1
|
du Preez HN, Lin J, Maguire GEM, Aldous C, Kruger HG. COVID-19 vaccine adverse events: Evaluating the pathophysiology with an emphasis on sulfur metabolism and endotheliopathy. Eur J Clin Invest 2024; 54:e14296. [PMID: 39118373 DOI: 10.1111/eci.14296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 07/24/2024] [Indexed: 08/10/2024]
Abstract
In this narrative review, we assess the pathophysiology of severe adverse events that presented after vaccination with DNA and mRNA vaccines against COVID-19. The focus is on the perspective of an undersulfated and degraded glycocalyx, considering its impact on immunomodulation, inflammatory responses, coagulation and oxidative stress. The paper explores various factors that lead to glutathione and inorganic sulfate depletion and their subsequent effect on glycocalyx sulfation and other metabolites, including hormones. Components of COVID-19 vaccines, such as DNA and mRNA material, spike protein antigen and lipid nanoparticles, are involved in possible cytotoxic effects. The common thread connecting these adverse events is endotheliopathy or glycocalyx degradation, caused by depleted glutathione and inorganic sulfate levels, shear stress from circulating nanoparticles, aggregation and formation of protein coronas; leading to imbalanced immune responses and chronic release of pro-inflammatory cytokines, ultimately resulting in oxidative stress and systemic inflammatory response syndrome. By understanding the underlying pathophysiology of severe adverse events, better treatment options can be explored.
Collapse
Affiliation(s)
- Heidi N du Preez
- Catalysis and Peptide Research Unit, University of KwaZulu-Natal, Durban, South Africa
- College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Johnson Lin
- School of Life Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Glenn E M Maguire
- Catalysis and Peptide Research Unit, University of KwaZulu-Natal, Durban, South Africa
- School of Chemistry and Physics, University of KwaZulu-Natal, Durban, South Africa
| | - Colleen Aldous
- College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Hendrik G Kruger
- Catalysis and Peptide Research Unit, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
2
|
Sano S, Yamamoto M, Kamijima R, Sano H. SARS-CoV-2 spike protein found in the acrosyringium and eccrine gland of repetitive miliaria-like lesions in a woman following mRNA vaccination. J Dermatol 2024; 51:e293-e295. [PMID: 38558035 DOI: 10.1111/1346-8138.17204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 03/11/2024] [Accepted: 03/13/2024] [Indexed: 04/04/2024]
Affiliation(s)
- Shigetoshi Sano
- Department of Dermatology, Kochi Medical School, Kochi University, Nankoku, Japan
- Sano Dermatology Clinic, Nishinomiya, Japan
| | - Mayuko Yamamoto
- Department of Dermatology, Kochi Medical School, Kochi University, Nankoku, Japan
| | - Reiko Kamijima
- Department of Dermatology, Kochi Medical School, Kochi University, Nankoku, Japan
| | - Hozumi Sano
- Department of Dermatology, Kochi Medical School, Kochi University, Nankoku, Japan
- Sano Dermatology Clinic, Nishinomiya, Japan
| |
Collapse
|
3
|
Baba A, Yamada K, Kanekura T. Cutaneous adverse events following COVID-19 vaccination: A case series of 30 Japanese patients and a review of 93 Japanese studies. J Dermatol 2024; 51:827-838. [PMID: 38605482 DOI: 10.1111/1346-8138.17188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/19/2024] [Accepted: 02/21/2024] [Indexed: 04/13/2024]
Abstract
In Japan, cutaneous adverse events (AEs) following the coronavirus disease 2019 (COVID-19) vaccination have been frequently described; however, a larger case series and literature review are lacking. There is an urgent need for an extensive investigation of new cases and previous reports to provide a thorough body of information about post-COVID-19 immunization cutaneous AEs. We aimed to analyze patients with cutaneous AEs after COVID-19 vaccination in our hospital and review previous studies of cutaneous AEs. We analyzed post-COVID-19 vaccination cutaneous AEs in our department, the Japanese Registry, and previous literature. We enrolled 30 patients with cutaneous post-vaccination AEs in our department over 2 years (April 1, 2021, to March 31, 2023). We also confirmed cases registered in the Ministry of Health, Labor, and Welfare COVID-19 vaccine side effect reporting system (February 17, 2021-March 12, 2023). A total of 587 records were retrieved and 93 articles were included for data extraction. A total of 28 non-injection-site cutaneous AEs and two injection-site AEs were identified. Six (20.0%) patients developed new-onset erythematous eruptions, and five (16.7%) patients developed urticaria. Pruritic eruption, eczema, shingles, and sweating symptoms have also been reported. In previous studies on non-injection-site cutaneous AEs, individuals who received the BNT162b2 vaccine were older than those who received mRNA-1273 (P < 0.01). Cutaneous AEs were mostly nonsignificant and self-limiting reactions; however, rare, severe, or life-threatening AEs were also reported. Physicians should be aware of the various possible cutaneous AEs associated with the COVID-19 vaccination.
