1
|
Karg CA, Taniguchi M, Lindsey JS, Moser S. Phyllobilins - Bioactive Natural Products Derived from Chlorophyll - Plant Origins, Structures, Absorption Spectra, and Biomedical Properties. PLANTA MEDICA 2023; 89:637-662. [PMID: 36198325 DOI: 10.1055/a-1955-4624] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Phyllobilins are open-chain products of the biological degradation of chlorophyll a in higher plants. Recent studies reveal that phyllobilins exert anti-oxidative and anti-inflammatory properties, as well as activities against cancer cells, that contribute to the human health benefits of numerous plants. In general, phyllobilins have been overlooked in phytochemical analyses, and - more importantly - in the analyses of medicinal plant extracts. Nevertheless, over the past three decades, > 70 phyllobilins have been identified upon examination of more than 30 plant species. Eight distinct chromophoric classes of phyllobilins are known: phyllolumibilins (PluBs), phylloleucobilins (PleBs), phylloxanthobilins (PxBs), and phylloroseobilins (PrBs)-each in type-I or type-II groups. Here, we present a database of absorption and fluorescence spectra that has been compiled of 73 phyllobilins to facilitate identification in phytochemical analyses. The spectra are provided in digital form and can be viewed and downloaded at www.photochemcad.com. The present review describes the plant origin, molecular structure, and absorption and fluorescence features of the 73 phyllobilins, along with an overview of key medicinal properties. The review should provide an enabling tool for the community for the straightforward identification of phyllobilins in plant extracts, and the foundation for deeper understanding of these ubiquitous but underexamined plant-derived micronutrients for human health.
Collapse
Affiliation(s)
- Cornelia A Karg
- Department of Pharmacy, Pharmaceutical Biology, Ludwig-Maximilian University of Munich, Germany
| | | | | | - Simone Moser
- Department of Pharmacy, Pharmaceutical Biology, Ludwig-Maximilian University of Munich, Germany
| |
Collapse
|
2
|
Karg CA, Parráková L, Fuchs D, Schennach H, Kräutler B, Moser S, Gostner JM. A Chlorophyll-Derived Phylloxanthobilin Is a Potent Antioxidant That Modulates Immunometabolism in Human PBMC. Antioxidants (Basel) 2022; 11:antiox11102056. [PMID: 36290779 PMCID: PMC9599000 DOI: 10.3390/antiox11102056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 09/30/2022] [Accepted: 10/07/2022] [Indexed: 11/16/2022] Open
Abstract
Phyllobilins are natural products derived from the degradation of chlorophyll, which proceeds via a common and strictly controlled pathway in higher plants. The resulting tetrapyrrolic catabolites—the phyllobilins—are ubiquitous in nature; despite their high abundance, there is still a lack of knowledge about their physiological properties. Phyllobilins are part of human nutrition and were shown to be potent antioxidants accounting with interesting physiological properties. Three different naturally occurring types of phyllobilins—a phylloleucobilin, a dioxobilin-type phylloleucobilin and a phylloxanthobilin (PxB)—were compared regarding potential antioxidative properties in a cell-free and in a cell-based antioxidant activity test system, demonstrating the strongest effect for the PxB. Moreover, the PxB was investigated for its capacity to interfere with immunoregulatory metabolic pathways of tryptophan breakdown in human blood peripheral mononuclear cells. A dose-dependent inhibition of tryptophan catabolism to kynurenine was observed, suggesting a suppressive effect on pathways of cellular immune activation. Although the exact mechanisms of immunomodulatory effects are yet unknown, these prominent bioactivities point towards health-relevant effects, which warrant further mechanistic investigations and the assessment of the in vivo extrapolatability of results. Thus, phyllobilins are a still surprisingly unexplored family of natural products that merit further investigation.
