1
|
Mravec B, Budzák Š, Medved' M, Pašteka LF, Lazar P, Procházková E, Růžička A, Kožíšek J, Vegso K, Bodik M, Šiffalovič P, Švec P, Filo J, Cigáň M. Solid-State Photoswitching of Hydrazones Based on Excited-State Intramolecular Proton Transfer. J Am Chem Soc 2025; 147:2421-2431. [PMID: 39772509 DOI: 10.1021/jacs.4c12510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
The development of new photochromic systems is motivated by the possibility of controlling the properties and functions of materials with high spatial and temporal resolution in a reversible manner. While there are several classes of photoswitches operating in solution, the design of systems efficiently operating in the solid state remains highly challenging, mainly due to limitations related to confinement effects. Triaryl-hydrazones represent a relatively new subclass of bistable hydrazone photoswitches exhibiting efficient Z/E photochromism in solution. As "large volume" photoswitches, they have been anticipated to display only limited solid-state photoswitching. Here, we show that the Z isomers of newly prepared triaryl-hydrazones containing a perfluorinated hydrazine phenyl ring (PHZs) exhibit impressive solid-state photochromism with an unexpected light-induced red-shift of the absorption maximum. Based on (time-dependent) density functional theory calculations, a photoswitching reaction mechanism involving the excited state intramolecular proton transfer has been proposed, which rationalizes the observed red-shift in absorption by the formation of a metastable proton transfer structure. Advanced experimental techniques including X-ray diffraction, solid-state NMR and EPR spectroscopy, and confocal Raman microscopy corroborated the suggested mechanism and revealed that the observed photochromism is a superficial phenomenon. This atypical photochromic behavior of PHZs can also be realized by using visible light and in the form of thin films, which manifests their potential use in optics and optoelectronics.
Collapse
Affiliation(s)
- Bernard Mravec
- Department of Organic Chemistry, Faculty of Natural Sciences, Comenius University, Ilkovičova 6, Bratislava SK-842 15, Slovakia
| | - Šimon Budzák
- Department of Chemistry, Faculty of Natural Sciences, Matej Bel University, Tajovského 40, Banská Bystrica SK-974 01, Slovakia
| | - Miroslav Medved'
- Department of Chemistry, Faculty of Natural Sciences, Matej Bel University, Tajovského 40, Banská Bystrica SK-974 01, Slovakia
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Šlechtitelů 27, 779 00 Olomouc, Czech Republic
| | - Lukáš F Pašteka
- Department of Physical and Theoretical Chemistry, Faculty of Natural Sciences, Comenius University, Ilkovičova 6, SK-842 15 Bratislava, Slovakia
- Van Swinderen Institute for Particle Physics and Gravity, University of Groningen, Nijenborgh 3, 9747 AG Groningen, The Netherlands
| | - Petr Lazar
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Šlechtitelů 27, 779 00 Olomouc, Czech Republic
| | - Eliška Procházková
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, CZ-160 00 Prague, Czech Republic
| | - Aleš Růžička
- Department of General and Inorganic Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 573, CZ-532 10 Pardubice, Czech Republic
| | - Jozef Kožíšek
- Department of Physical Chemistry, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, SK-81237 Bratislava, Slovakia
| | - Karol Vegso
- Center for Advanced Materials and Applications (CEMEA), Slovak Academy of Sciences, Dubravska cesta 5807/9, SK-84511 Bratislava, Slovakia
| | - Michal Bodik
- Center for Advanced Materials and Applications (CEMEA), Slovak Academy of Sciences, Dubravska cesta 5807/9, SK-84511 Bratislava, Slovakia
| | - Peter Šiffalovič
- Center for Advanced Materials and Applications (CEMEA), Slovak Academy of Sciences, Dubravska cesta 5807/9, SK-84511 Bratislava, Slovakia
| | - Peter Švec
- Institute of Physics, Slovak Academy of Sciences, Dúbravská cesta 9, SK-845 11 Bratislava, Slovakia
| | - Juraj Filo
- Department of Organic Chemistry, Faculty of Natural Sciences, Comenius University, Ilkovičova 6, Bratislava SK-842 15, Slovakia
| | - Marek Cigáň
- Department of Organic Chemistry, Faculty of Natural Sciences, Comenius University, Ilkovičova 6, Bratislava SK-842 15, Slovakia
