1
|
Salnikov OG, Trofimov IA, Bender ZT, Trepakova AI, Xu J, Wibbels GL, Shchepin RV, Koptyug IV, Barskiy DA. Parahydrogen-Induced Polarization of 14N Nuclei. Angew Chem Int Ed Engl 2024; 63:e202402877. [PMID: 38523072 DOI: 10.1002/anie.202402877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/22/2024] [Accepted: 03/22/2024] [Indexed: 03/26/2024]
Abstract
Hyperpolarization techniques provide a dramatic increase in sensitivity of nuclear magnetic resonance spectroscopy and imaging. In spite of the outstanding progress in solution-state hyperpolarization of spin-1/2 nuclei, hyperpolarization of quadrupolar nuclei remains challenging. Here, hyperpolarization of quadrupolar 14N nuclei with natural isotopic abundance of >99 % is demonstrated. This is achieved via pairwise addition of parahydrogen to tetraalkylammonium salts with vinyl or allyl unsaturated moieties followed by a subsequent polarization transfer from 1H to 14N nuclei at high magnetic field using PH-INEPT or PH-INEPT+ radiofrequency pulse sequence. Catalyst screening identified water-soluble rhodium complex [Rh(P(m-C6H4SO3Na)3)3Cl] as the most efficient catalyst for hyperpolarization of the substrates under study, providing up to 1.3 % and up to 6.6 % 1H polarization in the cases of vinyl and allyl precursors, respectively. The performance of PH-INEPT and PH-INEPT+ pulse sequences was optimized with respect to interpulse delays, and the resultant experimental dependences were in good agreement with simulations. As a result, 14N NMR signal enhancement of up to 760-fold at 7.05 T (corresponding to 0.15 % 14N polarization) was obtained.
Collapse
Affiliation(s)
- Oleg G Salnikov
- International Tomography Center SB RAS, 3 A Institutskaya St., Novosibirsk, 630090, Russia
| | - Ivan A Trofimov
- International Tomography Center SB RAS, 3 A Institutskaya St., Novosibirsk, 630090, Russia
- Current affiliation, Division of Medical Physics, Department of Diagnostic and Interventional Radiology, Faculty of Medicine, University of Freiburg, University Medical Center Freiburg, Freiburg, 79106, Germany
| | - Zachary T Bender
- South Dakota School of Mines & Technology, Rapid City, South Dakota, 57701, United States
| | - Alexandra I Trepakova
- International Tomography Center SB RAS, 3 A Institutskaya St., Novosibirsk, 630090, Russia
| | - Jingyan Xu
- Helmholtz Institute Mainz, GSI Helmholtz Center for Heavy Ion Research GmbH, and, Institute of Physics, Johannes Gutenberg-Universität, Mainz, 55128, Germany
| | - Garrett L Wibbels
- South Dakota School of Mines & Technology, Rapid City, South Dakota, 57701, United States
| | - Roman V Shchepin
- South Dakota School of Mines & Technology, Rapid City, South Dakota, 57701, United States
| | - Igor V Koptyug
- International Tomography Center SB RAS, 3 A Institutskaya St., Novosibirsk, 630090, Russia
| | - Danila A Barskiy
- Helmholtz Institute Mainz, GSI Helmholtz Center for Heavy Ion Research GmbH, and, Institute of Physics, Johannes Gutenberg-Universität, Mainz, 55128, Germany
| |
Collapse
|
2
|
Czarnota M, Mames A, Pietrzak M, Jopa S, Theiß F, Buntkowsky G, Ratajczyk T. A Straightforward Method for the Generation of Hyperpolarized Orthohydrogen with a Partially Negative Line. Angew Chem Int Ed Engl 2024; 63:e202309188. [PMID: 37727926 DOI: 10.1002/anie.202309188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/19/2023] [Accepted: 09/19/2023] [Indexed: 09/21/2023]
Abstract
The hydrogen molecule, which exists in two spin isomers (ortho- and parahydrogen), is a highly studied system due to its fundamental properties and practical applications. Parahydrogen is used for Nuclear Magnetic Resonance signal enhancement, which is hyperpolarization of other molecules, including biorelevant ones. Hyperpolarization can be achieved by using Signal Amplification by Reversible Exchange (SABRE). SABRE can also convert parahydrogen into orthohydrogen, and surprisingly, in some cases, it has been discovered that orthohydrogen's resonance has the Partially Negative Line (PNL) pattern. Here, an approach for obtaining orthohydrogen with a PNL signal is presented for two catalysts: Ir-IMes, and Ir-IMesBn. The type of solvent in which SABRE is conducted is crucial for the observation of PNL. Specifically, a PNL signal can be easily generated in benzene using both catalysts, but it is more intense for Ir-IMesBn. In acetone, PNL is observed only for Ir-IMesBn. In methanol, no PNL is detected. The PNL effect is only detectable during the initial steps of pre-catalyst activation, and disappears as the activation process progresses. We have proposed a working hypothesis that explains our results. The presented data may facilitate the further investigation of PNL and its applications in material science and catalysis.
