1
|
Kubeil M, Neuber C, Starke M, Arndt C, Rodrigues Loureiro L, Hoffmann L, Feldmann A, Bachmann M, Pietzsch J, Comba P, Stephan H. 64Cu tumor labeling with hexadentate picolinic acid-based bispidine immunoconjugates. Chemistry 2024:e202400366. [PMID: 38506263 DOI: 10.1002/chem.202400366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 03/14/2024] [Accepted: 03/18/2024] [Indexed: 03/21/2024]
Abstract
Discussed are two picolinate appended bispidine ligands (3,7-diazabicyclo[3.3.1]nonane derivatives) in comparison with an earlier described bis-pyridine derivative, which are all known to strongly bind CuII. The radiopharmacological characterization of the two isomeric bispidine complexes includes quantitative labeling with 64CuII at ambient conditions with high radiochemical purities and yields (molar activities >200 MBq/nmol). Challenge experiments in presence of EDTA, cyclam, human serum and SOD demonstrate high stability and inertness of the 64Cu-bispidine complexes. Biodistribution studies performed in Wistar rats indicate a rapid renal elimination for both 64Cu-labeled chelates. The bispidine ligand with the picolinate group in N7 position was selected for further biological experiments, and its backbone was therefore substituted with a benzyl-NCS group at C9. Two tumor target modules (TMs), targeting prostate stem cell antigen (PSCA), overexpressed in prostate cancer, and the fibroblast activation protein (FAP) in fibrosarcoma, were selected for thiourea coupling with the NCS-functionalized ligand and lysine residues of TMs. Small animal PET experiments on tumor-bearing mice showed specific accumulation of the 64Cu-labeled TMs in PSCA- and FAP-overexpressing tumors (standardized uptake value (SUV) for PC3: 2.7±0.6 and HT1080: 7.2±1.25) with almost no uptake in wild type tumors.
Collapse
Affiliation(s)
- Manja Kubeil
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, 01328, Dresden, Germany
| | - Christin Neuber
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, 01328, Dresden, Germany
| | - Miriam Starke
- Universität Heidelberg, Anorganisch-Chemisches, Institut INF 270, 69120, Heidelberg, Germany
| | - Claudia Arndt
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, 01328, Dresden, Germany
- Mildred Scheel Early Career Center, Faculty of Medicine Carl Gustav Carus, Technische Universiät Dresden, 01307, Dresden, Germany
| | - Liliana Rodrigues Loureiro
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, 01328, Dresden, Germany
| | - Lydia Hoffmann
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, 01328, Dresden, Germany
| | - Anja Feldmann
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, 01328, Dresden, Germany
- National Center for Tumor Diseases Dresden (NCT/UCC), University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, 01307, Dresden, Germany
- German Cancer Consortium (DKTK), partner site Dresden, and German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Michael Bachmann
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, 01328, Dresden, Germany
- National Center for Tumor Diseases Dresden (NCT/UCC), University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, 01307, Dresden, Germany
- German Cancer Consortium (DKTK), partner site Dresden, and German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Jens Pietzsch
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, 01328, Dresden, Germany
- Technische Universität Dresden, Faculty of Chemistry and Food Chemistry, School of Science, 01069, Dresden, Germany
| | - Peter Comba
- Universität Heidelberg, Anorganisch-Chemisches, Institut INF 270, 69120, Heidelberg, Germany
- Universität Heidelberg, Interdisciplinary Center for Scientific Computing, INF 205, 69120, Heidelberg, Germany
| | - Holger Stephan
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, 01328, Dresden, Germany
| |
Collapse
|
2
|
Cieslik PA, Klingler S, Nolff M, Holland JP. Radiolabelled 177 Lu-Bispidine-Trastuzumab for Targeting Human Epidermal Growth Factor Receptor 2 Positive Cancers. Chemistry 2024; 30:e202303805. [PMID: 38064536 DOI: 10.1002/chem.202303805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Indexed: 01/18/2024]
Abstract
Radioimmunotherapy (RIT) is a promising alternative to conventional treatment options. Here, we present experimental work on the synthesis, radiochemistry, and in vivo performance of a lanthanoid-selective nonadentate bispidine ligand suitable for 177 Lu3+ ion complexation. The ligand (bisp,1) was derivatised with a photoactivatable aryl azide (ArN3 ) group as a bioconjugation handle for light-induced labelling of proteins. Quantitative radiosynthesis of [177 Lu]Lu-1+ was accomplished in 10 minutes at 40 °C. Subsequent incubation of [177 Lu]Lu-1+ with trastuzumab, followed by irradiation with light at 365 nm for 15 min, at room temperature and pH 8.0-8.3, gave the radiolabelled mAb, [177 Lu]Lu-1-azepin-trastuzumab ([177 Lu]Lu-1-mAb) in a decay-corrected radiochemical yield of 14 %, and radiochemical purity (RCP)>90 %. Stability studies and cellular binding assays in vitro using the SK-OV-3 human ovarian cancer cells confirmed that [177 Lu]Lu-1-mAb remained biological active and displayed specific binding to HER2/neu. Experiments in immunocompromised female athymic nude mice bearing subcutaneous xenograft models of SK-OV-3 tumours revealed significantly higher tumour uptake in the normal group compared with the control block group (29.8±11.4 %ID g-1 vs. 14.8±6.1 %ID g-1 , respectively; P-value=0.037). The data indicate that bispidine-based ligand systems are suitable starting points for constructing novel, high-denticity chelators for specific complexation of larger radiotheranostic metal ion nuclides.