Collapse
Affiliation(s)
- Atsunori Baba
- Department of Dermatology, Kagoshima City Hospital, Kagoshima, Japan
| | - Kiyoko Yamada
- Department of Dermatology, Kagoshima City Hospital, Kagoshima, Japan
| | - Takuro Kanekura
- Department of Dermatology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| |
Collapse
|
4
|
Scheim DE, Vottero P, Santin AD, Hirsh AG. Sialylated Glycan Bindings from SARS-CoV-2 Spike Protein to Blood and Endothelial Cells Govern the Severe Morbidities of COVID-19. Int J Mol Sci 2023; 24:17039. [PMID: 38069362 PMCID: PMC10871123 DOI: 10.3390/ijms242317039] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/24/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
Consistent with well-established biochemical properties of coronaviruses, sialylated glycan attachments between SARS-CoV-2 spike protein (SP) and host cells are key to the virus's pathology. SARS-CoV-2 SP attaches to and aggregates red blood cells (RBCs), as shown in many pre-clinical and clinical studies, causing pulmonary and extrapulmonary microthrombi and hypoxia in severe COVID-19 patients. SARS-CoV-2 SP attachments to the heavily sialylated surfaces of platelets (which, like RBCs, have no ACE2) and endothelial cells (having minimal ACE2) compound this vascular damage. Notably, experimentally induced RBC aggregation in vivo causes the same key morbidities as for severe COVID-19, including microvascular occlusion, blood clots, hypoxia and myocarditis. Key risk factors for COVID-19 morbidity, including older age, diabetes and obesity, are all characterized by markedly increased propensity to RBC clumping. For mammalian species, the degree of clinical susceptibility to COVID-19 correlates to RBC aggregability with p = 0.033. Notably, of the five human betacoronaviruses, the two common cold strains express an enzyme that releases glycan attachments, while the deadly SARS, SARS-CoV-2 and MERS do not, although viral loads for COVID-19 and the two common cold infections are similar. These biochemical insights also explain the previously puzzling clinical efficacy of certain generics against COVID-19 and may support the development of future therapeutic strategies for COVID-19 and long COVID patients.
Collapse
Affiliation(s)
- David E Scheim
- US Public Health Service, Commissioned Corps, Inactive Reserve, Blacksburg, VA 24060, USA
| | - Paola Vottero
- Department of Biomedical Engineering, University of Alberta, Edmonton, AB T6G 1Z2, Canada
| | - Alessandro D Santin
- Department of Obstetrics, Gynecology & Reproductive Sciences, Yale School of Medicine, P.O. Box 208063, New Haven, CT 06520, USA
| | | |
Collapse
|
5
|
Polykretis P, Donzelli A, Lindsay JC, Wiseman D, Kyriakopoulos AM, Mörz M, Bellavite P, Fukushima M, Seneff S, McCullough PA. Autoimmune inflammatory reactions triggered by the COVID-19 genetic vaccines in terminally differentiated tissues. Autoimmunity 2023; 56:2259123. [PMID: 37710966 DOI: 10.1080/08916934.2023.2259123] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/05/2023] [Accepted: 09/10/2023] [Indexed: 09/16/2023]
Abstract
As a result of the spread of SARS-CoV-2, a global pandemic was declared. Indiscriminate COVID-19 vaccination has been extended to include age groups and naturally immune people with minimal danger of suffering serious complications due to COVID-19. Solid immuno-histopathological evidence demonstrates that the COVID-19 genetic vaccines can display a wide distribution within the body, affecting tissues that are terminally differentiated and far away from the injection site. These include the heart and brain, which may incur in situ production of spike protein eliciting a strong autoimmunological inflammatory response. Due to the fact that every human cell which synthesises non-self antigens, inevitably becomes the target of the immune system, and since the human body is not a strictly compartmentalised system, accurate pharmacokinetic and pharmacodynamic studies are needed in order to determine precisely which tissues can be harmed. Therefore, our article aims to draw the attention of the scientific and regulatory communities to the critical need for biodistribution studies for the genetic vaccines against COVID-19, as well as for rational harm-benefit assessments by age group.