| |
Collapse
|
2
|
Han Z, He M, Wang G, Lehn JM, Li Q. Visible-Light-Driven Solid-State Fluorescent Photoswitches for High-Level Information Encryption. Angew Chem Int Ed Engl 2024; 63:e202416363. [PMID: 39318067 DOI: 10.1002/anie.202416363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/24/2024] [Accepted: 09/24/2024] [Indexed: 09/26/2024]
Abstract
Developing visible-light-driven fluorescent photoswitches in the solid state remains an enormous challenge in smart materials. Such photoswitches are obtained from salicylaldimines through excited-state intramolecular proton transfer (ESIPT) and subsequent cis-trans isomerization strategies. By incorporating a bulky naphthalimide fluorophore into a Schiff base, three photoswitches achieve dual-mode changes (both in color and fluorescence) in the solid state. In particular, the optimal one generates triple fluorescence changing from green, to yellow and finally to orange upon visible-light irradiation. This switching process is fully reversible and can be repeated at least 10 times without obvious attenuation, suggesting its good photo-fatigue resistance. Mechanism studies reveal that the naphthalimide group not only enables the tuning of multicolor with an additional emission, but also induces a folded structure, reducing molecular stacking and facilitating ESIPT and cis-trans isomerization. As such, photopatterning, ternary encoding and transient information recording and erasing are successfully developed. The present study provides a reliable strategy for visible-light-driven fluorescent photoswitches, showing implications for advanced information encryption materials.
Collapse
Affiliation(s)
- Zhiyuan Han
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Meixia He
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Gang Wang
- School of Chemical Engineering, Xi'an University, Xi'an, 710065, China
| | - Jean-Marie Lehn
- Laboratoire de Chimie Supramoléculaire, Institut de Science et d'Ingénierie Supramoléculaires (lSlS), Université de Strasbourg, 8 allée Gaspard Monge, Strasbourg, 67000, France
| | - Quan Li
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
- Materials Science Graduate Program, Kent State University, Kent, OH 44242, USA
| |
Collapse
|
3
|
Ding K, Zhuang B, Deng BW, Li ZL, Lu HF, Zhang ZX, Fu DW. Stereo-Active Lone Pairs Induced Second Harmonic Generation Responses and Electrocatalytic Activity in Hybrid Material. Chemistry 2024; 30:e202402119. [PMID: 39007706 DOI: 10.1002/chem.202402119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/03/2024] [Accepted: 07/15/2024] [Indexed: 07/16/2024]
Abstract
The lone pair electrons in the electronic structure of molecules have been a prominent research focus in chemistry for more than a century. Stable s2 lone pair electrons significantly influence material properties, including thermoelectric properties, nonlinear optical properties, ferroelectricity, and electro(photo)catalysis. While major advances have been achieved in understanding the influence of lone pair electrons on material characteristics, research on this effect in organic-inorganic hybrid materials is in its initial stage. In this work, we successfully obtained a novel organic-inorganic hybrid multifunctional material incorporating Ge with 4s2 lone pair electrons, (MeHDabco)2[GeBr3]4-H2O (MeHDabco=N-methyl-1,4-diazabicyclo[2.2.2]octane) (1). Driven by the stereochemically active lone pair electrons on the Ge2+, 1 crystallizes in the noncentrosymmetric space group P21 at room temperature and exhibits good second harmonic generation (SHG) responses. Interestingly, 1 also shows electrocatalytic activity for the hydrogen evolution reaction (HER) due to the existence of lone pair electrons on Ge2+ cations. The electrochemical experiment combined with the density functional theory (DFT) calculations revealed that the lone pair electrons act as both an active site for proton adsorption and facilitate the ionization of water. This work not only emphasizes the important role of lone pair electrons in material properties and functions but also provides new insight for designing novel Ge-based multifunctional hybrid materials.