Collapse
Affiliation(s)
- Patrick A Cieslik
- University of Zurich, Department of Chemistry, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| | - Simon Klingler
- University of Zurich, Department of Chemistry, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| | - Mirja Nolff
- Klinik für Kleintierchirurgie, Vetsuisse-Fakultät, University of Zurich, Wintherturerstrasse 260, CH-8057, Zurich, Switzerland
| | - Jason P Holland
- University of Zurich, Department of Chemistry, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| |
Collapse
|
3
|
Kopp I, Cieslik P, Anger K, Josephy T, Neupert L, Velmurugan G, Gast M, Wadepohl H, Brühlmann SA, Walther M, Kopka K, Bachmann M, Stephan H, Kubeil M, Comba P. Bispidine Chelators for Radiopharmaceutical Applications with Lanthanide, Actinide, and Main Group Metal Ions. Inorg Chem 2023; 62:20754-20768. [PMID: 37707798 DOI: 10.1021/acs.inorgchem.3c02340] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
Octadentate and specifically nonadentate ligands with a bispidine scaffold (3,7-diazabicyclo[3.3.1]nonane) are known to be efficiently coordinated to a range of metal ions of interest in radiopharmaceutical chemistry and lead to exceedingly stable and inert complexes. Nonadentate bispidine L2 (with a tridentate bipyridine acetate appended to N3 and a picolinate at N7) has been shown before to be an ideal chelator for 111In3+, 177Lu3+, and 225Ac3+, nuclides of interest for diagnosis and therapy, and a proof-of-principle study with an SSTR2-specific octreotate has shown potential for theranostic applications. We now have extended these studies in two directions. First, we present ligand derivative L3, in which the bipyridine acetate is substituted with terpyridine, a softer donor for metal ions with a preference for more covalency. L3 did not fulfill the hopes because complexation is much less efficient. While for Bi3+ and Pb2+ the ligand is an excellent chelator with properties similar to those of L2, Lu3+ and La3+ show very slow and inefficient complexation with L3 in contrast to L2, and 225Ac3+ is not fully coordinated, even at an increased temperature (92% radiochemical yield at 80 °C, 60 min, [L3] = 10-4 M). These observations have led to a hypothesis for the complexation pathway that is in line with all of the experimental data and supported by a preliminary density functional theory analysis, which is important for the design of further optimized bispidine chelators. Second, the coordination chemistry of L2 has been extended to Bi3+, La3+, and Pb2+, including solid state and solution structural work, complex stabilities, radiolabeling, and radiostability studies. All complexes of this ligand (La3+, Ac3+, Lu3+, Bi3+, In3+, and Pb2+), including nuclides for targeted α therapy (TAT), single-photon emission computed tomography, and positron emission tomography, are formed efficiently under physiological conditions, i.e., suitable for the labeling of delicate biological vectors such as antibodies, and the complexes are very stable and inert. Importantly, for TAT with 225Ac, the daughter nuclides 213Bi and 209Pb also form stable complexes, and this is important for reducing damage to healthy tissue.
Collapse
Affiliation(s)
- Ina Kopp
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - Patrick Cieslik
- Universität Heidelberg, Anorganisch-Chemisches Institut, INF 270, 69120 Heidelberg, Germany
| | - Karl Anger
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - Thomas Josephy
- Universität Heidelberg, Anorganisch-Chemisches Institut, INF 270, 69120 Heidelberg, Germany
| | - Lucca Neupert
- Universität Heidelberg, Anorganisch-Chemisches Institut, INF 270, 69120 Heidelberg, Germany
| | - Gunasekaran Velmurugan
- Universität Heidelberg, Anorganisch-Chemisches Institut, INF 270, 69120 Heidelberg, Germany
| | - Michael Gast
- Universität Heidelberg, Anorganisch-Chemisches Institut, INF 270, 69120 Heidelberg, Germany
| | - Hubert Wadepohl
- Universität Heidelberg, Anorganisch-Chemisches Institut, INF 270, 69120 Heidelberg, Germany
| | - Santiago Andrés Brühlmann
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - Martin Walther
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - Klaus Kopka
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, 01328 Dresden, Germany
- Technische Universität Dresden, Faculty of Chemistry and Food Chemistry, School of Science, 01069 Dresden, Germany
- National Center for Tumor Diseases (NCT) Dresden, University Hospital Carl Gustav Carus, Fetscherstraße 74, 01307 Dresden, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden, 01307 Dresden, Germany
| | - Michael Bachmann
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, 01328 Dresden, Germany
- National Center for Tumor Diseases (NCT) Dresden, University Hospital Carl Gustav Carus, Fetscherstraße 74, 01307 Dresden, Germany
- Technische Universität Dresden, Medical Faculty Carl Gustav Carus, 01069 Dresden, Germany
| | - Holger Stephan
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - Manja Kubeil
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - Peter Comba
- Universität Heidelberg, Anorganisch-Chemisches Institut, INF 270, 69120 Heidelberg, Germany
- Universität Heidelberg, Interdisciplinary Center for Scientific Computing, INF 205, 69120 Heidelberg, Germany
| |
Collapse
|
4
|
Kovács A. Metal-Ligand Interactions in Scandium Complexes with Radiopharmaceutical Applications. Inorg Chem 2023; 62:20733-20744. [PMID: 37949439 PMCID: PMC10731654 DOI: 10.1021/acs.inorgchem.3c02211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Indexed: 11/12/2023]
Abstract
The radioisotopes of scandium (43Sc, 44Sc, and 47Sc) are potential candidates for use in imaging and therapy both separately and as elementally matched pairs for radiotheranostics. In the present study the bonding interactions of Sc3+ with 18 hepta- to decadentate ligands are compared using density functional theory (DFT) calculations. The bonding analysis is based on the natural bond orbital (NBO) model. The main contributions to the bonding were assessed using natural energy decomposition analysis (NEDA). Most of the ligands have anionic character (charges from 2- to 8-); thus the electrical term determines the major differences in the interaction energies. However, interesting features were found in the covalent contributions manifested by the ligand → Sc3+ charge transfer (CT) interactions. Significant differences could be observed in the energetic contributions of the N and O donors to the total CT.
Collapse
Affiliation(s)
- Attila Kovács
- European Commission, Joint
Research Centre (JRC), Karlsruhe, Germany
| |
Collapse
|
5
|
Brown AM, Butman JL, Lengacher R, Vargo NP, Martin KE, Koller A, Śmiłowicz D, Boros E, Robinson JR. N, N-Alkylation Clarifies the Role of N- and O-Protonated Intermediates in Cyclen-Based 64Cu Radiopharmaceuticals. Inorg Chem 2023; 62:1362-1376. [PMID: 36490364 DOI: 10.1021/acs.inorgchem.2c02907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Radioisotopes of Cu, such as 64Cu and 67Cu, are alluring targets for imaging (e.g., positron emission tomography, PET) and radiotherapeutic applications. Cyclen-based macrocyclic polyaminocarboxylates are one of the most frequently examined bifunctional chelators in vitro and in vivo, including the FDA-approved 64Cu radiopharmaceutical, Cu(DOTATATE) (Detectnet); however, connections between the structure of plausible reactive intermediates and their stability under physiologically relevant conditions remain to be established. In this study, we share the synthesis of a cyclen-based, N,N-alkylated spirocyclic chelate, H2DO3AC4H8, which serves as a model for N-protonation. Our combined experimental (in vitro and in vivo) and computational studies unravel complex pH-dependent speciation and enable side-by-side comparison of N- and O-protonated species of relevant 64Cu radiopharmaceuticals. Our studies suggest that N-protonated species are not inherently unstable species under physiological conditions and demonstrate the potential of N,N-alkylation as a tool for the rational design of future radiopharmaceuticals.