Collapse
Affiliation(s)
- Cornelia A. Karg
- Department of Pharmaceutical Biology, Ludwig-Maximilian University of Munich, Butenandtstr. 5–13, 81977 Munich, Germany
| | - Lucia Parráková
- Institute of Medical Biochemistry, Medical University of Innsbruck, Innrain 80, 6020 Innsbruck, Austria
| | - Dietmar Fuchs
- Institute of Biological Chemistry, Medical University of Innsbruck, Innrain 80, 6020 Innsbruck, Austria
| | - Harald Schennach
- Central Institute of Blood Transfusion and Immunology, University Hospital, Anichstr. 35, 6020 Innsbruck, Austria
| | - Bernhard Kräutler
- Institute of Organic Chemistry, Center for Molecular Biosciences, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Simone Moser
- Department of Pharmaceutical Biology, Ludwig-Maximilian University of Munich, Butenandtstr. 5–13, 81977 Munich, Germany
- Correspondence: (S.M.); (J.M.G.); Tel.: +49-89-2180-77175 (S.M.); +43-512-9003-70120 (J.M.G.)
| | - Johanna M. Gostner
- Institute of Medical Biochemistry, Medical University of Innsbruck, Innrain 80, 6020 Innsbruck, Austria
- Correspondence: (S.M.); (J.M.G.); Tel.: +49-89-2180-77175 (S.M.); +43-512-9003-70120 (J.M.G.)
| |
Collapse
|
3
|
Hauenstein M, Hörtensteiner S, Aubry S. Side-chain modifications of phyllobilins may not be essential for chlorophyll degradation in Arabidopsis. PLANT DIRECT 2022; 6:e441. [PMID: 36035897 PMCID: PMC9399834 DOI: 10.1002/pld3.441] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 08/02/2022] [Accepted: 08/03/2022] [Indexed: 05/27/2023]
Abstract
Disposing efficiently and safely chlorophyll derivatives during senescence requires a coordinated pathway that is well conserved throughout green plants. The PAO/phyllobilin pathway catalyzes the degradation of the chlorophyll during senescence and allows detoxification of the pigment and its subsequent export from the chloroplast. Although most of the chloroplastic reactions involved in chlorophyll degradation are well understood, the diversity of enzymes responsible for downstream modifications of non-phototoxic phyllobilins remains to be explored. More than 40 phyllobilins have been described to date, but only three enzymes catalyzing side-chain reactions have been identified in Arabidopsis thaliana, namely, TIC55, CYP89A9, and MES16. Here, by generating a triple mutant, we evaluate the extent to which these enzymes are influencing the rate and amplitude of chlorophyll degradation at the metabolite as well as its regulation at the transcriptome level. Our data show that major side-chain modifications of phyllobilins do not influence significantly chlorophyll degradation or leaf senescence, letting the physiological relevance of their striking diversity an open question.
Collapse
Affiliation(s)
- Mareike Hauenstein
- Department of Plant and Microbial BiologyUniversity of ZürichZürichSwitzerland
| | | | - Sylvain Aubry
- Department of Plant and Microbial BiologyUniversity of ZürichZürichSwitzerland
| |
Collapse
|
4
|
Wang P, Karg CA, Frey N, Frädrich J, Vollmar AM, Moser S. Phyllobilins as a challenging diverse natural product class: Exploration of pharmacological activities. Arch Pharm (Weinheim) 2021; 354:e2100061. [PMID: 34155668 DOI: 10.1002/ardp.202100061] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 05/26/2021] [Accepted: 05/31/2021] [Indexed: 11/08/2022]
Abstract
Phyllobilins are a group of chlorophyll-derived bilin-type linear tetrapyrroles, generated in the process of chlorophyll breakdown. Since the first phyllobilin was isolated and characterized in 1991, more and more structures of these chlorophyll catabolites were identified alongside the biochemical players involved in chlorophyll breakdown. In the meantime, phyllobilins are known to occur in a large natural structural variety, and new modifications are still being discovered. Phyllobilins have been regarded as products of chlorophyll detoxification for a very long time, hence they have been completely overlooked as a natural product class in terms of their biological role or pharmacological activity. A change of this paradigm, however, is long overdue. Here, we review the current knowledge of the pharmacological activities of phyllobilins and give an overview of the diverse structural modifications, laying the groundwork for analyzing their role(s) as active components in medicinal plants.