Collapse
Affiliation(s)
- Kun Ding
- Ordered Matter Science Research Center College of Chemistry and Chemical Engineering, Southeast University, 211189, Nanjing, P. R. China
| | - Bo Zhuang
- Ordered Matter Science Research Center College of Chemistry and Chemical Engineering, Southeast University, 211189, Nanjing, P. R. China
| | - Bo-Wen Deng
- Ordered Matter Science Research Center College of Chemistry and Chemical Engineering, Southeast University, 211189, Nanjing, P. R. China
| | - Zhi-Long Li
- Ordered Matter Science Research Center College of Chemistry and Chemical Engineering, Southeast University, 211189, Nanjing, P. R. China
| | - Hai-Feng Lu
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, 321019, Jinhua, P. R. China
| | - Zhi-Xu Zhang
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, 321019, Jinhua, P. R. China
| | - Da-Wei Fu
- Ordered Matter Science Research Center College of Chemistry and Chemical Engineering, Southeast University, 211189, Nanjing, P. R. China
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, 321019, Jinhua, P. R. China
| |
Collapse
|
4
|
Pan Q, Gu ZX, Zhou RJ, Feng ZJ, Xiong YA, Sha TT, You YM, Xiong RG. The past 10 years of molecular ferroelectrics: structures, design, and properties. Chem Soc Rev 2024; 53:5781-5861. [PMID: 38690681 DOI: 10.1039/d3cs00262d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Ferroelectricity, which has diverse important applications such as memory elements, capacitors, and sensors, was first discovered in a molecular compound, Rochelle salt, in 1920 by Valasek. Owing to their superiorities of lightweight, biocompatibility, structural tunability, mechanical flexibility, etc., the past decade has witnessed the renaissance of molecular ferroelectrics as promising complementary materials to commercial inorganic ferroelectrics. Thus, on the 100th anniversary of ferroelectricity, it is an opportune time to look into the future, specifically into how to push the boundaries of material design in molecular ferroelectric systems and finally overcome the hurdles to their commercialization. Herein, we present a comprehensive and accessible review of the appealing development of molecular ferroelectrics over the past 10 years, with an emphasis on their structural diversity, chemical design, exceptional properties, and potential applications. We believe that it will inspire intense, combined research efforts to enrich the family of high-performance molecular ferroelectrics and attract widespread interest from physicists and chemists to better understand the structure-function relationships governing improved applied functional device engineering.
Collapse
Affiliation(s)
- Qiang Pan
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing 211189, P. R. China.
| | - Zhu-Xiao Gu
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing 211189, P. R. China.
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210008, P. R. China.
| | - Ru-Jie Zhou
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing 211189, P. R. China.
| | - Zi-Jie Feng
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing 211189, P. R. China.
| | - Yu-An Xiong
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing 211189, P. R. China.
| | - Tai-Ting Sha
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing 211189, P. R. China.
| | - Yu-Meng You
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing 211189, P. R. China.
| | - Ren-Gen Xiong
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing 211189, P. R. China.
| |
Collapse
|
5
|
Hasebe S, Hatakeyama-Sato K, Oyaizu K, Asahi T, Koshima H. Prediction of Photochromism of Salicylideneaniline Crystals Using a Data Mining Approach. ACS OMEGA 2024; 9:1463-1471. [PMID: 38222500 PMCID: PMC10785315 DOI: 10.1021/acsomega.3c07859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/28/2023] [Accepted: 12/13/2023] [Indexed: 01/16/2024]
Abstract
Salicylideneanilines (SAs) are photochromic compounds that undergo enol-keto photoisomerization in the solid state. Research over the past 60 years has revealed empirically that SAs with steric and planar conformations tend to be photochromic and nonphotochromic, respectively. However, increasing counterexamples in the recent literature raise questions about the nature of the relationship between structure and photochromism in SA crystals and whether the photochromism of SA crystals is predictable. This study is the first to construct a data set on SA crystals and conduct a comprehensive analysis to investigate the relationship between molecular and crystal structures and photochromism. A data mining approach revealed that the dihedral angle is the most dominant structural parameter for photochromism, followed by the Hirshfeld surface volume. SAs with neutral bulky hydrocarbon groups, such as the tert-butyl group, tend to be photochromic because such SAs have steric conformation and a loosely packed structure. In contrast, SAs with fluorine, pyridine, and pyrazine are less likely to be photochromic due to their planar conformation and densely packed structures. The photochromism of the SA crystals in our data set was predicted with high accuracy (>85%) using machine learning. The results of this study provide a useful reference for designing SA crystals with desired photochromic properties.