Collapse
Affiliation(s)
- Panagis Polykretis
- "Allineare Sanità e Salute" Foundation, Milano, Italy
- Independent Medical Scientific Commission (CMSi), Milano, Italy
| | - Alberto Donzelli
- "Allineare Sanità e Salute" Foundation, Milano, Italy
- Independent Medical Scientific Commission (CMSi), Milano, Italy
| | - Janci C Lindsay
- Toxicology & Molecular Biology, Toxicology Support Services, LLC, Sealy, TX, USA
| | | | | | | | | | | | - Stephanie Seneff
- Computer Science and Artificial Intelligence Laboratory, MIT, Cambridge, MA, USA
| | | |
Collapse
|
6
|
Lin CS, Chang CH. Disseminated Herpes Zoster Following Protein Subunit and mRNA COVID-19 Vaccination in Immunocompetent Patients: Report of Two Cases and Literature Review. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1542. [PMID: 37763662 PMCID: PMC10532883 DOI: 10.3390/medicina59091542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/15/2023] [Accepted: 08/23/2023] [Indexed: 09/29/2023]
Abstract
Disseminated herpes zoster (DHZ), resulting from the reactivation of the varicella-zoster virus (VZV), typically occurs in immunocompromised persons. To date, only four cases of DHZ following mRNA, viral vector, or inactivated COVID-19 vaccinations have been reported in immunocompetent patients. Herein, we present the first case of DHZ following the protein subunit COVID-19 vaccination (case 1, 64 years old) and a case of DHZ following mRNA COVID-19 vaccination (case 2, 67 years old) in elderly, immunocompetent male patients. Both cases were generally healthy, without a remarkable underlying disease and without a history of immunosuppressant use. Case 1 developed DHZ (left C3-5 predominant) 1 month after receiving the third dose of the SARS-CoV-2 spike protein vaccine (MVC-COV1901). Case 2 developed DHZ (right V1-3 predominant) 7 days after receiving the second dose of the mRNA-1273 SARS-CoV-2 vaccine. Through skin examination, Tzanck smears, and dermoscopy, the diagnosis of COVID-19 vaccination-related DHZ was established in both cases. Oral famciclovir (250 mg, three times/day for 7 days) was administered, and both cases achieved total remission of skin lesions without visceral involvement or severe post-herpetic neuralgia. Our cases demonstrate that DHZ, as a rare cutaneous adverse event in immunocompetent patients, can be secondary not only to mRNA COVID-19 vaccination but also to the protein subunit COVID-19 vaccination. It is speculated that the spike protein of SARS-CoV-2 could be the common trigger for the reactivation of VZV among different types of vaccinations.
Collapse
Affiliation(s)
- Chia-Shuen Lin
- Department of Dermatology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 97002, Taiwan;
| | - Chung-Hsing Chang
- Department of Dermatology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 97002, Taiwan;
- Doctoral Degree Program in Translational Medicine, Tzu Chi University and Academia Sinica, College of Medicine, Tzu Chi University, Hualien 97004, Taiwan
- Institute of Medical Sciences, College of Medicine, Tzu Chi University, Hualien 97004, Taiwan
| |
Collapse
|
7
|
Parry PI, Lefringhausen A, Turni C, Neil CJ, Cosford R, Hudson NJ, Gillespie J. 'Spikeopathy': COVID-19 Spike Protein Is Pathogenic, from Both Virus and Vaccine mRNA. Biomedicines 2023; 11:2287. [PMID: 37626783 PMCID: PMC10452662 DOI: 10.3390/biomedicines11082287] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 07/17/2023] [Accepted: 07/24/2023] [Indexed: 08/27/2023] Open
Abstract
The COVID-19 pandemic caused much illness, many deaths, and profound disruption to society. The production of 'safe and effective' vaccines was a key public health target. Sadly, unprecedented high rates of adverse events have overshadowed the benefits. This two-part narrative review presents evidence for the widespread harms of novel product COVID-19 mRNA and adenovectorDNA vaccines and is novel in attempting to provide a thorough overview of harms arising from the new technology in vaccines that relied on human cells producing a foreign antigen that has evidence of pathogenicity. This first paper explores peer-reviewed data counter to the 'safe and effective' narrative attached to these new technologies. Spike protein pathogenicity, termed 'spikeopathy', whether from the SARS-CoV-2 virus or produced by vaccine gene codes, akin to a 'synthetic virus', is increasingly understood in terms of molecular biology and pathophysiology. Pharmacokinetic transfection through body tissues distant from the injection site by lipid-nanoparticles or viral-vector carriers means that 'spikeopathy' can affect many organs. The inflammatory properties of the nanoparticles used to ferry mRNA; N1-methylpseudouridine employed to prolong synthetic mRNA function; the widespread biodistribution of the mRNA and DNA codes and translated spike proteins, and autoimmunity via human production of foreign proteins, contribute to harmful effects. This paper reviews autoimmune, cardiovascular, neurological, potential oncological effects, and autopsy evidence for spikeopathy. With many gene-based therapeutic technologies planned, a re-evaluation is necessary and timely.
