1
|
Lerena L, Zuzak R, Godlewski S, Echavarren AM. The Journey for the Synthesis of Large Acenes. Chemistry 2024; 30:e202402122. [PMID: 39077888 DOI: 10.1002/chem.202402122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/18/2024] [Accepted: 07/19/2024] [Indexed: 07/31/2024]
Abstract
Acenes, the group of polycyclic aromatic hydrocarbons (PAHs) with linearly fused benzene rings, possess distinctive electronic properties with potential applicability in material science. Hexacene was the largest acene obtained and characterized in the last century, followed by heptacene in 2006. Since then, a race for obtaining the largest acene resulted in the development of several members of this family as well as diverse innovative synthetic strategies, from solid-state chemistry to the promising on-surface chemistry. This last technique allows the obtention of large acenes, up to tridecacene, the largest acene so far. This review presents the different methodologies employed for the synthesis of acenes, highlighting the newest studies, to provide a much more thorough understanding of the essence of the electronic structure of this captivating group of organic compounds.
Collapse
Affiliation(s)
- Laura Lerena
- Institute of Chemical Research of Catalonia (ICIQ), CERCA, Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007, Tarragona, Spain
- Departament de Química Analítica i Química Orgànica, Universitat Rovira i Virgili, C/ Marcel⋅lí Domingo s/n, 43007, Tarragona, Spain
| | - Rafal Zuzak
- Centre for Nanometer-Scale Science and Advanced Materials, NANOSAM, Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Lojasiewicza 11, PL 30-348, Krakow, Poland
| | - Szymon Godlewski
- Centre for Nanometer-Scale Science and Advanced Materials, NANOSAM, Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Lojasiewicza 11, PL 30-348, Krakow, Poland
| | - Antonio M Echavarren
- Institute of Chemical Research of Catalonia (ICIQ), CERCA, Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007, Tarragona, Spain
- Departament de Química Analítica i Química Orgànica, Universitat Rovira i Virgili, C/ Marcel⋅lí Domingo s/n, 43007, Tarragona, Spain
| |
Collapse
|
2
|
Liu X, Jin Z, Qiu F, Guo Y, Chen Y, Sun Z, Zhang L. Hexabenzoheptacene: A Longitudinally Multihelicene Nanocarbon with Local Aromaticity and Enhanced Stability. Angew Chem Int Ed Engl 2024; 63:e202407547. [PMID: 38725308 DOI: 10.1002/anie.202407547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Indexed: 06/13/2024]
Abstract
We report the synthesis of a longitudinally helical molecular nanocarbon, hexabenzoheptacene (HBH), along with its dimethylated derivative (HBH-Me), which are composed of six benzene rings periodically benzannulated to both zigzag edges of a heptacene core. This benzannulation pattern endows the resulting nanocarbons with a helical heptacene core and local aromaticity, imparting enhanced solubility and stability to the system. The chiral HBH-Me adopts a more highly twisted conformation with an end-to-end twist angle of 95°, enabling the separation of the enantiomers. Both HBH and HBH-Me can be facilely oxidized into their corresponding dications, which exhibit enhanced planarity and aromaticity upon loss of electrons. Notably, both longitudinally helical nanocarbons readily promote solid state packing into two-dimensional (2D) arrangement. Single-crystal microbelts of HBH-Me show hole mobility up to 0.62 cm2 V-1 s-1, illustrating the promising potential of these longitudinally helical molecules for organic electronic devices.
Collapse
Affiliation(s)
- Xinyue Liu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Lab of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Zhengxiong Jin
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Lab of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Fei Qiu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Lab of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Yupeng Guo
- Institute of Molecular Plus, Department of Chemistry and Haihe Laboratory of Sustainable Chemical Transformation, Tianjin University, 92 Weijin Road, Tianjin, 300072, P. R. China
| | - Yan Chen
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Lab of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Zhe Sun
- Institute of Molecular Plus, Department of Chemistry and Haihe Laboratory of Sustainable Chemical Transformation, Tianjin University, 92 Weijin Road, Tianjin, 300072, P. R. China
| | - Lei Zhang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Lab of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| |
Collapse
|
3
|
Freudenberg J, Bunz UHF. How to Stabilize Large Soluble (Hetero-)Acenes. J Am Chem Soc 2024; 146:16937-16949. [PMID: 38862130 PMCID: PMC11212629 DOI: 10.1021/jacs.4c03484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/16/2024] [Accepted: 05/16/2024] [Indexed: 06/13/2024]
Abstract
The higher acenes and azaacenes (>(aza)heptacenes) are fascinating, yet elusive materials. Their reactivity and sensitivity increases concomitantly with their size. In recent years, confinement techniques, that is isolation of acenes in matrices and on surfaces, has surpassed solution-based chemistry with respect to accessing the larger (hetero)acenes at the price of the accessibility of no more than a couple thousands of molecules. Isolating acenes in bulk quantities and in processable form is vital for applications in organic electronics as well as from a viewpoint from basic research. In this Perspective, we will discuss after a short historical outline their degradation pathways, and then will selectively highlight recent efforts in stabilizing soluble (aza)acenes.
Collapse
Affiliation(s)
- Jan Freudenberg
- Ruprecht-Karls-Universität
Heidelberg, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| | - Uwe H. F. Bunz
- Ruprecht-Karls-Universität
Heidelberg, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| |
Collapse
|
4
|
Cador A, Kahlal S, Richards GJ, Halet JF, Hill JP. Protic Processes in an Extended Pyrazinacene: The Case of Dihydrotetradecaazaheptacene. Molecules 2024; 29:2407. [PMID: 38792268 PMCID: PMC11124472 DOI: 10.3390/molecules29102407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/14/2024] [Accepted: 05/16/2024] [Indexed: 05/26/2024] Open
Abstract
Pyrazinacenes are linearly fused heteroaromatic rings, with N atoms replacing all apical CH moieties. Component rings may exist in a reduced state, having NH groups instead of N, causing cross-conjugation. These compounds have interesting optical and electronic properties, including strong fluorescence in the near-infrared region and photocatalytic properties, leading to diverse possible applications in bio-imaging and organic synthesis, as well as obvious molecular electronic uses. In this study, we investigated the behavior of seven-ring pyrazinacene 2,3,11,12-tetraphenyl-7,16-dihydro-1,4,5,6,7,8,9,12,13,14,15,16,17,18-tetradecaazaheptacene (Ph4H2N14HEPT), with an emphasis on protic processes, including oxidation, tautomerism, deprotonation, and protonation, and the species resulting from those processes. We used computational methods to optimize the structures of the different species and generate/compare molecular orbital structures. The aromaticity of the species generated by the different processes was assessed using the nucleus-independent chemical shifts, and trends in the values were associated with the different transformations of the pyrazinacene core. The computational data were compared with experimental data obtained from synthetic samples of the molecule tBu8Ph4H2N14HEPT.
