1
|
Kumar P, Pattison G. Controlled synthesis of CD 2H-ketones. Chem Commun (Camb) 2024; 60:13887-13890. [PMID: 39499550 DOI: 10.1039/d4cc04819a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2024]
Abstract
The synthesis of compounds containing partially deuterated groups such as CD2H lacks general methods. These compounds could be important for fine control of metabolic processes in drug discovery, or in the development of multifunctional probes for analysis by complementary spectroscopic techniques. Here, a convenient route to CD2H-methyl ketones is reported through coupling of esters with bis[(pinacolato)boryl]methane and trapping with D2O.
Collapse
Affiliation(s)
- Pankaj Kumar
- Department of Chemistry, School of Natural Sciences, Joseph Banks Laboratories, University of Lincoln Green Lane, Lincoln, LN6 7DL, UK.
| | - Graham Pattison
- Department of Chemistry, School of Natural Sciences, Joseph Banks Laboratories, University of Lincoln Green Lane, Lincoln, LN6 7DL, UK.
| |
Collapse
|
2
|
Yang J, Li Z, Huang Z, Zhu J. Deuteration Degree Controllable Synthesis of Aryl Deuteromethyl Ethers Through Dual photoredox and Thiol Catalysis. Chemistry 2024; 30:e202402475. [PMID: 39169448 DOI: 10.1002/chem.202402475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 08/23/2024]
Abstract
Herein, we report a facile and efficient deuteration degree controllable method for the preparation of aryl deuteromethyl ethers through dual photoredox and thiol catalysis using phenols as the starting materials and inexpensive D2O and CDCl3 as the deuterium sources. All aryl d1, d2, and d3 deuteromethyl ethers can be precisely prepared with good to excellent yields and deuteration ratios. The reaction operates under mild conditions without the need for high temperatures or high loading of transition metal catalysts, and a wide range of functional groups are well tolerated.
Collapse
Affiliation(s)
- Junjie Yang
- College of Chemistry and Molecular Sciences, Wuhan University, 430072, Wuhan, China
| | - Zhongxian Li
- College of Chemistry and Molecular Sciences, Wuhan University, 430072, Wuhan, China
| | - Zhihui Huang
- College of Chemistry and Molecular Sciences, Wuhan University, 430072, Wuhan, China
| | - Jun Zhu
- College of Chemistry and Molecular Sciences, Wuhan University, 430072, Wuhan, China
| |
Collapse
|
3
|
Hou L, Chen Z, Chen F, Sheng L, Ye W, Dai Y, Guo X, Dong C, Li G, Liao K, Li Y, Ma J, Wei H, Ran W, Shang J, Ling X, Patel JS, Liang SH, Xu H, Wang L. Synthesis, preclinical assessment, and first-in-human study of [ 18F]d 4-FET for brain tumor imaging. Eur J Nucl Med Mol Imaging 2024:10.1007/s00259-024-06964-8. [PMID: 39482500 DOI: 10.1007/s00259-024-06964-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 10/18/2024] [Indexed: 11/03/2024]
Abstract
PURPOSE Tumor-to-background ratio (TBR) is a critical metric in oncologic PET imaging. This study aims to enhance the TBR of [18F]FET in brain tumor imaging by substituting deuterium ("D") for hydrogen ("H"), thereby improving the diagnostic sensitivity and accuracy. METHODS [18F]d4-FET was synthesised by two automated radiochemistry modules. Biodistribution studies and imaging efficacy were evaluated in vivo and ex vivo in rodent models, while metabolic stability and radiation dosimetry were assessed in non-human primates. Additionally, preliminary imaging evaluations were carried out in five brain tumor patients: three glioma patients underwent imaging with both [18F]d4-FET and [18F]FET, and two patients with brain metastases were imaged using [18F]d4-FET and [18F]FDG. RESULTS [18F]d4-FET demonstrated high radiochemical purity and yield. PET/MRI in rodent models demonstrated superior TBR for [18F]d4-FET compared to [18F]FET, and autoradiography showed tumor margins that correlated well with pathological extents. Studies in cynomolgus monkeys indicated comparable in vivo stability and effective dose with [18F]FET. In glioma patients, [18F]d4-FET showed enhanced TBR, while in patients with brain metastases, [18F]d4-FET displayed superior lesion delineation compared to [18F]FDG, especially in smaller metastatic sites. CONCLUSION We successfully synthesized the novel PET radiotracer [18F]d4-FET, which retains the advantageous properties of [18F]FET while potentially enhancing TBR for glioma imaging. Preliminary studies indicate excellent stability, efficacy, and sensitivity of [18F]d4-FET, suggesting its potential in clinical evaluations of brain tumors. TRIAL REGISTRATION ChiCTR2400081576, registration date: 2024-03-05, https://www.chictr.org.cn/bin/project/edit?pid=206162.
Collapse
Affiliation(s)
- Lu Hou
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine, & Key Laboratory of Basic and Translational Research On Radiopharmaceuticals, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Zhiyong Chen
- Department of Neurosurgery, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Fanfan Chen
- Department of Neurosurgery, Shenzhen Key Laboratory of Neurosurgery, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518025, China
| | - Lianghe Sheng
- Department of Oncology, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Weijian Ye
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine, & Key Laboratory of Basic and Translational Research On Radiopharmaceuticals, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Yingchu Dai
- Department of Radiotherapy and Oncology, The Affiliated Hospital of Jiangnan University, Wuxi, 214122, China
| | - Xiaoyu Guo
- Department of Neurosurgery, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Chenchen Dong
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine, & Key Laboratory of Basic and Translational Research On Radiopharmaceuticals, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Guocong Li
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine, & Key Laboratory of Basic and Translational Research On Radiopharmaceuticals, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Kai Liao
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine, & Key Laboratory of Basic and Translational Research On Radiopharmaceuticals, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Yinlong Li
- Department of Radiology and Imaging Sciences, Emory University, 1364 Clifton Rd, Atlanta, GA, 30322, USA
| | - Jie Ma
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine, & Key Laboratory of Basic and Translational Research On Radiopharmaceuticals, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Huiyi Wei
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine, & Key Laboratory of Basic and Translational Research On Radiopharmaceuticals, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Wenqing Ran
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine, & Key Laboratory of Basic and Translational Research On Radiopharmaceuticals, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Jingjie Shang
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine, & Key Laboratory of Basic and Translational Research On Radiopharmaceuticals, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Xueying Ling
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine, & Key Laboratory of Basic and Translational Research On Radiopharmaceuticals, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Jimmy S Patel
- Department of Radiology and Imaging Sciences, Emory University, 1364 Clifton Rd, Atlanta, GA, 30322, USA
| | - Steven H Liang
- Department of Radiology and Imaging Sciences, Emory University, 1364 Clifton Rd, Atlanta, GA, 30322, USA.
| | - Hao Xu
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine, & Key Laboratory of Basic and Translational Research On Radiopharmaceuticals, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China.
| | - Lu Wang
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine, & Key Laboratory of Basic and Translational Research On Radiopharmaceuticals, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China.
| |
Collapse
|
4
|
Wang JX, Chen MQ, Zhang Y, Han B, Mou ZD, Feng X, Zhang X, Niu D. A Modified Arbuzov-Michalis Reaction for Selective Alkylation of Nucleophiles. Angew Chem Int Ed Engl 2024; 63:e202409931. [PMID: 38957113 DOI: 10.1002/anie.202409931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 07/01/2024] [Accepted: 07/01/2024] [Indexed: 07/04/2024]
Abstract
The alkylation of nucleophiles is among the most fundamental and well-developed transformations in chemistry. However, to achieve selective alkylation of complex substrates remains a nontrivial task. We report herein a general and selective alkylation method without using strong acids, bases, or metals. In this method, the readily available phosphinites/phosphites, in combination with ethyl acrylate, function as effective alkylating agents. Various nucleophilic groups, including alcohols, phenols, carboxylic acids, imides, and thiols can be alkylated. This method can be applied in the late-stage alkylation of natural products and pharmaceutical agents, achieving chemo- and site-selective modification of complex substrates. Experimental studies indicate the relative reactivity of a nucleophile depends on its acidity and its steric environment. Mechanistic studies suggest the reaction pathway resembles that of the Arbuzov-Michalis reaction.