Collapse
Affiliation(s)
- Peter I. Parry
- Children’s Health Research Clinical Unit, Faculty of Medicine, The University of Queensland, South Brisbane, QLD 4101, Australia
- Department of Psychiatry, College of Medicine and Public Health, Flinders University, Bedford Park, SA 5042, Australia
| | - Astrid Lefringhausen
- Children’s Health Defence (Australia Chapter), Huskisson, NSW 2540, Australia; (A.L.); (R.C.); (J.G.)
| | - Conny Turni
- Microbiology Research, QAAFI (Queensland Alliance for Agriculture and Food Innovation), The University of Queensland, St. Lucia, QLD 4072, Australia;
| | - Christopher J. Neil
- Department of Medicine, University of Melbourne, Melbourne, VIC 3010, Australia;
| | - Robyn Cosford
- Children’s Health Defence (Australia Chapter), Huskisson, NSW 2540, Australia; (A.L.); (R.C.); (J.G.)
| | - Nicholas J. Hudson
- School of Agriculture and Food Science, The University of Queensland, Brisbane, QLD 4072, Australia;
| | - Julian Gillespie
- Children’s Health Defence (Australia Chapter), Huskisson, NSW 2540, Australia; (A.L.); (R.C.); (J.G.)
| |
Collapse
|
8
|
Scholkmann F, May CA. COVID-19, post-acute COVID-19 syndrome (PACS, "long COVID") and post-COVID-19 vaccination syndrome (PCVS, "post-COVIDvac-syndrome"): Similarities and differences. Pathol Res Pract 2023; 246:154497. [PMID: 37192595 DOI: 10.1016/j.prp.2023.154497] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/25/2023] [Accepted: 05/01/2023] [Indexed: 05/18/2023]
Abstract
Worldwide there have been over 760 million confirmed coronavirus disease 2019 (COVID-19) cases, and over 13 billion COVID-19 vaccine doses have been administered as of April 2023, according to the World Health Organization. An infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can lead to an acute disease, i.e. COVID-19, but also to a post-acute COVID-19 syndrome (PACS, "long COVID"). Currently, the side effects of COVID-19 vaccines are increasingly being noted and studied. Here, we summarise the currently available indications and discuss our conclusions that (i) these side effects have specific similarities and differences to acute COVID-19 and PACS, that (ii) a new term should be used to refer to these side effects (post-COVID-19 vaccination syndrome, PCVS, colloquially "post-COVIDvac-syndrome"), and that (iii) there is a need to distinguish between acute COVID-19 vaccination syndrome (ACVS) and post-acute COVID-19 vaccination syndrome (PACVS) - in analogy to acute COVID-19 and PACS ("long COVID"). Moreover, we address mixed forms of disease caused by natural SARS-CoV-2 infection and COVID-19 vaccination. We explain why it is important for medical diagnosis, care and research to use the new terms (PCVS, ACVS and PACVS) in order to avoid confusion and misinterpretation of the underlying causes of disease and to enable optimal medical therapy. We do not recommend to use the term "Post-Vac-Syndrome" as it is imprecise. The article also serves to address the current problem of "medical gaslighting" in relation to PACS and PCVS by raising awareness among the medical professionals and supplying appropriate terminology for disease.
Collapse
Affiliation(s)
- Felix Scholkmann
- University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland.