Collapse
Affiliation(s)
- Alexander M Brown
- Department of Chemistry, Brown University, Providence, Rhode Island02912, United States
| | - Jana L Butman
- Department of Chemistry, Brown University, Providence, Rhode Island02912, United States
| | - Raphael Lengacher
- Department of Chemistry, Stony Brook University, 100 Nicolls Road, Stony Brook, New York11794, United States
| | - Natasha P Vargo
- Department of Chemistry, Brown University, Providence, Rhode Island02912, United States
| | - Kirsten E Martin
- Department of Chemistry, Stony Brook University, 100 Nicolls Road, Stony Brook, New York11794, United States
| | - Angus Koller
- Department of Chemistry, Stony Brook University, 100 Nicolls Road, Stony Brook, New York11794, United States
| | - Dariusz Śmiłowicz
- Department of Chemistry, Stony Brook University, 100 Nicolls Road, Stony Brook, New York11794, United States
| | - Eszter Boros
- Department of Chemistry, Stony Brook University, 100 Nicolls Road, Stony Brook, New York11794, United States
| | - Jerome R Robinson
- Department of Chemistry, Brown University, Providence, Rhode Island02912, United States
| |
Collapse
|
6
|
Saleh HA, Mitwasi N, Ullrich M, Kubeil M, Toussaint M, Deuther-Conrad W, Neuber C, Arndt C, R. Loureiro L, Kegler A, González Soto KE, Belter B, Rössig C, Pietzsch J, Frenz M, Bachmann M, Feldmann A. Specific and safe targeting of glioblastoma using switchable and logic-gated RevCAR T cells. Front Immunol 2023; 14:1166169. [PMID: 37122703 PMCID: PMC10145173 DOI: 10.3389/fimmu.2023.1166169] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 03/30/2023] [Indexed: 05/02/2023] Open
Abstract
Glioblastoma (GBM) is still an incurable tumor that is associated with high recurrence rate and poor survival despite the current treatment regimes. With the urgent need for novel therapeutic strategies, immunotherapies, especially chimeric antigen receptor (CAR)-expressing T cells, represent a promising approach for specific and effective targeting of GBM. However, CAR T cells can be associated with serious side effects. To overcome such limitation, we applied our switchable RevCAR system to target both the epidermal growth factor receptor (EGFR) and the disialoganglioside GD2, which are expressed in GBM. The RevCAR system is a modular platform that enables controllability, improves safety, specificity and flexibility. Briefly, it consists of RevCAR T cells having a peptide epitope as extracellular domain, and a bispecific target module (RevTM). The RevTM acts as a switch key that recognizes the RevCAR epitope and the tumor-associated antigen, and thereby activating the RevCAR T cells to kill the tumor cells. However, in the absence of the RevTM, the RevCAR T cells are switched off. In this study, we show that the novel EGFR/GD2-specific RevTMs can selectively activate RevCAR T cells to kill GBM cells. Moreover, we show that gated targeting of GBM is possible with our Dual-RevCAR T cells, which have their internal activation and co-stimulatory domains separated into two receptors. Therefore, a full activation of Dual-RevCAR T cells can only be achieved when both receptors recognize EGFR and GD2 simultaneously via RevTMs, leading to a significant killing of GBM cells both in vitro and in vivo.
Collapse
Affiliation(s)
- Haidy A. Saleh
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Dresden, Germany
| | - Nicola Mitwasi
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Dresden, Germany
| | - Martin Ullrich
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Dresden, Germany
| | - Manja Kubeil
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Dresden, Germany
| | - Magali Toussaint
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Dresden, Germany
| | - Winnie Deuther-Conrad
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Dresden, Germany
| | - Christin Neuber
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Dresden, Germany
| | - Claudia Arndt
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Dresden, Germany
- Faculty of Medicine Carl Gustav Carus, Mildred Scheel Early Career Center, Technische Universität Dresden, Dresden, Germany
| | - Liliana R. Loureiro
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Dresden, Germany
| | - Alexandra Kegler
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Dresden, Germany
| | | | - Birgit Belter
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Dresden, Germany
| | - Claudia Rössig
- Department of Pediatric Hematology and Oncology, University Children’s Hospital Münster, Münster, Germany
| | - Jens Pietzsch
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Dresden, Germany
- Faculty of Chemistry and Food Chemistry, School of Science, Technische Universität Dresden, Dresden, Germany
| | - Marcus Frenz
- Faculty Informatik and Wirtschaftsinformatik, Provadis School of International Management and Technology AG, Frankfurt, Germany
| | - Michael Bachmann
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Dresden, Germany
- National Center for Tumor Diseases Dresden (NCT/UCC), German Cancer Research Center (DKFZ), Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
- German Cancer Consortium (DKTK), Partner Site, Dresden, Germany
- *Correspondence: Michael Bachmann,
| | - Anja Feldmann
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Dresden, Germany
- National Center for Tumor Diseases Dresden (NCT/UCC), German Cancer Research Center (DKFZ), Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
- German Cancer Consortium (DKTK), Partner Site, Dresden, Germany
| |
Collapse
|
7
|
Cieslik P, Kubeil M, Zarschler K, Ullrich M, Brandt F, Anger K, Wadepohl H, Kopka K, Bachmann M, Pietzsch J, Stephan H, Comba P. Toward Personalized Medicine: One Chelator for Imaging and Therapy with Lutetium-177 and Actinium-225. J Am Chem Soc 2022; 144:21555-21567. [DOI: 10.1021/jacs.2c08438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Patrick Cieslik
- Universität Heidelberg, Anorganisch-Chemisches Institut, INF 270, 69120 Heidelberg, Germany
| | - Manja Kubeil
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - Kristof Zarschler
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - Martin Ullrich
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - Florian Brandt
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, 01328 Dresden, Germany
- Faculty of Chemistry and Food Chemistry, School of Science, Technische Universität Dresden, 01069 Dresden, Germany
| | - Karl Anger
- Hochschule für Technik und Wirtschaft Dresden, Friedrich-List-Platz 1, 01069 Dresden, Germany
| | - Hubert Wadepohl
- Universität Heidelberg, Anorganisch-Chemisches Institut, INF 270, 69120 Heidelberg, Germany
| | - Klaus Kopka
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, 01328 Dresden, Germany
- Faculty of Chemistry and Food Chemistry, School of Science, Technische Universität Dresden, 01069 Dresden, Germany
- National Center for Tumor Diseases (NCT) Dresden, University Hospital Carl Gustav Carus, Fetscherstraße 74, 01307 Dresden, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden, 01307 Dresden, Germany
| | - Michael Bachmann
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, 01328 Dresden, Germany
- National Center for Tumor Diseases (NCT) Dresden, University Hospital Carl Gustav Carus, Fetscherstraße 74, 01307 Dresden, Germany
| | - Jens Pietzsch
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, 01328 Dresden, Germany
- Faculty of Chemistry and Food Chemistry, School of Science, Technische Universität Dresden, 01069 Dresden, Germany
| | - Holger Stephan
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - Peter Comba
- Universität Heidelberg, Anorganisch-Chemisches Institut, INF 270, 69120 Heidelberg, Germany
- Universität Heidelberg, Interdisciplinary Center for Scientific Computing, INF 205, 69120 Heidelberg, Germany
| |
Collapse
|
8
|
Lippi M, Murelli A, Rossi P, Paoli P, Cametti M. Different Topologies of Hg(II)-Bispidine 1D Coordination Polymers: Dynamic Behavior in Solvent Adsorption and Exchange Processes. Chemistry 2022; 28:e202200420. [PMID: 35274771 PMCID: PMC9311696 DOI: 10.1002/chem.202200420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Indexed: 11/07/2022]
Abstract
One-dimensional (1D) coordination polymers (CPs) featuring three different topologies, comprising zig-zag, ribbon-like and poly-[n]-catenane structures, were obtained by reaction of Hg(II) ions with a novel bispidine ligand L3, and structurally characterized by SC- and P-XRD methods. The CPs obtained in the form of microcrystalline powders were tested for their ability to undergo solvent adsorption and exchange by P-XRD and 1 H NMR spectroscopy. The extent of their dynamic behavior was then correlated to their structural features, highlighting the role of interchain interactions established among their constituting linear arrays. Zig-zag CPs proved to be resilient to external chemical stimuli, while they differently respond to thermal treatments, depending on the solvent originally included within the CP. In the case of polycatenated structures, we observed transformations where the original topology was maintained upon guest exchange, but also cases where it changed to zig-zag, even under solid/vapor conditions (i. e., no complete dissolution of the CP). Given the presence of linear interconnected 1D channels, 3 ⋅ ClBz-polycatenanePwd is also able to trap volatile guests such as n-hexane when exposed to its vapors.
