1
|
Li Y, Liang T, Liu JQ, Wang XS. Pd(OAc) 2-Catalyzed Synthesis of Imidazo[1,2- f]phenanthridines via a Sequential Ullmann Coupling and Oxidative Coupling Dehydrogenation. J Org Chem 2025; 90:1-7. [PMID: 39742413 DOI: 10.1021/acs.joc.4c00795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
The Ullmann coupling and oxidative coupling dehydrogenation reactions have occurred sequentially, catalyzed by Pd(OAc)2, which unexpectedly yielded fused imidazo[1,2-f]phenanthridine derivatives in good to high yields. Structural analysis of the intermediate and final products indicated that the protocol did not include C-H and N-H arylation.
Collapse
Affiliation(s)
- Ye Li
- School of Chemistry and Materials Science, Jiangsu Key Laboratory of Green Synthesis for Functional Materials, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China
| | - Tongwei Liang
- School of Chemistry and Materials Science, Jiangsu Key Laboratory of Green Synthesis for Functional Materials, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China
| | - Jian-Quan Liu
- School of Chemistry and Materials Science, Jiangsu Key Laboratory of Green Synthesis for Functional Materials, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China
| | - Xiang-Shan Wang
- School of Chemistry and Materials Science, Jiangsu Key Laboratory of Green Synthesis for Functional Materials, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China
| |
Collapse
|
2
|
Dangar S, Roy T, Noskar S, Bisai A. Total synthesis of bicyclomahanimbine by Cu(ii)-promoted photoredox process. RSC Adv 2024; 14:30110-30115. [PMID: 39315021 PMCID: PMC11417510 DOI: 10.1039/d4ra05863a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 09/16/2024] [Indexed: 09/25/2024] Open
Abstract
Since the isolation of carbazole alkaloids, the synthetic chemists have witnessed an upsurge in research of them due to their potential pharmacological properties. Our approach shows the total syntheses of five such biorelevant pyrano-[3,2a]-carbazole alkaloids, emphasizing biomimetic and innovative synthetic methodologies such as cascade reactions and strategic bond formations through sustainable electrochemical and photochemical conditions.
Collapse
Affiliation(s)
- Shilpa Dangar
- Indian Institute of Science Education and Research Kolkata Mohanpur, Nadia West Bengal 741246 India
| | - Tiyasa Roy
- Indian Institute of Science Education and Research Kolkata Mohanpur, Nadia West Bengal 741246 India
| | - Suman Noskar
- Indian Institute of Science Education and Research Kolkata Mohanpur, Nadia West Bengal 741246 India
| | - Alakesh Bisai
- Indian Institute of Science Education and Research Kolkata Mohanpur, Nadia West Bengal 741246 India
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal Bhauri Bhopal 462 066 Madhya Pradesh India
| |
Collapse
|
3
|
Hashmi SZ, Bareth D, Dwivedi J, Kishore D, Alvi PA. Green advancements towards the electrochemical synthesis of heterocycles. RSC Adv 2024; 14:18192-18246. [PMID: 38854834 PMCID: PMC11157331 DOI: 10.1039/d4ra02812k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 05/22/2024] [Indexed: 06/11/2024] Open
Abstract
Heterocyclic chemistry is a large field with diverse applications in the areas of biological research and pharmaceutical advancement. Numerous initiatives have been proposed to further enhance the reaction conditions to reach these compounds without using harmful compounds. This paper focuses on the recent advances in the eco-friendly and green synthetic procedures to synthesize N-, S-, and O-heterocycles. This approach demonstrates considerable potential in accessing such compounds while circumventing the need for stoichiometric quantities of oxidizing/reducing agents or catalysts containing precious metals. Merely employing catalytic quantities of these substances proves sufficient, thereby offering an optimal means of contributing to resource efficiency. Renewable electricity plays a crucial role in generating environmentally friendly electrons (oxidant/reductant) that serve as catalysts for a series of reactions. These reactions involve the production of reactive intermediates, which in turn allow the synthesis of new chemical bonds, enabling beneficial transformations to occur. Furthermore, the utilization of metals as active catalysts in electrochemical activation has been recognized as an effective approach for achieving selective functionalization. The aim of this review was to summarize the electrochemical synthetic procedures so that the undesirable side reactions can be considerably reduced and the practical potential range of the chemical reactions can be expanded significantly.
Collapse
Affiliation(s)
- Sonia Zeba Hashmi
- Department of Chemistry, Banasthali Vidyapith Banasthali-304022 Rajasthan India
| | - Diksha Bareth
- Department of Chemistry, Banasthali Vidyapith Banasthali-304022 Rajasthan India
| | - Jaya Dwivedi
- Department of Chemistry, Banasthali Vidyapith Banasthali-304022 Rajasthan India
| | - Dharma Kishore
- Department of Chemistry, Banasthali Vidyapith Banasthali-304022 Rajasthan India
| | - P A Alvi
- Department of Physical Sciences, Banasthali Vidyapith Banasthali-304022 Rajasthan India
| |
Collapse
|
4
|
Bieniek JC, Mashtakov B, Schollmeyer D, Waldvogel SR. Dehydrogenative Electrochemical Synthesis of N-Aryl-3,4-Dihydroquinolin-2-ones by Iodine(III)-Mediated Coupling Reaction. Chemistry 2024; 30:e202303388. [PMID: 38018461 DOI: 10.1002/chem.202303388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 11/12/2023] [Accepted: 11/23/2023] [Indexed: 11/30/2023]
Abstract
Electrochemically generated hypervalent iodine(III) species are powerful reagents for oxidative C-N coupling reactions, providing access to valuable N-heterocycles. A new electrocatalytic hypervalent iodine(III)-mediated in-cell synthesis of 1H-N-aryl-3,4-dihydroquinolin-2-ones by dehydrogenative C-N bond formation is presented. Catalytic amounts of the redox mediator, a low supporting electrolyte concentration and recycling of the solvent used make this method a sustainable alternative to electrochemical ex-cell or conventional approaches. Furthermore, inexpensive, readily available electrode materials and a simple galvanostatic set-up are applied. The broad functional group tolerance could be demonstrated by synthesizing 23 examples in yields up to 96 %, with one reaction being performed on a 10-fold higher scale. Based on the obtained results a sound reaction mechanism could be proposed.
