridium Anticancer Compound by Correlative 3D Cryo X‐Ray Imaging. Angew Chem Int Ed Engl 2019; 59:1270-1278. [DOI: 10.1002/anie.201911510] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 10/25/2019] [Indexed: 02/06/2023]
Affiliation(s)
- José Javier Conesa
- MISTRAL beamline ALBA Synchrotron Light Source Cerdanyola del Vallès 08290 Barcelona Spain
- Current address: Department of Structure of Macromolecules Centro Nacional de Biotecnología/CSIC 28049 Madrid Spain
| | | | | | - Yang Yang
- ID16A beamline ESRF-The European Synchrotron 38043 Grenoble France
| | - José L. Carrascosa
- Department of Structure of Macromolecules Centro Nacional de Biotecnología/CSIC 28049 Madrid Spain
- Unidad Asociada de Nanobiotecnología CNB-CSIC-IMDEA 28049 Madrid Spain
| | - Peter Cloetens
- ID16A beamline ESRF-The European Synchrotron 38043 Grenoble France
| | - Eva Pereiro
- MISTRAL beamline ALBA Synchrotron Light Source Cerdanyola del Vallès 08290 Barcelona Spain
| | - Ana M. Pizarro
- IMDEA Nanociencia Faraday 9 28049 Madrid Spain
- Unidad Asociada de Nanobiotecnología CNB-CSIC-IMDEA 28049 Madrid Spain
| |
Collapse
|
43
|
González JJ, Ortega E, Rothemund M, Gold M, Vicente C, de Haro C, Bautista D, Schobert R, Ruiz J. Luminescent Gold(I) Complexes of 1-Pyridyl-3-anthracenylchalcone Inducing Apoptosis in Colon Carcinoma Cells and Antivascular Effects. Inorg Chem 2019; 58:12954-12963. [DOI: 10.1021/acs.inorgchem.9b01901] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Juan Jesús González
- Departamento de Química Inorgánica, Facultad de Química, Biomedical Research Institute of Murcia (IMIB-Arrixaca-UMU), Universidad de Murcia, E-30071 Murcia, Spain
| | - Enrique Ortega
- Departamento de Química Inorgánica, Facultad de Química, Biomedical Research Institute of Murcia (IMIB-Arrixaca-UMU), Universidad de Murcia, E-30071 Murcia, Spain
| | - Matthias Rothemund
- Organic Chemistry Laboratory, University Bayreuth, Universitaetsstrasse 30 95440 Bayreuth, Germany
| | - Madeleine Gold
- Organic Chemistry Laboratory, University Bayreuth, Universitaetsstrasse 30 95440 Bayreuth, Germany
| | - Consuelo Vicente
- Departamento de Química Inorgánica, Facultad de Química, Biomedical Research Institute of Murcia (IMIB-Arrixaca-UMU), Universidad de Murcia, E-30071 Murcia, Spain
| | - Concepción de Haro
- Departamento de Química Inorgánica, Facultad de Química, Biomedical Research Institute of Murcia (IMIB-Arrixaca-UMU), Universidad de Murcia, E-30071 Murcia, Spain
| | | | - Rainer Schobert
- Organic Chemistry Laboratory, University Bayreuth, Universitaetsstrasse 30 95440 Bayreuth, Germany
| | - José Ruiz
- Departamento de Química Inorgánica, Facultad de Química, Biomedical Research Institute of Murcia (IMIB-Arrixaca-UMU), Universidad de Murcia, E-30071 Murcia, Spain
| |
Collapse
|
44
|
King AP, Marker SC, Swanda RV, Woods JJ, Qian SB, Wilson JJ. A Rhenium Isonitrile Complex Induces Unfolded Protein Response-Mediated Apoptosis in Cancer Cells. Chemistry 2019; 25:9206-9210. [PMID: 31090971 DOI: 10.1002/chem.201902223] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Indexed: 12/31/2022]
Abstract
Complexes of the element Re have recently been shown to possess promising anticancer activity through mechanisms of action that are distinct from the conventional metal-based drug cisplatin. In this study, we report our investigations on the anticancer activity of the complex [Re(CO)3 (dmphen)(p-tol-ICN)]+ (TRIP) in which dmphen=2,9-dimethyl-1,10-phenanthroline and p-tol-ICN=para-tolyl isonitrile. TRIP was synthesized by literature methods and exhaustively characterized. This compound exhibited potent in vitro anticancer activity in a wide variety of cell lines. Flow cytometry and immunostaining experiments indicated that TRIP induces intrinsic apoptosis. Comprehensive biological mechanistic studies demonstrated that this compound triggers the accumulation of misfolded proteins, which causes endoplasmic reticulum (ER) stress, the unfolded protein response, and apoptotic cell death. Furthermore, TRIP induced hyperphosphorylation of eIF2α, translation inhibition, mitochondrial fission, and expression of proapoptotic ATF4 and CHOP. These results establish TRIP as a promising anticancer agent based on its potent cytotoxic activity and ability to induce ER stress.