Collapse
Affiliation(s)
- Jia-Xi Wang
- Department of Emergency, State Key Laboratory of Biotherapy, West China Hospital, and School of Chemical Engineering, Sichuan University, No. 17 Renmin Nan Road, Chengdu, 610041, China
| | - Mu-Qiu Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yang Zhang
- Department of Emergency, State Key Laboratory of Biotherapy, West China Hospital, and School of Chemical Engineering, Sichuan University, No. 17 Renmin Nan Road, Chengdu, 610041, China
| | - Bo Han
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Ze-Dong Mou
- Department of Emergency, State Key Laboratory of Biotherapy, West China Hospital, and School of Chemical Engineering, Sichuan University, No. 17 Renmin Nan Road, Chengdu, 610041, China
| | - Xitong Feng
- Department of Emergency, State Key Laboratory of Biotherapy, West China Hospital, and School of Chemical Engineering, Sichuan University, No. 17 Renmin Nan Road, Chengdu, 610041, China
| | - Xia Zhang
- Department of Emergency, State Key Laboratory of Biotherapy, West China Hospital, and School of Chemical Engineering, Sichuan University, No. 17 Renmin Nan Road, Chengdu, 610041, China
| | - Dawen Niu
- Department of Emergency, State Key Laboratory of Biotherapy, West China Hospital, and School of Chemical Engineering, Sichuan University, No. 17 Renmin Nan Road, Chengdu, 610041, China
| |
Collapse
|
5
|
Ye Z, Zhang Y, Guo G, Shao X, Wu JR. Silver-Catalyzed 1,2-Thiosulfonylation of Alkenes: Development of a Nucleophilic d3-Methylthiolating Reagent. J Org Chem 2024; 89:14369-14383. [PMID: 39323108 DOI: 10.1021/acs.joc.4c01787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Development of robust d3-methylthiolating reagents represents an attractive synthetic method to access deuterated molecules in the field of drug discovery. Here, we report a straightforward strategy to prepare electrophilic S-methyl-d3 arylsulfonothioates in one-step without column purification. These reagents exhibit good radical reactivity toward silver-catalyzed vicinal thiosulfonylation of alkenes or 1,6-enynes on water. As a result, simultaneous incorporation of both SCD3 and ArSO2 units into unsaturated carbon-carbon bonds with 100% atom economy has been established. Moreover, the ATRA adducts with >99% D incorporation can serve as nucleophilic d3-methylthiolating synthons via retro-Michael addition under mild basic conditions, providing a good alternative in trideuteromethylthiolating alkyl iodides to access corresponding trideuteromethyl sulfides with high efficiency.
Collapse
Affiliation(s)
- Zhiyong Ye
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou 311121, Zhejiang, People's Republic of China
| | - Yan Zhang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou 311121, Zhejiang, People's Republic of China
| | - Guofang Guo
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou 311121, Zhejiang, People's Republic of China
| | - Xinxin Shao
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou 311121, Zhejiang, People's Republic of China
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, People's Republic of China
| | - Ji-Rong Wu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou 311121, Zhejiang, People's Republic of China
| |
Collapse
|
6
|
Tan JF, Kang YC, Hartwig JF. Catalytic undirected methylation of unactivated C(sp 3)-H bonds suitable for complex molecules. Nat Commun 2024; 15:8307. [PMID: 39333063 PMCID: PMC11437150 DOI: 10.1038/s41467-024-52245-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 08/28/2024] [Indexed: 09/29/2024] Open
Abstract
In pharmaceutical discovery, the "magic methyl" effect describes a substantial improvement in the pharmacological properties of a drug candidate with the incorporation of methyl groups. Therefore, to expedite the synthesis of methylated drug analogs, late-stage, undirected methylations of C(sp3)-H bonds in complex molecules would be valuable. However, current methods for site-selective methylations are limited to activated C(sp3)-H bonds. Here we describe a site-selective, undirected methylation of unactivated C(sp3)-H bonds, enabled by photochemically activated peroxides and a nickel(II) complex whose turnover is enhanced by an ancillary ligand. The methodology displays compatibility with a wide range of functional groups and a high selectivity for tertiary C-H bonds, making it suitable for the late-stage methylation of complex organic compounds that contain multiple alkyl C-H bonds, such as terpene natural products, peptides, and active pharmaceutical ingredients. Overall, this method provides a synthetic tool to explore the "magic methyl" effect in drug discovery.
Collapse
Affiliation(s)
- Jin-Fay Tan
- Department of Chemistry, University of California, Berkeley, CA, USA
| | - Yi Cheng Kang
- Department of Chemistry, University of California, Berkeley, CA, USA
| | - John F Hartwig
- Department of Chemistry, University of California, Berkeley, CA, USA.
| |
Collapse
|
7
|
Bourbon P, Vitse K, Martin-Mingot A, Geindre H, Guégan F, Michelet B, Thibaudeau S. Leveraging long-lived arenium ions in superacid for meta-selective methylation. Nat Commun 2024; 15:7435. [PMID: 39198397 PMCID: PMC11358458 DOI: 10.1038/s41467-024-49421-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 05/31/2024] [Indexed: 09/01/2024] Open
Abstract
Electrophilic aromatic substitution is one of the most mechanistically studied reactions in organic chemistry. However, precluded by innate substituent effects, the access to certain substitution patterns remains elusive. While selective C-H alkylation of biorelevant molecules is eagerly awaited, especially for the insertion of a methyl group whose magic effect can boost lead molecules potency, one of the most obvious strategies would rely on electrophilic aromatic substitution. Yet, the historical Friedel-Crafts methylation remains to date poorly selective and limited to activated simple aromatics. Here, we report the development of a selective electrophilic methylation enabling the direct access to highly desirable 1,3-disubstituted arenes. This study demonstrates that this reaction is driven by the generation of long-lived arenium intermediates generated by protonation in superacid and can be applied to a large variety of functionalized (hetero)aromatics going from standard building blocks to active pharmaceutical ingredients.
Collapse
Affiliation(s)
- Paul Bourbon
- Université de Poitiers, CNRS, Institut de Chimie des Milieux et Matériaux de Poitiers (IC2MP), 86073, Poitiers, Cedex 9, France
| | - Kassandra Vitse
- Université de Poitiers, CNRS, Institut de Chimie des Milieux et Matériaux de Poitiers (IC2MP), 86073, Poitiers, Cedex 9, France
| | - Agnès Martin-Mingot
- Université de Poitiers, CNRS, Institut de Chimie des Milieux et Matériaux de Poitiers (IC2MP), 86073, Poitiers, Cedex 9, France
| | - Hugo Geindre
- Université de Poitiers, CNRS, Institut de Chimie des Milieux et Matériaux de Poitiers (IC2MP), 86073, Poitiers, Cedex 9, France
| | - Frédéric Guégan
- Université de Poitiers, CNRS, Institut de Chimie des Milieux et Matériaux de Poitiers (IC2MP), 86073, Poitiers, Cedex 9, France
| | - Bastien Michelet
- Université de Poitiers, CNRS, Institut de Chimie des Milieux et Matériaux de Poitiers (IC2MP), 86073, Poitiers, Cedex 9, France.
| | - Sébastien Thibaudeau
- Université de Poitiers, CNRS, Institut de Chimie des Milieux et Matériaux de Poitiers (IC2MP), 86073, Poitiers, Cedex 9, France.
| |
Collapse
|
8
|
Ashton T, Calic PPS, Dans MG, Ooi ZK, Zhou Q, Palandri J, Loi K, Jarman KE, Qiu D, Lehane AM, Maity BC, De N, Giannangelo C, MacRaild CA, Creek DJ, Mao EY, Gancheva MR, Wilson DW, Chowdury M, de Koning-Ward TF, Famodimu MT, Delves MJ, Pollard H, Sutherland CJ, Baud D, Brand S, Jackson PF, Cowman AF, Sleebs BE. Property and Activity Refinement of Dihydroquinazolinone-3-carboxamides as Orally Efficacious Antimalarials that Target PfATP4. J Med Chem 2024; 67:14493-14523. [PMID: 39134060 PMCID: PMC11345840 DOI: 10.1021/acs.jmedchem.4c01241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/24/2024] [Accepted: 07/25/2024] [Indexed: 08/23/2024]
Abstract
To contribute to the global effort to develop new antimalarial therapies, we previously disclosed initial findings on the optimization of the dihydroquinazolinone-3-carboxamide class that targets PfATP4. Here we report on refining the aqueous solubility and metabolic stability to improve the pharmacokinetic profile and consequently in vivo efficacy. We show that the incorporation of heterocycle systems in the 8-position of the scaffold was found to provide the greatest attainable balance between parasite activity, aqueous solubility, and metabolic stability. Optimized analogs, including the frontrunner compound S-WJM992, were shown to inhibit PfATP4-associated Na+-ATPase activity, gave rise to a metabolic signature consistent with PfATP4 inhibition, and displayed altered activities against parasites with mutations in PfATP4. Finally, S-WJM992 showed appreciable efficacy in a malaria mouse model and blocked gamete development preventing transmission to mosquitoes. Importantly, further optimization of the dihydroquinazolinone class is required to deliver a candidate with improved pharmacokinetic and risk of resistance profiles.