Collapse
Affiliation(s)
- Jessica C Bieniek
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Boris Mashtakov
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Dieter Schollmeyer
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Siegfried R Waldvogel
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
- Institute of Biological and Chemical Systems - Functional Molecular Systems (IBCS-FMS), Kaiserstraße 12, 76131, Karlsruhe, Germany
- Max-Planck-Institute for Chemical Energy Conversion, Stiftstraße 34-36, 45470, Mülheim an der Ruhr, Germany
| |
Collapse
|
5
|
Aslam S, Sbei N, Rani S, Saad M, Fatima A, Ahmed N. Heterocyclic Electrochemistry: Renewable Electricity in the Construction of Heterocycles. ACS OMEGA 2023; 8:6175-6217. [PMID: 36844606 PMCID: PMC9948259 DOI: 10.1021/acsomega.2c07378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 01/20/2023] [Indexed: 06/18/2023]
Abstract
Numerous applications in the realm of biological exploration and drug synthesis can be found in heterocyclic chemistry, which is a vast subject. Many efforts have been developed to further improve the reaction conditions to access this interesting family to prevent employing hazardous ingredients. In this instance, it has been stated that green and environmentally friendly manufacturing methodologies have been introduced to create N-, S-, and O-heterocycles. It appears to be one of the most promising methods to access these types of compounds avoiding use of stoichiometric amounts of oxidizing/reducing species or precious metal catalysts, in which only catalytic amounts are sufficient, and it represent an ideal way of contributing toward the resource economy. Thus, renewable electricity provides clean electrons (oxidant/reductant) that initiate a reaction cascade via producing reactive intermediates that facilitate in building new bonds for valuable chemical transformations. Moreover, electrochemical activation using metals as catalytic mediators has been identified as a more efficient strategy toward selective functionalization. Thus, indirect electrolysis makes the potential range more practical, and less side reactions can occur. The latest developments in using an electrolytic strategy to create N-, S-, and O-heterocycles are the main topic of this mini review, which was documented over the last five years.
Collapse
Affiliation(s)
- Samina Aslam
- Department
of Chemistry, The Women University Multan, Multan60000, Pakistan
- The Department
of Chemistry, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, U.K.
| | - Najoua Sbei
- Institute
of Nanotechnology, Karlsruhe Institute of Technology, EggensteinLeopoldshafen, 76344KarlsruheGermany
| | - Sadia Rani
- Department
of Chemistry, The Women University Multan, Multan60000, Pakistan
| | - Manal Saad
- School
of Chemistry, Cardiff University, Main Building Park Place, Cardiff, CF10 3AT, United Kingdom
| | - Aroog Fatima
- Department
of Chemistry, The Women University Multan, Multan60000, Pakistan
| | - Nisar Ahmed
- School
of Chemistry, Cardiff University, Main Building Park Place, Cardiff, CF10 3AT, United Kingdom
| |
Collapse
|
6
|
Motiwala HF, Armaly AM, Cacioppo JG, Coombs TC, Koehn KRK, Norwood VM, Aubé J. HFIP in Organic Synthesis. Chem Rev 2022; 122:12544-12747. [PMID: 35848353 DOI: 10.1021/acs.chemrev.1c00749] [Citation(s) in RCA: 166] [Impact Index Per Article: 55.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
1,1,1,3,3,3-Hexafluoroisopropanol (HFIP) is a polar, strongly hydrogen bond-donating solvent that has found numerous uses in organic synthesis due to its ability to stabilize ionic species, transfer protons, and engage in a range of other intermolecular interactions. The use of this solvent has exponentially increased in the past decade and has become a solvent of choice in some areas, such as C-H functionalization chemistry. In this review, following a brief history of HFIP in organic synthesis and an overview of its physical properties, literature examples of organic reactions using HFIP as a solvent or an additive are presented, emphasizing the effect of solvent of each reaction.
Collapse
Affiliation(s)
- Hashim F Motiwala
- Divison of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 United States
| | - Ahlam M Armaly
- Divison of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 United States
| | - Jackson G Cacioppo
- Divison of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 United States
| | - Thomas C Coombs
- Department of Chemistry, University of North Carolina Wilmington, Wilmington, North Carolina 28403 United States
| | - Kimberly R K Koehn
- Divison of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 United States
| | - Verrill M Norwood
- Divison of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 United States
| | - Jeffrey Aubé
- Divison of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 United States
| |
Collapse
|
7
|
Murray PD, Cox JH, Chiappini ND, Roos CB, McLoughlin EA, Hejna BG, Nguyen ST, Ripberger HH, Ganley JM, Tsui E, Shin NY, Koronkiewicz B, Qiu G, Knowles RR. Photochemical and Electrochemical Applications of Proton-Coupled Electron Transfer in Organic Synthesis. Chem Rev 2022; 122:2017-2291. [PMID: 34813277 PMCID: PMC8796287 DOI: 10.1021/acs.chemrev.1c00374] [Citation(s) in RCA: 180] [Impact Index Per Article: 60.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Indexed: 12/16/2022]
Abstract
We present here a review of the photochemical and electrochemical applications of multi-site proton-coupled electron transfer (MS-PCET) in organic synthesis. MS-PCETs are redox mechanisms in which both an electron and a proton are exchanged together, often in a concerted elementary step. As such, MS-PCET can function as a non-classical mechanism for homolytic bond activation, providing opportunities to generate synthetically useful free radical intermediates directly from a wide variety of common organic functional groups. We present an introduction to MS-PCET and a practitioner's guide to reaction design, with an emphasis on the unique energetic and selectivity features that are characteristic of this reaction class. We then present chapters on oxidative N-H, O-H, S-H, and C-H bond homolysis methods, for the generation of the corresponding neutral radical species. Then, chapters for reductive PCET activations involving carbonyl, imine, other X═Y π-systems, and heteroarenes, where neutral ketyl, α-amino, and heteroarene-derived radicals can be generated. Finally, we present chapters on the applications of MS-PCET in asymmetric catalysis and in materials and device applications. Within each chapter, we subdivide by the functional group undergoing homolysis, and thereafter by the type of transformation being promoted. Methods published prior to the end of December 2020 are presented.
Collapse
Affiliation(s)
- Philip
R. D. Murray
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - James H. Cox
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - Nicholas D. Chiappini
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - Casey B. Roos
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | | | - Benjamin G. Hejna
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - Suong T. Nguyen
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - Hunter H. Ripberger
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - Jacob M. Ganley
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - Elaine Tsui
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - Nick Y. Shin
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - Brian Koronkiewicz
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - Guanqi Qiu
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - Robert R. Knowles
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| |
Collapse
|
8
|
Bieniek JC, Grünewald M, Winter J, Schollmeyer D, Waldvogel SR. Electrochemical Synthesis of
N
,
N
’‑ Disubstituted Indazolin-3-ones via Intramolecular Anodic DehydrogenativeN-NCoupling Reaction. Chem Sci 2022; 13:8180-8186. [PMID: 35919432 PMCID: PMC9278119 DOI: 10.1039/d2sc01827f] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 06/10/2022] [Indexed: 11/30/2022] Open
Abstract
The use of electricity as a traceless oxidant enables a sustainable and novel approach to N,N′-disubstituted indazolin-3-ones by an intramolecular anodic dehydrogenative N–N coupling reaction. This method is characterized by mild reaction conditions, an easy experimental setup, excellent scalability, and a high atom economy. It was used to synthesize various indazolin-3-one derivatives in yields up to 78%, applying inexpensive and sustainable electrode materials and a low supporting electrolyte concentration. Mechanistic studies, based on cyclic voltammetry experiments, revealed a biradical pathway. Furthermore, the access to single 2-aryl substituted indazolin-3-ones by cleavage of the protecting group could be demonstrated. A novel sustainable electrochemical synthetic route to N,N′-disubstituted indazolin-3-ones by direct anodic oxidation with mild reaction conditions, a simple galvanostatic setup, broad scope and excellent scalability is established.![]()
Collapse
Affiliation(s)
- Jessica C Bieniek
- Department of Chemistry, Johannes Gutenberg University Duesbergweg 10-14 Mainz 55128 Germany https://www.aksw.uni-mainz.de/
| | - Michele Grünewald
- Department of Chemistry, Johannes Gutenberg University Duesbergweg 10-14 Mainz 55128 Germany https://www.aksw.uni-mainz.de/
| | - Johannes Winter
- Department of Chemistry, Johannes Gutenberg University Duesbergweg 10-14 Mainz 55128 Germany https://www.aksw.uni-mainz.de/
| | - Dieter Schollmeyer
- Department of Chemistry, Johannes Gutenberg University Duesbergweg 10-14 Mainz 55128 Germany https://www.aksw.uni-mainz.de/
| | - Siegfried R Waldvogel
- Department of Chemistry, Johannes Gutenberg University Duesbergweg 10-14 Mainz 55128 Germany https://www.aksw.uni-mainz.de/
| |
Collapse
|
9
|
Zhou N, Zhao J, Sun C, Lai Y, Ruan Z, Feng P. Electro-Oxidative C-N Bond Formation through Azolation of Indole Derivatives: An Access to 3-Substituent-2-(Azol-1-yl)indoles. J Org Chem 2021; 86:16059-16067. [PMID: 34520191 DOI: 10.1021/acs.joc.1c01271] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A practical protocol to synthesize 3-substituent-2-(azol-1-yl)indole derivatives has been developed via an electrochemical oxidative cross coupling process under mild conditions. This electro-oxidative C-N bond formation strategy tolerates a range of functional groups and is amenable to gram scale synthesis. Moreover, this method was applied to the late-stage functionalization of bioactive molecules.