Collapse
Affiliation(s)
- Aël Cador
- French Alternative Energies and Atomic Energy Commission, CEA Saclay, DRF/IRAMIS/NIMBE/LSDRM, F-91191 Gif-sur-Yvette, France;
- Ecole Nationale Supérieure de Chimie de Rennes (ENSCR), CNRS, Institut des Sciences Chimiques de Rennes (ISCR), University of Rennes, UMR 6226, 11 Allée de Beaulieu, F-35708 Rennes, France;
| | - Samia Kahlal
- Ecole Nationale Supérieure de Chimie de Rennes (ENSCR), CNRS, Institut des Sciences Chimiques de Rennes (ISCR), University of Rennes, UMR 6226, 11 Allée de Beaulieu, F-35708 Rennes, France;
| | - Gary J. Richards
- Department of Applied Chemistry, Graduate School of Engineering and Science, Shibaura Institute of Technology, Fukasaku 307, Minuma-ku, Saitama-shi 337-8570, Saitama, Japan;
| | - Jean-François Halet
- Ecole Nationale Supérieure de Chimie de Rennes (ENSCR), CNRS, Institut des Sciences Chimiques de Rennes (ISCR), University of Rennes, UMR 6226, 11 Allée de Beaulieu, F-35708 Rennes, France;
- CNRS–Saint-Gobain–NIMS, IRL 3629, Laboratory for Innovative Key Materials and Structures (LINK), National Institute for Materials Science (NIMS), Tsukuba 305-0044, Ibaraki, Japan
| | - Jonathan P. Hill
- Research Center for Materials Nanoarchitectonics, National Institute for Materials Science, Namiki 1-1, Tsukuba 305-0044, Ibaraki, Japan
| |
Collapse
|
5
|
Okba A, Simón Marqués P, Matsuo K, Aratani N, Yamada H, Rapenne G, Kammerer C. Synthesis of π-conjugated polycyclic compounds by late-stage extrusion of chalcogen fragments. Beilstein J Org Chem 2024; 20:287-305. [PMID: 38379731 PMCID: PMC10877077 DOI: 10.3762/bjoc.20.30] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 01/31/2024] [Indexed: 02/22/2024] Open
Abstract
The "precursor approach" has proved particularly valuable for the preparation of insoluble and unstable π-conjugated polycyclic compounds (π-CPCs), which cannot be synthesized via in-solution organic chemistry, for their improved processing, as well as for their electronic investigation both at the material and single-molecule scales. This method relies on the synthesis and processing of soluble and stable direct precursors of the target π-CPCs, followed by their final conversion in situ, triggered by thermal activation, photoirradiation or redox control. Beside well-established reactions involving the elimination of carbon-based small molecules, i.e., retro-Diels-Alder and decarbonylation processes, the late-stage extrusion of chalcogen fragments has emerged as a highly promising synthetic tool to access a wider variety of π-conjugated polycyclic structures and thus to expand the potentialities of the "precursor approach" for further improvements of molecular materials' performances. This review gives an overview of synthetic strategies towards π-CPCs involving the ultimate elimination of chalcogen fragments upon thermal activation, photoirradiation and electron exchange.
Collapse
Affiliation(s)
- Aissam Okba
- CEMES, Université de Toulouse, CNRS, 29 rue Marvig, F-31055 Toulouse Cedex 4, France
- Division of Materials Science, Nara Institute of Science and Technology, NAIST, 8916-5 Takayama-cho, Ikoma, Nara 630-0192, Japan
| | - Pablo Simón Marqués
- CEMES, Université de Toulouse, CNRS, 29 rue Marvig, F-31055 Toulouse Cedex 4, France
| | - Kyohei Matsuo
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Naoki Aratani
- Division of Materials Science, Nara Institute of Science and Technology, NAIST, 8916-5 Takayama-cho, Ikoma, Nara 630-0192, Japan
| | - Hiroko Yamada
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Gwénaël Rapenne
- CEMES, Université de Toulouse, CNRS, 29 rue Marvig, F-31055 Toulouse Cedex 4, France
- Division of Materials Science, Nara Institute of Science and Technology, NAIST, 8916-5 Takayama-cho, Ikoma, Nara 630-0192, Japan
| | - Claire Kammerer
- CEMES, Université de Toulouse, CNRS, 29 rue Marvig, F-31055 Toulouse Cedex 4, France
| |
Collapse
|
6
|
Zeitter N, Hippchen N, Weidlich A, Jäger P, Ludwig P, Rominger F, Dreuw A, Freudenberg J, Bunz UHF. Hexakis-TIPS-Alkynylated Nonacenes: Persistent and Processible. Chemistry 2023; 29:e202302323. [PMID: 37490332 DOI: 10.1002/chem.202302323] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 07/25/2023] [Accepted: 07/25/2023] [Indexed: 07/26/2023]
Abstract
Four substituted nonacenes were prepared and characterized by UV-vis and EPR spectroscopy and X-ray crystallography. The compounds are the most stable and soluble nonacenes to date - due to six strategically placed triisopropylsilyl(TIPS)-ethynyl groups. They are stable for several weeks in the solid state. In dilute solution their half-life is 5-9 h. Crystal structure analyses of two nonacenes prove their structures. A nonacene derivative was tested in a solution-processed transistor and exhibits ambipolar charge transport (μe =0.007 cm2 /Vs; μh =0.023 cm2 /Vs).
Collapse
Affiliation(s)
- Nico Zeitter
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Nikolai Hippchen
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Anna Weidlich
- Interdisciplinary Center for Scientific Computing, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 205, 69120, Heidelberg, Germany
| | - Patrick Jäger
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Philipp Ludwig
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Frank Rominger
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Andreas Dreuw
- Interdisciplinary Center for Scientific Computing, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 205, 69120, Heidelberg, Germany
| | - Jan Freudenberg
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Uwe H F Bunz
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| |
Collapse
|
7
|
Sandoval-Salinas ME, Brémond E, Pérez-Jiménez AJ, Adamo C, Sancho-García JC. Excitation energies of polycylic aromatic hydrocarbons by double-hybrid functionals: Assessing the PBE0-DH and PBE-QIDH models and their range-separated versions. J Chem Phys 2023; 158:044105. [PMID: 36725511 DOI: 10.1063/5.0134946] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
A family of non-empirical double-hybrid (DH) density functionals, such as Perdew-Burke-Ernzerhof (PBE)0-DH, PBE-QIDH, and their range-separated exchange (RSX) versions RSX-0DH and RSX-QIDH, all using Perdew-Burke-Ernzerhof(PBE) exchange and correlationfunctionals, is applied here to calculate the excitation energies for increasingly longer linear and cyclic acenes as part of their intense benchmarking for excited states of all types. The energies for the two lowest-lying singlet 1La and 1Lb states of linear oligoacenes as well as the triplet 3La and 3Lb states, are calculated and compared with experimental results. These functionals clearly outperform the results obtained from hybrid functionals and favorably compare with other double-hybrid expressions also tested here, such as B2-PLYP, B2GP-PLYP, ωB2-PLYP, and ωB2GP-PLYP. The study is complemented by the computation of adiabatic S0-T1 singlet-triplet energy difference for linear acenes as well as the extension of the study to strained cyclic oligomers, showing how the family of non-empirical expressions robustly leads to competitive results.