Collapse
Affiliation(s)
- Pengyu Wang
- Pharmaceutical Biology, Department of Pharmacy, Ludwig-Maximilians University of Munich, Munich, Germany
| | - Cornelia A Karg
- Pharmaceutical Biology, Department of Pharmacy, Ludwig-Maximilians University of Munich, Munich, Germany
| | - Nadine Frey
- Pharmaceutical Biology, Department of Pharmacy, Ludwig-Maximilians University of Munich, Munich, Germany
| | - Julian Frädrich
- Pharmaceutical Biology, Department of Pharmacy, Ludwig-Maximilians University of Munich, Munich, Germany
| | - Angelika M Vollmar
- Pharmaceutical Biology, Department of Pharmacy, Ludwig-Maximilians University of Munich, Munich, Germany
| | - Simone Moser
- Pharmaceutical Biology, Department of Pharmacy, Ludwig-Maximilians University of Munich, Munich, Germany
| |
Collapse
|
5
|
Li C, Podewitz M, Kräutler B. A Blue Zinc Complex of a Dioxobilin‐Type Pink Chlorophyll Catabolite Exhibiting Bright Chelation‐Enhanced Red Fluorescence. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202100206] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Chengjie Li
- Institute of Organic Chemistry University of Innsbruck Innrain 80/82 6020 Innsbruck Austria
- Center of Molecular Biosciences University of Innsbruck (CMBI) Innrain 80/82 6020 Innsbruck Austria
- Present address: Key Laboratory for Advanced Materials and Institute of Fine Chemicals School of Chemistry & Molecular Engineering East China University of Science & Technology Meilong Rd 130 200237 Shanghai China
| | - Maren Podewitz
- Center of Molecular Biosciences University of Innsbruck (CMBI) Innrain 80/82 6020 Innsbruck Austria
- Institute of General Inorganic and Theoretical Chemistry University of Innsbruck Innrain 80/82 6020 Innsbruck Austria
| | - Bernhard Kräutler
- Institute of Organic Chemistry University of Innsbruck Innrain 80/82 6020 Innsbruck Austria
- Center of Molecular Biosciences University of Innsbruck (CMBI) Innrain 80/82 6020 Innsbruck Austria
| |
Collapse
|
6
|
Karg CA, Wang P, Kluibenschedl F, Müller T, Allmendinger L, Vollmar AM, Moser S. Phylloxanthobilins are Abundant Linear Tetrapyrroles from Chlorophyll Breakdown with Activities Against Cancer Cells. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000692] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Cornelia A. Karg
- Pharmaceutical Biology Pharmacy Department Ludwig‐Maximilians University of Munich Butenandtstraße 5‐13 81377 Munich Germany
| | - Pengyu Wang
- Pharmaceutical Biology Pharmacy Department Ludwig‐Maximilians University of Munich Butenandtstraße 5‐13 81377 Munich Germany
| | - Florian Kluibenschedl
- Institute of Organic Chemistry University of Innsbruck Innrain 80‐82 6020 Innsbruck Austria
| | - Thomas Müller
- Institute of Organic Chemistry University of Innsbruck Innrain 80‐82 6020 Innsbruck Austria
| | - Lars Allmendinger
- Pharmaceutical Chemistry Pharmacy Department Ludwig‐Maximilians University of Munich Butenandtstraße 5‐13 81377 Munich Germany
| | - Angelika M. Vollmar
- Pharmaceutical Biology Pharmacy Department Ludwig‐Maximilians University of Munich Butenandtstraße 5‐13 81377 Munich Germany
| | - Simone Moser
- Pharmaceutical Biology Pharmacy Department Ludwig‐Maximilians University of Munich Butenandtstraße 5‐13 81377 Munich Germany
| |
Collapse
|
7
|
Roca M, Pérez-Gálvez A. Profile of Chlorophyll Catabolites in Senescent Leaves of Epipremnun aureum Includes a Catabolite Esterified with Hydroxytyrosol 1- O-Glucoside. JOURNAL OF NATURAL PRODUCTS 2020; 83:873-880. [PMID: 32134654 DOI: 10.1021/acs.jnatprod.9b00546] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Despite the fact that chlorophyll degradation is a physiological phenomenon occurring daily in all photosynthetic tissues, chlorophyll catabolites are not fully identified. Three new forms (1, 3, and 4) of linear chlorophyll catabolites (phyllobilins) have been characterized in senescent leaves of Epipremnun aureum with spectroscopic data. Compound 1 is a hypermodified blue fluorescent chlorophyll catabolite (hmFCC) esterified with the potent antioxidant hydroxytyrosol. The sequestration of this phenol by a chlorophyll catabolite could explain the physiological meaning of the persistence of hmFCCs in some senescent plants. Compound 3, a yellow chlorophyll catabolite (YCC) originated from the oxidation at C-15 of 1. YCCs have been identified previously and are exclusively formed in the plant vacuole from the final nonfluorescent chlorophyll catabolites (NCCs). The presence of 3 in leaves implies a new reaction in chlorophyll catabolism, as the characterization of 3 implies that YCCs can be also be oxidized in the cytosol from FCCs. Finally, phyllobilin 4 represents a new type of YCC characterized by an inflexible bicyclo glucosyl moiety linked through an intramolecular esterification of the propionic acid residue with the C-3 hydroxy group. The corresponding NCC precursor was recently identified and now the characterization of 4 shows that even this rigid structure can be further oxidized. Undoubtedly, the characterization of phyllobilins is essential to completely comprehend chlorophyll degradation.