Collapse
Affiliation(s)
- Naifu Zhou
- Department of Chemistry and Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, China
| | - Junhao Zhao
- Department of Chemistry and Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, China
| | - Chengbo Sun
- Department of Chemistry and Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, China
| | - Yuqin Lai
- Department of Chemistry and Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, China
| | - Zhixiong Ruan
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Science, and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Pengju Feng
- Department of Chemistry and Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, China
| |
Collapse
|
10
|
Klein M, Waldvogel SR. Anodic Dehydrogenative Cyanamidation of Thioethers: Simple and Sustainable Synthesis of N-Cyanosulfilimines. Angew Chem Int Ed Engl 2021; 60:23197-23201. [PMID: 34409715 PMCID: PMC8597142 DOI: 10.1002/anie.202109033] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/08/2021] [Indexed: 12/21/2022]
Abstract
A novel and very simple to perform electrochemical approach for the synthesis of several N-cyanosulfilimines in good to excellent yields was established. This method provides access to biologically relevant sulfoximines by consecutive oxidation using electro-generated periodate. This route can be easily scaled-up to gram quantities. The S,N coupling is carried out at an inexpensive carbon anode by direct oxidation of sulfide. Therefore, the designed process is atom economic and represents a new "green route" for the synthesis of sulfilimines and sulfoximines.
Collapse
Affiliation(s)
- Martin Klein
- Johannes Gutenberg University MainzDepartment of ChemistryDuesbergweg 10–1455128MainzGermany
| | - Siegfried R. Waldvogel
- Johannes Gutenberg University MainzDepartment of ChemistryDuesbergweg 10–1455128MainzGermany
| |
Collapse
|
11
|
Klein M, Waldvogel SR. Anodische dehydrierende Cyaniminierung von Thioethern: eine einfache und nachhaltige Synthese von
N
‐Cyansulfiliminen. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202109033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Martin Klein
- Johannes Gutenberg Universität Mainz Department für Chemie Duesbergweg 10–14 55128 Mainz Deutschland
| | - Siegfried R. Waldvogel
- Johannes Gutenberg Universität Mainz Department für Chemie Duesbergweg 10–14 55128 Mainz Deutschland
| |
Collapse
|
12
|
Li CJ. Crystal structure of 6-(quinolin-8-yl)benzo[ a]phenanthridin-5(6 H)-one, C 26H 16N 2O. Z KRIST-NEW CRYST ST 2021. [DOI: 10.1515/ncrs-2021-0170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
C26H16N2O, monoclinic, P21/c (no. 14), a = 12.3329(2) Å, b = 12.9276(2) Å, c = 12.11250(10) Å, β = 114.047(2)°, V = 1763.55(5) Å3, Z = 4, R
gt
(F) = 0.0416, wR
ref
(F
2) = 0.1137, T = 293(2) K.
Collapse
Affiliation(s)
- Chuan-Jun Li
- Department of Traditional Chinese Medicine , Luohe Medical College , Luohe , 462002 , Henan , P. R. China
| |
Collapse
|
13
|
Puthanveedu M, Khamraev V, Brieger L, Strohmann C, Antonchick AP. Electrochemical Dehydrogenative C(sp 2 )-H Amination. Chemistry 2021; 27:8008-8012. [PMID: 33931904 PMCID: PMC8251997 DOI: 10.1002/chem.202100960] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Indexed: 02/06/2023]
Abstract
A transition-metal-free direct electrolytic C-H amination involving an electrochemically generated nitrenium ion intermediate has been developed. The electrosynthesis takes place in the absence of any organoiodine catalysts and is enabled by an in situ generated electrolyte. A novel, efficient intramolecular and intermolecular C-H amination has been demonstrated using a simple reaction setup.
Collapse
Affiliation(s)
- Mahesh Puthanveedu
- Max-Planck-Institut für Molekulare PhysiologieAbteilung Chemische BiologieOtto-Hahn-Straße 1144227DortmundGermany
- Technische Universität DortmundFakultät für Chemie und Chemische BiologieChemische BiologieOtto-Hahn-Straße 4a44221DortmundGermany
| | - Vladislav Khamraev
- Technische Universität DortmundFakultät für Chemie und Chemische BiologieChemische BiologieOtto-Hahn-Straße 4a44221DortmundGermany
- North Caucasus Federal UniversityDepartment of Chemistry1a Pushkin St.355009StavropolRussian Federation
- Present address: D. I. Mendeleev University of Chemical Technology of Russia9 Miusskaya Square, 125047MoscowRussian Federation
| | - Lukas Brieger
- Technische Universität DortmundFakultät für Chemie und Chemische BiologieAnorganische ChemieOtto-Hahn-Straße 644227DortmundGermany
| | - Carsten Strohmann
- Technische Universität DortmundFakultät für Chemie und Chemische BiologieAnorganische ChemieOtto-Hahn-Straße 644227DortmundGermany
| | - Andrey P. Antonchick
- Max-Planck-Institut für Molekulare PhysiologieAbteilung Chemische BiologieOtto-Hahn-Straße 1144227DortmundGermany
- Technische Universität DortmundFakultät für Chemie und Chemische BiologieChemische BiologieOtto-Hahn-Straße 4a44221DortmundGermany
- Nottingham Trent UniversityCollege of Science and TechnologyDepartment of Chemistry and ForensicsClifton LaneNG11 8NSNottinghamUK
| |
Collapse
|
14
|
Huang C, Li Z, Song J, Xu H. Catalyst‐ and Reagent‐Free Formal Aza‐Wacker Cyclizations Enabled by Continuous‐Flow Electrochemistry. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202101835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Chong Huang
- State Key Laboratory of Physical Chemistry of Solid Surfaces Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Zhao‐Yu Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Jinshuai Song
- Green Catalysis Center, and College of Chemistry Zhengzhou University Zhengzhou 450001 China
| | - Hai‐Chao Xu
- State Key Laboratory of Physical Chemistry of Solid Surfaces Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| |
Collapse
|
15
|
Zhao HB, Zhuang JL, Xu HC. Electrochemical Synthesis of Benzimidazoles via Dehydrogenative Cyclization of Amidines. CHEMSUSCHEM 2021; 14:1692-1695. [PMID: 33605037 DOI: 10.1002/cssc.202100254] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 02/12/2021] [Indexed: 06/12/2023]
Abstract
The development of efficient and sustainable methodologies for the synthesis of N-heterocycles is a constant focus of organic synthesis. Herein an electrochemical method is reported for the synthesis of benzimidazoles through dehydrogenative cyclization of easily available N-aryl amidines. The reactions were conducted under simple constant current conditions in an undivided cell without need for catalysts, chemical oxidants, or additives, and produced H2 as the only theoretical byproduct.