Collapse
Affiliation(s)
- M E Sandoval-Salinas
- Department of Physical Chemistry, University of Alicante, E-03080 Alicante, Spain
| | - E Brémond
- ITODYS, CNRS, Université Paris Cité, F-75006 Paris, France
| | - A J Pérez-Jiménez
- Department of Physical Chemistry, University of Alicante, E-03080 Alicante, Spain
| | - C Adamo
- Chimie ParisTech, CNRS, Institute of Chemistry for Life and Health Sciences (i-CLeHS), UMR8060, PSL Research University, F-75005 Paris, France
| | - J C Sancho-García
- Department of Physical Chemistry, University of Alicante, E-03080 Alicante, Spain
| |
Collapse
|
8
|
Lebedinskiy K, Lobaz V, Jindřich J. Preparation of β-cyclodextrin-based dimers with selectively methylated rims and their use for solubilization of tetracene. Beilstein J Org Chem 2022; 18:1596-1606. [PMID: 36530532 PMCID: PMC9704020 DOI: 10.3762/bjoc.18.170] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 11/08/2022] [Indexed: 08/15/2023] Open
Abstract
A series of β-cyclodextrin dimers selectively permethylated on the primary or secondary rim with two different types of spacers have been synthesized effectively utilizing conventional and newly developed methods. Their structure analyses by 1H NMR and NOESY NMR imply the dependence of molecular symmetry on the type of spacer. The ability of synthesized dimers to increase the solubility of tetracene in DMSO was evaluated and compared to native cyclodextrins and their methylated derivatives. The newly synthesized compounds expressed better effectiveness than other tested supramolecular hosts.
Collapse
Affiliation(s)
- Konstantin Lebedinskiy
- Department of Organic Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 43 Prague, Czech Republic
| | - Volodymyr Lobaz
- Institute of Macromolecular Chemistry, Department of Supramolecular Systems and Self-Assembling Processes, Heyrovského nám. 2, 162 06 Prague, Czech Republic
| | - Jindřich Jindřich
- Department of Organic Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 43 Prague, Czech Republic
| |
Collapse
|
9
|
Hayashi H, Chan YS, Sato S, Kasahara S, Matsuo K, Aratani N, Yamada H. Polyazaacene and Cyclazaacene Precursors Synthesized by Dehydration Condensation from a Versatile Bis‐α‐diketone Unit Having an Anthracene Skeleton. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Hironobu Hayashi
- Nara Institute of Science and Technology Graduate School of Materials Science 8916-5 Takayama-cho 630-0192 Ikoma JAPAN
| | - Yee Seng Chan
- Nara Institute of Science and Technology: Nara Sentan Kagaku Gijutsu Daigakuin Daigaku Division of Materials Science JAPAN
| | - Shizuka Sato
- Nara Institute of Science and Technology: Nara Sentan Kagaku Gijutsu Daigakuin Daigaku Division of Materials Science JAPAN
| | - Shoma Kasahara
- Nara Institute of Science and Technology: Nara Sentan Kagaku Gijutsu Daigakuin Daigaku Division of Materials Science JAPAN
| | - Kyohei Matsuo
- Nara Institute of Science and Technology: Nara Sentan Kagaku Gijutsu Daigakuin Daigaku Division of Materials Science JAPAN
| | - Naoki Aratani
- Nara Institute of Science and Technology: Nara Sentan Kagaku Gijutsu Daigakuin Daigaku Division of Materials Science JAPAN
| | - Hiroko Yamada
- Nara Institute of Science and Technology: Nara Sentan Kagaku Gijutsu Daigakuin Daigaku Division of Materials Science JAPAN
| |
Collapse
|
10
|
Synthesis of oligoacenes using precursors for evaluation of their electronic structures. Photochem Photobiol Sci 2022; 21:1511-1532. [PMID: 35670917 DOI: 10.1007/s43630-022-00235-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 04/13/2022] [Indexed: 10/18/2022]
Abstract
Acenes, which are hydrocarbons comprising linearly fused benzene rings, have attracted considerable attention owing to their electronic structures and utility as organic electronic materials. However, the ease with which oligoacenes undergo oxidation increases with the number of linearly fused benzene rings owing to the increased energy of the highest occupied molecular orbital. The synthesis of naked oligoacenes with seven or more benzene rings is difficult because their open-shell structure renders them unstable. The recent development of a precursor method has enabled the in situ synthesis of oligoacenes under specific conditions and the spectroscopic observation of oligoacene in single crystals, in film matrices and under cryogenic conditions. Scanning tunneling microscopy and non-contact atomic force microscopy under ultra-high vacuum conditions have also made significant advances in the study of oligoacenes and oligoazaacenes. This paper reviews the recent progress in the synthesis of oligoacenes using precursors, with a particular focus on the chemical structures, synthesis, and reactivity of the precursors. The electronic properties of oligoacenes are also discussed in relation to the number of fused benzene rings, including their energy levels and spin states. These results will contribute to the synthesis and development of carbon nanomaterials with applications in the field of organic electronics.
Collapse
|
11
|
Jančařík A, Holec J, Nagata Y, Šámal M, Gourdon A. Preparative-scale synthesis of nonacene. Nat Commun 2022; 13:223. [PMID: 35017480 PMCID: PMC8752783 DOI: 10.1038/s41467-021-27809-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 12/03/2021] [Indexed: 11/30/2022] Open
Abstract
During the last years we have witnessed progressive evolution of preparation of acenes with length up to dodecacene by on-surface synthesis in ultra-high vacuum or generation of acenes up to decacene in solid matrices at low temperatures. While these protocols with very specific conditions produce the acenes in amount of few molecules, the strategies leading to the acenes in large quantities dawdle behind. Only recently and after 70 years of synthetic attempts, heptacene has been prepared in bulk phase. However, the preparative scale synthesis of higher homologues still remains a formidable challenge. Here we report the preparation and characterisation of nonacene and show its excellent thermal and in-time stability. Acenes, or linearly fused benzene rings, have both fundamental scientific interest and potential for electronic and material utility, but synthesis of acenes with more than six rings are difficult due to dimerization and degradation. Here the authors prepare nonacene and demonstrate that it is stable in inert conditions.