Collapse
Affiliation(s)
- Trent
D. Ashton
- The
Walter and Eliza Hall Institute of Medical Research, Parkville 3052, Australia
- Department
of Medical Biology, The University of Melbourne, Parkville 3010, Australia
| | - Petar P. S. Calic
- The
Walter and Eliza Hall Institute of Medical Research, Parkville 3052, Australia
- Department
of Medical Biology, The University of Melbourne, Parkville 3010, Australia
| | - Madeline G. Dans
- The
Walter and Eliza Hall Institute of Medical Research, Parkville 3052, Australia
- Department
of Medical Biology, The University of Melbourne, Parkville 3010, Australia
| | - Zi Kang Ooi
- The
Walter and Eliza Hall Institute of Medical Research, Parkville 3052, Australia
| | - Qingmiao Zhou
- The
Walter and Eliza Hall Institute of Medical Research, Parkville 3052, Australia
| | - Josephine Palandri
- The
Walter and Eliza Hall Institute of Medical Research, Parkville 3052, Australia
- Department
of Medical Biology, The University of Melbourne, Parkville 3010, Australia
| | - Katie Loi
- The
Walter and Eliza Hall Institute of Medical Research, Parkville 3052, Australia
- Department
of Medical Biology, The University of Melbourne, Parkville 3010, Australia
| | - Kate E. Jarman
- The
Walter and Eliza Hall Institute of Medical Research, Parkville 3052, Australia
- Department
of Medical Biology, The University of Melbourne, Parkville 3010, Australia
| | - Deyun Qiu
- Research
School of Biology, Australian National University, Canberra 2601, Australia
| | - Adele M. Lehane
- Research
School of Biology, Australian National University, Canberra 2601, Australia
| | | | - Nirupam De
- TCG
Lifesciences, Kolkata, West Bengal 700091, India
| | - Carlo Giannangelo
- Monash
Institute of Pharmaceutical Sciences, Monash
University, 381 Royal
Parade, Parkville, Victoria 3052, Australia
| | - Christopher A. MacRaild
- Monash
Institute of Pharmaceutical Sciences, Monash
University, 381 Royal
Parade, Parkville, Victoria 3052, Australia
| | - Darren J. Creek
- Monash
Institute of Pharmaceutical Sciences, Monash
University, 381 Royal
Parade, Parkville, Victoria 3052, Australia
| | - Emma Y. Mao
- Research
Centre for Infectious Diseases, School of Biological Sciences, University of Adelaide, Adelaide 5005, Australia
| | - Maria R. Gancheva
- Research
Centre for Infectious Diseases, School of Biological Sciences, University of Adelaide, Adelaide 5005, Australia
| | - Danny W. Wilson
- Research
Centre for Infectious Diseases, School of Biological Sciences, University of Adelaide, Adelaide 5005, Australia
| | - Mrittika Chowdury
- School
of Medicine, Deakin University, Waurn Ponds, Victoria 3216, Australia
- Institute
for Mental and Physical Health and Clinical Translation, Deakin University, Geelong, Victoria 3216, Australia
| | - Tania F. de Koning-Ward
- School
of Medicine, Deakin University, Waurn Ponds, Victoria 3216, Australia
- Institute
for Mental and Physical Health and Clinical Translation, Deakin University, Geelong, Victoria 3216, Australia
| | - Mufuliat T. Famodimu
- Department
of Infection Biology, London School of Hygiene
and Tropical Medicine, London WC1E 7HT, U.K.
| | - Michael J. Delves
- Department
of Infection Biology, London School of Hygiene
and Tropical Medicine, London WC1E 7HT, U.K.
| | - Harry Pollard
- Department
of Infection Biology, London School of Hygiene
and Tropical Medicine, London WC1E 7HT, U.K.
| | - Colin J. Sutherland
- Department
of Infection Biology, London School of Hygiene
and Tropical Medicine, London WC1E 7HT, U.K.
| | - Delphine Baud
- MMV Medicines for Malaria Venture, ICC, Route de Pré-Bois 20, Geneva 1215, Switzerland
| | - Stephen Brand
- MMV Medicines for Malaria Venture, ICC, Route de Pré-Bois 20, Geneva 1215, Switzerland
| | - Paul F. Jackson
- Emerging Science & Innovation, Discovery
Sciences, Janssen R&D LLC, La Jolla, California 92121, United States
| | - Alan F. Cowman
- The
Walter and Eliza Hall Institute of Medical Research, Parkville 3052, Australia
- Department
of Medical Biology, The University of Melbourne, Parkville 3010, Australia
| | - Brad E. Sleebs
- The
Walter and Eliza Hall Institute of Medical Research, Parkville 3052, Australia
- Department
of Medical Biology, The University of Melbourne, Parkville 3010, Australia
| |
Collapse
|
9
|
Chiodi D, Ishihara Y. The role of the methoxy group in approved drugs. Eur J Med Chem 2024; 273:116364. [PMID: 38781921 DOI: 10.1016/j.ejmech.2024.116364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/12/2024] [Accepted: 03/23/2024] [Indexed: 05/25/2024]
Abstract
The methoxy substituent is prevalent in natural products and, consequently, is present in many natural product-derived drugs. It has also been installed in modern drug molecules with no remnant of natural product features because medicinal chemists have been taking advantage of the benefits that this small functional group can bestow on ligand-target binding, physicochemical properties, and ADME parameters. Herein, over 230 methoxy-containing small-molecule drugs, as well as several fluoromethoxy-containing drugs, are presented from the vantage point of the methoxy group. Biochemical mechanisms of action, medicinal chemistry SAR studies, and numerous X-ray cocrystal structures are analyzed to identify the precise role of the methoxy group for many of the drugs and drug classes. Although the methoxy substituent can be considered as the hybridization of a hydroxy and a methyl group, the combination of these functionalities often results in unique effects that can amount to more than the sum of the individual parts.
Collapse
Affiliation(s)
- Debora Chiodi
- Department of Chemistry, Takeda Pharmaceuticals, 9625 Towne Centre Drive, San Diego, CA, 92121, USA
| | - Yoshihiro Ishihara
- Department of Chemistry, Vividion Therapeutics, 5820 Nancy Ridge Drive, San Diego, CA, 92121, USA.
| |
Collapse
|
10
|
Pou S, Winter RW, Liebman KM, Dodean RA, Nilsen A, DeBarber A, Doggett JS, Riscoe MK. Synthesis of Deuterated Endochin-Like Quinolones. J Labelled Comp Radiopharm 2024; 67:186-196. [PMID: 38661253 PMCID: PMC11081819 DOI: 10.1002/jlcr.4092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 03/05/2024] [Accepted: 03/13/2024] [Indexed: 04/26/2024]
Abstract
Malaria continues to be a serious and debilitating disease. The emergence and spread of high-level resistance to multiple antimalarial drugs by Plasmodium falciparum has brought about an urgent need for new treatments that will be active against multidrug resistant malaria infections. One such treatment, ELQ-331 (MMV-167), an alkoxy carbonate prodrug of 4(1H)-quinolone ELQ-300, is currently in preclinical development with the Medicines for Malaria Venture. Clinical development of ELQ-331 or similar compounds will require the availability of isotopically labeled analogs. Unfortunately, a suitable method for the deuteration of these important compounds was not found in the literature. Here, we describe a facile and scalable method for the deuteration of 4(1H)-quinolone ELQ-300, its alkoxycarbonate prodrug ELQ-331, and their respective N-oxides using deuterated acetic acid.
Collapse
Affiliation(s)
- Sovitj Pou
- Medical Research Service, VA Healthcare System, Portland, Oregon, USA
| | - Rolf W Winter
- Medical Research Service, VA Healthcare System, Portland, Oregon, USA
| | | | - Rosie A Dodean
- Medical Research Service, VA Healthcare System, Portland, Oregon, USA
| | - Aaron Nilsen
- Medical Research Service, VA Healthcare System, Portland, Oregon, USA
- Department of Chemical Physiology & Biochemistry, Oregon Health & Science University, Portland, Oregon, USA
| | - Andrea DeBarber
- Department of Chemical Physiology & Biochemistry, Oregon Health & Science University, Portland, Oregon, USA
| | - J Stone Doggett
- Medical Research Service, VA Healthcare System, Portland, Oregon, USA
- Division of Infectious Diseases, School of Medicine, Oregon Health & Science University, Portland, Oregon, USA
| | - Michael K Riscoe
- Medical Research Service, VA Healthcare System, Portland, Oregon, USA
- Department of Molecular Microbiology & Immunology, Oregon Health & Science University, Portland, Oregon, USA
| |
Collapse
|
11
|
La-Ongthong K, Chantarojsiri T, Soorukram D, Leowanawat P, Reutrakul V, Kuhakarn C. Electro-oxidative Methylation of 2-Isocyanobiaryls Using N,N-dimethylformamide (DMF) as Carbon Source: Synthesis of 6-Methylphenanthridines. Chem Asian J 2024; 19:e202400176. [PMID: 38489229 DOI: 10.1002/asia.202400176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/14/2024] [Accepted: 03/14/2024] [Indexed: 03/17/2024]
Abstract
A benign electrochemical method to access 6-methylphenanthridines from 2-isocyanobiaryls using N,N-dimethylformamide (DMF) as a methyl source is reported. The protocol operates at ambient temperature without the need for harmful methylating reagents. Mechanistic studies suggested that DMF delivered a methylene synthon, followed by reduction at the cathode and tautomerization. The method offers environmental benefits by avoiding metal-based reagents and harsh conditions.
