1
|
Harimoto T, Ishigaki Y. Recent Advances in NIR-Switchable Multi-Redox Systems Based on Organic Molecules. Chemistry 2024:e202403273. [PMID: 39503432 DOI: 10.1002/chem.202403273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Indexed: 11/24/2024]
Abstract
Electrochromic systems capable of switching absorption in the near-infrared (NIR) region (750-2500 nm) are attractive from the viewpoint of applications for material and life science, and thus several examples have been reported to date. In general, the development of organic-based systems is needed to reduce the environmental impact and improve biocompatibility. Although extending the switchable spectral range is crucial for the application of organic electrochromic molecules, the switching of NIR absorption based on redox interconversion is still a challenging issue regarding reversibility and durability during interconversion. To overcome this potential instability, the introduction of heteroatoms into the molecular backbone and/or π-extension could be useful strategies in terms of effective delocalization of charge and spin in the corresponding redox states. In this review, we focus on redox-active well-defined small molecules that enable ON/OFF switching of NIR absorption based on precise control of the redox states, and present recent studies on their intrinsic electrochemical and spectroscopic properties and/or structural characterization of their charged states.
Collapse
Affiliation(s)
- Takashi Harimoto
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, 060-0810, Japan
- Present address: Institute for Molecular Science, Myodaiji, Okazaki, 444-8787, Japan
| | - Yusuke Ishigaki
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, 060-0810, Japan
| |
Collapse
|
2
|
Andoh K, Murai M, Bouit PA, Hissler M, Yamaguchi S. Dithieno[3,2-b; 2',3'-f]phosphepinium-Based Near-Infrared Fluorophores: p x-π* Conjugation Inherent to Seven-Membered Phosphacycles. Angew Chem Int Ed Engl 2024; 63:e202410204. [PMID: 38935519 DOI: 10.1002/anie.202410204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 06/27/2024] [Accepted: 06/27/2024] [Indexed: 06/29/2024]
Abstract
Positively charged phosphorus-containing heterocycles are characteristic core skeletons for functional molecules. While various phosphonium-containing five- or six-membered-ring compounds have been reported, the seven-membered-ring phosphepinium have not been fully studied yet. In this study, dithieno[3,2-b; 2',3'-f]phosphepinium ions containing electron-donating aminophenyl groups were synthesized. An X-ray crystallographic analysis of the resulting donor-acceptor-donor dyes revealed a bent conformation of the central seven-membered ring. These compounds exhibit fluorescence in the near-infrared region with a bathochromic shift of ca. 70 nm compared to a phosphepine oxide congener and a large Stokes shift. High fluorescence quantum yields were obtained even in polar solvents due to the suppression of the nonradiative decay process. A theoretical study revealed that the phosphepinium skeleton is highly electron-accepting owing to the orbital interaction between a px orbital of the phosphonium moiety and a π* orbital of the 1,3,5-hexatriene moiety. Due to the lower-lying px orbital in the phosphonium moiety compared to that of the phosphine oxide and the bent conformation of the seven-membered ring, the phosphepinium ring permits effective px-π* conjugation. A large structural relaxation with a contribution of a quinoidal resonance structure is suggested in the excited state, which should be responsible for the bright emission with a large Stokes shift.
Collapse
Affiliation(s)
- Keita Andoh
- Department of Chemistry, Graduate School of Science, and Integrated Research Consortium on Chemical Sciences (IRCCS), Nagoya University, Furo, Chikusa, Nagoya, 464-8602, Japan
| | - Masahito Murai
- Department of Chemistry, Graduate School of Science, and Integrated Research Consortium on Chemical Sciences (IRCCS), Nagoya University, Furo, Chikusa, Nagoya, 464-8602, Japan
| | | | - Muriel Hissler
- Université Rennes, CNRS, ISCR-UMR 6226, F-35000, Rennes, France
| | - Shigehiro Yamaguchi
- Department of Chemistry, Graduate School of Science, and Integrated Research Consortium on Chemical Sciences (IRCCS), Nagoya University, Furo, Chikusa, Nagoya, 464-8602, Japan
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo, Chikusa, Nagoya, 464-8601, Japan
| |
Collapse
|
3
|
Thakur D, Sushmita, Meena SA, Verma AK. Advancement in Synthetic Strategies of Phosphorus Heterocycles: Recent Progress from Synthesis to Emerging Class of Optoelectronic Materials. CHEM REC 2024; 24:e202400058. [PMID: 39136671 DOI: 10.1002/tcr.202400058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 06/14/2024] [Indexed: 08/28/2024]
Abstract
Organophosphorus heterocycles have long been acknowledged for their significant potential across diverse fields, including catalysis, material science, and drug development. Incorporating phosphorus functionalities into organic compounds offers a means to effectively tailor their medicinal properties, augment biological responses, and enhance selectivity and bioavailability. The distinctive physical and photoelectric characteristics of phosphorus-containing conjugated compounds have garnered considerable interest as promising materials for organic optoelectronics. These compounds find extensive utility in various applications such as light-emitting diodes, photovoltaic cells, phosphole-based fluorophores, and semiconductors.