Collapse
Affiliation(s)
- Huai-Bo Zhao
- School of Chemistry and Materials Science, Key Lab for Functional Materials Chemistry of Guizhou Province, Guizhou Normal University, 116 Baoshan Road North, Guiyang, 550001, P. R. China
- Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Jin-Liang Zhuang
- School of Chemistry and Materials Science, Key Lab for Functional Materials Chemistry of Guizhou Province, Guizhou Normal University, 116 Baoshan Road North, Guiyang, 550001, P. R. China
| | - Hai-Chao Xu
- Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| |
Collapse
|
16
|
Huang C, Li ZY, Song J, Xu HC. Catalyst- and Reagent-Free Formal Aza-Wacker Cyclizations Enabled by Continuous-Flow Electrochemistry. Angew Chem Int Ed Engl 2021; 60:11237-11241. [PMID: 33666312 DOI: 10.1002/anie.202101835] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 02/22/2021] [Indexed: 12/18/2022]
Abstract
The development of efficient and sustainable methods to access saturated N-heterocycles is of great importance because of the prevalence of these structures in natural products and bioactive compounds. Pd-catalyzed aza-Wacker type cyclization is a powerful method and provides access to N-heterocycles bearing an alkene moiety available for further synthetic manipulations from readily available materials. Herein we disclose a catalyst- and reagent-free formal aza-Wacker type cyclization reaction for the synthesis of functionalized saturated N-heterocycles. Key to the success is to conduct the reactions in a continuous-flow electrochemical reactor without adding supporting electrolyte or additives. The reactions are characterized by broad tolerance of di-, tri- and tetrasubstituted alkenes.
Collapse
Affiliation(s)
- Chong Huang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Zhao-Yu Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Jinshuai Song
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Hai-Chao Xu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| |
Collapse
|
17
|
Bhanage BM, Subramanian K, Yedage SL, Sethi K. Tetrabutylammonium Iodide (TBAI) Catalyzed Electrochemical C–H Bond Activation of 2-Arylated N-Methoxyamides for the Synthesis of Phenanthridinones. Synlett 2021. [DOI: 10.1055/a-1467-5585] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
AbstractAn electrochemical method for the synthesis of phenanthridinones through constant-potential electrolysis (CPE) mediated by Bu4NI (TBAI) is reported. The protocol is metal and oxidant free, and proceeds with 100% current efficiency. TBAI plays a dual role as both a redox catalyst and a supporting electrolyte. The intramolecular C–H activation proceeds under mild reaction conditions and with a short reaction time through electrochemically generated amidyl radicals. The reaction has been scaled up to a gram level, showing its practicability, and the synthetic utility and applicability of the protocol have been demonstrated by a direct one-step synthesis of the bioactive compound phenaglaydon.
Collapse
|
18
|
Mitsudo K. Electro-Oxidative Coupling Reactions Leading to π-Conjugated Compounds. CHEM REC 2021; 21:2269-2276. [PMID: 33735536 DOI: 10.1002/tcr.202100033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/09/2021] [Accepted: 03/09/2021] [Indexed: 12/21/2022]
Abstract
Electrochemical reactions are rapidly gaining attention today as a powerful and environmentally benign reaction processes for organic synthesis. We found that the electro-oxidation of palladium acetate afforded cationic palladium species and thus-generated cationic Pd species were efficient mediators for electro-oxidative coupling reactions. Homo-coupling of arylboronic acids and terminal alkynes proceeded efficiently to afford biaryls and butadiyne, respectively. Cross-coupling reactions between terminal alkynes and arylboronic acids were also achieved with the use of a Ag anode. As an advantage of electrochemical reactions, we developed a sequential reaction system switched between oxidative and neutral conditions by the on/off application of electricity, and several π-extended butadiynes were obtained in one-sequence by the system. Electrochemical intramolecular C-S coupling for the synthesis of thienoacene was also developed. The use of Bu4 NBr as a halogen mediator was essential for the reaction.
Collapse
Affiliation(s)
- Koichi Mitsudo
- Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama, 700-8530, Japan
| |
Collapse
|
19
|
Chen N, Xu HC. Electrochemical generation of nitrogen-centered radicals for organic synthesis. GREEN SYNTHESIS AND CATALYSIS 2021. [DOI: 10.1016/j.gresc.2021.03.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
20
|
Yang QL, Li YY, Liu Y, Ren TX, Guo LC, Wang DC, Xie MS, Qu GR, Guo HM. Electrochemically facilitated oxidative C–H amination enables access to fluorescent N9-fused tricyclic xanthines. Org Chem Front 2021. [DOI: 10.1039/d1qo00959a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
An electrochemically enabled intramolecular C−H amination route for accessing a broad range of fluorescent N9-fused tricyclic xanthines with various substitution patterns under simple, green, and mild condition is developed.
Collapse
Affiliation(s)
- Qi-Liang Yang
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Yan-Yan Li
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Ying Liu
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Tian-Xiang Ren
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | | | - Dong-Chao Wang
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Ming-Sheng Xie
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Gui-Rong Qu
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Hai-Ming Guo
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
21
|
Wesenberg LJ, Diehl E, Zähringer TJB, Dörr C, Schollmeyer D, Shimizu A, Yoshida J, Hellmich UA, Waldvogel SR. Metal-Free Twofold Electrochemical C-H Amination of Activated Arenes: Application to Medicinally Relevant Precursor Synthesis. Chemistry 2020; 26:17574-17580. [PMID: 32866328 PMCID: PMC7839481 DOI: 10.1002/chem.202003852] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 08/28/2020] [Indexed: 01/13/2023]
Abstract
The efficient production of many medicinally or synthetically important starting materials suffers from wasteful or toxic precursors for the synthesis. In particular, the aromatic non-protected primary amine function represents a versatile synthetic precursor, but its synthesis typically requires toxic oxidizing agents and transition metal catalysts. The twofold electrochemical amination of activated benzene derivatives via Zincke intermediates provides an alternative sustainable strategy for the formation of new C-N bonds of high synthetic value. As a proof of concept, we use our approach to generate a benzoxazinone scaffold that gained attention as a starting structure against castrate-resistant prostate cancer. Further improvement of the structure led to significantly increased cancer cell line toxicity. Thus, exploiting environmentally benign electrooxidation, we present a new versatile and powerful method based on direct C-H activation that is applicable for example the production of medicinally relevant compounds.