Collapse
Affiliation(s)
- Martina Lippi
- Department of ChemistryMaterials and Chemical Engineering “Giulio Natta” Politecnico di MilanoVia Luigi Mancinelli, 720133MilanoItaly
| | - Andrea Murelli
- Department of ChemistryMaterials and Chemical Engineering “Giulio Natta” Politecnico di MilanoVia Luigi Mancinelli, 720133MilanoItaly
| | - Patrizia Rossi
- Department of Industrial EngineeringUniversità degli Studi di FirenzeVia S. Marta 350136FirenzeItaly
| | - Paola Paoli
- Department of Industrial EngineeringUniversità degli Studi di FirenzeVia S. Marta 350136FirenzeItaly
| | - Massimo Cametti
- Department of ChemistryMaterials and Chemical Engineering “Giulio Natta” Politecnico di MilanoVia Luigi Mancinelli, 720133MilanoItaly
| |
Collapse
|
9
|
Development and Functional Characterization of a Versatile Radio-/Immunotheranostic Tool for Prostate Cancer Management. Cancers (Basel) 2022; 14:cancers14081996. [PMID: 35454902 PMCID: PMC9027777 DOI: 10.3390/cancers14081996] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 04/08/2022] [Accepted: 04/11/2022] [Indexed: 12/12/2022] Open
Abstract
Simple Summary In previous studies, we described a modular Chimeric Antigen Receptor (CAR) T cell platform which we termed UniCAR. In contrast to conventional CARs, the interaction of UniCAR T cells does not occur directly between the CAR T cell and the tumor cell but is mediated via bispecific adaptor molecules so-called target modules (TMs). Here we present the development and functional characterization of a novel IgG4-based TM, directed to the tumor-associated antigen (TAA) prostate stem cell antigen (PSCA), which is overexpressed in prostate cancer (PCa). We show that this anti-PSCA IgG4-TM cannot only be used for (i) redirection of UniCAR T cells to PCa cells but also for (ii) positron emission tomography (PET) imaging, and (iii) alpha particle-based endoradiotherapy. For radiolabeling, the anti-PSCA IgG4-TM was conjugated with the chelator DOTAGA. PET imaging was performed using the 64Cu-labeled anti-PSCA IgG4-TM. According to PET imaging, the anti-PSCA IgG4-TM accumulates with high contrast in the PSCA-positive tumors of experimental mice without visible uptake in other organs. For endoradiotherapy the anti-PSCA IgG4-TM-DOTAGA conjugate was labeled with 225Ac3+. Targeted alpha therapy resulted in tumor control over 60 days after a single injection of the 225Ac-labeled TM. The favorable pharmacological profile of the anti-PSCA IgG4-TM, and its usage for (i) imaging, (ii) targeted alpha therapy, and (iii) UniCAR T cell immunotherapy underlines the promising radio-/immunotheranostic capabilities for the diagnostic imaging and treatment of PCa. Abstract Due to its overexpression on the surface of prostate cancer (PCa) cells, the prostate stem cell antigen (PSCA) is a potential target for PCa diagnosis and therapy. Here we describe the development and functional characterization of a novel IgG4-based anti-PSCA antibody (Ab) derivative (anti-PSCA IgG4-TM) that is conjugated with the chelator DOTAGA. The anti-PSCA IgG4-TM represents a multimodal immunotheranostic compound that can be used (i) as a target module (TM) for UniCAR T cell-based immunotherapy, (ii) for diagnostic positron emission tomography (PET) imaging, and (iii) targeted alpha therapy. Cross-linkage of UniCAR T cells and PSCA-positive tumor cells via the anti-PSCA IgG4-TM results in efficient tumor cell lysis both in vitro and in vivo. After radiolabeling with 64Cu2+, the anti-PSCA IgG4-TM was successfully applied for high contrast PET imaging. In a PCa mouse model, it showed specific accumulation in PSCA-expressing tumors, while no uptake in other organs was observed. Additionally, the DOTAGA-conjugated anti-PSCA IgG4-TM was radiolabeled with 225Ac3+ and applied for targeted alpha therapy. A single injection of the 225Ac-labeled anti-PSCA IgG4-TM was able to significantly control tumor growth in experimental mice. Overall, the novel anti-PSCA IgG4-TM represents an attractive first member of a novel group of radio-/immunotheranostics that allows diagnostic imaging, endoradiotherapy, and CAR T cell immunotherapy.