Collapse
Affiliation(s)
- Kannika La-Ongthong
- Department of Chemistry, Faculty of Science, Mahidol University, Rama VI Road, Bangkok, 10400, Thailand
- Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahidol University, Rama VI Road, Bangkok, 10400, Thailand
| | - Teera Chantarojsiri
- Department of Chemistry, Faculty of Science, Mahidol University, Rama VI Road, Bangkok, 10400, Thailand
- Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahidol University, Rama VI Road, Bangkok, 10400, Thailand
| | - Darunee Soorukram
- Department of Chemistry, Faculty of Science, Mahidol University, Rama VI Road, Bangkok, 10400, Thailand
- Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahidol University, Rama VI Road, Bangkok, 10400, Thailand
| | - Pawaret Leowanawat
- Department of Chemistry, Faculty of Science, Mahidol University, Rama VI Road, Bangkok, 10400, Thailand
- Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahidol University, Rama VI Road, Bangkok, 10400, Thailand
| | - Vichai Reutrakul
- Department of Chemistry, Faculty of Science, Mahidol University, Rama VI Road, Bangkok, 10400, Thailand
- Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahidol University, Rama VI Road, Bangkok, 10400, Thailand
| | - Chutima Kuhakarn
- Department of Chemistry, Faculty of Science, Mahidol University, Rama VI Road, Bangkok, 10400, Thailand
- Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahidol University, Rama VI Road, Bangkok, 10400, Thailand
| |
Collapse
|
12
|
Xu W, Fan C, Hu X, Xu T. Deoxygenative Transformation of Alcohols via Phosphoranyl Radical from Exogenous Radical Addition. Angew Chem Int Ed Engl 2024; 63:e202401575. [PMID: 38357753 DOI: 10.1002/anie.202401575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/13/2024] [Accepted: 02/15/2024] [Indexed: 02/16/2024]
Abstract
A general approach to the direct deoxygenative transformation of primary, secondary, and tertiary alcohols has been developed. It undergoes through phosphoranyl radical intermediates generated by the addition of exogenous iodine radical to trivalent alkoxylphosphanes. Since these alkoxylphosphanes are readily in situ obtained from alcohols and commercially available, inexpensive chlorodiphenylphosphine, a diverse range of alcohols with various functional groups can be utilized to proceed deoxygenative cross-couplings with alkenes or aryl iodides. The selective transformation of polyhydroxy substrates and the rapid synthesis of complex organic molecules are also demonstrated with this method.
Collapse
Affiliation(s)
- Wenhao Xu
- Shanghai Key Laboratory of Chemical Assessment and Sustain-ability, School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, 200092, Shanghai, P. R. China
| | - Chao Fan
- Laboratory of Inorganic Synthesis and Catalysis, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| | - Xile Hu
- Laboratory of Inorganic Synthesis and Catalysis, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| | - Tao Xu
- Shanghai Key Laboratory of Chemical Assessment and Sustain-ability, School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, 200092, Shanghai, P. R. China
| |
Collapse
|
13
|
Cong F, Sun GQ, Ye SH, Hu R, Rao W, Koh MJ. A Bimolecular Homolytic Substitution-Enabled Platform for Multicomponent Cross-Coupling of Unactivated Alkenes. J Am Chem Soc 2024; 146:10274-10280. [PMID: 38568080 DOI: 10.1021/jacs.4c02284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2024]
Abstract
The construction of C(sp3)-C(sp3) bonds remains one of the most difficult challenges in cross-coupling chemistry. Here, we report a photoredox/nickel dual catalytic approach that enables the simultaneous formation of two C(sp3)-C(sp3) linkages via trimolecular cross-coupling of alkenes with alkyl halides and hypervalent iodine-based reagents. The reaction harnesses a bimolecular homolytic substitution (SH2) mechanism and chemoselective halogen-atom transfer (XAT) to orchestrate the regioselective addition of electrophilic and nucleophilic alkyl radicals across unactivated alkenes without the need for a directing auxiliary. Utility is highlighted through late-stage (fluoro)alkylation and (trideutero)methylation of C═C bonds bearing different substitution patterns, offering straightforward access to drug-like molecules comprising sp3-hybridized carbon scaffolds.
Collapse
Affiliation(s)
- Fei Cong
- Department of Chemistry, National University of Singapore, 4 Science Drive 2, Republic of Singapore, 117544
| | - Guo-Quan Sun
- Department of Chemistry, National University of Singapore, 4 Science Drive 2, Republic of Singapore, 117544
| | - Si-Han Ye
- Department of Chemistry, National University of Singapore, 4 Science Drive 2, Republic of Singapore, 117544
| | - Rui Hu
- Department of Chemistry, National University of Singapore, 4 Science Drive 2, Republic of Singapore, 117544
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Weidong Rao
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Ming Joo Koh
- Department of Chemistry, National University of Singapore, 4 Science Drive 2, Republic of Singapore, 117544
| |
Collapse
|
14
|
Moharir S, Akotkar L, Aswar U, Kumar D, Gawade B, Pal K, Rane R. Improved Pharmacokinetic and Pharmacodynamic Profile of Deuterium-Reinforced Tricyclic Antidepressants Doxepin, Dosulepin, and Clomipramine in Animal Models. Eur J Drug Metab Pharmacokinet 2024; 49:181-190. [PMID: 38172422 DOI: 10.1007/s13318-023-00870-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/15/2023] [Indexed: 01/05/2024]
Abstract
BACKGROUND AND OBJECTIVES Doxepin, dosulepin, and clomipramine are tricyclic antidepressants (TCAs) that act as serotonin and noradrenaline reuptake inhibitors. The metabolites formed by N-dealkylation of these tricyclic antidepressants contribute to overall poor pharmacokinetics and efficacy. Deuteration of the methyl groups at metabolically active sites has been reported to be a useful strategy for developing more selective and potent antidepressants. This isotopic deuteration can lead to better bioavailability and overall effectiveness. The objective is to study the effect of site-selective deuteration of TCAs on their pharmacokinetic and pharmacodynamic profile by comparison with their nondeuterated counterparts. METHODS In the current study, the pharmacokinetic profile and antidepressant behavior of deuterated TCAs were evaluated using the forced swim test (FST) and tail suspension test (TST), using male Wistar rats and male Swiss albino mice, respectively; additionally, a synaptosomal reuptake study was carried out. RESULTS Compared with the nondeuterated parent drugs, deuterated forms showed improved efficacy in the behavior paradigm, indicating improved pharmacological activity. The pharmacokinetic parameters indicated increased maximum concentration in the plasma (Cmax), elimination half-life (t1/2), and area under the concentration-time curve (AUC) in deuterated compounds. This can have a positive clinical impact on antidepressant treatment. Synaptosomal reuptake studies indicated marked inhibition of the reuptake mechanism of serotonin (5-HT) and norepinephrine. CONCLUSIONS Deuterated TCAs can prove to be potentially better molecules in the treatment of neuropsychiatric disorders as compared with nondeuterated compounds. In addition, we have demonstrated a concept that metabolically active, site-selective deuteration can be beneficial for improving the pharmacokinetic and pharmacodynamic profiles of TCAs. A further toxicological study of these compounds is needed to validate their future clinical use.
Collapse
Affiliation(s)
- Shreyash Moharir
- Department of Pharmaceutical Chemistry, Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be University), Pune, 411038, India
| | - Likhit Akotkar
- Department of Pharmacology, Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be University), Pune, 411038, India
| | - Urmila Aswar
- Department of Pharmacology, Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be University), Pune, 411038, India
| | - Dileep Kumar
- Department of Pharmaceutical Chemistry, Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be University), Pune, 411038, India
| | - Bapu Gawade
- Cleanchem Lifesciences Pvt. Ltd., Kopar-Khairane, Navi Mumbai, 400710, India
| | - Kavita Pal
- Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai, 410210, India
| | - Rajesh Rane
- Department of Pharmaceutical Chemistry, Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be University), Pune, 411038, India.
| |
Collapse
|
15
|
Orfanoudaki M, Akee RK, Martínez-Fructuoso L, Wang D, Kelley JA, Smith EA, Henrich CJ, Schnermann MJ, O'Keefe BR, Grkovic T. Formation of Trideuteromethylated Artifacts of Pyrrole-Containing Natural Products. JOURNAL OF NATURAL PRODUCTS 2024; 87:415-423. [PMID: 38291771 DOI: 10.1021/acs.jnatprod.3c01113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Pyrrole-containing natural products form a large group of structurally diverse compounds that occur in both terrestrial and marine organisms. In the present study the formation of trideuteromethylated artifacts of pyrrole-containing natural products was investigated, focusing on the discorhabdins. Three deuterated discorhabdins, 1, 3, and 5, were identified to be isolation procedure artifacts caused by the presence of DMSO-d6 during NMR sample preparation and handling. Three additional semisynthetic derivatives, 7-9, were made during the investigation of the mechanism of formation, which was shown to be driven by trideuteromethyl radicals in the presence of water, methanol, TFA, and traces of iron in the deuterated solvent. Generation of trideuteromethylated artifacts was also confirmed for other classes of pyrrole-containing metabolites, namely, makaluvamines, tambjamines, and dibromotryptamines, which had also been dissolved in DMSO-d6 during the structure elucidation process. Semisynthetic discorhabdins were assessed for antiproliferative activity against a panel of human tumor cell lines, and 14-trideuteromethyldiscorhabdin L (3) averaged low micromolar potency.