Collapse
Affiliation(s)
- Andrej Jančařík
- GNS Group, CEMES-CNRS, 29 Rue J. Marvig, 31055, Toulouse, France. .,Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 16610, Prague 6, Czech Republic. .,Univ. Bordeaux, CNRS, Centre de Recherche Paul Pascal, UMR 5031, 33600, Pessac, France.
| | - Jan Holec
- GNS Group, CEMES-CNRS, 29 Rue J. Marvig, 31055, Toulouse, France
| | - Yuuya Nagata
- Japan Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Hokkaido, 001-0021, Japan
| | - Michal Šámal
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 16610, Prague 6, Czech Republic
| | - Andre Gourdon
- GNS Group, CEMES-CNRS, 29 Rue J. Marvig, 31055, Toulouse, France.
| |
Collapse
|
12
|
Bedel Pereira E, Bassaler J, Laval H, Holec J, Monflier R, Mesnilgrente F, Salvagnac L, Daran E, Duployer B, Tenailleau C, Gourdon A, Jancarik A, Séguy I. Benzohexacene guide in accurate determination of field effect carrier mobilities in long acenes. RSC Adv 2021; 12:671-680. [PMID: 35425115 PMCID: PMC8697683 DOI: 10.1039/d1ra07808a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 12/09/2021] [Indexed: 11/21/2022] Open
Abstract
Oligoacenes are promising materials in the field of electronic devices since they exhibit high charge carrier mobility and more particularly as a semiconductor in thin film transistors. Herein, we investigate the field effect charge carrier mobility of benzohexacene, recently obtained by cheletropic decarbonylation at moderate temperature. Initially, high performance bottom contact organic thin-film transistors (OTFTs) were fabricated using tetracene to validate the fabrication process. For easier comparison, the geometries and channel sizes of the fabricated devices are the same for the two acenes. The charge transport in OTFTs being closely related to the organic thin film at the dielectric/organic semiconductor interface, the structural and morphological features of the thin films of both materials are therefore studied according to deposition conditions. Finally, by extracting relevant device parameters the benzohexacene based OTFT shows a four-probe contact-corrected hole mobility value of up to 0.2 cm2 V-1 s-1.
Collapse
Affiliation(s)
- E Bedel Pereira
- LAAS-CNRS, Université de Toulouse, UPS 31031 Toulouse France
| | - J Bassaler
- LAAS-CNRS, Université de Toulouse, UPS 31031 Toulouse France
| | - H Laval
- LAAS-CNRS, Université de Toulouse, UPS 31031 Toulouse France
| | - J Holec
- CEMES-CNRS 29 Rue J. Marvig 31055 Toulouse France
| | - R Monflier
- LAAS-CNRS, Université de Toulouse, UPS 31031 Toulouse France
| | - F Mesnilgrente
- LAAS-CNRS, Université de Toulouse, UPS 31031 Toulouse France
| | - L Salvagnac
- LAAS-CNRS, Université de Toulouse, UPS 31031 Toulouse France
| | - E Daran
- LAAS-CNRS, Université de Toulouse, UPS 31031 Toulouse France
| | - B Duployer
- CIRIMAT, Université de Toulouse, CNRS, Université Toulouse 3 - Paul Sabatier, 118 Route de Narbonne 31062 Toulouse Cedex 9 France
| | - C Tenailleau
- CIRIMAT, Université de Toulouse, CNRS, Université Toulouse 3 - Paul Sabatier, 118 Route de Narbonne 31062 Toulouse Cedex 9 France
| | - A Gourdon
- CEMES-CNRS 29 Rue J. Marvig 31055 Toulouse France
| | - A Jancarik
- CEMES-CNRS 29 Rue J. Marvig 31055 Toulouse France
- CRPP, UMR CNRS 5031, Université de Bordeaux 33600 Pessac France
| | - I Séguy
- LAAS-CNRS, Université de Toulouse, UPS 31031 Toulouse France
| |
Collapse
|
13
|
Toninelli C, Gerhardt I, Clark AS, Reserbat-Plantey A, Götzinger S, Ristanović Z, Colautti M, Lombardi P, Major KD, Deperasińska I, Pernice WH, Koppens FHL, Kozankiewicz B, Gourdon A, Sandoghdar V, Orrit M. Single organic molecules for photonic quantum technologies. NATURE MATERIALS 2021; 20:1615-1628. [PMID: 33972762 DOI: 10.1038/s41563-021-00987-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 03/17/2021] [Indexed: 05/24/2023]
Abstract
Isolating single molecules in the solid state has allowed fundamental experiments in basic and applied sciences. When cooled down to liquid helium temperature, certain molecules show transition lines that are tens of megahertz wide, limited by only the excited-state lifetime. The extreme flexibility in the synthesis of organic materials provides, at low costs, a wide palette of emission wavelengths and supporting matrices for such single chromophores. In the past few decades, their controlled coupling to photonic structures has led to an optimized interaction efficiency with light. Molecules can hence be operated as single-photon sources and as nonlinear elements with competitive performance in terms of coherence, scalability and compatibility with diverse integrated platforms. Moreover, they can be used as transducers for the optical read-out of fields and material properties, with the promise of single-quanta resolution in the sensing of charges and motion. We show that quantum emitters based on single molecules hold promise to play a key role in the development of quantum science and technologies.
Collapse
Affiliation(s)
- C Toninelli
- CNR-INO, Sesto Fiorentino, Italy.
- LENS, European Laboratory for Nonlinear Spectroscopy, Sesto Fiorentino, Italy.
| | - I Gerhardt
- Institute for Quantum Science and Technology (IQST) and 3rd Institute of Physics, Stuttgart, Germany
| | - A S Clark
- Centre for Cold Matter, Blackett Laboratory, Imperial College London, London, UK
| | - A Reserbat-Plantey
- ICFO - Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Castelldefels, Spain
| | - S Götzinger
- Max Planck Institute for the Science of Light, Erlangen, Germany
- Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Z Ristanović
- Huygens-Kamerlingh Onnes Laboratory, LION, Leiden, The Netherlands
| | - M Colautti
- CNR-INO, Sesto Fiorentino, Italy
- LENS, European Laboratory for Nonlinear Spectroscopy, Sesto Fiorentino, Italy
| | - P Lombardi
- CNR-INO, Sesto Fiorentino, Italy
- LENS, European Laboratory for Nonlinear Spectroscopy, Sesto Fiorentino, Italy
| | - K D Major
- Centre for Cold Matter, Blackett Laboratory, Imperial College London, London, UK
| | - I Deperasińska
- Institute of Physics, Polish Academy of Sciences, Warsaw, Poland
| | - W H Pernice
- Physikalisches Institut, Westfälische Wilhelms, Universität Münster, Münster, Germany
| | - F H L Koppens
- ICFO - Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Castelldefels, Spain
- ICREA - Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
| | - B Kozankiewicz
- Institute of Physics, Polish Academy of Sciences, Warsaw, Poland
| | | | - V Sandoghdar
- Max Planck Institute for the Science of Light, Erlangen, Germany
- Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - M Orrit
- Huygens-Kamerlingh Onnes Laboratory, LION, Leiden, The Netherlands
| |
Collapse
|
14
|
Jančařík A, Mildner D, Nagata Y, Banasiewicz M, Olas J, Kozankiewicz B, Holec J, Gourdon A. Synthesis and Absorption Properties of Long Acenoacenes. Chemistry 2021; 27:12388-12394. [PMID: 34101270 DOI: 10.1002/chem.202101577] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Indexed: 11/12/2022]
Abstract
Acenes, polyaromatic hydrocarbons composed of linearly fused benzene rings have received immense attention due to their performance as semiconductors in organic optoelectronic applications. Their appealing physicochemical properties, such as extended delocalization, high charge carrier mobilities, narrow HOMO-LOMO gaps and partially radical character in the ground state make them very attractive targets for many potential applications. However, the intrinsic synthetic challenges of unsubstituted members such as high reactivity and poor solubility are still limiting factors for their wider exploitation. Herein, we report a simple general synthesis of a new family of angularly fused acenoacenes with improved stability compared to their isoelectronic linear counterparts. The synthesis and comprehensive characterization of pentacenopentacene, pentacenohexacene and hexacenohexacene, with lengths between decacene and dodecacene, are disclosed.