Collapse
Affiliation(s)
- Shodai Hasebe
- Department
of Advanced Science and Engineering, Graduate School of Advanced Science
and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Kan Hatakeyama-Sato
- School
of Materials and Chemical Technology, Tokyo
Institute of Technology, Meguro-ku, Tokyo 152-8552, Japan
| | - Kenichi Oyaizu
- Department
of Advanced Science and Engineering, Graduate School of Advanced Science
and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Toru Asahi
- Department
of Advanced Science and Engineering, Graduate School of Advanced Science
and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
- Research
Organization for Nano & Life Innovation, Waseda University, 513,
Waseda Tsurumakicho, Shinjuku-ku, Tokyo 162-0041, Japan
| | - Hideko Koshima
- Research
Organization for Nano & Life Innovation, Waseda University, 513,
Waseda Tsurumakicho, Shinjuku-ku, Tokyo 162-0041, Japan
| |
Collapse
|
6
|
Du Y, Liao WQ, Li Y, Huang CR, Gan T, Chen XG, Lv HP, Song XJ, Xiong RG, Wang ZX. A Homochiral Fulgide Organic Ferroelectric Crystal with Photoinduced Molecular Orbital Breaking. Angew Chem Int Ed Engl 2023:e202315189. [PMID: 37919233 DOI: 10.1002/anie.202315189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 10/31/2023] [Accepted: 11/02/2023] [Indexed: 11/04/2023]
Abstract
Thermally triggered spatial symmetry breaking in traditional ferroelectrics has been extensively studied for manipulation of the ferroelectricity. However, photoinduced molecular orbital breaking, which is promising for optical control of ferroelectric polarization, has been rarely explored. Herein, for the first time, we synthesized a homochiral fulgide organic ferroelectric crystal (E)-(R)-3-methyl-3-cyclohexylidene-4-(diphenylmethylene)dihydro-2,5-furandione (1), which exhibits both ferroelectricity and photoisomerization. Significantly, 1 shows a photoinduced reversible change in its molecular orbitals from the 3 π molecular orbitals in the open-ring isomer to 2 π and 1 σ molecular orbitals in the closed-ring isomer, which enables reversible ferroelectric domain switching by optical manipulation. To our knowledge, this is the first report revealing the manipulation of ferroelectric polarization in homochiral ferroelectric crystal by photoinduced breaking of molecular orbitals. This finding sheds light on the exploration of molecular orbital breaking in ferroelectrics for optical manipulation of ferroelectricity.
Collapse
Affiliation(s)
- Ye Du
- College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou, 341000, P. R. China
| | - Wei-Qiang Liao
- Ordered Matter Science Research Center, Nanchang University, Nanchang, 330031, P. R. China
| | - Yibao Li
- College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou, 341000, P. R. China
| | - Chao-Ran Huang
- College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou, 341000, P. R. China
| | - Tian Gan
- Ordered Matter Science Research Center, Nanchang University, Nanchang, 330031, P. R. China
| | - Xiao-Gang Chen
- Ordered Matter Science Research Center, Nanchang University, Nanchang, 330031, P. R. China
| | - Hui-Peng Lv
- Ordered Matter Science Research Center, Nanchang University, Nanchang, 330031, P. R. China
| | - Xian-Jiang Song
- Ordered Matter Science Research Center, Nanchang University, Nanchang, 330031, P. R. China
| | - Ren-Gen Xiong
- Ordered Matter Science Research Center, Nanchang University, Nanchang, 330031, P. R. China
| | - Zhong-Xia Wang
- College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou, 341000, P. R. China
| |
Collapse
|
7
|
Xu WJ, Li MF, Garcia AR, Romanyuk K, Martinho JMG, Zelenovskii P, Tselev A, Verissimo L, Zhang WX, Chen XM, Kholkin A, Rocha J. Molecular Design of a Metal-Nitrosyl Ferroelectric with Reversible Photoisomerization. J Am Chem Soc 2023. [PMID: 37329320 DOI: 10.1021/jacs.3c01530] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