Collapse
Affiliation(s)
- Maria Orfanoudaki
- Molecular Targets Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702-1201, United States
| | - Rhone K Akee
- Natural Products Support Group, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702-1201, United States
| | - Lucero Martínez-Fructuoso
- Natural Products Branch, Developmental Therapeutic Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Frederick, Maryland 21702-1201, United States
| | - Dongdong Wang
- Molecular Targets Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702-1201, United States
| | - James A Kelley
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702-1201, United States
| | - Emily A Smith
- Molecular Targets Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702-1201, United States
| | - Curtis J Henrich
- Molecular Targets Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702-1201, United States
- Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702-1201, United States
| | - Martin J Schnermann
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702-1201, United States
| | - Barry R O'Keefe
- Molecular Targets Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702-1201, United States
- Natural Products Branch, Developmental Therapeutic Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Frederick, Maryland 21702-1201, United States
| | - Tanja Grkovic
- Molecular Targets Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702-1201, United States
- Natural Products Branch, Developmental Therapeutic Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Frederick, Maryland 21702-1201, United States
| |
Collapse
|
16
|
Lu L, Wang Y, Zhang W, Zhang W, See KA, Lin S. Three-Component Cross-Electrophile Coupling: Regioselective Electrochemical Dialkylation of Alkenes. J Am Chem Soc 2023; 145:22298-22304. [PMID: 37801465 PMCID: PMC10625357 DOI: 10.1021/jacs.3c06794] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2023]
Abstract
The cross-electrophile dialkylation of alkenes enables the formation of two C(sp3)-C(sp3) bonds from readily available starting materials in a single transformation, thereby providing a modular and expedient approach to building structural complexity in organic synthesis. Herein, we exploit the disparate electronic and steric properties of alkyl halides with varying degrees of substitution to accomplish their selective activation and addition to alkenes under electrochemical conditions. This method enables regioselective dialkylation of alkenes without the use of a transition-metal catalyst and provides access to a diverse range of synthetically useful compounds.
Collapse
Affiliation(s)
- Lingxiang Lu
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Yi Wang
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Wendy Zhang
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Wen Zhang
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Kimberly A. See
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Song Lin
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
17
|
Tang J, Bai JF, Zheng J, Li S, Jiang ZJ, Chen J, Gao K, Gao Z. B(C 6F 5) 3-Catalyzed Intramolecular Hydroalkoxylation Deuteration Reactions of Unactivated Alkynyl Alcohols. Org Lett 2023; 25:6891-6896. [PMID: 37735994 DOI: 10.1021/acs.orglett.3c02592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
Using D2O as a deuterium source, a method for the deuteration of intra- and extra-cyclic methylene has been developed for cyclic ethers with moderate yield and excellent deuterium incorporation. This transformation features superb functional group tolerance in a wide range of alkynols. Notably, the critical factor to achieve high deuterium incorporation is determined by the hydrogen isotope exchange reaction of an unstable oxonium ion. This novel methodology provides an efficient and concise synthetic route to a number of valuable deuterated cyclic ethers that are often difficult to prepare with other methods.
Collapse
Affiliation(s)
- Jianbo Tang
- NingboTech-Cuiying Joint Laboratory of Stable Isotope Technology, School of Biological and Chemical Engineering, NingboTech University, Ningbo 315100, People's Republic of China
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Jian-Fei Bai
- NingboTech-Cuiying Joint Laboratory of Stable Isotope Technology, School of Biological and Chemical Engineering, NingboTech University, Ningbo 315100, People's Republic of China
| | - Jinfeng Zheng
- NingboTech-Cuiying Joint Laboratory of Stable Isotope Technology, School of Biological and Chemical Engineering, NingboTech University, Ningbo 315100, People's Republic of China
- School of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, People's Republic of China
| | - Shuangshuang Li
- NingboTech-Cuiying Joint Laboratory of Stable Isotope Technology, School of Biological and Chemical Engineering, NingboTech University, Ningbo 315100, People's Republic of China
| | - Zhi-Jiang Jiang
- NingboTech-Cuiying Joint Laboratory of Stable Isotope Technology, School of Biological and Chemical Engineering, NingboTech University, Ningbo 315100, People's Republic of China
| | - Jia Chen
- NingboTech-Cuiying Joint Laboratory of Stable Isotope Technology, School of Biological and Chemical Engineering, NingboTech University, Ningbo 315100, People's Republic of China
| | - Kun Gao
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Zhanghua Gao
- NingboTech-Cuiying Joint Laboratory of Stable Isotope Technology, School of Biological and Chemical Engineering, NingboTech University, Ningbo 315100, People's Republic of China
- Ningbo Cuiying Chemical Technology Co. Ltd., Ningbo 315100, People's Republic of China
| |
Collapse
|
18
|
Li H, Li C, Liu W, Yao Y, Li Y, Zhang B, Qiu C. Photo-Induced C 1 Substitution Using Methanol as a C 1 Source. CHEMSUSCHEM 2023; 16:e202300377. [PMID: 37140478 DOI: 10.1002/cssc.202300377] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/04/2023] [Accepted: 05/04/2023] [Indexed: 05/05/2023]
Abstract
The development of sustainable and efficient C1 substitution methods is of central interest for organic synthesis and pharmaceuticals production, the methylation motifs bound to a carbon, nitrogen, or oxygen atom widely exist in natural products and top-selling drugs. In the past decades, a number of methods involving green and inexpensive methanol have already been disclosed to replace industrial hazardous and waste-generating C1 source. Among the various efforts, photochemical strategy is considered as a "renewable" alternative that shows great potential to selectively activate methanol to achieve a series of C1 substitutions at mild conditions, typically C/N-methylation, methoxylation, hydroxymethylation, and formylation. Herein the recent advances in selective transformation of methanol to various C1 functional groups via well-designed photochemical systems involving different types of catalysts or not is systematically reviewed. Both the mechanism and corresponding photocatalytic system were discussed and classified on specific methanol activation models. Finally, the major challenges and perspectives are proposed.
Collapse
Affiliation(s)
- Hongmei Li
- College of Mechanical Engineering, College of Food and Bioengineering, Chengdu University, Chengdu, 610106, P.R. China
| | - Chao Li
- College of Mechanical Engineering, College of Food and Bioengineering, Chengdu University, Chengdu, 610106, P.R. China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, P.R. China
| | - Wei Liu
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, P.R. China
| | - Yanling Yao
- School of Chemistry and Materials Engineering, Huizhou University, Huizhou, 516007, P.R. China
| | - Yuanhua Li
- School of Chemistry and Materials Engineering, Huizhou University, Huizhou, 516007, P.R. China
| | - Bing Zhang
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, P.R. China
- State Key Laboratory of Chemical Engineering, Institute of Pharmaceutical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, P.R. China
| | - Chuntian Qiu
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, P.R. China
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, P.R. China
| |
Collapse
|
19
|
Deng H, Xiang L, Yuan Z, Lin B, He Y, Hou Q, Ruan Y, Zhang J. Facile access to S-methyl dithiocarbamates with sulfonium or sulfoxonium iodide as a methylation reagent. Org Biomol Chem 2023; 21:6474-6478. [PMID: 37523154 DOI: 10.1039/d3ob00932g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Abstract
Efficient access to S-methyl dithiocarbamates was achieved with sulfonium or sulfoxonium iodide as a methylation reagent. This method is reliable for the synthesis of dithiocarbamates from primary or secondary amines, with sulfoxonium iodide demonstrating more robust methylation capability than sulfonium iodide. Moreover, it also enables facile access to S-trideuteromethyl dithiocarbamates via sulfoxonium metathesis between sulfoxonium iodide and DMSO-d6 with high yields.