Collapse
Affiliation(s)
- Andrej Jančařík
- Centre d'Elaboration de Matériaux et d'Etudes Structurales, CEMES-CNRS, 29 rue Jeanne Marvig, 31055, Toulouse, France.,Institute of Organic Chemistry and Biochemistry, Czech Academy of Science, IOCB CAS Flemingovo nám. 542, 160 00, Praha 6, Czech Republic
| | - Daniel Mildner
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Science, IOCB CAS Flemingovo nám. 542, 160 00, Praha 6, Czech Republic
| | - Yuuya Nagata
- Japan Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Hokkaido, 001-0021, Japan
| | - Marzena Banasiewicz
- Institute of Physics, Polish Academy of Sciences, Al. Lotników 32/46, 02-668, Warsaw, Poland
| | - Joanna Olas
- Institute of Physics, Polish Academy of Sciences, Al. Lotników 32/46, 02-668, Warsaw, Poland
| | - Boleslaw Kozankiewicz
- Institute of Physics, Polish Academy of Sciences, Al. Lotników 32/46, 02-668, Warsaw, Poland
| | - Jan Holec
- Centre d'Elaboration de Matériaux et d'Etudes Structurales, CEMES-CNRS, 29 rue Jeanne Marvig, 31055, Toulouse, France
| | - André Gourdon
- Centre d'Elaboration de Matériaux et d'Etudes Structurales, CEMES-CNRS, 29 rue Jeanne Marvig, 31055, Toulouse, France
| |
Collapse
|
15
|
Abstract
Pyrazinacenes are a class of nitrogen-containing heteroacene molecules composed of linearly fused pyrazine units, which might also include dihydropyrazine groups leading to different reduced states of the compounds. While they are structurally similar to hydrocarbon acenes (e.g., pentacene) the presence of increasing numbers of N-heteroatoms introduces several different additional features of the compounds so that they can be considered for investigations beyond those suggested for acenes (i.e., organic field-effect transistors, solar cell components). Pyrazinacenes are in several ways complementary to C-H-only acenes based on the increasing stability of reduced states of the compounds with increasing numbers of fused pyrazine rings, although an acene-like electronic structure persists in the compounds so far studied. However, the introduction of multiple N atoms leads to properties that depart from C-H-only acenes. In particular, the compounds exhibit a delocalization of NH protons in extended reduced compounds and oxidation state switchability in solution and at interfaces. The presence of NH groups also allows an easy introduction of solubilizing groups at the pyrazinacene chromophore. In this Account, we will describe the preparation of extended pyrazinacenes from dipyrazino[2,3-b:2',3'-e]pyrazine (1,4,5,8,9,10-hexaazaanthracene; N6) derivatives up to 1,4,5,6,7,8,9,12,13,14,15,16,17,18-tetradecaazaheptacene (N14) and also assess structures of the relevant compounds based on X-ray crystallographic studies. Emergent properties of the molecules include highly unusual linear tautomeric processes based on a delocalization of protons (and the corresponding formation of orbitals based on multiple adjacent N lone electron pair interactions), which suggest special transport properties based on molecular protonics. Molecules such as decazapentacene (N10) exhibit multistability of oxidation state, and this is predicted to promote the redox catalytic properties of the compounds. The oxidation-state switching of on-surface processes is also described and has been investigated using scanning tunneling microscopy. The longest known pyrazinacene chromophore (N14) exhibits amphiprotism with its state of protonation being strongly coupled to its fluorescence emission properties in the near-infrared region indicating possible uses in pH-coupled bioimaging applications. The synthesis of the pyrazinacenes is flexible and allows the preparation of symmetrically or unsymmetrically substituted derivatives for the development of more complex molecules and for control of the electronic structure of the acene unit. Overall, the pyrazinacenes represent an emerging class of highly nitrogenous heteroacenes with unique properties and excellent potential for development in different applications based on their special supramolecular properties including guest binding or interactions in biological systems.
Collapse
Affiliation(s)
- Gary J. Richards
- Department of Applied Chemistry, Graduate School of Engineering and Science, Shibaura Institute of Technology, Fukasaku 307, Minuma-ku, Saitama-shi, Saitama 337-8570, Japan
| | - Jonathan P. Hill
- Functional Chromophores Group, International Center for Materials Nanoarchitectonics, National Institute for Materials Science, Namiki 1-1, Tsukuba, Ibaraki 305-0044, Japan
| |
Collapse
|
16
|
Holec J, Cogliati B, Lawrence J, Berdonces-Layunta A, Herrero P, Nagata Y, Banasiewicz M, Kozankiewicz B, Corso M, de Oteyza DG, Jancarik A, Gourdon A. A Large Starphene Comprising Pentacene Branches. Angew Chem Int Ed Engl 2021; 60:7752-7758. [PMID: 33460518 DOI: 10.1002/anie.202016163] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/13/2021] [Indexed: 11/08/2022]
Abstract
Starphenes are attractive compounds due to their characteristic physicochemical properties that are inherited from acenes, making them interesting compounds for organic electronics and optics. However, the instability and low solubility of larger starphene homologs make their synthesis extremely challenging. Herein, we present a new strategy leading to pristine [16]starphene in preparative scale. Our approach is based on a synthesis of a carbonyl-protected starphene precursor that is thermally converted in a solid-state form to the neat [16]starphene, which is then characterised with a variety of analytical methods, such as 13 C CP-MAS NMR, TGA, MS MALDI, UV/Vis and FTIR spectroscopy. Furthermore, high-resolution STM experiments unambiguously confirm its expected structure and reveal a moderate electronic delocalisation between the pentacene arms. Nucleus-independent chemical shifts NICS(1) are also calculated to survey its aromatic character.