Collapse
Affiliation(s)
- María Roca
- Food Phytochemistry Department, Instituto de la Grasa (CSIC), University Campus, Building 46, 41013 Sevilla, Spain
| | - Antonio Pérez-Gálvez
- Food Phytochemistry Department, Instituto de la Grasa (CSIC), University Campus, Building 46, 41013 Sevilla, Spain
| |
Collapse
|
8
|
Süssenbacher I, Menghini D, Scherzer G, Salinger K, Erhart T, Moser S, Vergeiner C, Hörtensteiner S, Kräutler B. Cryptic chlorophyll breakdown in non-senescent green Arabidopsis thaliana leaves. PHOTOSYNTHESIS RESEARCH 2019; 142:69-85. [PMID: 31172355 DOI: 10.1007/s11120-019-00649-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Accepted: 05/20/2019] [Indexed: 06/09/2023]
Abstract
Chlorophyll (Chl) breakdown is a diagnostic visual process of leaf senescence, which furnishes phyllobilins (PBs) by the PAO/phyllobilin pathway. As Chl breakdown disables photosynthesis, it appears to have no role in photoactive green leaves. Here, colorless PBs were detected in green, non-senescent leaves of Arabidopsis thaliana. The PBs from the green leaves had structures entirely consistent with the PAO/phyllobilin pathway and the mutation of a single Chl catabolic enzyme completely abolished PBs with the particular modification. Hence, the PAO/phyllobilin pathway was active in the absence of visible senescence and expression of genes encoding Chl catabolic enzymes was observed in green Arabidopsis leaves. PBs accumulated to only sub-% amounts compared to the Chls present in the green leaves, excluding a substantial contribution of Chl breakdown from rapid Chl turnover associated with photosystem II repair. Indeed, Chl turnover was shown to involve a Chl a dephytylation and Chl a reconstitution cycle. However, non-recyclable pheophytin a is also liberated in the course of photosystem II repair, and is proposed here to be scavenged and degraded to the observed PBs. Hence, a cryptic form of the established pathway of Chl breakdown is indicated to play a constitutive role in photoactive leaves.
Collapse
Affiliation(s)
- Iris Süssenbacher
- Institute of Organic Chemistry and Centre of Molecular Biosciences, University of Innsbruck, Innrain 80/82, 6020, Innsbruck, Austria
| | - Damian Menghini
- Institute of Plant and Microbial Biology, University of Zürich, Zollikerstrasse 107, 8008, Zurich, Switzerland
| | - Gerhard Scherzer
- Institute of Organic Chemistry and Centre of Molecular Biosciences, University of Innsbruck, Innrain 80/82, 6020, Innsbruck, Austria
| | - Kathrin Salinger
- Institute of Plant and Microbial Biology, University of Zürich, Zollikerstrasse 107, 8008, Zurich, Switzerland
| | - Theresia Erhart
- Institute of Organic Chemistry and Centre of Molecular Biosciences, University of Innsbruck, Innrain 80/82, 6020, Innsbruck, Austria
| | - Simone Moser
- Institute of Organic Chemistry and Centre of Molecular Biosciences, University of Innsbruck, Innrain 80/82, 6020, Innsbruck, Austria
| | - Clemens Vergeiner
- Institute of Organic Chemistry and Centre of Molecular Biosciences, University of Innsbruck, Innrain 80/82, 6020, Innsbruck, Austria
| | - Stefan Hörtensteiner
- Institute of Plant and Microbial Biology, University of Zürich, Zollikerstrasse 107, 8008, Zurich, Switzerland.