Collapse
Affiliation(s)
| | - Sushmita
- Netaji Subhas University of Technology, Delhi, 110078
| | | | | |
Collapse
|
4
|
Harimoto T, Sugai Y, Sugawara K, Suzuki T, Ishigaki Y. Double Dynamic Structural Change Enabling Tricolor Chromism by the Realization of Apparent Two-Electron Transfer to Skip the Open-Shell State. Chemistry 2023; 29:e202301476. [PMID: 37311709 DOI: 10.1002/chem.202301476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/13/2023] [Accepted: 06/13/2023] [Indexed: 06/15/2023]
Abstract
Most redox systems generally cannot avoid the involvement of open-shell species upon generating multiply charged species, which often reduces reversibility in multi-color electrochromic systems. In this study, we newly synthesized octakis(aminophenyl)-substituted pentacenebisquinodimethane (BQD) derivatives and their hybrids with alkoxyphenyl analogues. Thanks to apparent two-electron transfer accompanied by double dramatic changes in the structure of the arylated quinodimethane skeleton, the dicationic and tetracationic states were generated and isolated quantitatively because of the negligible steady-state concentration of intermediary open-shell species such as monocation or trication radicals. When two electrophores with different donating abilities are attached to the BQD skeleton, a dicationic state with a different color can be isolated in addition to the neutral and tetracationic states. For these tetracations, an interchromophore interaction induces a red-shift of the NIR absorptions, thus realizing tricolor UV/Vis/NIR electrochromic behavior involving only closed-shell states.
Collapse
Affiliation(s)
- Takashi Harimoto
- Department of Chemistry, Faculty of Science, Hokkaido University, N10 W8, North-ward, Sapporo, 060-0810, Japan
| | - Yuka Sugai
- Department of Chemistry, Faculty of Science, Hokkaido University, N10 W8, North-ward, Sapporo, 060-0810, Japan
| | - Kazuma Sugawara
- Department of Chemistry, Faculty of Science, Hokkaido University, N10 W8, North-ward, Sapporo, 060-0810, Japan
| | - Takanori Suzuki
- Department of Chemistry, Faculty of Science, Hokkaido University, N10 W8, North-ward, Sapporo, 060-0810, Japan
| | - Yusuke Ishigaki
- Department of Chemistry, Faculty of Science, Hokkaido University, N10 W8, North-ward, Sapporo, 060-0810, Japan
| |
Collapse
|
5
|
Ding J, Luo S, Xu Y, An Q, Yang Y, Zuo Z. Selective oxidation of benzylic alcohols via synergistic bisphosphonium and cobalt catalysis. Chem Commun (Camb) 2023; 59:4055-4058. [PMID: 36929170 DOI: 10.1039/d3cc00532a] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
A synergistic photocatalytic system using a bisphosphonium catalyst and a cobalt catalyst has been developed, enabling the selective oxidation of benzylic alcohols under oxidant-free and environmentally benign conditions. High efficiencies have been obtained for a variety of alcohol substrates, and exclusive selectivity for aldehyde products has been achieved across the board. Furthermore, this photocatalytic system proved to be efficient when performed under continuous-flow conditions, even using a simple and easily assembled continuous-flow setup.