The development of photo-responsive ferroelectrics whose polarization may be remotely controlled by optical means is of fundamental importance for basic research and technological applications. Herein, we report the design and synthesis of a new metal-nitrosyl ferroelectric crystal (DMA)(PIP)[Fe(CN)5(NO)] (1) (DMA = dimethylammonium, PIP = piperidinium) with potential phototunable polarization via a dual-organic-cation molecular design strategy. Compared to the parent non-ferroelectric (MA)2[Fe(CN)5(NO)] (MA = methylammonium) material with a phase transition at 207 K, the introduction of larger dual organic cations both lowers the crystal symmetry affording robust ferroelectricity and increases the energy barrier of molecular motions, endowing 1 with a large polarization of up to 7.6 μC cm-2 and a high Curie temperature (Tc) of 316 K. Infrared spectroscopy shows that the reversible photoisomerization of the nitrosyl ligand is accomplished by light irradiation. Specifically, the ground state with the N-bound nitrosyl ligand conformation can be reversibly switched to both the metastable state I (MSI) with isonitrosyl conformation and the metastable state II (MSII) with side-on nitrosyl conformation. Quantum chemistry calculations suggest that the photoisomerization significantly changes the dipole moment of the [Fe(CN)5(NO)]2- anion, thus leading to three ferroelectric states with different values of macroscopic polarization. Such optical accessibility and controllability of different ferroelectric states via photoinduced nitrosyl linkage isomerization open up a new and attractive route to optically controllable macroscopic polarization.
Collapse
Affiliation(s)
- Wei-Jian Xu
- Department of Chemistry & CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Mao-Fan Li
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Ana R Garcia
- Centro de Química Estrutural, Institute of Molecular Sciences and Department of Chemical Engineering, Instituto Superior Técnico, University of Lisbon, 1049-001 Lisbon, Portugal
| | - Konstantin Romanyuk
- Department of Physics & CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal
| | - José M G Martinho
- Centro de Química Estrutural, Institute of Molecular Sciences and Department of Chemical Engineering, Instituto Superior Técnico, University of Lisbon, 1049-001 Lisbon, Portugal
| | - Pavel Zelenovskii
- Department of Chemistry & CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Alexander Tselev
- Department of Physics & CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Luís Verissimo
- Department of Chemistry & CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Wei-Xiong Zhang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Xiao-Ming Chen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Andrei Kholkin
- Department of Physics & CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal
| | - João Rocha
- Department of Chemistry & CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
8
|
Zhang HY, Zhang N, Zhang Y, Jiang HH, Zeng YL, Tang SY, Li PF, Tang YY, Xiong RG. Ferroelectric Phase Transition Driven by Switchable Covalent Bonds. PHYSICAL REVIEW LETTERS 2023; 130:176802. [PMID: 37172248 DOI: 10.1103/physrevlett.130.176802] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 04/05/2023] [Indexed: 05/14/2023]
Abstract
The mechanism on ferroelectric phase transitions is mainly attributed to the displacive and/or order-disorder transition of internal components since the discovery of the ferroelectricity in 1920, rather than the breaking and recombination of chemical bonds. Here, we demonstrate how to utilize the chemical bond rearrangement in a diarylethene-based crystal to realize the light-driven mm2F1-type ferroelectric phase transition. Such a photoinduced phase transition is entirely driven by switchable covalent bonds with breaking and reformation, enabling the reversible light-controllable ferroelectric polarization switching, dielectric and nonlinear optical bistability. Moreover, light as quantized energy can achieve contactless, nondestructive, and remote-control operations. This work proposes a new mechanism of ferroelectric phase transition, and highlights the significance of photochromic molecules in designing new ferroelectrics for photocontrol data storage and sensing.