Collapse
|
10
|
Lippi M, Wadepohl H, Comba P, Cametti M. A Bispidine based CuII/ZnII Heterobimetallic Coordination Polymer. Eur J Inorg Chem 2022. [DOI: 10.1002/ejic.202200221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Martina Lippi
- Politecnico di Milano Department of Chemistry, Materials and Chemical Engineering ITALY
| | - Hubert Wadepohl
- Heidelberg University Interdisciplinary Center of Scientific Computing GERMANY
| | - Peter Comba
- Heidelberg University Anorganisch-Chemisches Institut GERMANY
| | - Massimo Cametti
- Politecnico di Milano Dipartimento di Chimica, Materiali ed Ingegneria Chimica Via Luigi Mancinelli 7 20131 Milano ITALY
| |
Collapse
|
11
|
Kovács A. Theoretical Study of Heptadentate Bispidine Ligands for Radiopharmaceutic Applications. COMPUT THEOR CHEM 2022. [DOI: 10.1016/j.comptc.2022.113716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
12
|
Dual-Labelling Strategies for Nuclear and Fluorescence Molecular Imaging: Current Status and Future Perspectives. Pharmaceuticals (Basel) 2022; 15:ph15040432. [PMID: 35455430 PMCID: PMC9028399 DOI: 10.3390/ph15040432] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 03/27/2022] [Accepted: 03/28/2022] [Indexed: 12/13/2022] Open
Abstract
Molecular imaging offers the possibility to investigate biological and biochemical processes non-invasively and to obtain information on both anatomy and dysfunctions. Based on the data obtained, a fundamental understanding of various disease processes can be derived and treatment strategies can be planned. In this context, methods that combine several modalities in one probe are increasingly being used. Due to the comparably high sensitivity and provided complementary information, the combination of nuclear and optical probes has taken on a special significance. In this review article, dual-labelled systems for bimodal nuclear and optical imaging based on both modular ligands and nanomaterials are discussed. Particular attention is paid to radiometal-labelled molecules for single-photon emission computed tomography (SPECT) and positron emission tomography (PET) and metal complexes combined with fluorescent dyes for optical imaging. The clinical potential of such probes, especially for fluorescence-guided surgery, is assessed.
Collapse
|
13
|
Kovács A. Metal-ligand bonding in bispidine chelate complexes for radiopharmaceutical applications. Struct Chem 2022. [DOI: 10.1007/s11224-022-01902-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
AbstractThe complexes of selected radionuclides relevant for nuclear medicine (InIII, BiIII, LuIII, AcIII and in addition LaIII for comparative purposes) with the octadentate (6,6′-((9-hydroxy-1,5-bis(methoxycarbonyl)-2,4-di(pyridin-2-yl)-3,7-diazabicyclo[3.3.1]nonane-3,7-diyl)bis(methylene))dipicolinic acid) ligand, H2bispa2, have been studied by density functional theory calculations modelling both isolated and aqueous solution conditions. The properties in focus are the encapsulation efficiency of the ligand for the different-size metals (M), the differences in bonding with the various MIII ions analysed using Bader’s atoms in molecules theory and the possibility and characteristics of nona- and decacoordination by H2O ligands. The computed results confirmed strong steric effects in the case of the In complex excluding higher than octacoordination. The studied properties depend strongly on the interplay of the sizes and electronic structures of the MIII ions. The computations support high stability of the complexes in aqueous solution, where also the solvation energies of the MIII ions (as dissociation products) play a significant role.
Collapse
|
14
|
Southcott L, Whetter JN, Wharton L, Patrick BO, Zarschler K, Kubeil M, Stephan H, de Guadalupe Jaraquemada-Peláez M, Orvig C. Bis(amido)bis(oxinate)diamine Ligands for theranostic radiometals. J Inorg Biochem 2022; 231:111789. [DOI: 10.1016/j.jinorgbio.2022.111789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 02/28/2022] [Accepted: 03/07/2022] [Indexed: 10/18/2022]
|
15
|
Bildziukevich U, Özdemir Z, Šaman D, Vlk M, Šlouf M, Rárová L, Wimmer Z. Novel cytotoxic 1,10-phenanthroline–triterpenoid amphiphiles with supramolecular characteristics capable of coordinating 64Cu( ii) labels. Org Biomol Chem 2022; 20:8157-8163. [DOI: 10.1039/d2ob01172g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Novel 1,10-phenanthroline–triterpenoid amphiphiles formed nano-assemblies in water, coordinated Cu(ii) and 64Cu(ii) salts for potential cancer monitoring and therapy, and displayed cytotoxicity partly dependent on the formation of nano-assemblies.
Collapse
Affiliation(s)
- Uladzimir Bildziukevich
- Institute of Experimental Botany of the Czech Academy of Sciences, Isotope Laboratory, Vídeňská 1083, CZ-14220 Prague 4, Czech Republic
| | - Zulal Özdemir
- Institute of Experimental Botany of the Czech Academy of Sciences, Isotope Laboratory, Vídeňská 1083, CZ-14220 Prague 4, Czech Republic
| | - David Šaman
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 2, CZ-16610 Prague 6, Czech Republic
| | - Martin Vlk
- Czech Technical University in Prague, Faculty of Nuclear Sciences and Physical Engineering, Břehová 7, CZ-11519 Prague 1, Czech Republic
| | - Miroslav Šlouf
- Institute of Macromolecular Chemistry of the Czech Academy of Sciences, Heyrovsky Sq. 2, CZ-16206 Prague 6, Czech Republic
| | - Lucie Rárová
- Department of Experimental Biology, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-78371 Olomouc, Czech Republic
| | - Zdeněk Wimmer
- Institute of Experimental Botany of the Czech Academy of Sciences, Isotope Laboratory, Vídeňská 1083, CZ-14220 Prague 4, Czech Republic
- University of Chemistry and Technology in Prague, Department of Chemistry of Natural Compounds, Technická 5, CZ-16628 Prague 6, Czech Republic
| |
Collapse
|
16
|
Hruby M, Martínez IIS, Stephan H, Pouckova P, Benes J, Stepanek P. Chelators for Treatment of Iron and Copper Overload: Shift from Low-Molecular-Weight Compounds to Polymers. Polymers (Basel) 2021; 13:3969. [PMID: 34833268 PMCID: PMC8618197 DOI: 10.3390/polym13223969] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/09/2021] [Accepted: 11/15/2021] [Indexed: 12/18/2022] Open
Abstract
Iron and copper are essential micronutrients needed for the proper function of every cell. However, in excessive amounts, these elements are toxic, as they may cause oxidative stress, resulting in damage to the liver and other organs. This may happen due to poisoning, as a side effect of thalassemia infusion therapy or due to hereditary diseases hemochromatosis or Wilson's disease. The current golden standard of therapy of iron and copper overload is the use of low-molecular-weight chelators of these elements. However, these agents suffer from severe side effects, are often expensive and possess unfavorable pharmacokinetics, thus limiting the usability of such therapy. The emerging concepts are polymer-supported iron- and copper-chelating therapeutics, either for parenteral or oral use, which shows vivid potential to keep the therapeutic efficacy of low-molecular-weight agents, while avoiding their drawbacks, especially their side effects. Critical evaluation of this new perspective polymer approach is the purpose of this review article.