Collapse
Affiliation(s)
- Jia Ding
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China.,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China.
| | - Shuaishuai Luo
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China.,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China.
| | - Yuanli Xu
- Innovation Center for Chenguang High Performance Fluorine Material, Key Laboratory of Green Chemistry of Sichuan Institutes of Higher Education, Sichuan University of Science and Engineering, Zigong, CN 643000, China
| | - Qing An
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yi Yang
- Innovation Center for Chenguang High Performance Fluorine Material, Key Laboratory of Green Chemistry of Sichuan Institutes of Higher Education, Sichuan University of Science and Engineering, Zigong, CN 643000, China
| | - Zhiwei Zuo
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China.
| |
Collapse
|
6
|
Regulska E, Hindenberg P, Espineira‐Gutierrez A, Romero‐Nieto C. Synthesis, Post-Functionalization and Properties of Diphosphapentaarenes. Chemistry 2023; 29:e202202769. [PMID: 36216778 PMCID: PMC10100039 DOI: 10.1002/chem.202202769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Indexed: 12/05/2022]
Abstract
Linearly-fused polyarenes are an important class of compounds with high relevance in materials science. While modifying the shape and size represents a common means to fine-tune their properties, the precise placement of heteroatoms is a strategy that is receiving an increasing deal of attention to overcome the intrinsic limitations of all-carbon structures. Thus, linearly-fused diphosphaarenes recently emerged as a novel family of molecules with striking optoelectronic properties and outstanding stability. However, the properties of diphosphaarenes are far from being benchmarked. Herein, we report the synthesis, phosphorus post-functionalization and properties of new diphosphapentaarene derivatives. We describe their synthetic limitations and unveil their potential for optoelectronic applications.
Collapse
Affiliation(s)
- Elzbieta Regulska
- Organisch-Chemisches InstitutRuprecht-Karls-Universität HeidelbergIm Neuenheimer Feld 27069120HeidelbergGermany
- Faculty of PharmacyUniversity of Castilla-La ManchaCalle Almansa 14 – Edif. Bioincubadora02008AlbaceteSpain
| | - Philip Hindenberg
- Organisch-Chemisches InstitutRuprecht-Karls-Universität HeidelbergIm Neuenheimer Feld 27069120HeidelbergGermany
- Faculty of PharmacyUniversity of Castilla-La ManchaCalle Almansa 14 – Edif. Bioincubadora02008AlbaceteSpain
| | - Adrian Espineira‐Gutierrez
- Faculty of PharmacyUniversity of Castilla-La ManchaCalle Almansa 14 – Edif. Bioincubadora02008AlbaceteSpain
| | - Carlos Romero‐Nieto
- Organisch-Chemisches InstitutRuprecht-Karls-Universität HeidelbergIm Neuenheimer Feld 27069120HeidelbergGermany
- Faculty of PharmacyUniversity of Castilla-La ManchaCalle Almansa 14 – Edif. Bioincubadora02008AlbaceteSpain
| |
Collapse
|
7
|
Tan C, Tinnermann H, Wee V, Tan S, Sung S, Wang Q, Young RD. Synthesis of bimetallic rhodium phosphinine complexes with enhanced catalytic activity towards alkyne hydrosilylation. J Organomet Chem 2023. [DOI: 10.1016/j.jorganchem.2023.122617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
8
|
Hindenberg P, Belyaev A, Rominger F, Koshevoy IO, Romero-Nieto C. Two-Fold Intramolecular Phosphacyclization: From Fluorescent Diphosphapyrene Salts to Pentavalent Derivatives. Org Lett 2022; 24:6391-6396. [PMID: 36040429 DOI: 10.1021/acs.orglett.2c02391] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The synthesis of π-extended pyrene-based luminescent compounds containing two six-membered phosphacycles has been realized through a two-step synthesis. It involves a Cu(II)-mediated double cyclization of tertiary diphosphane derivatives to afford dicationic molecules with quaternized phosphorus centers. Subsequent transformation of diphosphonium species into the corresponding P-oxide derivatives has been successfully achieved through Pd(0)-assisted cleavage of the P-Ph bonds, which opens a promising way for the functionalization of polyaromatic P-systems.
