1
|
Tan X, Zhou J, Yang L, Chang Q, Li SY, Rockenbauer A, Song Y, Liu Y. Simultaneous Quantitation of Persulfides, Biothiols, and Hydrogen Sulfide through Sulfur Exchange Reaction with Trityl Spin Probes. J Am Chem Soc 2024; 146:30422-30433. [PMID: 39431326 DOI: 10.1021/jacs.4c10266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
Reactive sulfur species (RSS) including persulfides (RSSHs), biothiols, and hydrogen sulfide (H2S) are key regulators in various physiological processes. To better understand the symbiotic relationship and interconversion of these RSS, it is highly desirable but challenging to develop analytical techniques that are capable of detecting and quantifying them. Herein, we report the rational design and synthesis of novel trityl-radical-based electron paramagnetic resonance (EPR) probes dubbed CT02-TNB and OX-TNB. CT02-TNB underwent fast sulfur exchange reactions with two reactive RSSHs (PS1 and PS2) which were released from their corresponding donors PSD1 and PSD2 to afford the specific conjugates. The resulting conjugates exhibit characteristic EPR spectra, thus enabling discriminative detection and quantitation of the two RSSHs. Moreover, CT02-TNB showed good response toward other RSS including glutathione (GSH), cysteine (Cys), H2S, and sulfite as well. Importantly, based on the updated EPR spectral simulation program, simultaneous quantitation of multiple RSS (e.g., PS1/GSH/Cys or PS1/GSH/H2S) by CT02-TNB was also achieved. Finally, the levels of released PS1 from PSD1 and endogenous GSH in isolated mouse livers were measured by the hydrophilic OX-TNB. This work represents the first study achieving discriminative and quantitative detection of different persulfides and other RSS by a spectroscopic method.
Collapse
Affiliation(s)
- Xiaoli Tan
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, P. R. China
| | - Jiaxin Zhou
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, P. R. China
| | - Luhua Yang
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, P. R. China
| | - Qi Chang
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, P. R. China
| | - Shao-Yong Li
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, P. R. China
| | - Antal Rockenbauer
- Institute of Materials and Environmental Chemistry, Hungarian Academy of Sciences and, Department of Physics, Budapest University of Technology and Economics, Budafoki ut 8, Budapest 1111, Hungary
| | - Yuguang Song
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, P. R. China
| | - Yangping Liu
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, P. R. China
| |
Collapse
|
2
|
Zhu Z, Kuang Z, Shen L, Wang S, Ai X, Abdurahman A, Peng Q. Dual Channel Emissions of Kasha and Anti-Kasha from a Single Radical Molecule. Angew Chem Int Ed Engl 2024; 63:e202410552. [PMID: 39024492 DOI: 10.1002/anie.202410552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 06/27/2024] [Accepted: 07/18/2024] [Indexed: 07/20/2024]
Abstract
Stable open-shell luminescent radicals have recently attracted much attention due to their unique luminescence properties. However, a radical molecule with both Kasha and anti-Kasha doublet emission properties has not been reported. Herein, we have successfully synthesized a stable chlorine-substituted Chichibabin's hydrocarbon, TTM-TTM, along with its mono-radical counterpart, TTM-HTTM. The emission of TTM-TTM follows Kasha's rule in the near infrared region. However, TTM-HTTM shows dual channel doublet emissions of Kasha and anti-Kasha. Remarkably, these two types of emission compete dynamically in both solution and condensed states. Our findings provide valuable insights into the rational design and discovery of stable radicals that possess distinctive luminescent properties, thus broadening the horizons of luminescent materials research.
Collapse
Affiliation(s)
- Zihao Zhu
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Qianjin Avenue 2699, Changchun, 130012, P. R. China
| | - Zhiyuan Kuang
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM) & School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, P. R. China
| | - Li Shen
- College of Chemical Engineering and Environmental Chemistry, Weifang University, Weifang, 261061, P. R. China
| | - Shengjie Wang
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Qianjin Avenue 2699, Changchun, 130012, P. R. China
| | - Xin Ai
- School of Materials Science and Engineering, Collaborative Innovation Center of Information Technology, Collaborative Innovation Center of Marine Science and Technology, Hainan University, Renmin Avenue 58, Haikou, 570228, P. R. China
| | - Alim Abdurahman
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Qianjin Avenue 2699, Changchun, 130012, P. R. China
| | - Qiming Peng
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM) & School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, P. R. China
| |
Collapse
|
3
|
Li S, Deng P, Chang Q, Feng M, Shang Y, Song Y, Liu Y. In Situ Generation and High Bioresistance of Trityl-based Semiquinone Methide Radicals Under Anaerobic Conditions in Cellular Systems. Chemistry 2024; 30:e202400985. [PMID: 38932665 DOI: 10.1002/chem.202400985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 06/02/2024] [Accepted: 06/25/2024] [Indexed: 06/28/2024]
Abstract
Bioreduction of spin labels and polarizing agents (generally stable radicals) has been an obstacle limiting the in-cell applications of pulsed electron paramagnetic resonance (EPR) spectroscopy and dynamic nuclear polarization (DNP). In this work, we have demonstrated that two semiquinone methide radicals (OXQM⋅ and CTQM⋅) can be easily produced from the trityl-based quinone methides (OXQM and CTQM) via reduction by various reducing agents including biothiols and ascorbate under anaerobic conditions. Both radicals have relatively low pKa's and exhibit EPR single line signals at physiological pH. Moreover, the bioreduction of OXQM in three cell lysates enables quantitative generation of OXQM⋅ which was most likely mediated by flavoenzymes. Importantly, the resulting OXQM⋅ exhibited extremely high stability in the E.coli lysate under anaerobic conditions with 76- and 14.3-fold slower decay kinetics as compared to the trityl OX063 and a gem-diethyl pyrrolidine nitroxide, respectively. Intracellular delivery of OXQM into HeLa cells was also achieved by covalent conjugation with a cell-permeable peptide as evidenced by the stable intracellular EPR signal from the OXQM⋅ moiety. Owing to extremely high resistance of OXQM⋅ towards bioreduction, OXQM and its derivatives show great application potential in in-cell EPR and in-cell DNP studies for various cells which can endure short-term anoxic treatments.