Collapse
Affiliation(s)
- Huiying Deng
- Artemisinin Research Center and The First Affiliated Hospital, Guangzhou University of Chinese Medicine, 12 Jichang Road, Guangzhou 510405, China.
| | - Lingling Xiang
- Artemisinin Research Center and The First Affiliated Hospital, Guangzhou University of Chinese Medicine, 12 Jichang Road, Guangzhou 510405, China.
| | - Zhijun Yuan
- Artemisinin Research Center and The First Affiliated Hospital, Guangzhou University of Chinese Medicine, 12 Jichang Road, Guangzhou 510405, China.
| | - Bohong Lin
- Artemisinin Research Center and The First Affiliated Hospital, Guangzhou University of Chinese Medicine, 12 Jichang Road, Guangzhou 510405, China.
| | - Yiting He
- Artemisinin Research Center and The First Affiliated Hospital, Guangzhou University of Chinese Medicine, 12 Jichang Road, Guangzhou 510405, China.
| | - Qi Hou
- Artemisinin Research Center and The First Affiliated Hospital, Guangzhou University of Chinese Medicine, 12 Jichang Road, Guangzhou 510405, China.
| | - Yaoping Ruan
- Artemisinin Research Center and The First Affiliated Hospital, Guangzhou University of Chinese Medicine, 12 Jichang Road, Guangzhou 510405, China.
| | - Jing Zhang
- Artemisinin Research Center and The First Affiliated Hospital, Guangzhou University of Chinese Medicine, 12 Jichang Road, Guangzhou 510405, China.
| |
Collapse
|
20
|
Guo F, Shan S, Gong X, Dai C, Quan Z, Cheng X, Fan X. Deuteration Degree-Controllable Methylation via a Cascade Assembly Strategy using Methylamine-Water as Methyl Source. Chemistry 2023; 29:e202301458. [PMID: 37222652 DOI: 10.1002/chem.202301458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 05/24/2023] [Accepted: 05/24/2023] [Indexed: 05/25/2023]
Abstract
We present a novel and effective photocatalytic method for the methylation of β-diketones with controllable degrees of deuterium incorporation via development of new methyl sources. By utilizing a methylamine-water system as the methyl precursor and a cascade assembly strategy for deuteration degree control, we synthesized methylated compounds with varying degrees of deuterium incorporation, showcasing the versatility of this approach. We examined a range of β-diketone substrates and synthesized key intermediates for drug and bioactive compounds with varying degrees of deuterium incorporation, ranging from 0 to 3. We also investigated and discussed the postulated reaction pathway. This work demonstrates the utility of readily available reagents, methylamines and water, as a new methyl source, and provides a simple and efficient strategy for the synthesis of degree-controllable deuterium-labelled compounds.
Collapse
Affiliation(s)
- Fuhu Guo
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu, 730070, China
- Synthetic and Functional Biomolecules Center, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Shiquan Shan
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Xu Gong
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Cancan Dai
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Zhengjun Quan
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu, 730070, China
| | - Xiamin Cheng
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Xinyuan Fan
- Synthetic and Functional Biomolecules Center, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| |
Collapse
|
21
|
Di Martino RMC, Maxwell BD, Pirali T. Deuterium in drug discovery: progress, opportunities and challenges. Nat Rev Drug Discov 2023; 22:562-584. [PMID: 37277503 PMCID: PMC10241557 DOI: 10.1038/s41573-023-00703-8] [Citation(s) in RCA: 107] [Impact Index Per Article: 53.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/12/2023] [Indexed: 06/07/2023]
Abstract
Substitution of a hydrogen atom with its heavy isotope deuterium entails the addition of one neutron to a molecule. Despite being a subtle change, this structural modification, known as deuteration, may improve the pharmacokinetic and/or toxicity profile of drugs, potentially translating into improvements in efficacy and safety compared with the non-deuterated counterparts. Initially, efforts to exploit this potential primarily led to the development of deuterated analogues of marketed drugs through a 'deuterium switch' approach, such as deutetrabenazine, which became the first deuterated drug to receive FDA approval in 2017. In the past few years, the focus has shifted to applying deuteration in novel drug discovery, and the FDA approved the pioneering de novo deuterated drug deucravacitinib in 2022. In this Review, we highlight key milestones in the field of deuteration in drug discovery and development, emphasizing recent and instructive medicinal chemistry programmes and discussing the opportunities and hurdles for drug developers, as well as the questions that remain to be addressed.
Collapse
Affiliation(s)
| | | | - Tracey Pirali
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale, Novara, Italy.
| |
Collapse
|
22
|
Pilathottathil F, Unnikrishnan S, Murugesan T, Kaliyamoorthy A. Direct Trideuteromethylation of Sulfenate Anions Generated In Situ from β-Sulfinyl Esters: An Access to Trideuteromethyl Sulfoxides. J Org Chem 2023. [PMID: 37285517 DOI: 10.1021/acs.joc.3c00573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Deuterated organic molecules have immense value in the pharmaceutical industry. Here, we present a synthetic strategy for direct trideuteromethylation of sulfenate ions derived in situ from β-sulfinyl esters in the presence of a base utilizing inexpensive and abundant CD3OTs as the electrophilic trideuteromethylating agent. This protocol provides straightforward access to an array of trideuteromethyl sulfoxides in yields of 75-92% with a high degree of deuteration. The ensuing trideuteromethyl sulfoxide can be readily modified into trideuteromethyl sulfone and sulfoximine.
Collapse
Affiliation(s)
- Fathima Pilathottathil
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Vithura, Kerala 695551, India
| | - Sreelakshmi Unnikrishnan
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Vithura, Kerala 695551, India
| | - Tamilarasu Murugesan
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Vithura, Kerala 695551, India
| | - Alagiri Kaliyamoorthy
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Vithura, Kerala 695551, India
| |
Collapse
|
23
|
Suzuki A, Kamei Y, Yamashita M, Seino Y, Yamaguchi Y, Yoshino T, Kojima M, Matsunaga S. Photocatalytic Deuterium Atom Transfer Deuteration of Electron-Deficient Alkenes with High Functional Group Tolerance. Angew Chem Int Ed Engl 2023; 62:e202214433. [PMID: 36394187 DOI: 10.1002/anie.202214433] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 11/18/2022]
Abstract
Due to its mild reaction conditions and unique chemoselectivity, hydrogen atom transfer (HAT) hydrogenation represents an indispensable method for the synthesis of complex molecules. Its analog using deuterium, deuterium atom transfer (DAT) deuteration, is expected to enable access to complex deuterium-labeled compounds. However, DAT deuteration has been scarcely studied for synthetic purposes, and a method that possesses the favorable characteristics of HAT hydrogenations has remained elusive. Herein, we report a protocol for the photocatalytic DAT deuteration of electron-deficient alkenes. In contrast to the previous DAT deuteration, this method tolerates a variety of synthetically useful functional groups including haloarenes. The late-stage deuteration also allows access to deuterated amino acids as well as donepezil-d2 . Thus, this work demonstrates the potential of DAT chemistry to become the alternative method of choice for preparing deuterium-containing molecules.
Collapse
Affiliation(s)
- Akihiko Suzuki
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-ku, Sapporo, 060-0812, Japan
| | - Yuji Kamei
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-ku, Sapporo, 060-0812, Japan
| | - Masaaki Yamashita
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-ku, Sapporo, 060-0812, Japan
| | - Yusuke Seino
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-ku, Sapporo, 060-0812, Japan
| | - Yuto Yamaguchi
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-ku, Sapporo, 060-0812, Japan
| | - Tatsuhiko Yoshino
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-ku, Sapporo, 060-0812, Japan.,Global Station for Biosurfaces and Drug Discovery, Hokkaido University, Kita-ku, Sapporo, 060-0812, Japan
| | - Masahiro Kojima
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-ku, Sapporo, 060-0812, Japan
| | - Shigeki Matsunaga
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-ku, Sapporo, 060-0812, Japan.,Global Station for Biosurfaces and Drug Discovery, Hokkaido University, Kita-ku, Sapporo, 060-0812, Japan
| |
Collapse
|
24
|
Recent advances in the catalytic N-methylation and N-trideuteromethylation reactions using methanol and deuterated methanol. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
25
|
Hogg A, Wheatley M, Domingo-Legarda P, Carral-Menoyo A, Cottam N, Larrosa I. Ruthenium-Catalyzed Monoselective C-H Methylation and d 3-Methylation of Arenes. JACS AU 2022; 2:2529-2538. [PMID: 36465534 PMCID: PMC9709947 DOI: 10.1021/jacsau.2c00399] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/21/2022] [Accepted: 10/03/2022] [Indexed: 05/26/2023]
Abstract
Site-selective installation of C-Me bonds remains a powerful and sought-after tool to alter the chemical and pharmacological properties of a molecule. Direct C-H functionalization provides an attractive means of achieving this transformation. Such protocols, however, typically utilize harsh conditions and hazardous methylating agents with poor applicability toward late-stage functionalization. Furthermore, highly monoselective methylation protocols remain scarce. Herein, we report an efficient monoselective, directed ortho-methylation of arenes using N,N,N-trimethylanilinium salts as noncarcinogenic, bench-stable methylating agents. We extend this protocol to d 3-methylation in addition to the late-stage functionalization of pharmaceutically active compounds. Detailed kinetic studies indicate the rate-limiting in situ formation of MeI is integral to the observed reactivity.