Collapse
Affiliation(s)
- Philip Hindenberg
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| | - Andrey Belyaev
- Department of Chemistry, University of Eastern Finland, Yliopistokatu 7, 80101 Joensuu, Finland
| | - Frank Rominger
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| | - Igor O Koshevoy
- Department of Chemistry, University of Eastern Finland, Yliopistokatu 7, 80101 Joensuu, Finland
| | - Carlos Romero-Nieto
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany.,Faculty of Pharmacy, Universidad de Castilla-La Mancha, Calle Almansa 14 - Edif. Bioincubadora, 02008 Albacete, Spain
| |
Collapse
|
9
|
Delouche T, Taifour G, Cordier M, Roisnel T, Tondelier D, Manzhi P, Geffroy B, Le Guennic B, Jacquemin D, Hissler M, Bouit PA. Si-containing polycyclic aromatic hydrocarbons: synthesis and opto-electronic properties. Chem Commun (Camb) 2021; 58:88-91. [PMID: 34873602 DOI: 10.1039/d1cc06309j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
We report a straightforward synthesis of Si-containing Polycyclic Aromatic Hydrocarbons (PAHs). The impact of π-extension and exocyclic modifications on both the optical and redox properties is investigated using a joint experimental/theoretical approach. By taking advantage of the solid-state luminescence of these derivatives, electroluminescent devices are prepared. Such preliminary opto-electronic results highlight that these heteroatom-containing PAHs are promising building blocks for organic electronics.
Collapse
Affiliation(s)
| | | | - Marie Cordier
- Univ Rennes, CNRS, ISCR - UMR 6226, Rennes 35000, France.
| | | | - Denis Tondelier
- Laboratoire de Physique des Interfaces et des Couches Minces (LPICM), CNRS, Ecole Polytechnique, IP Paris, Palaiseau Cedex, France
| | - Payal Manzhi
- Laboratoire de Physique des Interfaces et des Couches Minces (LPICM), CNRS, Ecole Polytechnique, IP Paris, Palaiseau Cedex, France.,Université Paris-Saclay, CEA, CNRS, NIMBE, LICSEN, Gif-sur-Yvette, 91191, France
| | - Bernard Geffroy
- Laboratoire de Physique des Interfaces et des Couches Minces (LPICM), CNRS, Ecole Polytechnique, IP Paris, Palaiseau Cedex, France.,Université Paris-Saclay, CEA, CNRS, NIMBE, LICSEN, Gif-sur-Yvette, 91191, France
| | | | - Denis Jacquemin
- CEISAM UMR CNRS 6230, University of Nantes, Nantes 44322, France.
| | - Muriel Hissler
- Univ Rennes, CNRS, ISCR - UMR 6226, Rennes 35000, France.
| | | |
Collapse
|
10
|
Sire C, Cattey H, Tsivery A, Hierso J, Roger J. Phosphorus‐Directed Rhodium‐Catalyzed C−H Arylation of 1‐Pyrenylphosphines Selective at the
K
‐Region. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202101211] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Charline Sire
- Institut de Chimie Moléculaire de l'Université de Bourgogne ICMUB – UMR CNRS 6302) Université de Bourgogne-Franche-Comté (UBFC) 9 avenue Alain Savary 21078 Dijon Cedex France
| | - Hélène Cattey
- Institut de Chimie Moléculaire de l'Université de Bourgogne ICMUB – UMR CNRS 6302) Université de Bourgogne-Franche-Comté (UBFC) 9 avenue Alain Savary 21078 Dijon Cedex France
| | - Anthonia Tsivery
- Institut de Chimie Moléculaire de l'Université de Bourgogne ICMUB – UMR CNRS 6302) Université de Bourgogne-Franche-Comté (UBFC) 9 avenue Alain Savary 21078 Dijon Cedex France
| | - Jean‐Cyrille Hierso
- Institut de Chimie Moléculaire de l'Université de Bourgogne ICMUB – UMR CNRS 6302) Université de Bourgogne-Franche-Comté (UBFC) 9 avenue Alain Savary 21078 Dijon Cedex France
| | - Julien Roger
- Institut de Chimie Moléculaire de l'Université de Bourgogne ICMUB – UMR CNRS 6302) Université de Bourgogne-Franche-Comté (UBFC) 9 avenue Alain Savary 21078 Dijon Cedex France
| |
Collapse
|
11
|
Biagiotti G, Perini I, Richichi B, Cicchi S. Novel Synthetic Approach to Heteroatom Doped Polycyclic Aromatic Hydrocarbons: Optimizing the Bottom-Up Approach to Atomically Precise Doped Nanographenes. Molecules 2021; 26:6306. [PMID: 34684887 PMCID: PMC8537472 DOI: 10.3390/molecules26206306] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/11/2021] [Accepted: 10/13/2021] [Indexed: 11/16/2022] Open
Abstract
The success of the rational bottom-up approach to nanostructured carbon materials and the discovery of the importance of their doping with heteroatoms puts under the spotlight all synthetic organic approaches to polycyclic aromatic hydrocarbons. The construction of atomically precise heteroatom doped nanographenes has evidenced the importance of controlling its geometry and the position of the doping heteroatoms, since these parameters influence their chemical-physical properties and their applications. The growing interest towards this research topic is testified by the large number of works published in this area, which have transformed a once "fundamental research" into applied research at the cutting edge of technology. This review analyzes the most recent synthetic approaches to this class of compounds.