Collapse
Affiliation(s)
- A Paden King
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Sierra C Marker
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Robert V Swanda
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, 14853, USA
| | - Joshua J Woods
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA.,Robert F. Smith School for Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Shu-Bing Qian
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, 14853, USA
| | - Justin J Wilson
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
| |
Collapse
|
45
|
Novohradsky V, Rovira A, Hally C, Galindo A, Vigueras G, Gandioso A, Svitelova M, Bresolí‐Obach R, Kostrhunova H, Markova L, Kasparkova J, Nonell S, Ruiz J, Brabec V, Marchán V. Towards Novel Photodynamic Anticancer Agents Generating Superoxide Anion Radicals: A Cyclometalated Ir
III
Complex Conjugated to a Far‐Red Emitting Coumarin. Angew Chem Int Ed Engl 2019; 58:6311-6315. [DOI: 10.1002/anie.201901268] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 03/18/2019] [Indexed: 11/09/2022]
Affiliation(s)
- Vojtech Novohradsky
- Institute of Biophysics of the Czech Academy of Sciences Kralovopolska 135 CZ-61265 Brno Czech Republic
| | - Anna Rovira
- Departament de Química Inorgànica i OrgànicaSecció de Química OrgànicaIBUBUniversitat de Barcelona Martí i Franquès 1–11 E-08028 Barcelona Spain
| | - Cormac Hally
- Institut Químic de SarriàUniversitat Ramon Llull Vía Augusta 390 E-08017 Barcelona Spain
| | - Alex Galindo
- Departament de Química Inorgànica i OrgànicaSecció de Química OrgànicaIBUBUniversitat de Barcelona Martí i Franquès 1–11 E-08028 Barcelona Spain
| | - Gloria Vigueras
- Departamento de Química InorgánicaUniversidad de Murcia and Institute for Bio-Health Research of Murcia (IMIB-Arrixaca) Campus de Espinardo E-30071 Murcia Spain
| | - Albert Gandioso
- Departament de Química Inorgànica i OrgànicaSecció de Química OrgànicaIBUBUniversitat de Barcelona Martí i Franquès 1–11 E-08028 Barcelona Spain
| | - Marie Svitelova
- Institute of Biophysics of the Czech Academy of Sciences Kralovopolska 135 CZ-61265 Brno Czech Republic
| | - Roger Bresolí‐Obach
- Institut Químic de SarriàUniversitat Ramon Llull Vía Augusta 390 E-08017 Barcelona Spain
| | - Hana Kostrhunova
- Institute of Biophysics of the Czech Academy of Sciences Kralovopolska 135 CZ-61265 Brno Czech Republic
| | - Lenka Markova
- Institute of Biophysics of the Czech Academy of Sciences Kralovopolska 135 CZ-61265 Brno Czech Republic
| | - Jana Kasparkova
- Institute of Biophysics of the Czech Academy of Sciences Kralovopolska 135 CZ-61265 Brno Czech Republic
| | - Santi Nonell
- Institut Químic de SarriàUniversitat Ramon Llull Vía Augusta 390 E-08017 Barcelona Spain
| | - José Ruiz
- Departamento de Química InorgánicaUniversidad de Murcia and Institute for Bio-Health Research of Murcia (IMIB-Arrixaca) Campus de Espinardo E-30071 Murcia Spain
| | - Viktor Brabec
- Institute of Biophysics of the Czech Academy of Sciences Kralovopolska 135 CZ-61265 Brno Czech Republic
| | - Vicente Marchán
- Departament de Química Inorgànica i OrgànicaSecció de Química OrgànicaIBUBUniversitat de Barcelona Martí i Franquès 1–11 E-08028 Barcelona Spain