Collapse
|
26
|
Lin ZH, Yao YF, Zhang CP. Deuteration of Arylthianthren-5-ium Salts in CD 3OD. Org Lett 2022; 24:8417-8422. [DOI: 10.1021/acs.orglett.2c03541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Zeng-Hui Lin
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, 430070, China
| | - Yu-Fei Yao
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, 430070, China
| | - Cheng-Pan Zhang
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, 430070, China
| |
Collapse
|
27
|
Zou ZR, Zhang K, Han TY, Zhou Q, Lin S, Hou XF, Tang GL. Two-enzyme cascade catalyzed trideuteromethylative modification of natural products. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.133137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
28
|
Wen X, Leisinger F, Leopold V, Seebeck FP. Synthetic Reagents for Enzyme‐Catalyzed Methylation. Angew Chem Int Ed Engl 2022; 61:e202208746. [DOI: 10.1002/anie.202208746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Xiaojin Wen
- Department of Chemistry University of Basel Mattenstrasse 24a 4002 Basel Switzerland
| | - Florian Leisinger
- Department of Chemistry University of Basel Mattenstrasse 24a 4002 Basel Switzerland
| | - Viviane Leopold
- Department of Chemistry University of Basel Mattenstrasse 24a 4002 Basel Switzerland
| | - Florian P. Seebeck
- Department of Chemistry University of Basel Mattenstrasse 24a 4002 Basel Switzerland
| |
Collapse
|
29
|
Zhao H, Zeng Q, Yang J, Xu B, Lei H, Xu L, Walsh PJ. Rhodium(I)-catalyzed directed trideuteromethylation of (hetero)arene C-H bonds with CD 3CO 2D. Org Biomol Chem 2022; 20:7645-7649. [PMID: 36125438 DOI: 10.1039/d2ob01581a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A Rh(I)-catalyzed trideuteromethylation of heteroarenes with inexpensive and readily available deuterated acetic acid (CD3CO2D) with the aid of a N-containing directing groups is developed. The oxidant-free reaction is applicable to a wide range of heteroarene substrates, including 2-pyridones, indoles, aryl rings, pyrroles and carbazoles. It allows installation of CD3 groups under straightforward reaction conditions. It is expected that the salient and practical features of this trideuteromethylation protocol will be of use to academic and industrial researchers.
Collapse
Affiliation(s)
- Haoqiang Zhao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China. .,Department of Chemistry, Renmin University of China, Beijing 100872, China. .,Roy and Diana Vagelos Laboratories, Penn/Merck Laboratory for High-Throughput Experimentation, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104-6323, USA.
| | - Qi Zeng
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China.
| | - Ji Yang
- Department of Chemistry, Renmin University of China, Beijing 100872, China.
| | - Bing Xu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China.
| | - Haimin Lei
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China.
| | - Lijin Xu
- Department of Chemistry, Renmin University of China, Beijing 100872, China.
| | - Patrick J Walsh
- Roy and Diana Vagelos Laboratories, Penn/Merck Laboratory for High-Throughput Experimentation, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104-6323, USA.
| |
Collapse
|
30
|
Zhang Y, Liu W, Xu Y, Liu Y, Peng J, Wang M, Bai Y, Lu H, Shi Z, Shao X. S-(Methyl- d3) Arylsulfonothioates: A Family of Robust, Shelf-Stable, and Easily Scalable Reagents for Direct Trideuteromethylthiolation. Org Lett 2022; 24:6794-6799. [DOI: 10.1021/acs.orglett.2c02680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yan Zhang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou 311121, Zhejiang, P.R. China
| | - Wen Liu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou 311121, Zhejiang, P.R. China
| | - Yuenian Xu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou 311121, Zhejiang, P.R. China
| | - Yong Liu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou 311121, Zhejiang, P.R. China
| | - Jiajian Peng
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou 311121, Zhejiang, P.R. China
| | - Minyan Wang
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, Jiangsu, P.R. China
| | - Ying Bai
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou 311121, Zhejiang, P.R. China
| | - Hua Lu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou 311121, Zhejiang, P.R. China
| | - Zhuangzhi Shi
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, Jiangsu, P.R. China
| | - Xinxin Shao
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou 311121, Zhejiang, P.R. China
| |
Collapse
|
31
|
Shahkhatuni AA, Shahkhatuni AG, Ananikov VP, Harutyunyan AS. NMR-monitoring of H/D exchange reaction of ketones in solutions of imidazolium ionic liquids. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119746] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
32
|
Wen X, Leisinger F, Leopold V, Seebeck FP. Synthetic reagents for enzyme‐catalyzed methylation. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202208746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Xiaojin Wen
- University of Basel: Universitat Basel Department of Chemistry SWITZERLAND
| | - Florian Leisinger
- University of Basel: Universitat Basel Department of Chemistry SWITZERLAND
| | - Viviane Leopold
- University of Basel: Universitat Basel Department of Chemistry SWITZERLAND
| | - Florian P. Seebeck
- University of Basel Department of Chemistry St. Johanns-Ring 19 4056 Basel SWITZERLAND
| |
Collapse
|
33
|
Zhang Z, Zhang J, Gao Q, Zhou Y, Yang M, Cao H, Sun T, Luo G, Cao ZC. Enantioselective alkylative cross-coupling of unactivated aromatic C-O electrophiles. Nat Commun 2022; 13:2953. [PMID: 35618745 PMCID: PMC9135759 DOI: 10.1038/s41467-022-30693-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 05/11/2022] [Indexed: 11/23/2022] Open
Abstract
Nonpolar alkyl moieties, especially methyl group, are frequently used to modify bioactive molecules during lead optimization in medicinal chemistry. Thus transition-metal catalyzed alkylative cross-coupling reactions by using readily available and environmentally benign C–O electrophiles have been established as powerful tools to install alkyl groups, however, the C(sp3)–C(sp2) cross-coupling via asymmetric activation of aromatic C–O bond for the synthesis of alkylated chiral compounds remains elusive. Here, we unlock a C(sp3)–C(sp2) cross-coupling via enantioselective activation of aromatic C–O bond for the efficient synthesis of versatile axially chiral 2-alkyl-2’-hydroxyl-biaryl compounds. By employing a unique chiral N-heterocyclic carbene ligand, this transformation is accomplished via nickel catalysis with good enantiocontrol. Mechanistic studies indicate that bis-ligated nickel complexes might be formed as catalytically active species in the enantioselective alkylative cross-coupling. Moreover, further derivation experiments suggest this developed methodology holds great promise for complex molecule synthesis and asymmetric catalysis. Transition-metal catalyzed alkylative cross-couplings are established, powerful tools for the installation of alkyl groups. Here, the authors unlock a C(sp3)–C(sp2) cross-coupling via the asymmetric activation of the aromatic C–O bond by bis-ligated nickel complexes for the synthesis of alkylated, axially chiral biaryl compounds.
Collapse
Affiliation(s)
- Zishuo Zhang
- Anhui Province Engineering Laboratory for Green Pesticide Development and Application, College of Plant Protection, Anhui Agricultural University, Hefei, Anhui, 230036, China
| | - Jintong Zhang
- Anhui Province Engineering Laboratory for Green Pesticide Development and Application, College of Plant Protection, Anhui Agricultural University, Hefei, Anhui, 230036, China
| | - Quan Gao
- Anhui Province Engineering Laboratory for Green Pesticide Development and Application, College of Plant Protection, Anhui Agricultural University, Hefei, Anhui, 230036, China
| | - Yu Zhou
- Institute of Physical Science and Information Technology, Anhui University, Hefei, 230601, China
| | - Mingyu Yang
- School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi, 710119, China
| | - Haiqun Cao
- Anhui Province Engineering Laboratory for Green Pesticide Development and Application, College of Plant Protection, Anhui Agricultural University, Hefei, Anhui, 230036, China
| | - Tingting Sun
- Anhui Province Engineering Laboratory for Green Pesticide Development and Application, College of Plant Protection, Anhui Agricultural University, Hefei, Anhui, 230036, China
| | - Gen Luo
- Institute of Physical Science and Information Technology, Anhui University, Hefei, 230601, China.
| | - Zhi-Chao Cao
- Anhui Province Engineering Laboratory for Green Pesticide Development and Application, College of Plant Protection, Anhui Agricultural University, Hefei, Anhui, 230036, China.