Collapse
Affiliation(s)
- Lars J. Wesenberg
- Department of ChemistryJohannes Gutenberg University MainzDuesbergweg 10–1455128MainzGermany
| | - Erika Diehl
- Department of ChemistryJohannes Gutenberg University MainzJohann-Joachim Becherweg 3055128MainzGermany
- Center for Biomolecular Magnetic Resonance (BMRZ)Goethe-University FrankfurtMax-von-Laue Str. 960438Frankfurt/MGermany
| | - Till J. B. Zähringer
- Department of ChemistryJohannes Gutenberg University MainzDuesbergweg 10–1455128MainzGermany
| | - Carolin Dörr
- Department of ChemistryJohannes Gutenberg University MainzJohann-Joachim Becherweg 3055128MainzGermany
| | - Dieter Schollmeyer
- Department of ChemistryJohannes Gutenberg University MainzDuesbergweg 10–1455128MainzGermany
| | - Akihiro Shimizu
- Department Materials Engineering ScienceGraduate School of Engineering ScienceOsaka UniversityToyonakaOsaka 560–8531Japan
| | - Jun‐ichi Yoshida
- Department of ChemistryJohannes Gutenberg University MainzDuesbergweg 10–1455128MainzGermany
| | - Ute A. Hellmich
- Department of ChemistryJohannes Gutenberg University MainzJohann-Joachim Becherweg 3055128MainzGermany
- Center for Biomolecular Magnetic Resonance (BMRZ)Goethe-University FrankfurtMax-von-Laue Str. 960438Frankfurt/MGermany
| | - Siegfried R. Waldvogel
- Department of ChemistryJohannes Gutenberg University MainzDuesbergweg 10–1455128MainzGermany
| |
Collapse
|
22
|
Kehl A, Schupp N, Breising VM, Schollmeyer D, Waldvogel SR. Electrochemical Synthesis of Carbazoles by Dehydrogenative Coupling Reaction. Chemistry 2020; 26:15847-15851. [PMID: 32737905 PMCID: PMC7756279 DOI: 10.1002/chem.202003430] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Indexed: 12/14/2022]
Abstract
A constant current protocol, employing undivided cells, a remarkably low supporting electrolyte concentration, inexpensive electrode materials, and a straightforward precursor synthesis enabling a novel access to N‐protected carbazoles by anodic N,C bond formation using directly generated amidyl radicals is reported. Scalability of the reaction is demonstrated and an easy deblocking of the benzoyl protecting group is presented.
Collapse
Affiliation(s)
- Anton Kehl
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Niclas Schupp
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Valentina M Breising
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Dieter Schollmeyer
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Siegfried R Waldvogel
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| |
Collapse
|
23
|
Röckl JL, Dörr M, Waldvogel SR. Electrosynthesis 2.0 in 1,1,1,3,3,3‐Hexafluoroisopropanol/Amine Mixtures. ChemElectroChem 2020. [DOI: 10.1002/celc.202000761] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Johannes L. Röckl
- Department of Chemistry Johannes Gutenberg University Mainz Duesbergweg 10–14 55128 Mainz Germany
- Graduate School Materials Science in Mainz Staudingerweg 9 55128 Mainz Germany
| | - Maurice Dörr
- Department of Chemistry Johannes Gutenberg University Mainz Duesbergweg 10–14 55128 Mainz Germany
| | - Siegfried R. Waldvogel
- Department of Chemistry Johannes Gutenberg University Mainz Duesbergweg 10–14 55128 Mainz Germany
- Graduate School Materials Science in Mainz Staudingerweg 9 55128 Mainz Germany
| |
Collapse
|
24
|
Lv S, Han X, Wang JY, Zhou M, Wu Y, Ma L, Niu L, Gao W, Zhou J, Hu W, Cui Y, Chen J. Tunable Electrochemical C-N versus N-N Bond Formation of Nitrogen-Centered Radicals Enabled by Dehydrogenative Dearomatization: Biological Applications. Angew Chem Int Ed Engl 2020; 59:11583-11590. [PMID: 32203637 DOI: 10.1002/anie.202001510] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 03/08/2020] [Indexed: 12/27/2022]
Abstract
Herein, an environmentally friendly electrochemical approach is reported that takes advantage of the captodative effect and delocalization effect to generate nitrogen-centered radicals (NCRs). By changing the reaction parameters of the electrode material and feedstock solubility, dearomatization enabled a selective dehydrogenative C-N versus N-N bond formation reaction. Hence, pyrido[1,2-a]benzimidazole and tetraarylhydrazine frameworks were prepared through a sustainable transition-metal- and exogenous oxidant-free strategy with broad generality. Bioactivity assays demonstrated that pyrido[1,2-a]benzimidazoles displayed antimicrobial activity and cytotoxicity against human cancer cells. Compound 21 exhibited good photochemical properties with a large Stokes shift (approximately 130 nm) and was successfully applied to subcellular imaging. A preliminary mechanism investigation and density functional theory (DFT) calculations revealed the possible reaction pathway.
Collapse
Affiliation(s)
- Shide Lv
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, P. R. China
| | - Xiaoxin Han
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, P. R. China
| | - Jian-Yong Wang
- School of Light Industry and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, P. R. China
| | - Mingyang Zhou
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, P. R. China
| | - Yanwei Wu
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, P. R. China
| | - Li Ma
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, P. R. China
| | - Liwei Niu
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, P. R. China
| | - Wei Gao
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, P. R. China
| | - Jianhua Zhou
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, P. R. China
| | - Wei Hu
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, P. R. China
| | - Yuezhi Cui
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, P. R. China
| | - Jianbin Chen
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, P. R. China
| |
Collapse
|
25
|
Lv S, Han X, Wang J, Zhou M, Wu Y, Ma L, Niu L, Gao W, Zhou J, Hu W, Cui Y, Chen J. Tunable Electrochemical C−N versus N−N Bond Formation of Nitrogen‐Centered Radicals Enabled by Dehydrogenative Dearomatization: Biological Applications. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202001510] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Shide Lv
- Shandong Provincial Key Laboratory of Molecular Engineering School of Chemistry and Pharmaceutical Engineering Qilu University of Technology (Shandong Academy of Sciences) Jinan 250353 P. R. China
| | - Xiaoxin Han
- Shandong Provincial Key Laboratory of Molecular Engineering School of Chemistry and Pharmaceutical Engineering Qilu University of Technology (Shandong Academy of Sciences) Jinan 250353 P. R. China
| | - Jian‐Yong Wang
- School of Light Industry and Engineering Qilu University of Technology (Shandong Academy of Sciences) Jinan 250353 P. R. China
| | - Mingyang Zhou
- Shandong Provincial Key Laboratory of Molecular Engineering School of Chemistry and Pharmaceutical Engineering Qilu University of Technology (Shandong Academy of Sciences) Jinan 250353 P. R. China
| | - Yanwei Wu
- Shandong Provincial Key Laboratory of Molecular Engineering School of Chemistry and Pharmaceutical Engineering Qilu University of Technology (Shandong Academy of Sciences) Jinan 250353 P. R. China
| | - Li Ma
- Shandong Provincial Key Laboratory of Molecular Engineering School of Chemistry and Pharmaceutical Engineering Qilu University of Technology (Shandong Academy of Sciences) Jinan 250353 P. R. China
| | - Liwei Niu