| | - Bernhard Kräutler
- Institute of Organic Chemistry and Centre of Molecular Biosciences, University of Innsbruck, Innrain 80/82, 6020, Innsbruck, Austria.
| |
Collapse
|
9
|
Karg CA, Wang P, Vollmar AM, Moser S. Re-opening the stage for Echinacea research - Characterization of phylloxanthobilins as a novel anti-oxidative compound class in Echinacea purpurea. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 60:152969. [PMID: 31153733 DOI: 10.1016/j.phymed.2019.152969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 05/19/2019] [Accepted: 05/22/2019] [Indexed: 05/07/2023]
Abstract
BACKGROUND Phylloxanthobilins are tetrapyrrolic natural products that arise from the degradation of chlorophyll. Phylloxanthobilins have been discovered roughly 10 years ago in the leaves of deciduous trees, and are now considered a compound class with high and still unexplored potential of bioactivities. To date, however, there are no reports on the occurrence of phylloxanthobilins in parts of a medicinal plant used for pharmaceutical preparations. PURPOSE The relevance of Echinacea purpurea as medicinal plant is undoubtedly high, and a large variety of pharmaceutical preparations is available on the market, mostly for the treatment of the common cold. Nevertheless, its phytochemical profiling has been limited to analysis for previously characterized substances, and this has not explained all its pharmacological efficacies. We therefore set out to investigate the occurrence of phylloxanthobilins in Echinacea purpurea. METHODS Phylloxanthobilins in leaf extracts of Echinacea purpurea were detected using analytical HPLC. Identified phyllobilins were purified from plant material and characterized by UV/Vis, mass spectrometry, MS/MS, and confirmed by co-injections with previously published phyllobilins from different sources. The anti-oxidant activity of selected isolated phylloxanthobilins was assessed by an in vitro ferric reducing antioxidant power (FRAP) assay; in addition, the ability to scavenge ROS in cells caused by hydrogen peroxide stimulation was determined by measuring H2DCF-DA fluorescence and by assessing cellular GSH levels. RESULTS In extracts of Echinacea purpurea leaves, an unprecedented diversity of phylloxanthobilins was detected; surprisingly, not only in senescent yellow leaves, but also in green leaves with no visible chlorophyll degradation. Six phylloxanthobilins were identified and structurally characterized. The uptake of phylloxanthobilins by human endothelial kidney cells was demonstrated. When investigating the anti-oxidative activity of these natural products, a potent in vitro activity was demonstrated; in addition, phylloxanthobilins possess intracellular ROS scavenging ability and can prevent oxidative stress as assessed by total cellular GSH levels. CONCLUSION Phylloxanthobilins are important constituents of Echinacea purpurea extracts, and our first exploratory studies hint towards promising bioactivities of these natural products, which may be relevant for understanding Echinacea efficacies.
Collapse
Affiliation(s)
- Cornelia A Karg
- Pharmaceutical Biology, Department Pharmacy, Ludwig-Maximilians University of Munich, Butenandtstraße 5-13, Munich 81377, Germany
| | - Pengyu Wang
- Pharmaceutical Biology, Department Pharmacy, Ludwig-Maximilians University of Munich, Butenandtstraße 5-13, Munich 81377, Germany
| | - Angelika M Vollmar
- Pharmaceutical Biology, Department Pharmacy, Ludwig-Maximilians University of Munich, Butenandtstraße 5-13, Munich 81377, Germany
| | - Simone Moser
- Pharmaceutical Biology, Department Pharmacy, Ludwig-Maximilians University of Munich, Butenandtstraße 5-13, Munich 81377, Germany.