Collapse
Affiliation(s)
- Shuai Li
- The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, P. R. China
| | - Peng Deng
- The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, P. R. China
| | - Qi Chang
- The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, P. R. China
| | - Meirong Feng
- The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, P. R. China
| | - Yixuan Shang
- The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, P. R. China
| | - Yuguang Song
- The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, P. R. China
| | - Yangping Liu
- The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, P. R. China
| |
Collapse
|
4
|
Shi J, Xu W, Yu H, Wang X, Jin F, Zhang Q, Zhang H, Peng Q, Abdurahman A, Wang M. A Highly Luminescent Metallo-Supramolecular Radical Cage. J Am Chem Soc 2023; 145:24081-24088. [PMID: 37796113 DOI: 10.1021/jacs.3c07477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2023]
Abstract
Luminescent metal-radicals have recently received increasing attention due to their unique properties and promising applications in materials science. However, the luminescence of metal-radicals tends to be quenched after formation of metallo-complexes. It is challenging to construct metal-radicals with highly luminescent properties. Herein, we report a highly luminescent metallo-supramolecular radical cage (LMRC) constructed by the assembly of a tritopic terpyridinyl ligand RL with tris(2,4,6-trichlorophenyl)methyl (TTM) radical and Zn2+. Electrospray ionization-mass spectrometry (ESI-MS), traveling-wave ion mobility-mass spectrometry (TWIM-MS), X-ray crystallography, electron paramagnetic resonance (EPR) spectroscopy, and superconducting quantum interference device (SQUID) confirm the formation of a prism-like supramolecular radical cage. LMRC exhibits a remarkable photoluminescence quantum yield (PLQY) of 65%, which is 5 times that of RL; meanwhile, LMRC also shows high photostability. Notably, significant magnetoluminescence can be observed for the high-concentration LMRC (15 wt % doped in PMMA film); however, the magnetoluminescence of 0.1 wt % doped LMRC film vanishes, revealing negligible spin-spin interactions between two radical centers in LMRC.
Collapse
Affiliation(s)
- Junjuan Shi
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin 130012, China
| | - Wei Xu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, Jilin 130012, China
| | - Hao Yu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin 130012, China
| | - Xing Wang
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM) & School of Flexible Electronics (Future Technologies), Nanjing Tech University (Nanjing Tech), Nanjing, Jiangsu 211816, China
| | - Feng Jin
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Qingming Zhang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Houyu Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin 130012, China
| | - Qiming Peng
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM) & School of Flexible Electronics (Future Technologies), Nanjing Tech University (Nanjing Tech), Nanjing, Jiangsu 211816, China
| | - Alim Abdurahman
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Changchun, Jilin 130012, China
| | - Ming Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin 130012, China
| |
Collapse
|
5
|
Li X, Tan W, Bai X, Li F. Stable Near-infrared-emitting Radical Nanoparticles for Fluorescence Imaging. Chem Res Chin Univ 2023. [DOI: 10.1007/s40242-023-2365-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2023]
|
6
|
Feng Y, Tan X, Shi Z, Villamena FA, Zweier JL, Song Y, Liu Y. Trityl Quinodimethane Derivatives as Unimolecular Triple-Function Extracellular EPR Probes for Redox, pH, and Oxygen. Anal Chem 2023; 95:1057-1064. [PMID: 36602544 DOI: 10.1021/acs.analchem.2c03754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Electron paramagnetic resonance (EPR) spectroscopy and imaging coupled with the use of suitable probes is a promising tool for assessment of the tumor microenvironment (TME). Measurement of multiple TME parameters by EPR is very desirable but challenging. Herein, we designed and synthesized a class of negative-charged trityl quinodimethane MTPs as unimolecular triple-function extracellular probes for redox, pH, and oxygen (O2) levels. Using the deuterated analogue, dMTP5, which has an optimal pKa as well as high sensitivity to bioreduction and O2, we reasonably evaluated pH effects on efflux of reducing agents from HepG2 cells and cellular O2 consumption.