- Shandong Provincial Key Laboratory of Molecular Engineering School of Chemistry and Pharmaceutical Engineering Qilu University of Technology (Shandong Academy of Sciences) Jinan 250353 P. R. China
| | - Wei Gao
- Shandong Provincial Key Laboratory of Molecular Engineering School of Chemistry and Pharmaceutical Engineering Qilu University of Technology (Shandong Academy of Sciences) Jinan 250353 P. R. China
| | - Jianhua Zhou
- Shandong Provincial Key Laboratory of Molecular Engineering School of Chemistry and Pharmaceutical Engineering Qilu University of Technology (Shandong Academy of Sciences) Jinan 250353 P. R. China
| | - Wei Hu
- Shandong Provincial Key Laboratory of Molecular Engineering School of Chemistry and Pharmaceutical Engineering Qilu University of Technology (Shandong Academy of Sciences) Jinan 250353 P. R. China
| | - Yuezhi Cui
- Shandong Provincial Key Laboratory of Molecular Engineering School of Chemistry and Pharmaceutical Engineering Qilu University of Technology (Shandong Academy of Sciences) Jinan 250353 P. R. China
| | - Jianbin Chen
- Shandong Provincial Key Laboratory of Molecular Engineering School of Chemistry and Pharmaceutical Engineering Qilu University of Technology (Shandong Academy of Sciences) Jinan 250353 P. R. China
| |
Collapse
|
26
|
Mitsudo K, Matsuo R, Yonezawa T, Inoue H, Mandai H, Suga S. Electrochemical Synthesis of Thienoacene Derivatives: Transition‐Metal‐Free Dehydrogenative C−S Coupling Promoted by a Halogen Mediator. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202001149] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Koichi Mitsudo
- Division of Applied Chemistry Graduate School of Natural Science and Technology Okayama University 3-1-1 Tsushima-naka, Kita-ku Okayama 700-8530 Japan
| | - Ren Matsuo
- Division of Applied Chemistry Graduate School of Natural Science and Technology Okayama University 3-1-1 Tsushima-naka, Kita-ku Okayama 700-8530 Japan
| | - Toki Yonezawa
- Division of Applied Chemistry Graduate School of Natural Science and Technology Okayama University 3-1-1 Tsushima-naka, Kita-ku Okayama 700-8530 Japan
| | - Haruka Inoue
- Division of Applied Chemistry Graduate School of Natural Science and Technology Okayama University 3-1-1 Tsushima-naka, Kita-ku Okayama 700-8530 Japan
| | - Hiroki Mandai
- Department of Medical Technology Gifu University of Medical Science 4-3-3 Nijigaoka, Kani Gifu 5 09-0293 Japan
| | - Seiji Suga
- Division of Applied Chemistry Graduate School of Natural Science and Technology Okayama University 3-1-1 Tsushima-naka, Kita-ku Okayama 700-8530 Japan
| |
Collapse
|
27
|
Mitsudo K, Matsuo R, Yonezawa T, Inoue H, Mandai H, Suga S. Electrochemical Synthesis of Thienoacene Derivatives: Transition‐Metal‐Free Dehydrogenative C−S Coupling Promoted by a Halogen Mediator. Angew Chem Int Ed Engl 2020; 59:7803-7807. [DOI: 10.1002/anie.202001149] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Indexed: 11/08/2022]
Affiliation(s)
- Koichi Mitsudo
- Division of Applied Chemistry Graduate School of Natural Science and Technology Okayama University 3-1-1 Tsushima-naka, Kita-ku Okayama 700-8530 Japan
| | - Ren Matsuo
- Division of Applied Chemistry Graduate School of Natural Science and Technology Okayama University 3-1-1 Tsushima-naka, Kita-ku Okayama 700-8530 Japan
| | - Toki Yonezawa
- Division of Applied Chemistry Graduate School of Natural Science and Technology Okayama University 3-1-1 Tsushima-naka, Kita-ku Okayama 700-8530 Japan
| | - Haruka Inoue
- Division of Applied Chemistry Graduate School of Natural Science and Technology Okayama University 3-1-1 Tsushima-naka, Kita-ku Okayama 700-8530 Japan
| | - Hiroki Mandai
- Department of Medical Technology Gifu University of Medical Science 4-3-3 Nijigaoka, Kani Gifu 5 09-0293 Japan
| | - Seiji Suga
- Division of Applied Chemistry Graduate School of Natural Science and Technology Okayama University 3-1-1 Tsushima-naka, Kita-ku Okayama 700-8530 Japan
| |
Collapse
|
28
|
Verma A, Singh Banjara L, Meena R, Kumar S. Transition‐Metal‐Free Synthesis of N‐Substituted Phenanthridinones and Spiro‐isoindolinones: C(
sp
2
)−N and C(
sp
2
)−O Coupling through Radical Pathway. ASIAN J ORG CHEM 2020. [DOI: 10.1002/ajoc.201900704] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Ajay Verma
- Department of ChemistryIndian Institute of Science Education and Research Bhopal Bhopal By-pass Road Bhauri, Bhopal, Madhya Pradesh 462066 India
| | - Lal Singh Banjara
- Department of ChemistryIndian Institute of Science Education and Research Bhopal Bhopal By-pass Road Bhauri, Bhopal, Madhya Pradesh 462066 India
| | - Rahul Meena
- Department of ChemistryIndian Institute of Science Education and Research Bhopal Bhopal By-pass Road Bhauri, Bhopal, Madhya Pradesh 462066 India
| | - Sangit Kumar
- Department of ChemistryIndian Institute of Science Education and Research Bhopal Bhopal By-pass Road Bhauri, Bhopal, Madhya Pradesh 462066 India
| |
Collapse
|
29
|
Breising VM, Kayser JM, Kehl A, Schollmeyer D, Liermann JC, Waldvogel SR. Electrochemical formation of N,N′-diarylhydrazines by dehydrogenative N–N homocoupling reaction. Chem Commun (Camb) 2020; 56:4348-4351. [DOI: 10.1039/d0cc01052a] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
A novel electrochemical access to N,N′-diarylhydrazines is developed using commercial anilines, a simple setup, and an ecologically efficient electrolyte system.
Collapse
Affiliation(s)
| | - Jacob M. Kayser
- Department of Chemistry
- Johannes Gutenberg University Mainz
- 55128 Mainz
- Germany
| | - Anton Kehl
- Department of Chemistry
- Johannes Gutenberg University Mainz
- 55128 Mainz
- Germany
| | - Dieter Schollmeyer
- Department of Chemistry
- Johannes Gutenberg University Mainz
- 55128 Mainz
- Germany
| | | | | |
Collapse
|
30
|
Gleede B, Selt M, Gütz C, Stenglein A, Waldvogel SR. Large, Highly Modular Narrow-Gap Electrolytic Flow Cell and Application in Dehydrogenative Cross-Coupling of Phenols. Org Process Res Dev 2019. [DOI: 10.1021/acs.oprd.9b00451] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Barbara Gleede
- Institute of Organic Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Maximilian Selt
- Institute of Organic Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Christoph Gütz
- Institute of Organic Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Andreas Stenglein
- Institute of Organic Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Siegfried R. Waldvogel
- Institute of Organic Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| |
Collapse
|
31
|
Röckl JL, Hauck AV, Schollmeyer D, Waldvogel SR. Electrochemical Synthesis of Fluorinated Orthoesters from 1,3-Benzodioxoles. ChemistryOpen 2019; 8:1167-1171. [PMID: 31497470 PMCID: PMC6718074 DOI: 10.1002/open.201900127] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Indexed: 12/16/2022] Open
Abstract
A scalable, dehydrogenative, and electrochemical synthesis of novel highly fluorinated orthoesters is reported. This protocol provides easy and direct access to a wide variety of derivatives, using a very simple electrolysis setup. These compounds are surprisingly robust towards base and acid with an unusual high lipophilicity, making them interesting motifs for potentially active compounds in medicinal chemistry or agro applications. The use of electricity enables a safe and environmentally benign chemical transformation as only electrons serve as oxidants.