Collapse
Affiliation(s)
- Marek Czarnota
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Adam Mames
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Mariusz Pietrzak
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Sylwia Jopa
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093, Warsaw, Poland
| | - Franziska Theiß
- Institute of Physical Chemistry, Technical University Darmstadt, Alarich-Weiss-Straße 8, 64287, Darmstadt, Germany
| | - Gerd Buntkowsky
- Institute of Physical Chemistry, Technical University Darmstadt, Alarich-Weiss-Straße 8, 64287, Darmstadt, Germany
| | - Tomasz Ratajczyk
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| |
Collapse
|
3
|
Konsewicz K, Laczkó G, Pápai I, Zhivonitko VV. Activation of H 2 using ansa-aminoboranes: solvent effects, dynamics, and spin hyperpolarization. Phys Chem Chem Phys 2024; 26:3197-3207. [PMID: 38193236 DOI: 10.1039/d3cp05816f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
Spin hyperpolarization generated upon activation of parahydrogen, the spin-0 isomer of H2, by ansa-aminoboranes (AABs) constitutes a rare but interesting example of applied metal-free catalysis in parahydrogen-induced polarization (PHIP). AAB molecular moieties made of light elements would be useful in important areas of NMR, such as chemosensing and the production of hyperpolarized substances, or generally in NMR sensitivity enhancement. At the same time, little is known about the detailed mechanistic aspects of underlying chemical processes. Herein, we present a joint experimental-computational study of the kinetic and thermodynamic aspects of H2 activation by AABs, for the first time providing molecular-level details and results of PHIP experiments with AABs in various solvents. Specifically, a large number of kinetic and thermodynamic parameters are measured experimentally for H2 activation by 2-aminophenylboranes of variable steric bulkiness of the boryl site. A clear correlation between the experimental and DFT-predicted thermochemical parameters is observed. PHIP effects in toluene, dichloromethane, and acetonitrile are characterized and rationalized based on the use of the kinetic and nuclear spin relaxation parameters. Altogether, the obtained results provide valuable information for the further rational design of efficient AAB catalysts for metal-free PHIP based on frustrated Lewis pair (FLP) chemistry.
Collapse
Affiliation(s)
- Karolina Konsewicz
- NMR Research Unit, Faculty of Science, University of Oulu, P.O. Box 3000, Oulu, 90014, Finland.
| | - Gergely Laczkó
- Institute of Organic Chemistry, Research Centre for Natural Sciences, Magyar Tudósok Körútja 2, H-1117 Budapest, Hungary
- Hevesy György PhD School of Chemistry, Eötvös Loránd University, P.O. Box 32, H-1518 Budapest, Hungary
| | - Imre Pápai
- Institute of Organic Chemistry, Research Centre for Natural Sciences, Magyar Tudósok Körútja 2, H-1117 Budapest, Hungary
| | - Vladimir V Zhivonitko
- NMR Research Unit, Faculty of Science, University of Oulu, P.O. Box 3000, Oulu, 90014, Finland.
| |
Collapse
|
4
|
Browning A, Macculloch K, TomHon P, Mandzhieva I, Chekmenev EY, Goodson BM, Lehmkuhl S, Theis T. Spin dynamics of [1,2- 13C 2]pyruvate hyperpolarization by parahydrogen in reversible exchange at micro Tesla fields. Phys Chem Chem Phys 2023; 25:16446-16458. [PMID: 37306121 PMCID: PMC10642564 DOI: 10.1039/d3cp00843f] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Hyperpolarization of 13C-pyruvate via Signal Amplificaton By Reversibble Exchange (SABRE) is an important recent discovery because of both the relative simplicity of hyperpolarization and the central biological relevance of pyruvate as a biomolecular probe for in vitro or in vivo studies. Here, we analyze the [1,2-13C2]pyruvate-SABRE spin system and its field dependence theoretically and experimentally. We provide first-principles analysis of the governing 4-spin dihydride-13C2 Hamiltonian and numerical spin dynamics simulations of the 7-spin dihydride-13C2-CH3 system. The analytical and the numerical results are compared to matching systematic experiments. With these methods we unravel the observed spin state mixing of singlet states and triplet states at microTesla fields and we also analyze the dynamics during transfer from micro-Tesla field to high field for detection to understand the resulting spectra from the [1,2-13C2]pyruvate-SABRE system.