Collapse
Affiliation(s)
- Yalan Feng
- The province and ministry co-sponsored collaborative innovation center for medical epigenetics, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin300070, P. R. China
| | - Xiaoli Tan
- The province and ministry co-sponsored collaborative innovation center for medical epigenetics, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin300070, P. R. China
| | - Zhaojun Shi
- The province and ministry co-sponsored collaborative innovation center for medical epigenetics, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin300070, P. R. China
| | - Frederick A Villamena
- Department of Biological Chemistry and Pharmacology, College of Medicine, The Ohio State University, Columbus, Ohio43210, United States
| | - Jay L Zweier
- Center for Biomedical EPR Spectroscopy and Imaging, the Division of Cardiovascular Medicine, Department of Internal Medicine, The Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio43210, United States
| | - Yuguang Song
- The province and ministry co-sponsored collaborative innovation center for medical epigenetics, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin300070, P. R. China
| | - Yangping Liu
- The province and ministry co-sponsored collaborative innovation center for medical epigenetics, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin300070, P. R. China
| |
Collapse
|
7
|
Biedenbänder T, Aladin V, Saeidpour S, Corzilius B. Dynamic Nuclear Polarization for Sensitivity Enhancement in Biomolecular Solid-State NMR. Chem Rev 2022; 122:9738-9794. [PMID: 35099939 DOI: 10.1021/acs.chemrev.1c00776] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Solid-state NMR with magic-angle spinning (MAS) is an important method in structural biology. While NMR can provide invaluable information about local geometry on an atomic scale even for large biomolecular assemblies lacking long-range order, it is often limited by low sensitivity due to small nuclear spin polarization in thermal equilibrium. Dynamic nuclear polarization (DNP) has evolved during the last decades to become a powerful method capable of increasing this sensitivity by two to three orders of magnitude, thereby reducing the valuable experimental time from weeks or months to just hours or days; in many cases, this allows experiments that would be otherwise completely unfeasible. In this review, we give an overview of the developments that have opened the field for DNP-enhanced biomolecular solid-state NMR including state-of-the-art applications at fast MAS and high magnetic field. We present DNP mechanisms, polarizing agents, and sample constitution methods suitable for biomolecules. A wide field of biomolecular NMR applications is covered including membrane proteins, amyloid fibrils, large biomolecular assemblies, and biomaterials. Finally, we present perspectives and recent developments that may shape the field of biomolecular DNP in the future.
Collapse
Affiliation(s)
- Thomas Biedenbänder
- Institute of Chemistry, University of Rostock, Albert-Einstein-Straße 3a, 18059 Rostock, Germany.,Department Life, Light & Matter, University of Rostock, Albert-Einstein-Straße 25, 18059 Rostock, Germany
| | - Victoria Aladin
- Institute of Chemistry, University of Rostock, Albert-Einstein-Straße 3a, 18059 Rostock, Germany.,Department Life, Light & Matter, University of Rostock, Albert-Einstein-Straße 25, 18059 Rostock, Germany
| | - Siavash Saeidpour
- Institute of Chemistry, University of Rostock, Albert-Einstein-Straße 3a, 18059 Rostock, Germany.,Department Life, Light & Matter, University of Rostock, Albert-Einstein-Straße 25, 18059 Rostock, Germany
| | - Björn Corzilius
- Institute of Chemistry, University of Rostock, Albert-Einstein-Straße 3a, 18059 Rostock, Germany.,Department Life, Light & Matter, University of Rostock, Albert-Einstein-Straße 25, 18059 Rostock, Germany
| |
Collapse
|
8
|
Chen L, Wu L, Tan X, Rockenbauer A, Song Y, Liu Y. Synthesis and Redox Properties of Water-Soluble Asymmetric Trityl Radicals. J Org Chem 2021; 86:8351-8364. [PMID: 34043350 DOI: 10.1021/acs.joc.1c00766] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Tetrathiatriarylmethyl (trityl) radicals have been recently shown to react with biological oxidoreductants including glutathione (GSH), ascorbic acid (Asc), and superoxide anion radical (O2•-). However, how the substituents affect the reactivity of trityl radicals is still unknown. In this work, five asymmetric trityl radicals were synthesized and their reactivities with GSH, Asc, and O2•- investigated. Under aerobic conditions, GSH induces fast decays for the thioether- (TSA) and N-methyleneglycine-substituted (TGA) derivatives and slow decay for the 4-carboxyphenyl-containing one (TPA). Under anaerobic conditions, the direct reduction of these radicals by GSH also occurs with rate constants (kGSH) from 1.8 × 10-4 M-1 s-1 for TPA to 1.0 × 10-2 M-1 s-1 for TGA. Moreover, these radicals can also react with O2•- with rate constants (kSO) from 1.2 × 103 M-1 s-1 for ET-01 to 1.6 × 104 M-1 s-1 for TGA. Surprisingly, these radicals are completely inert to Asc in both aerobic and anaerobic conditions. Additionally, the substituents exert an important effect on redox potentials of these trityl radicals. This work demonstrates that the redox properties of the trityl radicals strongly depend on their substituents, and TPA with high stability toward GSH shows great potential for intracellular applications.