| |
Collapse
|
10
|
Moser S, Kräutler B. In Search of Bioactivity - Phyllobilins, an Unexplored Class of Abundant Heterocyclic Plant Metabolites from Breakdown of Chlorophyll. Isr J Chem 2019; 59:420-431. [PMID: 31244492 PMCID: PMC6582504 DOI: 10.1002/ijch.201900012] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 03/30/2019] [Accepted: 03/31/2019] [Indexed: 12/04/2022]
Abstract
The fate of the green plant pigment chlorophyll (Chl) in de-greening leaves has long been a fascinating biological puzzle. In the course of the last three decades, various bilin-type products of Chl breakdown have been identified, named phyllobilins (PBs). Considered 'mere' leftovers of a controlled biological Chl detoxification originally, the quest for finding relevant bioactivities of the PBs has become a new paradigm. Indeed, the PBs are abundant in senescent leaves, in ripe fruit and in some vegetables, and they display an exciting array of diverse heterocyclic structures. This review outlines briefly which types of Chl breakdown products occur in higher plants, describes basics of their bio-relevant structural and chemical properties and gives suggestions as to 'why' the plants produce vast amounts of uniquely 'decorated' heterocyclic compounds. Clearly, it is worthwhile to consider crucial metabolic roles of PBs in plants, which may have practical consequences in agriculture and horticulture. However, PBs are also part of our plant-based nutrition and their physiological and pharmacological effects in humans are of interest, as well.
Collapse
Affiliation(s)
- Simone Moser
- Pharmaceutical Biology, Pharmacy DepartmentLudwig-Maximilians University of MunichButenandtstraße 5–1381377MunichGermany
| | - Bernhard Kräutler
- Institute of Organic Chemistry and Centre of Molecular BiosciencesUniversity of Innsbruck. Innrain 80/826020InnsbruckAustria
| |
Collapse
|
11
|
Li C, Kräutler B. A pink colored dioxobilin-type phyllobilin from breakdown of chlorophyll. MONATSHEFTE FUR CHEMIE 2019. [DOI: 10.1007/s00706-019-02396-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
12
|
Li C, Erhart T, Liu X, Kräutler B. Yellow Dioxobilin-Type Tetrapyrroles from Chlorophyll Breakdown in Higher Plants-A New Class of Colored Phyllobilins. Chemistry 2019; 25:4052-4057. [PMID: 30688378 PMCID: PMC6563717 DOI: 10.1002/chem.201806038] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Indexed: 11/11/2022]
Abstract
In senescent leaves chlorophyll (Chl) catabolites typically accumulate as colorless tetrapyrroles, classified as formyloxobilin-type (or type-I) or dioxobilin-type (type-II) phyllobilins (PBs). Yellow type-I Chl catabolites (YCCs) also occur in some senescent leaves, in which they are generated by oxidation of colorless type-I PBs. A yellow type-II PB was recently proposed to occur in extracts of fall leaves of grapevine (Vitis vinifera), tentatively identified by its mass and UV/Vis absorption characteristics. Here, the first synthesis of a yellow type-II Chl catabolite (DYCC) from its presumed natural colorless type-II precursor is reported. A homogenate of a Spatiphyllum wallisii leaf was used as "green" means of effective and selective oxidation. The synthetic DYCC was fully characterized and identified with the yellow grapevine leaf pigment. As related yellow type-I PBs do, the DYCC functions as a reversible photoswitch by undergoing selective photo-induced Z/E isomerization of its C15=C16 bond.