Collapse
Affiliation(s)
- Jan Holec
- Centre d'Elaboration de Matériaux et d'Etudes Structurales, CEMES-CNRS, 29 rue Jeanne Marvig, 31055, Toulouse, France
| | - Beatrice Cogliati
- Centre d'Elaboration de Matériaux et d'Etudes Structurales, CEMES-CNRS, 29 rue Jeanne Marvig, 31055, Toulouse, France.,Current address: Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Università di Parma, Parco Area delle Scienze 17/A, 43124, Parma, Italy
| | - James Lawrence
- Donostia International Physics Center, 20018, San Sebastián, Spain.,Centro de Fisica de Materiales, CSIC-UPV/EHU, 20018, San Sebastián, Spain
| | - Alejandro Berdonces-Layunta
- Donostia International Physics Center, 20018, San Sebastián, Spain.,Centro de Fisica de Materiales, CSIC-UPV/EHU, 20018, San Sebastián, Spain
| | - Pablo Herrero
- Donostia International Physics Center, 20018, San Sebastián, Spain.,Centro de Fisica de Materiales, CSIC-UPV/EHU, 20018, San Sebastián, Spain
| | - Yuuya Nagata
- Japan Institute for Chemical Reaction Design and Discovery, (WPI-ICReDD), Hokkaido University, Sapporo, Hokkaido, 001-0021, Japan
| | - Marzena Banasiewicz
- Institute of Physics, Polish Academy of Sciences, Al. Lotników 32/46, 02-668, Warsaw, Poland
| | - Boleslaw Kozankiewicz
- Institute of Physics, Polish Academy of Sciences, Al. Lotników 32/46, 02-668, Warsaw, Poland
| | - Martina Corso
- Donostia International Physics Center, 20018, San Sebastián, Spain.,Centro de Fisica de Materiales, CSIC-UPV/EHU, 20018, San Sebastián, Spain
| | - Dimas G de Oteyza
- Donostia International Physics Center, 20018, San Sebastián, Spain.,Centro de Fisica de Materiales, CSIC-UPV/EHU, 20018, San Sebastián, Spain
| | - Andrej Jancarik
- Centre d'Elaboration de Matériaux et d'Etudes Structurales, CEMES-CNRS, 29 rue Jeanne Marvig, 31055, Toulouse, France.,Institute of Organic Chemistry and Biochemistry of Czech Academy of Science, IOCB CAS, Flemingovo nám. 542, 160 00, Praha 6, Czech Republic
| | - Andre Gourdon
- Centre d'Elaboration de Matériaux et d'Etudes Structurales, CEMES-CNRS, 29 rue Jeanne Marvig, 31055, Toulouse, France
| |
Collapse
|
17
|
Holec J, Cogliati B, Lawrence J, Berdonces‐Layunta A, Herrero P, Nagata Y, Banasiewicz M, Kozankiewicz B, Corso M, Oteyza DG, Jancarik A, Gourdon A. A Large Starphene Comprising Pentacene Branches. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202016163] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jan Holec
- Centre d'Elaboration de Matériaux et d'Etudes Structurales CEMES-CNRS 29 rue Jeanne Marvig 31055 Toulouse France
| | - Beatrice Cogliati
- Centre d'Elaboration de Matériaux et d'Etudes Structurales CEMES-CNRS 29 rue Jeanne Marvig 31055 Toulouse France
- Current address: Dipartimento di Scienze Chimiche della Vita e della Sostenibilità Ambientale Università di Parma Parco Area delle Scienze 17/A 43124 Parma Italy
| | - James Lawrence
- Donostia International Physics Center 20018 San Sebastián Spain
- Centro de Fisica de Materiales CSIC-UPV/EHU 20018 San Sebastián Spain
| | - Alejandro Berdonces‐Layunta
- Donostia International Physics Center 20018 San Sebastián Spain
- Centro de Fisica de Materiales CSIC-UPV/EHU 20018 San Sebastián Spain
| | - Pablo Herrero
- Donostia International Physics Center 20018 San Sebastián Spain
- Centro de Fisica de Materiales CSIC-UPV/EHU 20018 San Sebastián Spain
| | - Yuuya Nagata
- Japan Institute for Chemical Reaction Design and Discovery, (WPI-ICReDD) Hokkaido University Sapporo Hokkaido 001-0021 Japan
| | - Marzena Banasiewicz
- Institute of Physics Polish Academy of Sciences Al. Lotników 32/46 02-668 Warsaw Poland
| | - Boleslaw Kozankiewicz
- Institute of Physics Polish Academy of Sciences Al. Lotników 32/46 02-668 Warsaw Poland
| | - Martina Corso
- Donostia International Physics Center 20018 San Sebastián Spain
- Centro de Fisica de Materiales CSIC-UPV/EHU 20018 San Sebastián Spain
| | - Dimas G. Oteyza
- Donostia International Physics Center 20018 San Sebastián Spain
- Centro de Fisica de Materiales CSIC-UPV/EHU 20018 San Sebastián Spain
| | - Andrej Jancarik
- Centre d'Elaboration de Matériaux et d'Etudes Structurales CEMES-CNRS 29 rue Jeanne Marvig 31055 Toulouse France
- Institute of Organic Chemistry and Biochemistry of Czech Academy of Science IOCB CAS Flemingovo nám. 542 160 00 Praha 6 Czech Republic
| | - Andre Gourdon
- Centre d'Elaboration de Matériaux et d'Etudes Structurales CEMES-CNRS 29 rue Jeanne Marvig 31055 Toulouse France
| |
Collapse
|
18
|
Affiliation(s)
- Jiarong Shi
- School of Chemistry and Chemical Engineering, Chongqing University, 174 Shazheng Street, Chongqing, P. R. China, 400030
| | - Lianggui Li
- School of Chemistry and Chemical Engineering, Chongqing University, 174 Shazheng Street, Chongqing, P. R. China, 400030
| | - Yang Li
- School of Chemistry and Chemical Engineering, Chongqing University, 174 Shazheng Street, Chongqing, P. R. China, 400030
| |
Collapse
|
19
|
Tönshoff C, Bettinger HF. Pushing the Limits of Acene Chemistry: The Recent Surge of Large Acenes. Chemistry 2021; 27:3193-3212. [PMID: 33368683 PMCID: PMC7898397 DOI: 10.1002/chem.202003112] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/18/2020] [Indexed: 11/11/2022]
Abstract
Acenes, consisting of linearly fused benzene rings, are an important fundamental class of organic compounds with various applications. Hexacene is the largest acene that was synthesized and isolated in the 20th century. The next largest member of the acene family, heptacene, was observed in 2007 and since then significant progress in preparing acenes has been reported. Significantly larger acenes, up to undecacene, could be studied by means of low-temperature matrix isolation spectroscopy with in situ photolytic generation, and up to dodecacene by means of on-surface synthesis employing innovative precursors and highly defined crystalline metal surfaces under ultrahigh vacuum conditions. The review summarizes recent experimental and theoretical advances in the area of acenes that give a significantly deeper insight into the fundamental properties and nature of the electronic structure of this fascinating class of organic compounds.