Collapse
Affiliation(s)
- Li Chen
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, Department of Medicinal Chemistry, School of Pharmacy, Tianjin Medical University, Tianjin 300070, P. R. China
| | - Lanlan Wu
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, Department of Medicinal Chemistry, School of Pharmacy, Tianjin Medical University, Tianjin 300070, P. R. China
| | - Xiaoli Tan
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, Department of Medicinal Chemistry, School of Pharmacy, Tianjin Medical University, Tianjin 300070, P. R. China
| | - Antal Rockenbauer
- Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, 1117 Budapest, Hungary.,Department of Physics, Budapest University of Technology and Economics, Budafoki ut 8, 1111 Budapest, Hungary
| | - Yuguang Song
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, Department of Medicinal Chemistry, School of Pharmacy, Tianjin Medical University, Tianjin 300070, P. R. China
| | - Yangping Liu
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, Department of Medicinal Chemistry, School of Pharmacy, Tianjin Medical University, Tianjin 300070, P. R. China
| |
Collapse
|
9
|
Prusinowska N, Czapik A, Kwit M. Chiral Triphenylacetic Acid Esters: Residual Stereoisomerism and Solid-State Variability of Molecular Architectures. J Org Chem 2021; 86:6433-6448. [PMID: 33908243 PMCID: PMC8279475 DOI: 10.1021/acs.joc.1c00279] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Indexed: 12/29/2022]
Abstract
We have proven the usability and versatility of chiral triphenylacetic acid esters, compounds of high structural diversity, as chirality-sensing stereodynamic probes and as molecular tectons in crystal engineering. The low energy barrier to stereoisomer interconversion has been exploited to sense the chirality of an alkyl substituent in the esters. The structural information are cascaded from the permanently chiral alcohol (inducer) to the stereodynamic chromophoric probe through cooperative interactions. The ECD spectra of triphenylacetic acid esters are highly sensitive to very small structural differences in the inducer core. The tendencies to maximize the C-H···O hydrogen bonds, van der Waals interactions, and London dispersion forces determine the way of packing molecules in the crystal lattice. The phenyl embraces of trityl groups allowed, to some extent, the control of molecular organization in the crystal. However, the spectrum of possible molecular arrangements is very broad and depends on the type of substituent, the optical purity of the sample, and the presence of a second trityl group in the proximity. Racemates crystallize as the solid solution of enantiomers, where the trityl group acts as a protecting group for the stereogenic center. Therefore, the absolute configuration of the inducer is irrelevant to the packing mode of molecules in the crystal.
Collapse
Affiliation(s)
- Natalia Prusinowska
- Faculty
of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego
8, 61 614 Poznań, Poland
- Centre
for Advanced Technologies, Adam Mickiewicz
University, Uniwersytetu
Poznańskiego 10, 61 614 Poznań, Poland
| | - Agnieszka Czapik
- Faculty
of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego
8, 61 614 Poznań, Poland
| | - Marcin Kwit
- Faculty
of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego
8, 61 614 Poznań, Poland
- Centre
for Advanced Technologies, Adam Mickiewicz
University, Uniwersytetu
Poznańskiego 10, 61 614 Poznań, Poland
| |
Collapse
|
10
|
Fleck N, Heubach C, Hett T, Spicher S, Grimme S, Schiemann O. Ox-SLIM: Synthesis of and Site-Specific Labelling with a Highly Hydrophilic Trityl Spin Label. Chemistry 2021; 27:5292-5297. [PMID: 33404074 PMCID: PMC8048664 DOI: 10.1002/chem.202100013] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Indexed: 01/04/2023]
Abstract
The combination of pulsed dipolar electron paramagnetic resonance spectroscopy (PDS) with site-directed spin labelling is a powerful tool in structural biology. Rational design of trityl-based spin labels has enabled studying biomolecular structures at room temperature and within cells. However, most current trityl spin labels suffer either from aggregation with proteins due to their hydrophobicity, or from bioconjugation groups not suitable for in-cell measurements. Therefore, we introduce here the highly hydrophilic trityl spin label Ox-SLIM. Engineered as a short-linked maleimide, it combines the most recent developments in one single molecule, as it does not aggregate with proteins, exhibits high resistance under in-cell conditions, provides a short linker, and allows for selective and efficient spin labelling via cysteines. Beyond establishing synthetic access to Ox-SLIM, its suitability as a spin label is illustrated and ultimately, highly sensitive PDS measurements are presented down to protein concentrations as low as 45 nm resolving interspin distances of up to 5.5 nm.