| | - Christian-Albrecht May
- Department of Anatomy, Faculty of Medicine Carl Gustav Carus, TU Dresden, 01307 Dresden, Germany
| |
Collapse
|
9
|
Frasca L, Ocone G, Palazzo R. Safety of COVID-19 Vaccines in Patients with Autoimmune Diseases, in Patients with Cardiac Issues, and in the Healthy Population. Pathogens 2023; 12:pathogens12020233. [PMID: 36839505 PMCID: PMC9964607 DOI: 10.3390/pathogens12020233] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/25/2023] [Accepted: 01/29/2023] [Indexed: 02/05/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) has been a challenge for the whole world since the beginning of 2020, and COVID-19 vaccines were considered crucial for disease eradication. Instead of producing classic vaccines, some companies pointed to develop products that mainly function by inducing, into the host, the production of the antigenic protein of SARS-CoV-2 called Spike, injecting an instruction based on RNA or a DNA sequence. Here, we aim to give an overview of the safety profile and the actual known adverse effects of these products in relationship with their mechanism of action. We discuss the use and safety of these products in at-risk people, especially those with autoimmune diseases or with previously reported myocarditis, but also in the general population. We debate the real necessity of administering these products with unclear long-term effects to at-risk people with autoimmune conditions, as well as to healthy people, at the time of omicron variants. This, considering the existence of therapeutic interventions, much more clearly assessed at present compared to the past, and the relatively lower aggressive nature of the new viral variants.
Collapse
|
10
|
Mörz M. A Case Report: Multifocal Necrotizing Encephalitis and Myocarditis after BNT162b2 mRNA Vaccination against COVID-19. Vaccines (Basel) 2022; 10:vaccines10101651. [PMID: 36298516 PMCID: PMC9611676 DOI: 10.3390/vaccines10101651] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/25/2022] [Accepted: 09/27/2022] [Indexed: 11/05/2022] Open
Abstract
The current report presents the case of a 76-year-old man with Parkinson’s disease (PD) who died three weeks after receiving his third COVID-19 vaccination. The patient was first vaccinated in May 2021 with the ChAdOx1 nCov-19 vector vaccine, followed by two doses of the BNT162b2 mRNA vaccine in July and December 2021. The family of the deceased requested an autopsy due to ambiguous clinical signs before death. PD was confirmed by post-mortem examinations. Furthermore, signs of aspiration pneumonia and systemic arteriosclerosis were evident. However, histopathological analyses of the brain uncovered previously unsuspected findings, including acute vasculitis (predominantly lymphocytic) as well as multifocal necrotizing encephalitis of unknown etiology with pronounced inflammation including glial and lymphocytic reaction. In the heart, signs of chronic cardiomyopathy as well as mild acute lympho-histiocytic myocarditis and vasculitis were present. Although there was no history of COVID-19 for this patient, immunohistochemistry for SARS-CoV-2 antigens (spike and nucleocapsid proteins) was performed. Surprisingly, only spike protein but no nucleocapsid protein could be detected within the foci of inflammation in both the brain and the heart, particularly in the endothelial cells of small blood vessels. Since no nucleocapsid protein could be detected, the presence of spike protein must be ascribed to vaccination rather than to viral infection. The findings corroborate previous reports of encephalitis and myocarditis caused by gene-based COVID-19 vaccines.
Collapse
Affiliation(s)
- Michael Mörz
- Institute of Pathology 'Georg Schmorl', The Municipal Hospital Dresden-Friedrichstadt, Friedrichstrasse 41, 01067 Dresden, Germany
| |
Collapse
|
11
|
Cosentino M, Marino F. Understanding the Pharmacology of COVID-19 mRNA Vaccines: Playing Dice with the Spike? Int J Mol Sci 2022; 23:10881. [PMID: 36142792 PMCID: PMC9502275 DOI: 10.3390/ijms231810881] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 09/11/2022] [Accepted: 09/13/2022] [Indexed: 11/16/2022] Open
Abstract
Coronavirus disease-19 (COVID-19) mRNA vaccines are the mainstays of mass vaccination campaigns in most Western countries. However, the emergency conditions in which their development took place made it impossible to fully characterize their effects and mechanism of action. Here, we summarize and discuss available evidence indicating that COVID-19 mRNA vaccines better reflect pharmaceutical drugs than conventional vaccines, as they do not contain antigens but an active SARS-CoV-2 S protein mRNA, representing at the same time an active principle and a prodrug, which upon intracellular translation results in the endogenous production of the SARS-CoV-2 S protein. Both vaccine-derived SARS-CoV-2 S protein mRNA and the resulting S protein exhibit a complex pharmacology and undergo systemic disposition. Defining COVID-19 mRNA vaccines as pharmaceutical drugs has straightforward implications for their pharmacodynamic, pharmacokinetic, clinical and post-marketing safety assessment. Only an accurate characterization of COVID-19 mRNA vaccines as pharmaceutical drugs will guarantee a safe, rational and individualized use of these products.
Collapse
Affiliation(s)
- Marco Cosentino
- Center for Research in Medical Pharmacology, University of Insubria, 21100 Varese, Italy
| | | |
Collapse
|