Collapse
Affiliation(s)
- Johannes L. Röckl
- Johannes Gutenberg University MainzInstitute of Organic ChemistryDuesbergweg 10–1455128MainzGermany
- Johannes Gutenberg Universität MainzGraduate School Materials Science in MainzStaudingerweg 955128MainzGermany
| | - Adrian V. Hauck
- Johannes Gutenberg University MainzInstitute of Organic ChemistryDuesbergweg 10–1455128MainzGermany
| | - Dieter Schollmeyer
- Johannes Gutenberg University MainzInstitute of Organic ChemistryDuesbergweg 10–1455128MainzGermany
| | - Siegfried R. Waldvogel
- Johannes Gutenberg University MainzInstitute of Organic ChemistryDuesbergweg 10–1455128MainzGermany
- Johannes Gutenberg Universität MainzGraduate School Materials Science in MainzStaudingerweg 955128MainzGermany
| |
Collapse
|
32
|
Lu F, Li J, Wang T, Li Z, Jiang M, Hu X, Pei H, Yuan F, Lu L, Lei A. Electrochemical Oxidative C−H Sulfonylation of Anilines. ASIAN J ORG CHEM 2019. [DOI: 10.1002/ajoc.201900447] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Fangling Lu
- College of Chemistry & Chemical EngineeringJiangxi Normal University Nanchang 330022, Jiangxi P. R. China
| | - Jun Li
- College of Chemistry & Chemical EngineeringJiangxi Normal University Nanchang 330022, Jiangxi P. R. China
| | - Tao Wang
- College of Chemistry & Chemical EngineeringJiangxi Normal University Nanchang 330022, Jiangxi P. R. China
| | - Zhen Li
- College of Chemistry & Chemical EngineeringJiangxi Normal University Nanchang 330022, Jiangxi P. R. China
| | - Minbao Jiang
- College of Chemistry & Chemical EngineeringJiangxi Normal University Nanchang 330022, Jiangxi P. R. China
| | - Xingxing Hu
- College of Chemistry & Chemical EngineeringJiangxi Normal University Nanchang 330022, Jiangxi P. R. China
| | - Hongqiao Pei
- College of Chemistry & Chemical EngineeringJiangxi Normal University Nanchang 330022, Jiangxi P. R. China
| | - Feng Yuan
- College of Chemistry & Chemical EngineeringJiangxi Normal University Nanchang 330022, Jiangxi P. R. China
| | - Lijun Lu
- College of Chemistry and Molecular Sciences The Institute for Advanced Studies (IAS)Wuhan University Wuhan, Hubei 430072 P. R. China
| | - Aiwen Lei
- College of Chemistry & Chemical EngineeringJiangxi Normal University Nanchang 330022, Jiangxi P. R. China
- College of Chemistry and Molecular Sciences The Institute for Advanced Studies (IAS)Wuhan University Wuhan, Hubei 430072 P. R. China
| |
Collapse
|
33
|
Qiu G, Chen ZF, Xie W, Zhou H. TBAB-Mediated Radical 5-exo-trig ipso
-Cyclization of 2-Arylbenzamide for the Synthesis of Spiro[cyclohexane-1,1′-isoindoline]-2,5-diene-3′,4-dione. European J Org Chem 2019. [DOI: 10.1002/ejoc.201900321] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Guanyinsheng Qiu
- Department of Chemistry; Fudan University; 220 Handan Road 200433 Shanghai China
- College of Biological; Chemical Science and Engineering; Jiaxing University; 118 Jiahang Road 314001 Jiaxing China
| | - Zhi-Feng Chen
- College of Biological; Chemical Science and Engineering; Jiaxing University; 118 Jiahang Road 314001 Jiaxing China
| | - Wenlin Xie
- School of Chemistry and Chemical Engineering; Chemical Science and Engineering; Hunan University of Science and Technology; 411201 Hunan China
| | - Hongwei Zhou
- College of Biological; Chemical Science and Engineering; Jiaxing University; 118 Jiahang Road 314001 Jiaxing China
| |
Collapse
|
34
|
Tang L, Matuska JH, Huang YH, He YH, Guan Z. Amide Synthesis from Thiocarboxylic Acids and Amines by Spontaneous Reaction and Electrosynthesis. CHEMSUSCHEM 2019; 12:2570-2575. [PMID: 30994975 DOI: 10.1002/cssc.201900814] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 04/16/2019] [Indexed: 06/09/2023]
Abstract
Amide bond formation is one of the most important basic reactions in chemistry. A catalyst-free approach for constructing amide bonds from thiocarboxylic acids and amines was developed. The mechanistic studies showed that the disulfide was the key intermediate for this amide synthesis. Thiobenzoic acids could be automatically oxidized to disulfides in air, thioaliphatic acids could be electro-oxidized to disulfides, and the resulting disulfides reacted with amines to give the corresponding amides. By this method, various amides could be easily synthesized in excellent yields without using any catalyst or activator. The successful synthesis of bioactive compounds also highlights the synthetic utility of this strategy in medicinal chemistry.
Collapse
Affiliation(s)
- Li Tang
- Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, P.R. China
| | - Jack H Matuska
- Department of Chemistry, College of Saint Benedict and Saint John's University, Collegeville, MN, 56321, USA
| | - Yu-Han Huang
- Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, P.R. China
| | - Yan-Hong He
- Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, P.R. China
| | - Zhi Guan
- Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, P.R. China
| |
Collapse
|
35
|
Usami K, Yamaguchi E, Tada N, Itoh A. Transition-Metal-Free Synthesis of Phenanthridinones through Visible-Light-Driven Oxidative C-H Amidation. European J Org Chem 2019. [DOI: 10.1002/ejoc.201900536] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Kaoru Usami
- Gifu Pharmaceutical University; 1-25-4, Daigaku-nishi Gifu 501-1196 Japan
| | - Eiji Yamaguchi
- Gifu Pharmaceutical University; 1-25-4, Daigaku-nishi Gifu 501-1196 Japan
| | - Norihiro Tada
- Gifu Pharmaceutical University; 1-25-4, Daigaku-nishi Gifu 501-1196 Japan
| | - Akichika Itoh
- Gifu Pharmaceutical University; 1-25-4, Daigaku-nishi Gifu 501-1196 Japan
| |
Collapse
|
36
|
Feng P, Ma G, Chen X, Wu X, Lin L, Liu P, Chen T. Electrooxidative and Regioselective C-H Azolation of Phenol and Aniline Derivatives. Angew Chem Int Ed Engl 2019; 58:8400-8404. [PMID: 30920715 DOI: 10.1002/anie.201901762] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Indexed: 12/19/2022]
Abstract
A general and practical protocol was developed for the regioselective C-H azolation of phenol and aniline derivatives by electrooxidative cross-coupling. The reaction occurs under metal-, oxidant-, and reagent-free conditions, allowing access to a wide variety of synthetically useful heteroarene derivatives. The reaction also tolerates a broad range of functional groups and is amenable to gram-scale synthesis. Finally, a preliminary mechanistic study indicated that a radical-radical-combination pathway might be involved in the coupling reaction.