Collapse
Affiliation(s)
- Nico Fleck
- University of BonnInstitute of Physical and Theoretical ChemistryWegelerstr. 1253115BonnGermany
| | - Caspar Heubach
- University of BonnInstitute of Physical and Theoretical ChemistryWegelerstr. 1253115BonnGermany
| | - Tobias Hett
- University of BonnInstitute of Physical and Theoretical ChemistryWegelerstr. 1253115BonnGermany
| | - Sebastian Spicher
- University of BonnInstitute of Physical and Theoretical ChemistryBeringstr. 453115BonnGermany
| | - Stefan Grimme
- University of BonnInstitute of Physical and Theoretical ChemistryBeringstr. 453115BonnGermany
| | - Olav Schiemann
- University of BonnInstitute of Physical and Theoretical ChemistryWegelerstr. 1253115BonnGermany
| |
Collapse
|
11
|
Zhai W, Lucini Paioni A, Cai X, Narasimhan S, Medeiros-Silva J, Zhang W, Rockenbauer A, Weingarth M, Song Y, Baldus M, Liu Y. Postmodification via Thiol-Click Chemistry Yields Hydrophilic Trityl-Nitroxide Biradicals for Biomolecular High-Field Dynamic Nuclear Polarization. J Phys Chem B 2020; 124:9047-9060. [PMID: 32961049 DOI: 10.1021/acs.jpcb.0c08321] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Dynamic nuclear polarization (DNP) is a powerful method to enhance nuclear magnetic resonance (NMR) signal intensities, enabling unprecedented applications in life and material science. An ultimate goal is to expand the use of DNP-enhanced solid-state NMR to ultrahigh magnetic fields where optimal spectral resolution and sensitivity are integrated. Trityl-nitroxide (TN) biradicals have attracted significant interest in high-field DNP, but their application to complex (bio)molecules has so far been limited. Here we report a novel postmodification strategy for synthesis of hydrophilic TN biradicals in order to improve their use in biomolecular applications. Initially, three TN biradicals (referred to as NATriPols 1-3) with amino-acid linkers were synthesized. EPR studies showed that the α-position of the amino-acid linkers is an ideal modification site for these biradicals since their electron-electron magnetic interactions are marginally affected by the substituents at this position. On the basis of this finding, we synthesized NATriPol-4 with pyridine disulfide appended at the α-position. Postmodification of NATriPol-4 via thiol-click chemistry resulted in various TN biradicals including hydrophilic NATriPol-5 in a quantitative manner. Interestingly, DNP enhancements at 18.8 T of NATriPols for 13C,15N-proline in a glycerol/water matrix are inversely correlated with their hydrophobicity. Importantly, applications of hydrophilic NATriPol-5 and NATriPol-3 to biomolecules including a globular soluble protein and a membrane targeting peptide reveal significantly improved performance compared to TEMTriPol-1 and AMUPol. Our work provides an efficient approach for one-step synthesis of new polarizing agents with tunable physicochemical properties, thus expediting optimization of new biradicals for biomolecular applications at ultrahigh magnetic fields.
Collapse
Affiliation(s)
- Weixiang Zhai
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, P. R. China
| | - Alessandra Lucini Paioni
- NMR Spectroscopy, Bijvoet Centre for Biomolecular Research, Utrecht University, 3584 CH Utrecht, The Netherlands
| | - Xinyi Cai
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, P. R. China
| | - Siddarth Narasimhan
- NMR Spectroscopy, Bijvoet Centre for Biomolecular Research, Utrecht University, 3584 CH Utrecht, The Netherlands
| | - João Medeiros-Silva
- NMR Spectroscopy, Bijvoet Centre for Biomolecular Research, Utrecht University, 3584 CH Utrecht, The Netherlands
| | - Wenxiao Zhang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, P. R. China
| | - Antal Rockenbauer
- Institute of Materials and Environmental Chemistry, Hungarian Academy of Sciences, and Department of Physics, Budapest University of Technology and Economics, Budafokiut 8, 1111 Budapest, Hungary
| | - Markus Weingarth
- NMR Spectroscopy, Bijvoet Centre for Biomolecular Research, Utrecht University, 3584 CH Utrecht, The Netherlands
| | - Yuguang Song
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, P. R. China
| | - Marc Baldus
- NMR Spectroscopy, Bijvoet Centre for Biomolecular Research, Utrecht University, 3584 CH Utrecht, The Netherlands
| | - Yangping Liu
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, P. R. China
| |
Collapse
|
12
|
Guo S, Wang X, Dai Y, Dai X, Li Z, Luo Q, Zheng X, Gu Z, Zhang H, Gong Q, Luo K. Enhancing the Efficacy of Metal-Free MRI Contrast Agents via Conjugating Nitroxides onto PEGylated Cross-Linked Poly(Carboxylate Ester). ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2000467. [PMID: 32714757 PMCID: PMC7375229 DOI: 10.1002/advs.202000467] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 04/21/2020] [Indexed: 02/05/2023]
Abstract