Collapse
Affiliation(s)
- Christina Tönshoff
- Institut für Organische ChemieUniversität TübingenAuf der Morgenstelle 1872076TübingenGermany
| | - Holger F. Bettinger
- Institut für Organische ChemieUniversität TübingenAuf der Morgenstelle 1872076TübingenGermany
| |
Collapse
|
20
|
Saalfrank C, Fantuzzi F, Kupfer T, Ritschel B, Hammond K, Krummenacher I, Bertermann R, Wirthensohn R, Finze M, Schmid P, Engel V, Engels B, Braunschweig H. cAAC-Stabilized 9,10-diboraanthracenes-Acenes with Open-Shell Singlet Biradical Ground States. Angew Chem Int Ed Engl 2020; 59:19338-19343. [PMID: 32662218 PMCID: PMC7589216 DOI: 10.1002/anie.202008206] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Indexed: 12/19/2022]
Abstract
Narrow HOMO-LUMO gaps and high charge-carrier mobilities make larger acenes potentially high-efficient materials for organic electronic applications. The performance of such molecules was shown to significantly increase with increasing number of fused benzene rings. Bulk quantities, however, can only be obtained reliably for acenes up to heptacene. Theoretically, (oligo)acenes and (poly)acenes are predicted to have open-shell singlet biradical and polyradical ground states, respectively, for which experimental evidence is still scarce. We have now been able to dramatically lower the HOMO-LUMO gap of acenes without the necessity of unfavorable elongation of their conjugated π system, by incorporating two boron atoms into the anthracene skeleton. Stabilizing the boron centers with cyclic (alkyl)(amino)carbenes gives neutral 9,10-diboraanthracenes, which are shown to feature disjointed, open-shell singlet biradical ground states.
Collapse
Affiliation(s)
- Christian Saalfrank
- Institut für Anorganische ChemieJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
- Institute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Felipe Fantuzzi
- Institut für Anorganische ChemieJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
- Institute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
- Institut für Physikalische und Theoretische ChemieJulius-Maximilians-Universität WürzburgEmil-Fischer-Strasse 4297074WürzburgGermany
| | - Thomas Kupfer
- Institut für Anorganische ChemieJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
- Institute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Benedikt Ritschel
- Institut für Anorganische ChemieJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
- Institute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Kai Hammond
- Institut für Anorganische ChemieJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
- Institute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Ivo Krummenacher
- Institut für Anorganische ChemieJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
- Institute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Rüdiger Bertermann
- Institut für Anorganische ChemieJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
- Institute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Raphael Wirthensohn
- Institut für Anorganische ChemieJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
- Institute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Maik Finze
- Institut für Anorganische ChemieJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
- Institute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Paul Schmid
- Institut für Physikalische und Theoretische ChemieJulius-Maximilians-Universität WürzburgEmil-Fischer-Strasse 4297074WürzburgGermany
| | - Volker Engel
- Institut für Physikalische und Theoretische ChemieJulius-Maximilians-Universität WürzburgEmil-Fischer-Strasse 4297074WürzburgGermany
| | - Bernd Engels
- Institut für Physikalische und Theoretische ChemieJulius-Maximilians-Universität WürzburgEmil-Fischer-Strasse 4297074WürzburgGermany
| | - Holger Braunschweig
- Institut für Anorganische ChemieJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
- Institute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| |
Collapse
|
21
|
Yamada H, Kuzuhara D, Suzuki M, Hayashi H, Aratani N. Synthesis and Morphological Control of Organic Semiconducting Materials Using the Precursor Approach. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2020. [DOI: 10.1246/bcsj.20200130] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Hiroko Yamada
- Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5, Takayama-cho, Ikoma, Nara 630-0192, Japan
| | - Daiki Kuzuhara
- Faculty of Science and Engineering, Iwate University, 4-3-5 Ueda, Morioka, Iwate 020-8551, Japan
| | - Mitsuharu Suzuki
- Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Hironobu Hayashi
- Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5, Takayama-cho, Ikoma, Nara 630-0192, Japan
| | - Naoki Aratani
- Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5, Takayama-cho, Ikoma, Nara 630-0192, Japan
| |
Collapse
|
22
|
Hayashi H, Hieda N, Yamauchi M, Chan YS, Aratani N, Masuo S, Yamada H. Visible‐Light‐Induced Heptacene Generation under Ambient Conditions: Utilization of Single‐crystal Interior as an Isolated Reaction Site. Chemistry 2020; 26:15079-15083. [DOI: 10.1002/chem.202002155] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Indexed: 11/09/2022]
Affiliation(s)
- Hironobu Hayashi
- Division of Materials Science Nara Institute of Science and Technology (NAIST) 8916-5 Takayama-cho Ikoma 630-0192 Japan
| | - Nao Hieda
- Division of Materials Science Nara Institute of Science and Technology (NAIST) 8916-5 Takayama-cho Ikoma 630-0192 Japan
| | - Mitsuaki Yamauchi
- Department of Applied Chemistry for Environment Kwansei Gakuin University 2-1 Gakuen Sanda Hyogo 669-1337 Japan
| | - Yee Seng Chan
- Division of Materials Science Nara Institute of Science and Technology (NAIST) 8916-5 Takayama-cho Ikoma 630-0192 Japan
| | - Naoki Aratani
- Division of Materials Science Nara Institute of Science and Technology (NAIST) 8916-5 Takayama-cho Ikoma 630-0192 Japan
| | - Sadahiro Masuo
- Department of Applied Chemistry for Environment Kwansei Gakuin University 2-1 Gakuen Sanda Hyogo 669-1337 Japan
| | - Hiroko Yamada
- Division of Materials Science Nara Institute of Science and Technology (NAIST) 8916-5 Takayama-cho Ikoma 630-0192 Japan
| |
Collapse
|
23
|
Kaehler T, John A, Jin T, Bolte M, Lerner H, Wagner M. Selective Vicinal Diiodination of Polycyclic Aromatic Hydrocarbons. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000954] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Tanja Kaehler
- Institut für Anorganische Chemie Goethe‐Universität Frankfurt Max‐von‐Laue‐Strasse 7 60438 Frankfurt (Main) Germany
| | - Alexandra John
- Institut für Anorganische Chemie Goethe‐Universität Frankfurt Max‐von‐Laue‐Strasse 7 60438 Frankfurt (Main) Germany
| | - Tao Jin
- Institut für Anorganische Chemie Goethe‐Universität Frankfurt Max‐von‐Laue‐Strasse 7 60438 Frankfurt (Main) Germany
| | - Michael Bolte
- Institut für Anorganische Chemie Goethe‐Universität Frankfurt Max‐von‐Laue‐Strasse 7 60438 Frankfurt (Main) Germany
| | - Hans‐Wolfram Lerner
- Institut für Anorganische Chemie Goethe‐Universität Frankfurt Max‐von‐Laue‐Strasse 7 60438 Frankfurt (Main) Germany