| |
Collapse
|
46
|
Novohradsky V, Rovira A, Hally C, Galindo A, Vigueras G, Gandioso A, Svitelova M, Bresolí‐Obach R, Kostrhunova H, Markova L, Kasparkova J, Nonell S, Ruiz J, Brabec V, Marchán V. Towards Novel Photodynamic Anticancer Agents Generating Superoxide Anion Radicals: A Cyclometalated Ir
III
Complex Conjugated to a Far‐Red Emitting Coumarin. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201901268] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Vojtech Novohradsky
- Institute of Biophysics of the Czech Academy of Sciences Kralovopolska 135 CZ-61265 Brno Czech Republic
| | - Anna Rovira
- Departament de Química Inorgànica i OrgànicaSecció de Química OrgànicaIBUBUniversitat de Barcelona Martí i Franquès 1–11 E-08028 Barcelona Spain
| | - Cormac Hally
- Institut Químic de SarriàUniversitat Ramon Llull Vía Augusta 390 E-08017 Barcelona Spain
| | - Alex Galindo
- Departament de Química Inorgànica i OrgànicaSecció de Química OrgànicaIBUBUniversitat de Barcelona Martí i Franquès 1–11 E-08028 Barcelona Spain
| | - Gloria Vigueras
- Departamento de Química InorgánicaUniversidad de Murcia and Institute for Bio-Health Research of Murcia (IMIB-Arrixaca) Campus de Espinardo E-30071 Murcia Spain
| | - Albert Gandioso
- Departament de Química Inorgànica i OrgànicaSecció de Química OrgànicaIBUBUniversitat de Barcelona Martí i Franquès 1–11 E-08028 Barcelona Spain
| | - Marie Svitelova
- Institute of Biophysics of the Czech Academy of Sciences Kralovopolska 135 CZ-61265 Brno Czech Republic
| | - Roger Bresolí‐Obach
- Institut Químic de SarriàUniversitat Ramon Llull Vía Augusta 390 E-08017 Barcelona Spain
| | - Hana Kostrhunova
- Institute of Biophysics of the Czech Academy of Sciences Kralovopolska 135 CZ-61265 Brno Czech Republic
| | - Lenka Markova
- Institute of Biophysics of the Czech Academy of Sciences Kralovopolska 135 CZ-61265 Brno Czech Republic
| | - Jana Kasparkova
- Institute of Biophysics of the Czech Academy of Sciences Kralovopolska 135 CZ-61265 Brno Czech Republic
| | - Santi Nonell
- Institut Químic de SarriàUniversitat Ramon Llull Vía Augusta 390 E-08017 Barcelona Spain
| | - José Ruiz
- Departamento de Química InorgánicaUniversidad de Murcia and Institute for Bio-Health Research of Murcia (IMIB-Arrixaca) Campus de Espinardo E-30071 Murcia Spain
| | - Viktor Brabec
- Institute of Biophysics of the Czech Academy of Sciences Kralovopolska 135 CZ-61265 Brno Czech Republic
| | - Vicente Marchán
- Departament de Química Inorgànica i OrgànicaSecció de Química OrgànicaIBUBUniversitat de Barcelona Martí i Franquès 1–11 E-08028 Barcelona Spain
| |
Collapse
|
47
|
Novohradsky V, Vigueras G, Pracharova J, Cutillas N, Janiak C, Kostrhunova H, Brabec V, Ruiz J, Kasparkova J. Molecular superoxide radical photogeneration in cancer cells by dipyridophenazine iridium(iii) complexes. Inorg Chem Front 2019. [DOI: 10.1039/c9qi00811j] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The switch from Type II to Type I photochemical mechanism by new Ir(iii) complexes for improved PDT of cancer under hypoxia is demonstrated.