Herein, two water-soluble PROXYL-based magnetic resonance imaging (MRI) macromolecular organic contrast agents (mORCAs) are designed and synthesized: linear and cross-linked PCE-mPEG-Ppa-PROXYL. They are prepared by conjugating linear and cross-linked poly(carboxylate ester) (PCE) with poly(ethylene glycol) (mPEG2000)-modified nitroxides (PROXYL), respectively. Both mORCAs form self-assembled aggregates in an aqueous phase and PROXYL is protected inside a hydrophobic core to achieve great resistance to reduction in the physiological environment, and they have low toxicity. Since cross-linked PCE-mPEG-Ppa-PROXYL possess a branched architecture, its self-assembled aggregate is more stable and compact with a greater particle size. Cross-linked PCE-mPEG-Ppa-PROXYL outperform the linear one in the following aspects: 1) its longitudinal relaxivity (r 1 = 0.79 mm -1 s-1) is higher than that of the linear one (r 1 = 0.64 mm -1 s-1) and both excel the best mORCA reported so far (r 1 = 0.42 mm -1 s-1); 2) its blood retention time (≈48 h) is longer than that of its linear counterpart (≈10 h); 3) cross-linked PCE-mPEG-Ppa-PROXYL provided better MR imaging contrast resolution in normal organs (liver and kidney) and tumor of mice than the linear one. Overall, cross-linked PCE-mPEG-Ppa-PROXYL may have great potential to be a novel metal-free macromolecular contrast agent for MR imaging.
Collapse
Affiliation(s)
- Shiwei Guo
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and molecular imaging Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China HospitalSichuan UniversityChengdu610041P. R. China
- Department of Pharmacy of the Affiliated Hospital of Southwest Medical UniversitySouthwest Medical UniversityLuzhouSichuan Province646000P. R. China
| | - Xiaoming Wang
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and molecular imaging Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China HospitalSichuan UniversityChengdu610041P. R. China
- Department of Radiology, Chongqing General HospitalUniversity of Chinese Academy of Sciences (UCAS)104 Pipashan Zheng StreetChongqing400014P. R. China
| | - Yan Dai
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and molecular imaging Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China HospitalSichuan UniversityChengdu610041P. R. China
- Department of Pharmacy of the Affiliated Hospital of Southwest Medical UniversitySouthwest Medical UniversityLuzhouSichuan Province646000P. R. China
| | - Xinghang Dai
- West China School of MedicineSichuan UniversityChengdu610041P. R. China
| | - Zhiqian Li
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and molecular imaging Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China HospitalSichuan UniversityChengdu610041P. R. China
| | - Qiang Luo
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and molecular imaging Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China HospitalSichuan UniversityChengdu610041P. R. China
| | - Xiuli Zheng
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and molecular imaging Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China HospitalSichuan UniversityChengdu610041P. R. China
| | - Zhongwei Gu
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and molecular imaging Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China HospitalSichuan UniversityChengdu610041P. R. China
| | - Hu Zhang
- Amgen Bioprocessing CentreKeck Graduate InstituteClaremontCA91711USA
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and molecular imaging Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China HospitalSichuan UniversityChengdu610041P. R. China
| | - Kui Luo
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and molecular imaging Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China HospitalSichuan UniversityChengdu610041P. R. China
| |
Collapse
|
13
|
Wang X, Peng C, He K, Ji K, Tan X, Han G, Liu Y, Liu Y, Song Y. Intracellular delivery of liposome-encapsulated Finland trityl radicals for EPR oximetry. Analyst 2020; 145:4964-4971. [PMID: 32510063 DOI: 10.1039/d0an00108b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Tetrathiatriarylmethyl (TAM, trityl) radicals have found wide applications in electron paramagnetic resonance (EPR) oximetry. However, the biomedical applications of TAM radicals were exclusively limited to an extracellular region owing to their negatively charged nature. The intracellular delivery of TAM radicals still remains a challenge. In the present work, we report a liposome-based method to encapsulate the water-soluble Finland trityl radical CT-03 for its intracellular delivery. Using the thin lipid film hydration method, CT-03-loaded liposomes were prepared from DSPC/cholesterol/DOTAP with a mean size of 167.5 ± 2.4 nm and a zeta potential of 27.8 ± 0.8 mV. EPR results showed that CT-03 was entrapped into the liposomes and still exhibited good oxygen (O2) sensitivity. Moreover, CT-03 was successfully delivered into HepG2 cells and HUVECs using the CT-03-loaded liposomes. Importantly, the combination of the liposome-encapsulated radical CT-03 and the other TAM radical CT02-H enabled simultaneous measurements of the intracellular and extracellular O2 concentrations and O2 consumption rates in HepG2 cells. Our present study provides a new approach for intracellular delivery of TAM radicals and could significantly expand their biomedical applications.