Collapse
Affiliation(s)
- Austin Browning
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina, 27695-8204, USA.
| | - Keilian Macculloch
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina, 27695-8204, USA.
| | - Patrick TomHon
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina, 27695-8204, USA.
| | - Iuliia Mandzhieva
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina, 27695-8204, USA.
| | - Eduard Y Chekmenev
- Department of Chemistry, Integrative Biosciences (Ibio), Wayne State University, Karmanos Cancer Institute (KCI), Detroit, Michigan 48202, USA
| | - Boyd M Goodson
- School of Chemical & Biomolecular Sciences and Materials Technology Center, Southern Illinois University, Carbondale, Illinois 62901, USA
| | - Sören Lehmkuhl
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina, 27695-8204, USA.
| | - Thomas Theis
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina, 27695-8204, USA.
| |
Collapse
|
5
|
Eills J, Budker D, Cavagnero S, Chekmenev EY, Elliott SJ, Jannin S, Lesage A, Matysik J, Meersmann T, Prisner T, Reimer JA, Yang H, Koptyug IV. Spin Hyperpolarization in Modern Magnetic Resonance. Chem Rev 2023; 123:1417-1551. [PMID: 36701528 PMCID: PMC9951229 DOI: 10.1021/acs.chemrev.2c00534] [Citation(s) in RCA: 91] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Indexed: 01/27/2023]
Abstract
Magnetic resonance techniques are successfully utilized in a broad range of scientific disciplines and in various practical applications, with medical magnetic resonance imaging being the most widely known example. Currently, both fundamental and applied magnetic resonance are enjoying a major boost owing to the rapidly developing field of spin hyperpolarization. Hyperpolarization techniques are able to enhance signal intensities in magnetic resonance by several orders of magnitude, and thus to largely overcome its major disadvantage of relatively low sensitivity. This provides new impetus for existing applications of magnetic resonance and opens the gates to exciting new possibilities. In this review, we provide a unified picture of the many methods and techniques that fall under the umbrella term "hyperpolarization" but are currently seldom perceived as integral parts of the same field. Specifically, before delving into the individual techniques, we provide a detailed analysis of the underlying principles of spin hyperpolarization. We attempt to uncover and classify the origins of hyperpolarization, to establish its sources and the specific mechanisms that enable the flow of polarization from a source to the target spins. We then give a more detailed analysis of individual hyperpolarization techniques: the mechanisms by which they work, fundamental and technical requirements, characteristic applications, unresolved issues, and possible future directions. We are seeing a continuous growth of activity in the field of spin hyperpolarization, and we expect the field to flourish as new and improved hyperpolarization techniques are implemented. Some key areas for development are in prolonging polarization lifetimes, making hyperpolarization techniques more generally applicable to chemical/biological systems, reducing the technical and equipment requirements, and creating more efficient excitation and detection schemes. We hope this review will facilitate the sharing of knowledge between subfields within the broad topic of hyperpolarization, to help overcome existing challenges in magnetic resonance and enable novel applications.