Collapse
Affiliation(s)
- Han-Yue Zhang
- Jiangsu Key Laboratory for Biomaterials and Devices, State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, People's Republic of China
| | - Nan Zhang
- Jiangsu Key Laboratory for Biomaterials and Devices, State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, People's Republic of China
| | - Yao Zhang
- Jiangsu Key Laboratory for Biomaterials and Devices, State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, People's Republic of China
| | - Huan-Huan Jiang
- Jiangsu Key Laboratory for Biomaterials and Devices, State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, People's Republic of China
| | - Yu-Ling Zeng
- Ordered Matter Science Research Center, Nanchang University, Nanchang 330031, People's Republic of China
| | - Shu-Yu Tang
- Ordered Matter Science Research Center, Nanchang University, Nanchang 330031, People's Republic of China
| | - Peng-Fei Li
- Ordered Matter Science Research Center, Nanchang University, Nanchang 330031, People's Republic of China
| | - Yuan-Yuan Tang
- Ordered Matter Science Research Center, Nanchang University, Nanchang 330031, People's Republic of China
| | - Ren-Gen Xiong
- Jiangsu Key Laboratory for Biomaterials and Devices, State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, People's Republic of China
| |
Collapse
|
9
|
Liu M, Tian Y, Liu Z. Effective Enhancement of the Ferroelectric Performance of Polar Co-Gallate MOF by Doping M 2+ Ions (M = Mg, Mn, Ni) into Framework Nodes. Inorg Chem 2023; 62:7024-7031. [PMID: 37120854 DOI: 10.1021/acs.inorgchem.3c00300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
MOF ferroelectrics have been demonstrated to be a promising candidate owing to various structures and controllable properties. However, weak ferroelectricity hampers their boom. Herein, a convenient strategy, doping metal ions into the framework nodes of parent MOF, is adopted to enhance ferroelectric performance. A series of M-doped Co-Gallate (M = Mg, Mn, Ni) were synthesized to improve ferroelectric properties. The electrical hysteresis loop demonstrated its ferroelectric behaviors, exhibiting obviously improved ferroelectric properties compared with the parent Co-Gallate. The remanent polarization was enhanced by two times for Mg-doped Co-Gallate, six times for Mn-doped Co-Gallate, and four times for Ni-doped Co-Gallate. The promoted ferroelectric performances are ascribed to the enhanced polarity of the overall structure triggered by framework distortion. Intriguingly, ferroelectric behaviors increase in the order Mg < Ni < Mn, displaying the same tendency as the difference value in the ionic radius between Co2+ ions and M2+ metal ions (M = Mg, Mn, Ni). These results demonstrate doping of metal ions is a valid strategy to enhance ferroelectric performances, which may serve as a guide in modulating ferroelectric behaviors.
Collapse
Affiliation(s)
- Meiying Liu
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, P. R. China
| | - Yadong Tian
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, P. R. China
| | - Zhiliang Liu
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, P. R. China
| |
Collapse
|
10
|
Tang YY, Zeng YL, Xiong RG. Contactless Manipulation of Write-Read-Erase Data Storage in Diarylethene Ferroelectric Crystals. J Am Chem Soc 2022; 144:8633-8640. [PMID: 35535855 DOI: 10.1021/jacs.2c01069] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The optical manipulation of polarization has gained widespread attention because it offers a promising route to new contactless memories and switches. However, the current research basically focuses on the photocontrol of data storage rather than data reading, which cannot realize the whole process of contactless write-read-erase data storage. Here, we present a pair of enantiomorphic diarylethene derivative ferroelectric crystals, showing a light-driven phase transition triggered by photoisomerization between the open and closed forms. Under the visible light, they exhibit a binary-domain state in the open form with white color and the band gap of 3.26 eV, while they show a single-domain state in the closed form with blue color and the band gap of 1.68 eV after UV irradiation of 254/365 nm. In addition to writing and erasing ferroelectric domains with light, we can also use light to read their color to determine the polarization state of domains. Moreover, diarylethene derivatives have better thermal stability, higher photoexcited conversion efficiency, and larger changes of the absorption wavelength between two isomers than those in salicylideneaniline derivatives. This work not only discovers the first diarylethene-based ferroelectric crystals but also successfully realizes completely contactless manipulation of write-read-erase data storage in the organic ferroelectric semiconductors.