Collapse
Affiliation(s)
- Xing Wang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, P. R. China.
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Tan X, Ji K, Wang X, Yao R, Han G, Villamena FA, Zweier JL, Song Y, Rockenbauer A, Liu Y. Discriminative Detection of Biothiols by Electron Paramagnetic Resonance Spectroscopy using a Methanethiosulfonate Trityl Probe. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201912832] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Xiaoli Tan
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and DiagnosticsSchool of PharmacyTianjin Medical University Tianjin 300070 P. R. China
| | - Kaiyun Ji
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and DiagnosticsSchool of PharmacyTianjin Medical University Tianjin 300070 P. R. China
| | - Xing Wang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and DiagnosticsSchool of PharmacyTianjin Medical University Tianjin 300070 P. R. China
| | - Ru Yao
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and DiagnosticsSchool of PharmacyTianjin Medical University Tianjin 300070 P. R. China
| | - Guifang Han
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and DiagnosticsSchool of PharmacyTianjin Medical University Tianjin 300070 P. R. China
| | - Frederick A. Villamena
- Department of Biological Chemistry and PharmacologyCollege of MedicineThe Ohio State University Columbus OH 43210 USA
| | - Jay L. Zweier
- Center for Biomedical EPR Spectroscopy and ImagingThe Davis Heart and Lung Research Institutethe Division of Cardiovascular MedicineDepartment of Internal MedicineThe Ohio State University Columbus OH 43210 USA
| | - Yuguang Song
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and DiagnosticsSchool of PharmacyTianjin Medical University Tianjin 300070 P. R. China
| | - Antal Rockenbauer
- Institute of Materials and Environmental ChemistryResearch Centre for Natural SciencesHungarian Academy of Sciences 1117 Budapest Hungary
- Department of PhysicsBudapest University of Technology and Economics Budafoki ut 8 1111 Budapest Hungary
| | - Yangping Liu
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and DiagnosticsSchool of PharmacyTianjin Medical University Tianjin 300070 P. R. China
| |
Collapse
|
15
|
Tan X, Ji K, Wang X, Yao R, Han G, Villamena FA, Zweier JL, Song Y, Rockenbauer A, Liu Y. Discriminative Detection of Biothiols by Electron Paramagnetic Resonance Spectroscopy using a Methanethiosulfonate Trityl Probe. Angew Chem Int Ed Engl 2019; 59:928-934. [PMID: 31657108 DOI: 10.1002/anie.201912832] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Indexed: 12/30/2022]
Abstract
Biothiols, such as glutathione (GSH), homocysteine (Hcy), and cysteine (Cys), coexist in biological systems with diverse biological roles. Thus, analytical techniques that can detect, quantify, and distinguish between multiple biothiols are desirable but challenging. Herein, we demonstrate the simultaneous detection and quantitation of multiple biothiols, including up to three different biothiols in a single sample, using electron paramagnetic resonance (EPR) spectroscopy and a trityl-radical-based probe (MTST). We term this technique EPR thiol-trapping. MTST could trap thiols through its methanethiosulfonate group to form the corresponding disulfide conjugate with an EPR spectrum characteristic of the trapped thiol. MTST was used to investigate effects of l-buthionine sulfoximine (BSO) and pyrrolidine dithiocarbamate (PDTC) on the efflux of GSH and Cys from HepG2 cells.