Collapse
Affiliation(s)
- Giacomo Biagiotti
- Department of Chemistry “Ugo Schiff”, Università di Firenze, Via della Lastruccia 3-13, 50019 Sesto Fiorentino, Italy; (G.B.); (I.P.)
| | - Ilaria Perini
- Department of Chemistry “Ugo Schiff”, Università di Firenze, Via della Lastruccia 3-13, 50019 Sesto Fiorentino, Italy; (G.B.); (I.P.)
| | - Barbara Richichi
- Department of Chemistry “Ugo Schiff”, Università di Firenze, Via della Lastruccia 3-13, 50019 Sesto Fiorentino, Italy; (G.B.); (I.P.)
- National Interuniversity Consortium for Materials Science and Technology (INSTM), Via G. Giusti, 9, 50121 Firenze, Italy
| | - Stefano Cicchi
- Department of Chemistry “Ugo Schiff”, Università di Firenze, Via della Lastruccia 3-13, 50019 Sesto Fiorentino, Italy; (G.B.); (I.P.)
- National Interuniversity Consortium for Materials Science and Technology (INSTM), Via G. Giusti, 9, 50121 Firenze, Italy
- Institute of Chemistry of Organometallic Compounds, ICCOM-CNR, Via Madonna del Piano, 10, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
12
|
Exploitation of Baird Aromaticity and Clar’s Rule for Tuning the Triplet Energies of Polycyclic Aromatic Hydrocarbons. CHEMISTRY 2021. [DOI: 10.3390/chemistry3020038] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Polycyclic aromatic hydrocarbons (PAH) are a prominent substance class with a variety of applications in molecular materials science. Their electronic properties crucially depend on the bond topology in ways that are often highly non-intuitive. Here, we study, using density functional theory, the triplet states of four biphenylene-derived PAHs finding dramatically different triplet excitation energies for closely related isomeric structures. These differences are rationalised using a qualitative description of Clar sextets and Baird quartets, quantified in terms of nucleus independent chemical shifts, and represented graphically through a recently developed method for visualising chemical shielding tensors (VIST). The results are further interpreted in terms of a 2D rigid rotor model of aromaticity and through an analysis of the natural transition orbitals involved in the triplet excited states showing good consistency between the different viewpoints. We believe that this work constitutes an important step in consolidating these varying viewpoints of electronically excited states.
Collapse
|
13
|
Belyaev A, Chou P, Koshevoy IO. Cationic Organophosphorus Chromophores: A Diamond in the Rough among Ionic Dyes. Chemistry 2021; 27:537-552. [PMID: 32492231 PMCID: PMC7821147 DOI: 10.1002/chem.202001853] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Indexed: 12/21/2022]
Abstract
Tunable electron-accepting properties of the cationic phosphorus center, its geometry and unique preparative chemistry that allows combining this unit with diversity of π-conjugated motifs, define the appealing photophysical and electrochemical characteristics of organophosphorus ionic chromophores. This Minireview summarizes the achievements in the synthesis of the π-extended molecules functionalized with P-cationic fragments, modulation of their properties by means of structural modification, and emphasizes the important effect of cation-anion interactions, which can drastically change physical behavior of these two-component systems.
Collapse
Affiliation(s)
- Andrey Belyaev
- Department of ChemistryUniversity of Eastern FinlandYliopistokatu 780101JoensuuFinland
| | - Pi‐Tai Chou
- Department of ChemistryNational (Taiwan) UniversityTaipei106Taiwan
| | - Igor O. Koshevoy
- Department of ChemistryUniversity of Eastern FinlandYliopistokatu 780101JoensuuFinland
| |
Collapse
|
14
|
Tao G, Yang F, Zhang L, Li Y, Duan Z, Mathey F. Synthesis of phosphanaphthalenes and nido-carborane fused six-membered phosphacycles. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2020.11.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|