Collapse
Affiliation(s)
- James Eills
- Institute
for Bioengineering of Catalonia, Barcelona
Institute of Science and Technology, 08028Barcelona, Spain
| | - Dmitry Budker
- Johannes
Gutenberg-Universität Mainz, 55128Mainz, Germany
- Helmholtz-Institut,
GSI Helmholtzzentrum für Schwerionenforschung, 55128Mainz, Germany
- Department
of Physics, UC Berkeley, Berkeley, California94720, United States
| | - Silvia Cavagnero
- Department
of Chemistry, University of Wisconsin, Madison, Madison, Wisconsin53706, United States
| | - Eduard Y. Chekmenev
- Department
of Chemistry, Integrative Biosciences (IBio), Karmanos Cancer Institute
(KCI), Wayne State University, Detroit, Michigan48202, United States
- Russian
Academy of Sciences, Moscow119991, Russia
| | - Stuart J. Elliott
- Molecular
Sciences Research Hub, Imperial College
London, LondonW12 0BZ, United Kingdom
| | - Sami Jannin
- Centre
de RMN à Hauts Champs de Lyon, Université
de Lyon, CNRS, ENS Lyon, Université Lyon 1, 69100Villeurbanne, France
| | - Anne Lesage
- Centre
de RMN à Hauts Champs de Lyon, Université
de Lyon, CNRS, ENS Lyon, Université Lyon 1, 69100Villeurbanne, France
| | - Jörg Matysik
- Institut
für Analytische Chemie, Universität
Leipzig, Linnéstr. 3, 04103Leipzig, Germany
| | - Thomas Meersmann
- Sir
Peter Mansfield Imaging Centre, University Park, School of Medicine, University of Nottingham, NottinghamNG7 2RD, United Kingdom
| | - Thomas Prisner
- Institute
of Physical and Theoretical Chemistry and Center of Biomolecular Magnetic
Resonance, Goethe University Frankfurt, , 60438Frankfurt
am Main, Germany
| | - Jeffrey A. Reimer
- Department
of Chemical and Biomolecular Engineering, UC Berkeley, and Materials Science Division, Lawrence Berkeley National
Laboratory, Berkeley, California94720, United States
| | - Hanming Yang
- Department
of Chemistry, University of Wisconsin, Madison, Madison, Wisconsin53706, United States
| | - Igor V. Koptyug
- International Tomography Center, Siberian
Branch of the Russian Academy
of Sciences, 630090Novosibirsk, Russia
| |
Collapse
|
6
|
Maldonado-Domínguez M, Srnec M. H-Atom Abstraction Reactivity through the Lens of Asynchronicity and Frustration with Their Counteracting Effects on Barriers. Inorg Chem 2022; 61:18811-18822. [DOI: 10.1021/acs.inorgchem.2c03269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Mauricio Maldonado-Domínguez
- J. Heyrovský Institute of Physical Chemistry, The Czech Academy of Sciences, Dolejškova 3, Prague 8 18223, Czech Republic
| | - Martin Srnec
- J. Heyrovský Institute of Physical Chemistry, The Czech Academy of Sciences, Dolejškova 3, Prague 8 18223, Czech Republic
| |
Collapse
|
7
|
Tickner BJ, Zhivonitko VV. Advancing homogeneous catalysis for parahydrogen-derived hyperpolarisation and its NMR applications. Chem Sci 2022; 13:4670-4696. [PMID: 35655870 PMCID: PMC9067625 DOI: 10.1039/d2sc00737a] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 03/21/2022] [Indexed: 12/18/2022] Open
Abstract
Parahydrogen-induced polarisation (PHIP) is a nuclear spin hyperpolarisation technique employed to enhance NMR signals for a wide range of molecules. This is achieved by exploiting the chemical reactions of parahydrogen (para-H2), the spin-0 isomer of H2. These reactions break the molecular symmetry of para-H2 in a way that can produce dramatically enhanced NMR signals for reaction products, and are usually catalysed by a transition metal complex. In this review, we discuss recent advances in novel homogeneous catalysts that can produce hyperpolarised products upon reaction with para-H2. We also discuss hyperpolarisation attained in reversible reactions (termed signal amplification by reversible exchange, SABRE) and focus on catalyst developments in recent years that have allowed hyperpolarisation of a wider range of target molecules. In particular, recent examples of novel ruthenium catalysts for trans and geminal hydrogenation, metal-free catalysts, iridium sulfoxide-containing SABRE systems, and cobalt complexes for PHIP and SABRE are reviewed. Advances in this catalysis have expanded the types of molecules amenable to hyperpolarisation using PHIP and SABRE, and their applications in NMR reaction monitoring, mechanistic elucidation, biomedical imaging, and many other areas, are increasing.
Collapse
Affiliation(s)
- Ben J Tickner
- NMR Research Unit, Faculty of Science, University of Oulu P.O. Box 3000 Oulu 90014 Finland
- Department of Chemical and Biological Physics, Faculty of Chemistry, Weizmann Institute of Science Rehovot 7610001 Israel
| | - Vladimir V Zhivonitko
- NMR Research Unit, Faculty of Science, University of Oulu P.O. Box 3000 Oulu 90014 Finland
| |
Collapse
|
8
|
Zakharov DO, Chernichenko K, Sorochkina K, Repo T, Zhivonitko VV. Parahydrogen-induced polarization study of imine hydrogenations mediated by a metal-free catalyst. Dalton Trans 2022; 51:13606-13611. [DOI: 10.1039/d2dt02178a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Parahydrogen-induced polarization is a nuclear spin hyperpolarization technique that can provide strongly enhanced NMR signals of catalytic hydrogenation reaction products and intermediates. Among other matters, this can be employed to...
Collapse
|