Collapse
Affiliation(s)
- Pengju Feng
- Department of Chemistry, Jinan University, Guangzhou, 510632, China
| | - Guojian Ma
- Department of Chemistry, Jinan University, Guangzhou, 510632, China
| | - Xiaoguang Chen
- Department of Chemistry, Jinan University, Guangzhou, 510632, China
| | - Xing Wu
- Department of Chemistry, Jinan University, Guangzhou, 510632, China
| | - Ling Lin
- Department of Chemistry, Jinan University, Guangzhou, 510632, China
| | - Peng Liu
- Guangdong Engineering and Technology Research Center for Advanced Nanomaterials, School of Environment and Civil, Engineering, Dongguan University of Technology, Dongguan, 523808, China
| | - Tianfeng Chen
- Department of Chemistry, Jinan University, Guangzhou, 510632, China
| |
Collapse
|
37
|
Feng P, Ma G, Chen X, Wu X, Lin L, Liu P, Chen T. Electrooxidative and Regioselective C−H Azolation of Phenol and Aniline Derivatives. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201901762] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Pengju Feng
- Department of ChemistryJinan University Guangzhou 510632 China
| | - Guojian Ma
- Department of ChemistryJinan University Guangzhou 510632 China
| | - Xiaoguang Chen
- Department of ChemistryJinan University Guangzhou 510632 China
| | - Xing Wu
- Department of ChemistryJinan University Guangzhou 510632 China
| | - Ling Lin
- Department of ChemistryJinan University Guangzhou 510632 China
| | - Peng Liu
- Guangdong Engineering and Technology Research Center for Advanced NanomaterialsSchool of Environment and Civil, EngineeringDongguan University of Technology Dongguan 523808 China
| | - Tianfeng Chen
- Department of ChemistryJinan University Guangzhou 510632 China
| |
Collapse
|
38
|
Wang H, Gao X, Lv Z, Abdelilah T, Lei A. Recent Advances in Oxidative R 1-H/R 2-H Cross-Coupling with Hydrogen Evolution via Photo-/Electrochemistry. Chem Rev 2019; 119:6769-6787. [PMID: 31074264 DOI: 10.1021/acs.chemrev.9b00045] [Citation(s) in RCA: 440] [Impact Index Per Article: 73.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Photo-/electrochemical catalyzed oxidative R1-H/R2-H cross-coupling with hydrogen evolution has become an increasingly important issue for molecular synthesis. The dream of construction of C-C/C-X bonds from readily available C-H/X-H with release of H2 can be facilely achieved without external chemical oxidants, providing a greener model for chemical bond formation. Given the great influence of these reactions in organic chemistry, we give a summary of the state of the art in oxidative R1-H/R2-H cross-coupling with hydrogen evolution via photo/electrochemistry, and we hope this review will stimulate the development of a greener synthetic strategy in the near future.
Collapse
Affiliation(s)
- Huamin Wang
- Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Xinlong Gao
- Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Zongchao Lv
- Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Takfaoui Abdelilah
- Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Aiwen Lei
- Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, China.,National Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang 330022, China
| |
Collapse
|
39
|
Yan H, Mao ZY, Hou ZW, Song J, Xu HC. A diastereoselective approach to axially chiral biaryls via electrochemically enabled cyclization cascade. Beilstein J Org Chem 2019; 15:795-800. [PMID: 30992728 PMCID: PMC6444422 DOI: 10.3762/bjoc.15.76] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 03/16/2019] [Indexed: 11/23/2022] Open
Abstract
A diastereoselective approach to axially chiral imidazopyridine-containing biaryls has been developed. The reactions proceed through a radical cyclization cascade to construct the biaryls with good to excellent central-to-axial chirality transfer.
Collapse
Affiliation(s)
- Hong Yan
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, iChEM and College of Chemistry and Chemical Engineering, Xiamen University, People's Republic of China
| | - Zhong-Yi Mao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, iChEM and College of Chemistry and Chemical Engineering, Xiamen University, People's Republic of China
| | - Zhong-Wei Hou
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, iChEM and College of Chemistry and Chemical Engineering, Xiamen University, People's Republic of China
| | - Jinshuai Song
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, People's Republic of China
| | - Hai-Chao Xu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, iChEM and College of Chemistry and Chemical Engineering, Xiamen University, People's Republic of China
| |
Collapse
|
40
|
Rodrigo E, Baunis H, Suna E, Waldvogel SR. Simple and scalable electrochemical synthesis of 2,1-benzisoxazoles and quinoline N-oxides. Chem Commun (Camb) 2019; 55:12255-12258. [DOI: 10.1039/c9cc06054e] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
At carbon electrodes in a scalable electrosynthetic way to two classes of useful heterocycles.
Collapse
Affiliation(s)
- Eduardo Rodrigo
- Institut für Organische Chemie
- Johannes-Gutenberg-Universität Mainz
- 55128 Mainz
- Germany
| | - Haralds Baunis
- Institut für Organische Chemie
- Johannes-Gutenberg-Universität Mainz
- 55128 Mainz
- Germany
- Latvian Institute of Organic Synthesis
| | - Edgars Suna
- Latvian Institute of Organic Synthesis
- Aizkraukles 21
- Latvia
| | | |
Collapse
|
41
|
Meng YY, Si XJ, Song YY, Zhou HM, Xu F. Palladium-catalyzed decarbonylative annulation of phthalimides with arynes: direct construction of phenanthridinones. Chem Commun (Camb) 2019; 55:9507-9510. [DOI: 10.1039/c9cc04868e] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel palladium-catalyzed decarbonylative annulation between phthalimides and arynes was well-established, affording phenanthridinone derivatives in moderate to good yields.
Collapse
Affiliation(s)
- Yan-Yu Meng
- Department of College of Science
- Henan Agricultural University
- Zhengzhou 450002
- P. R. China
| | - Xiao-Ju Si
- Department of Material and Chemical Engineering
- Zhengzhou University of Light Industry
- Zhengzhou 450002
- P. R. China
| | - Yuan-Yuan Song
- Department of Material and Chemical Engineering
- Zhengzhou University of Light Industry
- Zhengzhou 450002
- P. R. China
| | - Hui-Min Zhou
- Department of Material and Chemical Engineering
- Zhengzhou University of Light Industry
- Zhengzhou 450002
- P. R. China
| | - Fen Xu
- Department of Material and Chemical Engineering
- Zhengzhou University of Light Industry
- Zhengzhou 450002
- P. R. China
| |
Collapse
|