Collapse
Affiliation(s)
- Yuan-Yuan Tang
- Ordered Matter Science Research Center, Nanchang University, Nanchang 330031, People's Republic of China
| | - Yu-Ling Zeng
- Ordered Matter Science Research Center, Nanchang University, Nanchang 330031, People's Republic of China
| | - Ren-Gen Xiong
- Ordered Matter Science Research Center, Nanchang University, Nanchang 330031, People's Republic of China
| |
Collapse
|
11
|
Wang ZX, Chen XG, Song XJ, Zeng YL, Li PF, Tang YY, Liao WQ, Xiong RG. Domain memory effect in the organic ferroics. Nat Commun 2022; 13:2379. [PMID: 35501335 PMCID: PMC9061795 DOI: 10.1038/s41467-022-30085-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 04/15/2022] [Indexed: 11/09/2022] Open
Abstract
Shape memory alloys have been used extensively in actuators, couplings, medical guide wires, and smart devices, because of their unique shape memory effect and superelasticity triggered by the reversible martensitic phase transformations. For ferroic materials, however, almost no memory effects have been found for their ferroic domains after reversible phase transformations. Here, we present a pair of single-component organic enantiomorphic ferroelectric/ferroelastic crystals, (R)- and (S)-N-3,5-di-tert-butylsalicylidene-1-(1-naphthyl)ethylamine SA-NPh-(R) and SA-NPh-(S). It is notable that not only can their ferroic domain patterns disappear and reappear during reversible thermodynamic phase transformations, but they can also disappear and reappear during reversible light-driven phase transformations induced by enol-keto photoisomerization, both of which are from P1 to P21 polar space groups. Most importantly, the domain patterns are exactly the same in the initial and final states, demonstrating the existence of a memory effect for the ferroic domains in SA-NPh-(R) and SA-NPh-(S). As far as we are aware, the domain memory effect triggered by both thermodynamic and light-driven ferroelectric/ferroelastic phase transformations remains unexplored in ferroic materials. Thermal and optical control of domain memory effect would open up a fresh research field for smart ferroic materials.
Collapse
Affiliation(s)
- Zhong-Xia Wang
- College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou, 341000, People's Republic of China.
- Ordered Matter Science Research Center, Nanchang University, Nanchang, 330031, People's Republic of China.
| | - Xiao-Gang Chen
- Ordered Matter Science Research Center, Nanchang University, Nanchang, 330031, People's Republic of China
| | - Xian-Jiang Song
- Ordered Matter Science Research Center, Nanchang University, Nanchang, 330031, People's Republic of China
| | - Yu-Ling Zeng
- Ordered Matter Science Research Center, Nanchang University, Nanchang, 330031, People's Republic of China
| | - Peng-Fei Li
- Ordered Matter Science Research Center, Nanchang University, Nanchang, 330031, People's Republic of China
| | - Yuan-Yuan Tang
- Ordered Matter Science Research Center, Nanchang University, Nanchang, 330031, People's Republic of China
| | - Wei-Qiang Liao
- Ordered Matter Science Research Center, Nanchang University, Nanchang, 330031, People's Republic of China
| | - Ren-Gen Xiong
- Ordered Matter Science Research Center, Nanchang University, Nanchang, 330031, People's Republic of China.
| |
Collapse
|
12
|
Hagiwara H, Konomura S. Thermosalience coupled to abrupt spin crossover with dynamic ligand motion in an iron(II) molecular crystal. CrystEngComm 2022. [DOI: 10.1039/d2ce00501h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Here we report an iron(II) molecular crystal that show thermosalient effect (crystal jumping) coupled to cooperative high-spin (HS) to low-spin (LS) spin crossover (SCO). The new iron(II) compound [Fe(LPh,Et)2(NCS)2] (LPh,Et...
Collapse
|
13
|
Liao WQ, Zeng YL, Tang YY, Peng H, Liu JC, Xiong RG. Multichannel Control of Multiferroicity in Single-Component Homochiral Organic Crystals. J Am Chem Soc 2021; 143:21685-21693. [PMID: 34928580 DOI: 10.1021/jacs.1c11000] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
A ferroelectric/ferroelastic is a material whose spontaneous polarization/strain can be switched by applying an external electric field/mechanical stress. However, the optical control of spontaneous polarization/strain remains relatively unexplored in crystalline materials, although photoirradiation stands out as a nondestructive, noncontact, and remote-controlled stimulus beyond stress or electric field. Here, we present two new organic single-component homochiral photochromic multiferroics, (R)- and (S)-N-3,5-di-tert-butylsalicylidene-1-4-bromophenylethylamine (SA-Ph-Br(R) and SA-Ph-Br(S)), which show a full ferroelectric/ferroelastic phase transition of 222F2 type at 336 K. Under photoirradiation, their spontaneous polarization/strain can be switched quickly within seconds and reversibly between two ferroelectric/ferroelastic phases with the respective enol and trans-keto forms triggered by structural photoisomerizations. In addition, they possess a superior acoustic impedance characteristic with a value of ∼2.42 × 106 kg·s-1·m-2, lower than that of polyvinylidene fluoride (PVDF, (3.69-4.25) × 106 kg·s-1·m-2), which can better match human tissues. This work realizes for the first time that multiple ferroic orders in single-component organic crystals with ultralow acoustic impedance can be simultaneously controlled and coupled by three physical channels (electric, stress, light fields), suggesting their great potential in multichannel data storage, optoelectronics, and related applications compatible with all-organic electronics and human tissues.