Collapse
Affiliation(s)
| | - Gloria Vigueras
- Departamento de Química Inorgánica
- Universidad de Murcia and Institute for Bio-Health Research of Murcia (IMIB-Arrixaca)
- E-30071 Murcia
- Spain
| | - Jitka Pracharova
- Department of Biophysics
- Centre of the Region Hana for Biotechnological and Agricultural Research
- Palacky University
- 783 71 Olomouc
- Czech Republic
| | - Natalia Cutillas
- Departamento de Química Inorgánica
- Universidad de Murcia and Institute for Bio-Health Research of Murcia (IMIB-Arrixaca)
- E-30071 Murcia
- Spain
| | - Christoph Janiak
- Institut für Anorganische Chemie und Strukturchemie
- Heinrich-Heine-Universität Düsseldorf
- 40225 Düsseldorf
- Germany
| | - Hana Kostrhunova
- Czech Academy of Sciences
- Institute of Biophysics
- CZ-61265 Brno
- Czech Republic
| | - Viktor Brabec
- Czech Academy of Sciences
- Institute of Biophysics
- CZ-61265 Brno
- Czech Republic
| | - Jose Ruiz
- Departamento de Química Inorgánica
- Universidad de Murcia and Institute for Bio-Health Research of Murcia (IMIB-Arrixaca)
- E-30071 Murcia
- Spain
| | - Jana Kasparkova
- Czech Academy of Sciences
- Institute of Biophysics
- CZ-61265 Brno
- Czech Republic
| |
Collapse
|
48
|
Ballester FJ, Ortega E, Porto V, Kostrhunova H, Davila-Ferreira N, Bautista D, Brabec V, Domínguez F, Santana MD, Ruiz J. New half-sandwich ruthenium(ii) complexes as proteosynthesis inhibitors in cancer cells. Chem Commun (Camb) 2019; 55:1140-1143. [DOI: 10.1039/c8cc09211g] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
New Ru(ii) arene anticancer complexes with a non-coordinated CHO group that are able to inhibit the protein synthesis; this is a new mode of action for half-sandwich metal complexes.
Collapse
Affiliation(s)
- Francisco J. Ballester
- Departamento de Química Inorgánica
- Facultad de Química
- Biomedical Research Institute of Murcia (IMIB-Arrixaca-UMU)
- Universidad de Murcia
- E-30071 Murcia
| | - Enrique Ortega
- Departamento de Química Inorgánica
- Facultad de Química
- Biomedical Research Institute of Murcia (IMIB-Arrixaca-UMU)
- Universidad de Murcia
- E-30071 Murcia
| | - Vanesa Porto
- CIMUS
- Universidad de Santiago de Compostela
- Avenida Barcelona s/n
- Santiago de Compostela
- Spain
| | - Hana Kostrhunova
- Institute of Biophysics
- Academy of Sciences of the Czech Republic
- v.v.i
- 612 65 Brno
- Czech Republic
| | - Nerea Davila-Ferreira
- CIMUS
- Universidad de Santiago de Compostela
- Avenida Barcelona s/n
- Santiago de Compostela
- Spain
| | | | - Viktor Brabec
- Institute of Biophysics
- Academy of Sciences of the Czech Republic
- v.v.i
- 612 65 Brno
- Czech Republic
| | - Fernando Domínguez
- CIMUS
- Universidad de Santiago de Compostela
- Avenida Barcelona s/n
- Santiago de Compostela
- Spain
| | - M. Dolores Santana
- Departamento de Química Inorgánica
- Facultad de Química
- Biomedical Research Institute of Murcia (IMIB-Arrixaca-UMU)
- Universidad de Murcia
- E-30071 Murcia
| | - José Ruiz
- Departamento de Química Inorgánica
- Facultad de Química
- Biomedical Research Institute of Murcia (IMIB-Arrixaca-UMU)
- Universidad de Murcia
- E-30071 Murcia
| |
Collapse
|
49
|
Thiabendazole-based Rh(III) and Ir(III) biscyclometallated complexes with mitochondria-targeted anticancer activity and metal-sensitive photodynamic activity. Eur J Med Chem 2018; 157:279-293. [DOI: 10.1016/j.ejmech.2018.07.065] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 07/26/2018] [Accepted: 07/28/2018] [Indexed: 11/20/2022]
|
50
|