| | - Matthias Wagner
- Institut für Anorganische Chemie Goethe‐Universität Frankfurt Max‐von‐Laue‐Strasse 7 60438 Frankfurt (Main) Germany
| |
Collapse
|
24
|
Saalfrank C, Fantuzzi F, Kupfer T, Ritschel B, Hammond K, Krummenacher I, Bertermann R, Wirthensohn R, Finze M, Schmid P, Engel V, Engels B, Braunschweig H. cAAC‐stabilisierte 9,10‐Diboraanthracene – offenschalige Singulettbiradikale. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202008206] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Christian Saalfrank
- Institut für Anorganische Chemie Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
- Institut für Nachhaltige Chemie & Katalyse mit Bor Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Felipe Fantuzzi
- Institut für Anorganische Chemie Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
- Institut für Nachhaltige Chemie & Katalyse mit Bor Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
- Institut für Physikalische und Theoretische Chemie Julius-Maximilians-Universität Würzburg Emil-Fischer-Straße 42 97074 Würzburg Germany
| | - Thomas Kupfer
- Institut für Anorganische Chemie Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
- Institut für Nachhaltige Chemie & Katalyse mit Bor Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Benedikt Ritschel
- Institut für Anorganische Chemie Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
- Institut für Nachhaltige Chemie & Katalyse mit Bor Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Kai Hammond
- Institut für Anorganische Chemie Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
- Institut für Nachhaltige Chemie & Katalyse mit Bor Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Ivo Krummenacher
- Institut für Anorganische Chemie Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
- Institut für Nachhaltige Chemie & Katalyse mit Bor Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Rüdiger Bertermann
- Institut für Anorganische Chemie Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
- Institut für Nachhaltige Chemie & Katalyse mit Bor Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Raphael Wirthensohn
- Institut für Anorganische Chemie Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
- Institut für Nachhaltige Chemie & Katalyse mit Bor Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Maik Finze
- Institut für Anorganische Chemie Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
- Institut für Nachhaltige Chemie & Katalyse mit Bor Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Paul Schmid
- Institut für Physikalische und Theoretische Chemie Julius-Maximilians-Universität Würzburg Emil-Fischer-Straße 42 97074 Würzburg Germany
| | - Volker Engel
- Institut für Physikalische und Theoretische Chemie Julius-Maximilians-Universität Würzburg Emil-Fischer-Straße 42 97074 Würzburg Germany
| | - Bernd Engels
- Institut für Physikalische und Theoretische Chemie Julius-Maximilians-Universität Würzburg Emil-Fischer-Straße 42 97074 Würzburg Germany
| | - Holger Braunschweig
- Institut für Anorganische Chemie Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
- Institut für Nachhaltige Chemie & Katalyse mit Bor Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| |
Collapse
|
25
|
Levet G, Hung NK, Šámal M, Rybáček J, Cisařová I, Jancarik A, Gourdon A. Preparation of a Key Tetraene Precursor for the Synthesis of Long Acenes. European J Org Chem 2020. [DOI: 10.1002/ejoc.201901868] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Gaspard Levet
- CEMES-CNRS; 29, rue Jeanne Marvig 31055 Toulouse Cedex 04 France
| | | | - Michal Šámal
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences; 166 10 Prague 6 Czech Republic
| | - Jiří Rybáček
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences; 166 10 Prague 6 Czech Republic
| | - Ivana Cisařová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences; 166 10 Prague 6 Czech Republic
| | - Andrej Jancarik
- CEMES-CNRS; 29, rue Jeanne Marvig 31055 Toulouse Cedex 04 France
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences; 166 10 Prague 6 Czech Republic
| | - André Gourdon
- CEMES-CNRS; 29, rue Jeanne Marvig 31055 Toulouse Cedex 04 France
| |
Collapse
|
26
|
Brega V, Yan Y, Thomas SW. Acenes beyond organic electronics: sensing of singlet oxygen and stimuli-responsive materials. Org Biomol Chem 2020; 18:9191-9209. [DOI: 10.1039/d0ob01744b] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Although they are often detrimental in organic electronics, the cycloaddition reactions of acenes, especially with singlet oxygen, are useful in a range of responsive materials.
Collapse
Affiliation(s)
| | - Yu Yan
- Department of Chemistry
- Tufts University
- Medford
- USA
| | | |
Collapse
|
27
|
Thusek J, Hoffmann M, Hübner O, Tverskoy O, Bunz UHF, Dreuw A, Himmel H. Low-Energy Electronic Excitations of N-Substituted Heteroacene Molecules: Matrix Isolation Spectroscopy in Concert with Quantum-Chemical Calculations. Chemistry 2019; 25:15147-15154. [PMID: 31482610 PMCID: PMC6899788 DOI: 10.1002/chem.201903371] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 09/02/2019] [Indexed: 11/11/2022]
Abstract
N-Heteropolycycles are attractive as materials in organic electronic devices. However, a detailed understanding of the low-energy electronic excitation characteristics of these species is still lacking. In this work, the matrix isolation technique is applied to obtain high-resolution absorbance spectra for a series of tetracene and core-substituted N-analogues. The experimental electronic excitation spectra obtained for matrix-isolated molecules are then analysed with the help of quantum-chemical calculations. Additional lower energy excitation bands in the spectrum of the core-substituted N-derivatives of tetracene could be explained in terms of intensity borrowing from dipole-forbidden transitions due to Herzberg-Teller vibronic coupling. In the case of tetracene, evidence for the additional formation of London dimers (J aggregates) is found at higher tetracene concentrations in the matrix.
Collapse
Affiliation(s)
- Jean Thusek
- Anorganisch-Chemisches InstitutRuprecht-Karls-Universität HeidelbergIm Neuenheimer Feld 27569120HeidelbergGermany
| | - Marvin Hoffmann
- Interdisziplinäres Zentrum für Wissenschaftliches RechnenRuprecht-Karls-Universität HeidelbergIm Neuenheimer Feld 20569120HeidelbergGermany
| | - Olaf Hübner
- Anorganisch-Chemisches InstitutRuprecht-Karls-Universität HeidelbergIm Neuenheimer Feld 27569120HeidelbergGermany
| | - Olena Tverskoy
- Organisch-Chemisches InstitutRuprecht-Karls-Universität HeidelbergIm Neuenheimer Feld 27069120HeidelbergGermany
| | - Uwe H. F. Bunz
- Organisch-Chemisches InstitutRuprecht-Karls-Universität HeidelbergIm Neuenheimer Feld 27069120HeidelbergGermany
| | - Andreas Dreuw
- Interdisziplinäres Zentrum für Wissenschaftliches RechnenRuprecht-Karls-Universität HeidelbergIm Neuenheimer Feld 20569120HeidelbergGermany
| | - Hans‐Jörg Himmel
- Anorganisch-Chemisches InstitutRuprecht-Karls-Universität HeidelbergIm Neuenheimer Feld 27569120HeidelbergGermany
| |
Collapse
|