Collapse
Affiliation(s)
- Martin Hruby
- Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic Heyrovského Náměstí 2, 162 06 Prague, Czech Republic;
| | - Irma Ivette Santana Martínez
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research Bautzner Landstraße 400, 01328 Dresden, Germany; (I.I.S.M.); (H.S.)
| | - Holger Stephan
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research Bautzner Landstraße 400, 01328 Dresden, Germany; (I.I.S.M.); (H.S.)
| | - Pavla Pouckova
- Institute of Biophysics and Informatics, First Faculty of Medicine, Charles University in Prague, Salmovska 1, 120 00 Prague, Czech Republic; (P.P.); (J.B.)
| | - Jiri Benes
- Institute of Biophysics and Informatics, First Faculty of Medicine, Charles University in Prague, Salmovska 1, 120 00 Prague, Czech Republic; (P.P.); (J.B.)
| | - Petr Stepanek
- Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic Heyrovského Náměstí 2, 162 06 Prague, Czech Republic;
| |
Collapse
|
17
|
Neto BAD, Correa JR, Spencer J. Fluorescent Benzothiadiazole Derivatives as Fluorescence Imaging Dyes: A Decade of New Generation Probes. Chemistry 2021; 28:e202103262. [PMID: 34643974 DOI: 10.1002/chem.202103262] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Indexed: 01/13/2023]
Abstract
The current review describes advances in the use of fluorescent 2,1,3-benzothiadiazole (BTD) derivatives after nearly one decade since the first description of bioimaging experiments using this class of fluorogenic dyes. The review describes the use of BTD-containing fluorophores applied as, inter alia, bioprobes for imaging cell nuclei, mitochondria, lipid droplets, sensors, markers for proteins and related events, biological processes and activities, lysosomes, plasma membranes, multicellular models, and animals. A number of physicochemical and photophysical properties commonly observed for BTD fluorogenic structures are also described.
Collapse
Affiliation(s)
- Brenno A D Neto
- Laboratory of Medicinal and Technological Chemistry, Chemistry Institute (IQ-UnB), University of Brasília, Campus Universitário Darcy Ribeiro, Brasília, Distrito Federal, 70904-900, Brazil
| | - Jose R Correa
- Laboratory of Medicinal and Technological Chemistry, Chemistry Institute (IQ-UnB), University of Brasília, Campus Universitário Darcy Ribeiro, Brasília, Distrito Federal, 70904-900, Brazil
| | - John Spencer
- Department of Chemistry, University of Sussex School of Life Sciences, Falmer, Brighton, BN1 9QJ, U.K
| |
Collapse
|
18
|
Gilpin IMF, Ullrich M, Wünsche T, Zarschler K, Lebeda O, Pietzsch J, Pietzsch H, Walther M. Radiolabelled Cyclic Bisarylmercury: High Chemical and in vivo Stability for Theranostics. ChemMedChem 2021; 16:2645-2649. [PMID: 33949125 PMCID: PMC8518081 DOI: 10.1002/cmdc.202100131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 04/26/2021] [Indexed: 11/28/2022]
Abstract
We show the synthesis of an in vivo stable mercury compound with functionality suitable for radiopharmaceuticals. The designed cyclic bisarylmercury was based on the water tolerance of organomercurials, higher bond dissociation energy of Hg-Ph to Hg-S, and the experimental evidence that acyclic structures suffer significant cleavage of one of the Hg-R bonds. The bispidine motif was chosen for its in vivo stability, chemical accessibility, and functionalization properties. Radionuclide production results in 197(m) HgCl2 (aq), so the desired mercury compound was formed via a water-tolerant organotin transmetallation. The Hg-bispidine compound showed high chemical stability in tests with an excess of sulfur-containing competitors and high in vivo stability, without any observable protein interaction by human serum assay, and good organ clearance demonstrated by biodistribution and SPECT studies in rats. In particular, no retention in the kidneys was observed, typical of unstable mercury compounds. The nat Hg analogue allowed full characterization by NMR and HRMS.
Collapse
Affiliation(s)
- Ian Moore F. Gilpin
- Institute of Radiopharmaceutical Cancer ResearchHelmholtz-Zentrum Dresden-RossendorfBautzner Landstrasse 40001328DresdenGermany
- Faculty of Chemistry and Food ChemistrySchool of ScienceDresden University of TechnologyMommsenstrasse 901062DresdenGermany
| | - Martin Ullrich
- Institute of Radiopharmaceutical Cancer ResearchHelmholtz-Zentrum Dresden-RossendorfBautzner Landstrasse 40001328DresdenGermany
| | - Thomas Wünsche
- Institute of Radiopharmaceutical Cancer ResearchHelmholtz-Zentrum Dresden-RossendorfBautzner Landstrasse 40001328DresdenGermany
| | - Kristof Zarschler
- Institute of Radiopharmaceutical Cancer ResearchHelmholtz-Zentrum Dresden-RossendorfBautzner Landstrasse 40001328DresdenGermany
| | - Ondřej Lebeda
- Department of RadiopharmaceuticalsNuclear Physics Institute of the CASŘež 130250 68Husinec-ŘežCzech Republic
| | - Jens Pietzsch
- Institute of Radiopharmaceutical Cancer ResearchHelmholtz-Zentrum Dresden-RossendorfBautzner Landstrasse 40001328DresdenGermany
- Faculty of Chemistry and Food ChemistrySchool of ScienceDresden University of TechnologyMommsenstrasse 901062DresdenGermany
| | - Hans‐Jürgen Pietzsch
- Institute of Radiopharmaceutical Cancer ResearchHelmholtz-Zentrum Dresden-RossendorfBautzner Landstrasse 40001328DresdenGermany
| | - Martin Walther
- Institute of Radiopharmaceutical Cancer ResearchHelmholtz-Zentrum Dresden-RossendorfBautzner Landstrasse 40001328DresdenGermany
| |
Collapse
|
19
|
Sneddon D, Cornelissen B. Emerging chelators for nuclear imaging. Curr Opin Chem Biol 2021; 63:152-162. [PMID: 34051509 DOI: 10.1016/j.cbpa.2021.03.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 02/28/2021] [Accepted: 03/09/2021] [Indexed: 11/25/2022]
Abstract
Chelators are necessary in nuclear medicine imaging to direct an inorganic radionuclide, a radiometal, to a desired target; unfortunately, there is no 'one-size-fits-all' chelator. As the toolbox of radiometals is expanding, new chelators are required to prevent off-target side effects. 1,4,7,10-Tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) is the current gold standard chelator for several radiometals, but typically, chelation requires harsh conditions, making it unsuitable to label biological vectors. The ideal chelator would allow labelling under mild conditions (near-neutral pH and low temperatures [∼37 °C]) and be both thermodynamically and kinetically stable. Over the past 2-3 years, several exciting chelators have been developed that have superior properties to make them worth investigating for future clinical applications.