| |
Collapse
|
34
|
Xu G, Gao P, Colacot TJ. Tunable Unsymmetrical Ferrocene Ligands Bearing a Bulky Di-1-adamantylphosphino Motif for Many Kinds of C sp2–C sp3 Couplings. ACS Catal 2022. [DOI: 10.1021/acscatal.2c00352] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Guolin Xu
- Research and Development, Life Science Chemistry, MilliporeSigma, 6000 N. Teutonia Avenue, Milwaukee, Wisconsin 53209, United States
| | - Peng Gao
- Research and Development, Life Science Chemistry, MilliporeSigma, 6000 N. Teutonia Avenue, Milwaukee, Wisconsin 53209, United States
| | - Thomas J. Colacot
- Research and Development, Life Science Chemistry, MilliporeSigma, 6000 N. Teutonia Avenue, Milwaukee, Wisconsin 53209, United States
| |
Collapse
|
35
|
Bartoccini F, Regni A, Retini M, Piersanti G. Asymmetric Total Synthesis of All Rugulovasine Stereoisomers and Preliminary Evaluation of their Biological Properties. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Francesca Bartoccini
- Universita degli Studi di Urbino Carlo Bo Department of Biomolecular Sciences Urbino ITALY
| | - Alessio Regni
- Universita degli Studi di Urbino Carlo Bo Department of Biomolecular Sciences ITALY
| | - Michele Retini
- Universita degli Studi di Urbino Carlo Bo Department of Biomolecular Sciences ITALY
| | - Giovanni Piersanti
- Universita degli Studi di Urbino Carlo Bo Department of Biomolecular Sciences P.zza Rinascimento 6 61029 Urbino ITALY
| |
Collapse
|
36
|
Murugesan K, Donabauer K, Narobe R, Derdau V, Bauer A, König B. Photoredox-Catalyzed Site-Selective Generation of Carbanions from C(sp 3)–H Bonds in Amines. ACS Catal 2022. [DOI: 10.1021/acscatal.2c00662] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Kathiravan Murugesan
- Faculty of Chemistry and Pharmacy, University of Regensburg, Regensburg 93053, Germany
| | - Karsten Donabauer
- Faculty of Chemistry and Pharmacy, University of Regensburg, Regensburg 93053, Germany
| | - Rok Narobe
- Faculty of Chemistry and Pharmacy, University of Regensburg, Regensburg 93053, Germany
| | - Volker Derdau
- Sanofi Germany, R&D, Integrated Drug Discovery, Isotope Chemistry, Industriepark Höchst, G876, Frankfurt am Main 65926, Germany
| | - Armin Bauer
- Sanofi Germany, R&D, Integrated Drug Discovery, Isotope Chemistry, Industriepark Höchst, G876, Frankfurt am Main 65926, Germany
| | - Burkhard König
- Faculty of Chemistry and Pharmacy, University of Regensburg, Regensburg 93053, Germany
| |
Collapse
|
37
|
Wurm K, Bartz FM, Schulig L, Bodtke A, Bednarski PJ, Link A. Modifications of the Triaminoaryl Metabophore of Flupirtine and Retigabine Aimed at Avoiding Quinone Diimine Formation. ACS OMEGA 2022; 7:7989-8012. [PMID: 35284765 PMCID: PMC8908504 DOI: 10.1021/acsomega.1c07103] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 02/08/2022] [Indexed: 05/09/2023]
Abstract
The potassium channel opening drugs flupirtine and retigabine have been withdrawn from the market due to occasional drug-induced liver injury (DILI) and tissue discoloration, respectively. While the mechanism underlying DILI after prolonged flupirtine use is not entirely understood, evidence indicates that both drugs are metabolized in an initial step to reactive ortho- and/or para-azaquinone diimines or ortho- and/or para-quinone diimines, respectively. Aiming to develop safer alternatives for the treatment of pain and epilepsy, we have attempted to separate activity from toxicity by employing a drug design strategy of avoiding the detrimental oxidation of the central aromatic ring by shifting oxidation toward the formation of benign metabolites. In the present investigation, an alternative retrometabolic design strategy was followed. The nitrogen atom, which could be involved in the formation of both ortho- or para-quinone diimines of the lead structures, was shifted away from the central ring, yielding a substitution pattern with nitrogen substituents in the meta position only. Evaluation of KV7.2/3 opening activity of the 11 new specially designed derivatives revealed surprisingly steep structure-activity relationship data with inactive compounds and an activity cliff that led to the identification of an apparent "magic methyl" effect in the case of N-(4-fluorobenzyl)-6-[(4-fluorobenzyl)amino]-2-methoxy-4-methylnicotinamide. This flupirtine analogue showed potent KV7.2/3 opening activity, being six times as active as flupirtine itself, and by design is devoid of the potential for azaquinone diimine formation.
Collapse
|
38
|
Kopf S, Bourriquen F, Li W, Neumann H, Junge K, Beller M. Recent Developments for the Deuterium and Tritium Labeling of Organic Molecules. Chem Rev 2022; 122:6634-6718. [PMID: 35179363 DOI: 10.1021/acs.chemrev.1c00795] [Citation(s) in RCA: 191] [Impact Index Per Article: 63.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Organic compounds labeled with hydrogen isotopes play a crucial role in numerous areas, from materials science to medicinal chemistry. Indeed, while the replacement of hydrogen by deuterium gives rise to improved absorption, distribution, metabolism, and excretion (ADME) properties in drugs and enables the preparation of internal standards for analytical mass spectrometry, the use of tritium-labeled compounds is a key technique all along drug discovery and development in the pharmaceutical industry. For these reasons, the interest in new methodologies for the isotopic enrichment of organic molecules and the extent of their applications are equally rising. In this regard, this Review intends to comprehensively discuss the new developments in this area over the last years (2017-2021). Notably, besides the fundamental hydrogen isotope exchange (HIE) reactions and the use of isotopically labeled analogues of common organic reagents, a plethora of reductive and dehalogenative deuteration techniques and other transformations with isotope incorporation are emerging and are now part of the labeling toolkit.
Collapse
Affiliation(s)
- Sara Kopf
- Leibniz-Institut für Katalyse e. V., 18059 Rostock, Germany
| | | | - Wu Li
- Leibniz-Institut für Katalyse e. V., 18059 Rostock, Germany
| | | | - Kathrin Junge
- Leibniz-Institut für Katalyse e. V., 18059 Rostock, Germany
| | | |
Collapse
|
39
|
Kaliyamoorthy A, Rayaroth A, Elikkottil A, Chithra MJ, A. V. K, Reddy VS. Regioselective Allenylation and Propargylation of Various para-Quinone Methides Using Alkynyl Azaarenes as Pronucleophile. Chem Commun (Camb) 2022; 58:10671-10674. [DOI: 10.1039/d2cc03439e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We have developed a Brønsted base-mediated regioselective allenylation and propargylation of various para-quinone methides using unfunctionalized 2-alkynyl azaarenes as the pronucleophile. The appropriate choice of a base provides an opportunity...
Collapse
|
40
|
Park K, Oka N, Sawama Y, Ikawa T, Yamada T, Sajiki H. Platinum on Carbon-Catalysed Site-Selective H-D Exchange Reaction of Allylic Alcohols Using Alkyl Amines as a Hydrogen Source. Org Chem Front 2022. [DOI: 10.1039/d2qo00177b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We developed platinum on carbon-catalysed deuteration reaction of tert-allylic alcohols using deuterium oxide as a deuterium source. Amylamine was dehydrogenated by platinum on carbon to generate an appropriate amount of...
Collapse
|
41
|
Sun Q, Soulé JF. Broadening of horizons in the synthesis of CD 3-labeled molecules. Chem Soc Rev 2021; 50:10806-10835. [PMID: 34605827 DOI: 10.1039/d1cs00544h] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In the light of the recent potentials of deuterated molecules as pharmaceuticals or even in mechanistic understanding, efficient methods for their synthesis are continually desired. CD3-containing molecules are prominent amongst these motifs due to the parallel of the "magic methyl effect": introducing a methyl group into pharmaceuticals could positively affect biological activities. The trideuteromethyl group is bound to molecules either by C, N, O, or S atom. For a long time, the preparation methods of such labeled compounds were underestimated and involved multi-step syntheses. More recently, specific approaches dealing with the direct incorporation of the CD3 group have been developed. This Review gives an overview of the methods for the preparation of CD3-labeled molecules from conventional functional group interconversion techniques to catalytic approaches and include radical strategy. Detailed reaction mechanisms are also discussed.
Collapse
Affiliation(s)
- Qiao Sun
- Process Chemistry Enabling Technology Platform, STA Pharmaceutical, a WuxiAppTech Company (Wuxi STA), Shanghai 201507, P. R. China
| | | |
Collapse
|
42
|
Steverlynck J, Sitdikov R, Rueping M. The Deuterated "Magic Methyl" Group: A Guide to Site-Selective Trideuteromethyl Incorporation and Labeling by Using CD 3 Reagents. Chemistry 2021; 27:11751-11772. [PMID: 34076925 PMCID: PMC8457246 DOI: 10.1002/chem.202101179] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Indexed: 12/12/2022]
Abstract
In the field of medicinal chemistry, the precise installation of a trideuteromethyl group is gaining ever-increasing attention. Site-selective incorporation of the deuterated "magic methyl" group can provide profound pharmacological benefits and can be considered an important tool for drug optimization and development. This review provides a structured overview, according to trideuteromethylation reagent, of currently established methods for site-selective trideuteromethylation of carbon atoms. In addition to CD3 , the selective introduction of CD2 H and CDH2 groups is also considered. For all methods, the corresponding mechanism and scope are discussed whenever reported. As such, this review can be a starting point for synthetic chemists to further advance trideuteromethylation methodologies. At the same time, this review aims to be a guide for medicinal chemists, offering them the available C-CD3 formation strategies for the preparation of new or modified drugs.
Collapse
Affiliation(s)
- Joost Steverlynck
- Kaust Catalysis Center (KCC)King Abdullah University Science and Technology (KAUST)Thuwal23955-6900Saudi Arabia
| | - Ruzal Sitdikov
- Kaust Catalysis Center (KCC)King Abdullah University Science and Technology (KAUST)Thuwal23955-6900Saudi Arabia
| | - Magnus Rueping
- Kaust Catalysis Center (KCC)King Abdullah University Science and Technology (KAUST)Thuwal23955-6900Saudi Arabia
- Institute for Experimental Molecular ImagingRWTH Aachen UniversityForckenbeckstrasse 5552074Aachen
| |
Collapse
|