Pérez-Arnaiz C, Leal J, Busto N, Carrión MC, Rubio AR, Ortiz I, Barone G, Díaz de Greñu B, Santolaya J, Leal JM, Vaquero M, Jalón FA, Manzano BR, García B. Role of Seroalbumin in the Cytotoxicity of cis-Dichloro Pt(II) Complexes with (N^N)-Donor Ligands Bearing Functionalized Tails. Inorg Chem 2018; 57:6124-6134. [PMID: 29722534 DOI: 10.1021/acs.inorgchem.8b00713] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Given the potent anticancer properties of cis-diamminedichloroplatinum(II) and knowing its mode of action, we synthesized four new cis-[PtCl2(N^N)] organoplatinum complexes, two with N-substituted pbi ligands (pbiR = 1-R-2-(2-pyridyl)benzimidazole) (namely, 1 and 2) and two more with 4,4'-disubstituted bpy ligands (bpy = 2,2'-bipyridine) (namely, 3 and 4). We explored their cytotoxicity and ability to bind to deoxyguanosine monophosphate (dGMP), DNA, and albumin models. By 1H NMR and UV-vis spectroscopies, circular dichroism, agarose gel electrophoresis, differential scanning calorimetry measurements, and density functional theory calculations, we verified that only 3 can form aquacomplex species after dimethyl sulfoxide solvation; surprisingly, 1, 2, and 3 can bind covalently to DNA, whereas 4 can form a noncovalent complex. Interestingly, only complexes 1 and 4 exhibit good cytotoxicity against human ovarian carcinoma (HeLa) cell line, whereas 2 and 3 are inactive. Although lung carcinoma (A549) cells are more resistant to the four platinum complexes than HeLa cells, when the protein concentration in the extracellular media is lower, the cytotoxicity becomes substantially enhanced. By native electrophoresis of bovine seroalbumin (BSA) and inductively coupled plasma mass spectrometry uptake studies we bear out, on one hand, that 2 and 3 can interact strongly with BSA and its cellular uptake is negligible and, on the other hand, that 1 and 4 can interact with BSA only weakly, its cellular uptake being higher by several orders. These results point up the important role of the protein binding features on their biological activity and cellular uptake of cis-"PtCl2" derivatives. Our results are valuable in the future rational design of new platinum complexes with improved biological properties, as they expose the importance not only of their DNA binding abilities but also of additional factors such as protein binding.
Collapse
Affiliation(s)
- Cristina Pérez-Arnaiz
- Departamento de Química , Universidad de Burgos , Plaza Misael Bañuelos s/n , 09001 Burgos , Spain
| | - Jorge Leal
- Facultad de Ciencias y Tecnologías Químicas-IRICA , Universidad de Castilla-La Mancha , Avda. Camilo J. Cela 10 , 13071 Ciudad Real , Spain
| | - Natalia Busto
- Departamento de Química , Universidad de Burgos , Plaza Misael Bañuelos s/n , 09001 Burgos , Spain
| | - María C Carrión
- Facultad de Ciencias y Tecnologías Químicas-IRICA , Universidad de Castilla-La Mancha , Avda. Camilo J. Cela 10 , 13071 Ciudad Real , Spain
| | - Ana R Rubio
- Departamento de Química , Universidad de Burgos , Plaza Misael Bañuelos s/n , 09001 Burgos , Spain
| | - Imanol Ortiz
- Facultad de Ciencias y Tecnologías Químicas-IRICA , Universidad de Castilla-La Mancha , Avda. Camilo J. Cela 10 , 13071 Ciudad Real , Spain
| | - Giampaolo Barone
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche , Università degli Studi di Palermo , Viale delle Scienze Ed. 17 , 90128 Palermo , Italy
| | - Borja Díaz de Greñu
- Facultad de Ciencias y Tecnologías Químicas-IRICA , Universidad de Castilla-La Mancha , Avda. Camilo J. Cela 10 , 13071 Ciudad Real , Spain
| | - Javier Santolaya
- Departamento de Química , Universidad de Burgos , Plaza Misael Bañuelos s/n , 09001 Burgos , Spain
| | - José M Leal
- Departamento de Química , Universidad de Burgos , Plaza Misael Bañuelos s/n , 09001 Burgos , Spain
| | - Mónica Vaquero
- Departamento de Química , Universidad de Burgos , Plaza Misael Bañuelos s/n , 09001 Burgos , Spain
| | - Félix A Jalón
- Facultad de Ciencias y Tecnologías Químicas-IRICA , Universidad de Castilla-La Mancha , Avda. Camilo J. Cela 10 , 13071 Ciudad Real , Spain
| | - Blanca R Manzano
- Facultad de Ciencias y Tecnologías Químicas-IRICA , Universidad de Castilla-La Mancha , Avda. Camilo J. Cela 10 , 13071 Ciudad Real , Spain
| | - Begoña García
- Departamento de Química , Universidad de Burgos , Plaza Misael Bañuelos s/n , 09001 Burgos , Spain
| |
Collapse
|