Collapse
Affiliation(s)
- Deborah Sneddon
- MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, OX3 7LE, United Kingdom.
| | - Bart Cornelissen
- MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, OX3 7LE, United Kingdom
| |
Collapse
|
20
|
Southcott L, Wang X, Choudhary N, Wharton L, Patrick BO, Yang H, Zarschler K, Kubeil M, Stephan H, Jaraquemada-Peláez MDG, Orvig C. H 2pyhox - Octadentate Bis(pyridyloxine). Inorg Chem 2021; 60:12186-12196. [PMID: 34310113 DOI: 10.1021/acs.inorgchem.1c01412] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A new versatile chelating ligand for intermediate size and softness radiometals [64Cu]Cu2+ and [111In]In3+, H2pyhox, was synthesized by introducing pyridine as a new donor moiety to complement 8-hydroxyquinoline on an ethylenediamine backbone. The combination of pyridine and oxine as donor sets was explored through structural analysis, and crystals of the three metal complexes with Cu2+, La3+, and In3+ demonstrate how the ligand adapts to accommodate metal ions of different sizes and charge. Exhaustive in-batch UV solution studies characterized the protonation constants of the free ligand as well as the formation constants of the metal complexes with Cu2+, In3+, and La3+. Preliminary concentration-dependent radiolabeling studies with [111In]In3+ and [64Cu]Cu2+ show the robustness of H2pyhox to successfully coordinate both radiometals under mild conditions (<15 min, room temperature, pH 6). H2pyhox is the first oxinate ligand to successfully radiolabel [225Ac]Ac3+, albeit only at high concentrations (0.1-1 mM) with gentle heating to 37 °C. Whole serum, protein, and ligand challenge assays further demonstrate the kinetic inertness of the [111In]In3+ and [64Cu]Cu2+ radiometal-ligand complexes, confirming H2pyhox to be a promising versatile radiopharmaceutical chelator.
Collapse
Affiliation(s)
- Lily Southcott
- Medicinal Inorganic Chemistry Group, Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada.,Life Sciences Division, TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia V6T 2A3, Canada
| | - Xiaozhu Wang
- Medicinal Inorganic Chemistry Group, Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Neha Choudhary
- Medicinal Inorganic Chemistry Group, Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada.,Life Sciences Division, TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia V6T 2A3, Canada
| | - Luke Wharton
- Medicinal Inorganic Chemistry Group, Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada.,Life Sciences Division, TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia V6T 2A3, Canada
| | - Brian O Patrick
- Medicinal Inorganic Chemistry Group, Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Hua Yang
- Life Sciences Division, TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia V6T 2A3, Canada
| | - Kristof Zarschler
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstrasse 400, 01328 Dresden, Germany
| | - Manja Kubeil
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstrasse 400, 01328 Dresden, Germany
| | - Holger Stephan
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstrasse 400, 01328 Dresden, Germany
| | - María de Guadalupe Jaraquemada-Peláez
- Medicinal Inorganic Chemistry Group, Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Chris Orvig
- Medicinal Inorganic Chemistry Group, Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| |
Collapse
|
21
|
Abad‐Galán L, Cieslik P, Comba P, Gast M, Maury O, Neupert L, Roux A, Wadepohl H. Excited State Properties of Lanthanide(III) Complexes with a Nonadentate Bispidine Ligand. Chemistry 2021; 27:10303-10312. [PMID: 33780569 PMCID: PMC8360039 DOI: 10.1002/chem.202005459] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Indexed: 12/03/2022]
Abstract
EuIII , TbIII , GdIII and YbIII complexes of the nonadentate bispidine derivative L2 (bispidine=3,7-diazabicyclo[3.3.1]nonane) were successfully synthesized and their emission properties studied. The X-ray crystallography reveals full encapsulation by the nonadentate ligand L2 that enforces to all LnIII cations a common highly symmetrical capped square antiprismatic (CSAPR) coordination geometry (pseudo C4v symmetry). The well-resolved identical emission spectra in solid state and in solution confirm equal structures in both media. As therefore expected, this results in long-lived excited states and high emission quantum yields ([EuIII L2 ]+ , H2 O, 298 K, τ=1.51 ms, ϕ=0.35; [TbIII L2 ]+ , H2 O, 298 K, τ=1.95 ms, ϕ=0.68). Together with the very high kinetic and thermodynamic stabilities, these complexes are a possible basis for interesting biological probes.
Collapse
Affiliation(s)
- Laura Abad‐Galán
- Université de LyonENS de LyonLaboratoire de ChimieCNRS UMR 5182Université Claude Bernard Lyon 169342LyonFrance
| | - Patrick Cieslik
- Universität HeidelbergAnorganisch-Chemisches InstitutINF 27069120HeidelbergGermany
| | - Peter Comba
- Universität HeidelbergAnorganisch-Chemisches InstitutINF 27069120HeidelbergGermany
- Universität HeidelbergInterdisciplinary Center for Scientific Computing69120HeidelbergGermany
| | - Michael Gast
- Universität HeidelbergAnorganisch-Chemisches InstitutINF 27069120HeidelbergGermany
| | - Olivier Maury
- Université de LyonENS de LyonLaboratoire de ChimieCNRS UMR 5182Université Claude Bernard Lyon 169342LyonFrance
| | - Lucca Neupert
- Universität HeidelbergAnorganisch-Chemisches InstitutINF 27069120HeidelbergGermany
| | - Amandine Roux
- Université de LyonENS de LyonLaboratoire de ChimieCNRS UMR 5182Université Claude Bernard Lyon 169342LyonFrance
| | - Hubert Wadepohl
- Universität HeidelbergAnorganisch-Chemisches InstitutINF 27069120HeidelbergGermany
| |
Collapse
|
22
|
Bruchertseifer F, Comba P, Martin B, Morgenstern A, Notni J, Starke M, Wadepohl H. First-Generation Bispidine Chelators for 213 Bi III Radiopharmaceutical Applications. ChemMedChem 2020; 15:1591-1600. [PMID: 32613737 PMCID: PMC7496608 DOI: 10.1002/cmdc.202000361] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Indexed: 01/01/2023]
Abstract
Hepta- and octadentate bispidines (3,7-diazabicyclo[3.3.1]nonane, diaza-adamantane) with acetate, methyl-pyridine, and methyl-picolinate pendant groups at the amine donors of the bispidine platform have been prepared and used to investigate BiIII coordination chemistry. Crystal structure and solution spectroscopic data (NMR spectroscopy and mass spectrometry) confirm that the rigid and relatively large bispidine cavity with an axially distorted geometry is well suited for BiIII and in all cases forms nine-coordinate complexes; this is supported by an established hole size and shape analysis. It follows that nonadentate bispidines probably will be more suited as bifunctional chelators for 213 BiIII -based radiopharmaceuticals. However, two isomeric picolinate-/acetate-based heptadentate ligands already show very efficient complexation kinetics with 213 BiIII at ambient temperature and kinetic stability that is comparable with the standard ligands used in this field. The experimentally determined hydrophilicities (log D7.4 values) show that the BiIII complexes reported are relatively hydrophilic and well suited for medicinal applications. We also present a very efficient and relatively accurate method to compute charge distributions and hydrophilicities, and this will help to further optimize the systems reported here.