Collapse
Affiliation(s)
- Chengjie Li
- Institute of Organic Chemistry & Centre of, Molecular Biosciences Innsbruck (CMBI)University of InnsbruckInnrain 80/826020InnsbruckAustria
- Present address: Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry & Molecular EngineeringEast China University of Science & TechnologyMeilong Rd 130200237ShanghaiChina
| | - Theresia Erhart
- Institute of Organic Chemistry & Centre of, Molecular Biosciences Innsbruck (CMBI)University of InnsbruckInnrain 80/826020InnsbruckAustria
| | - Xiujun Liu
- Institute of Organic Chemistry & Centre of, Molecular Biosciences Innsbruck (CMBI)University of InnsbruckInnrain 80/826020InnsbruckAustria
- Present address: Research Center of Analysis and TestEast China University of Science & TechnologyMeilong Rd 130200237ShanghaiChina
| | - Bernhard Kräutler
- Institute of Organic Chemistry & Centre of, Molecular Biosciences Innsbruck (CMBI)University of InnsbruckInnrain 80/826020InnsbruckAustria
| |
Collapse
|
13
|
Erhart T, Mittelberger C, Liu X, Podewitz M, Li C, Scherzer G, Stoll G, Valls J, Robatscher P, Liedl KR, Oberhuber M, Kräutler B. Novel Types of Hypermodified Fluorescent Phyllobilins from Breakdown of Chlorophyll in Senescent Leaves of Grapevine (Vitis vinifera). Chemistry 2018; 24:17268-17279. [PMID: 30079972 PMCID: PMC6282590 DOI: 10.1002/chem.201803128] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Indexed: 01/04/2023]
Abstract
The tetrapyrrolic chlorophyll catabolites (or phyllobilins, PBs) were analyzed in yellow fall leaves of the grape Chardonnay, a common Vitis vinifera white wine cultivar. The major fractions in leaf extracts of V. vinifera, tentatively assigned to PBs, were isolated and their structures elucidated. The dominant fraction is a dioxobilin-type non-fluorescent Chl-catabolite of a previously observed type. Two less polar fluorescent PBs were characterized as a novel dioxobilin-type fluorescent Chl-catabolite with a bicyclo-1',6'-glycosyl architecture, and its new fluorescent formyloxobilin-type analogue. The discovery of persistent hypermodified fluorescent PBs with the architecture of bicyclo-[17.3.1]-PBs (bcPBs), suggests the activity of an unknown enzyme that forges the 20-membered macroring at the tetrapyrrolic core of a fluorescent PB. bcPBs may play specific physiological roles in grapevine plants and represent endogenous anti-infective agents, as found similarly for other organic bicyclo-[n.3.1]-1',6'-glycosyl derivatives.
Collapse
Affiliation(s)
- Theresia Erhart
- Institute of Organic Chemistry & Centre of Molecular BiosciencesUniversity of InnsbruckInnrain 80/826020InnsbruckAustria
| | | | - Xiujun Liu
- Institute of Organic Chemistry & Centre of Molecular BiosciencesUniversity of InnsbruckInnrain 80/826020InnsbruckAustria
- Present address: Research Center of Analysis and TestEast China University of Science & TechnologyMeilong Rd 130200237ShanghaiChina
| | - Maren Podewitz
- Institute of General, Inorganic and Theoretical Chemistry & Centre of, Molecular BiosciencesUniversity of InnsbruckInnrain 80/826020InnsbruckAustria
| | - Chengjie Li
- Institute of Organic Chemistry & Centre of Molecular BiosciencesUniversity of InnsbruckInnrain 80/826020InnsbruckAustria
- Present address: Key Laboratory for Advanced Materials & Institute of, Fine Chemicals, School of Chemistry & Molecular EngineeringEast China University of Science & TechnologyMeilong Rd 130200237ShanghaiChina
| | - Gerhard Scherzer
- Institute of Organic Chemistry & Centre of Molecular BiosciencesUniversity of InnsbruckInnrain 80/826020InnsbruckAustria
| | - Gertrud Stoll
- Laimburg Research CentreLaimburg 6-Pfatten (Vadena)39040Auer (Ora), BZItaly
| | - Josep Valls
- Laimburg Research CentreLaimburg 6-Pfatten (Vadena)39040Auer (Ora), BZItaly
- Present address: Faculté des Sciences Pharmaceutiques, Unité de Recherche Enologie EA 4577Université de Bordeaux33882Villenave d'OrnonFrance
| | - Peter Robatscher
- Laimburg Research CentreLaimburg 6-Pfatten (Vadena)39040Auer (Ora), BZItaly
| | - Klaus R. Liedl
- Institute of General, Inorganic and Theoretical Chemistry & Centre of, Molecular BiosciencesUniversity of InnsbruckInnrain 80/826020InnsbruckAustria
| | - Michael Oberhuber
- Laimburg Research CentreLaimburg 6-Pfatten (Vadena)39040Auer (Ora), BZItaly
| | - Bernhard Kräutler
- Institute of Organic Chemistry & Centre of Molecular BiosciencesUniversity of InnsbruckInnrain 80/826020InnsbruckAustria
| |
Collapse
|