Collapse
Affiliation(s)
- Wei-Qiang Liao
- Ordered Matter Science Research Center, Nanchang University, Nanchang 330031, People's Republic of China
| | - Yu-Ling Zeng
- Ordered Matter Science Research Center, Nanchang University, Nanchang 330031, People's Republic of China
| | - Yuan-Yuan Tang
- Ordered Matter Science Research Center, Nanchang University, Nanchang 330031, People's Republic of China
| | - Hang Peng
- Ordered Matter Science Research Center, Nanchang University, Nanchang 330031, People's Republic of China
| | - Jun-Chao Liu
- Ordered Matter Science Research Center, Nanchang University, Nanchang 330031, People's Republic of China
| | - Ren-Gen Xiong
- Ordered Matter Science Research Center, Nanchang University, Nanchang 330031, People's Republic of China
| |
Collapse
|
14
|
Liao W, Deng B, Wang Z, Cheng T, Hu Y, Cheng S, Xiong R. Optically Induced Ferroelectric Polarization Switching in a Molecular Ferroelectric with Reversible Photoisomerization. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2102614. [PMID: 34716671 PMCID: PMC8693059 DOI: 10.1002/advs.202102614] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/23/2021] [Indexed: 05/27/2023]
Abstract
Ferroelectrics usually exhibit temperature-triggered structural changes, which play crucial roles in controlling their physical properties. However, although light is very striking as a non-contact, non-destructive, and remotely controlled external stimuli, ferroelectric crystals with light-triggered structural changes are very rare, which holds promise for optical control of ferroelectric properties. Here, an organic molecular ferroelectric, N-salicylidene-2,3,4,5,6-pentafluoroaniline (SA-PFA), which shows light-triggered structural change of reversible photoisomerization between cis-enol and trans-keto configuration is reported. SA-PFA presents clear ferroelectricity with the saturate polarization of 0.84 μC cm-2 , larger than those of some typical organic ferroelectrics with thermodynamically structural changes. Benefit from the reversible photoisomerization, the dielectric real part of SA-PFA can be reversibly switched by light. More strikingly, the photoisomerization enables SA-PFA to show reversible optically induced ferroelectric polarization switching. Such intriguing behaviors make SPFA a potential candidate for application in next-generation photo-controlled ferroelectric devices. This work sheds light on further exploration of more excellent molecular ferroelectrics with light-triggered structural changes for optical control of ferroelectric properties.
Collapse
Affiliation(s)
- Wei‐Qiang Liao
- Ordered Matter Science Research CenterNanchang UniversityNanchang330031P. R. China
| | - Bin‐Bin Deng
- Ordered Matter Science Research CenterNanchang UniversityNanchang330031P. R. China
| | - Zhong‐Xia Wang
- Ordered Matter Science Research CenterNanchang UniversityNanchang330031P. R. China
| | - Ting‐Ting Cheng
- Ordered Matter Science Research CenterNanchang UniversityNanchang330031P. R. China
| | - Yan‐Ting Hu
- Ordered Matter Science Research CenterNanchang UniversityNanchang330031P. R. China
| | - Shu‐Ping Cheng
- Ordered Matter Science Research CenterNanchang UniversityNanchang330031P. R. China
| | - Ren‐Gen Xiong
- Ordered Matter Science Research CenterNanchang UniversityNanchang330031P. R. China
| |
Collapse
|