Collapse
Affiliation(s)
- Frank Bruchertseifer
- European Commission, Joint Research Centre/>Directorate for Nuclear Safety and SecurityHermann-von-Helmholtz-Platz 176344Eggenstein-LeopoldshafenGermany
| | - Peter Comba
- Universität Heidelberg, Anorganisch-Chemisches InstitutNeuenheimer Feld 27069120HeidelbergGermany
- Universität Heidelberg Interdisciplinary Center for Scientific Computing In NeuenheimerFeld 20569120HeidelbergGermany
| | - Bodo Martin
- Universität Heidelberg, Anorganisch-Chemisches InstitutNeuenheimer Feld 27069120HeidelbergGermany
- Universität Heidelberg Interdisciplinary Center for Scientific Computing In NeuenheimerFeld 20569120HeidelbergGermany
| | - Alfred Morgenstern
- European Commission, Joint Research Centre/>Directorate for Nuclear Safety and SecurityHermann-von-Helmholtz-Platz 176344Eggenstein-LeopoldshafenGermany
| | - Johannes Notni
- Technische Universität München Institut für Pathologie und Pathologische AnatomieTrogerstr. 1881675MunichGermany
| | - Miriam Starke
- Universität Heidelberg, Anorganisch-Chemisches InstitutNeuenheimer Feld 27069120HeidelbergGermany
| | - Hubert Wadepohl
- Universität Heidelberg, Anorganisch-Chemisches InstitutNeuenheimer Feld 27069120HeidelbergGermany
| |
Collapse
|
23
|
Singh G, Zarschler K, Hunoldt S, Martínez IIS, Ruehl CL, Matterna M, Bergmann R, Máthé D, Hegedüs N, Bachmann M, Comba P, Stephan H. Versatile Bispidine-Based Bifunctional Chelators for 64 Cu II -Labelling of Biomolecules. Chemistry 2020; 26:1989-2001. [PMID: 31755596 PMCID: PMC7028042 DOI: 10.1002/chem.201904654] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Indexed: 12/11/2022]
Abstract
Bifunctional chelators as parts of modular metal-based radiopharmaceuticals are responsible for stable complexation of the radiometal ion and for covalent linkage between the complex and the targeting vector. To avoid loss of complex stability, the bioconjugation strategy should not interfere with the radiometal chelation by occupying coordinating groups. The C9 position of the very stable CuII chelator 3,7-diazabicyclo[3.3.1]nonane (bispidine) is virtually predestined to introduce functional groups for facile bioconjugation as this functionalisation does not disturb the metal binding centre. We describe the preparation and characterisation of a set of novel bispidine derivatives equipped with suitable functional groups for diverse bioconjugation reactions, including common amine coupling strategies (bispidine-isothiocyanate) and the Cu-free strain-promoted alkyne-azide cycloaddition. We demonstrate their functionality and versatility in an exemplary way by conjugation to an antibody-based biomolecule and validate the obtained conjugate in vitro and in vivo.
Collapse
Affiliation(s)
- Garima Singh
- Helmholtz-Zentrum Dresden-RossendorfInstitute of Radiopharmaceutical Cancer ResearchBautzner Landstrasse 40001328DresdenGermany
| | - Kristof Zarschler
- Helmholtz-Zentrum Dresden-RossendorfInstitute of Radiopharmaceutical Cancer ResearchBautzner Landstrasse 40001328DresdenGermany
| | - Sebastian Hunoldt
- Helmholtz-Zentrum Dresden-RossendorfInstitute of Radiopharmaceutical Cancer ResearchBautzner Landstrasse 40001328DresdenGermany
| | - Irma Ivette Santana Martínez
- Helmholtz-Zentrum Dresden-RossendorfInstitute of Radiopharmaceutical Cancer ResearchBautzner Landstrasse 40001328DresdenGermany
| | - Carmen L. Ruehl
- Anorganisch-Chemisches Institut INF 270Universität Heidelberg69120HeidelbergGermany
| | - Madlen Matterna
- Helmholtz-Zentrum Dresden-RossendorfInstitute of Radiopharmaceutical Cancer ResearchBautzner Landstrasse 40001328DresdenGermany
| | - Ralf Bergmann
- Helmholtz-Zentrum Dresden-RossendorfInstitute of Radiopharmaceutical Cancer ResearchBautzner Landstrasse 40001328DresdenGermany
| | - Domokos Máthé
- Department of Biophysics and Radiation BiologySemmelweis University1094BudapestHungary
- CROmed Translational Research Centers Ltd.1047BudapestHungary
| | - Nikolett Hegedüs
- Department of Biophysics and Radiation BiologySemmelweis University1094BudapestHungary
| | - Michael Bachmann
- Helmholtz-Zentrum Dresden-RossendorfInstitute of Radiopharmaceutical Cancer ResearchBautzner Landstrasse 40001328DresdenGermany
| | - Peter Comba
- Anorganisch-Chemisches Institut INF 270Universität Heidelberg69120HeidelbergGermany
| | - Holger Stephan
- Helmholtz-Zentrum Dresden-RossendorfInstitute of Radiopharmaceutical Cancer ResearchBautzner Landstrasse 40001328DresdenGermany
| |
Collapse
|
24
|
Lippi M, Caputo J, Meneghetti F, Castellano C, Martí-Rujas J, Cametti M. Tuneable solvent adsorption and exchange by 1D bispidine-based Mn(ii) coordination polymers via ligand design. Dalton Trans 2020; 49:13420-13429. [DOI: 10.1039/d0dt02734k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
General trends on the structural and dynamic properties of bispidine-based Mn(ii) 1D coordination polymers have been outlined on the basis of both single-crystals and microcrystalline powders data and by solvent adsorption and exchange experiments.
Collapse
Affiliation(s)
- Martina Lippi
- Dipartimento di Chimica
- Materiali e Ingegneria Chimica
- Politecnico di Milano
- Milano
- Italy
| | - Josefina Caputo
- Dipartimento di Chimica
- Materiali e Ingegneria Chimica
- Politecnico di Milano
- Milano
- Italy
| | - Fiorella Meneghetti
- Dipartimento di Scienze Farmaceutiche
- Università degli Studi di Milano
- 20133 Milano
- Italy
| | - Carlo Castellano
- Dipartimento di Chimica
- Università degli Studi di Milano
- 20133 Milano
- Italy
| | - Javier Martí-Rujas
- Dipartimento di Chimica
- Materiali e Ingegneria Chimica
- Politecnico di Milano
- Milano
- Italy
| | - Massimo Cametti
- Dipartimento di Chimica
- Materiali e Ingegneria Chimica
- Politecnico di Milano
- Milano
- Italy
| |
Collapse
|