Collapse
Affiliation(s)
- Xiaoli Tan
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, P. R. China
| | - Kaiyun Ji
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, P. R. China
| | - Xing Wang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, P. R. China
| | - Ru Yao
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, P. R. China
| | - Guifang Han
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, P. R. China
| | - Frederick A Villamena
- Department of Biological Chemistry and Pharmacology, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA
| | - Jay L Zweier
- Center for Biomedical EPR Spectroscopy and Imaging, The Davis Heart and Lung Research Institute, the Division of Cardiovascular Medicine, Department of Internal Medicine, The Ohio State University, Columbus, OH, 43210, USA
| | - Yuguang Song
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, P. R. China
| | - Antal Rockenbauer
- Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, 1117, Budapest, Hungary.,Department of Physics, Budapest University of Technology and Economics, Budafoki ut 8, 1111, Budapest, Hungary
| | - Yangping Liu
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, P. R. China
| |
Collapse
|
16
|
Poncelet M, Huffman JL, Khramtsov VV, Dhimitruka I, Driesschaert B. Synthesis of hydroxyethyl tetrathiatriarylmethyl radicals OX063 and OX071. RSC Adv 2019; 9:35073-35076. [PMID: 32483485 PMCID: PMC7263632 DOI: 10.1039/c9ra08633a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
We report the synthesis of hydroxyethyl tetrathiatriarylmethyl radical OX063 and its deuterated analogue OX071 for biomedical EPR applications. Synthesis of OX063 and OX063-d24 spin probes and DNP agents.![]()
Collapse
Affiliation(s)
- Martin Poncelet
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, WV, 26506, USA.,In Vivo Multifunctional Magnetic Resonance center, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV, 26506, USA
| | - Justin L Huffman
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, WV, 26506, USA.,In Vivo Multifunctional Magnetic Resonance center, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV, 26506, USA
| | - Valery V Khramtsov
- In Vivo Multifunctional Magnetic Resonance center, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV, 26506, USA.,Department of Biochemistry, School of Medicine, West Virginia University, Morgantown, WV, 26506, USA
| | - Ilirian Dhimitruka
- School of Health and Natural Sciences, Mercy College, Dobbs Ferry, NY 10522, USA
| | - Benoit Driesschaert
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, WV, 26506, USA.,In Vivo Multifunctional Magnetic Resonance center, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV, 26506, USA
| |
Collapse
|
17
|
Li Y, Zhai W, Liao Y, Nie J, Han G, Song Y, Li S, Hou J, Liu Y. Synthesis of Central Chirality-Containing Triarylmethanols and Triarylmethyl Radicals with Extraordinarily Stable Configurations. J Org Chem 2019; 84:11774-11782. [PMID: 31454244 DOI: 10.1021/acs.joc.9b01675] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Triarylmethanol adopts a propeller-shaped conformation with either right-handed (P) or left-handed (M) configuration. Herein, new triarylmethanols with two chiral centers were obtained via introduction of two cis-hydroxyl groups on the side chains, affording four stereoisomers. These four stereoisomers were easily separated by silica gel column chromatography into two pairs of propeller-shaped enantiomers, as shown by NMR and X-ray crystallographic studies. High-performance liquid chromatography (HPLC) studies showed that the configurations of the hydroxyl-bearing triarylmethanols are much more stable than those of the bulky tert-butyldimethylsilyl-protected precursors, inconsistent with the general strategy in which the steric repulsion is largely responsible for the configurational stability. Similarly, two hydroxyl-bearing tetrathiatriarylmethyl (TAM) radicals also exhibit excellent configurational stability and are thus separable by CS-HPLC into four stereoisomers. Interestingly, both helical chirality from triaryl group (M or P) and central chirality (R and S) on the side chain have little effect on their electron paramagnetic resonance properties. Our present study provides a new strategy to construct configurationally stable triaryl compounds and demonstrates that the side chain on TAM radicals is a new site for their structural modifications.
Collapse
Affiliation(s)
- Yingchun Li
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy , Tianjin Medical University , Tianjin 300070 , P. R. China
| | - Weixiang Zhai
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy , Tianjin Medical University , Tianjin 300070 , P. R. China
| | - Yongfang Liao
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy , Tianjin Medical University , Tianjin 300070 , P. R. China
| | - Jiangping Nie
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy , Tianjin Medical University , Tianjin 300070 , P. R. China
| | - Guifang Han
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy , Tianjin Medical University , Tianjin 300070 , P. R. China
| | - Yuguang Song
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy , Tianjin Medical University , Tianjin 300070 , P. R. China
| | - Shaoyong Li
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy , Tianjin Medical University , Tianjin 300070 , P. R. China
| | - Jingli Hou
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy , Tianjin Medical University , Tianjin 300070 , P. R. China
| | - Yangping Liu
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy , Tianjin Medical University , Tianjin 300070 , P. R. China
| |
Collapse
|
18
|
Site Selective and Efficient Spin Labeling of Proteins with a Maleimide-Functionalized Trityl Radical for Pulsed Dipolar EPR Spectroscopy. Molecules 2019; 24:molecules24152735. [PMID: 31357628 PMCID: PMC6696014 DOI: 10.3390/molecules24152735] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 07/24/2019] [Accepted: 07/25/2019] [Indexed: 01/18/2023] Open
Abstract
Pulsed dipolar electron paramagnetic resonance spectroscopy (PDS) in combination with site-directed spin labeling (SDSL) of proteins and oligonucleotides is a powerful tool in structural biology. Instead of using the commonly employed gem-dimethyl-nitroxide labels, triarylmethyl (trityl) spin labels enable such studies at room temperature, within the cells and with single-frequency electron paramagnetic resonance (EPR) experiments. However, it has been repeatedly reported that labeling of proteins with trityl radicals led to low labeling efficiencies, unspecific labeling and label aggregation. Therefore, this work introduces the synthesis and characterization of a maleimide-functionalized trityl spin label and its corresponding labeling protocol for cysteine residues in proteins. The label is highly cysteine-selective, provides high labeling efficiencies and outperforms the previously employed methanethiosulfonate-functionalized trityl label. Finally, the new label is successfully tested in PDS measurements on a set of doubly labeled Yersinia outer protein O (YopO) mutants.
Collapse
|