1
|
Sarwer K, Lashari S, Rafaqat N, Maher, Raheem A, Rehman MU, Abbas SMI. Obstructive hypertrophic cardiomyopathy: from genetic insights to a multimodal therapeutic approach with mavacamten, aficamten, and beyond. Egypt Heart J 2024; 76:156. [PMID: 39645546 PMCID: PMC11625047 DOI: 10.1186/s43044-024-00587-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 11/13/2024] [Indexed: 12/09/2024] Open
Abstract
BACKGROUND A cardiac condition marked by excessive growth of heart muscle cells, hypertrophic cardiomyopathy (HCM) is a complex genetic disorder characterized by left ventricular hypertrophy, microvascular ischemia, myocardial fibrosis, and diastolic dysfunction. Obstructive hypertrophic cardiomyopathy (oHCM), a subset of HCM, involves significant obstruction in the left ventricular outflow tract (LVOT), leading to symptoms like dyspnea, fatigue, and potentially life-threatening cardiac events. With advancements in genetic understanding and the introduction of novel pharmacologic agents, including cardiac myosin inhibitors like mavacamten and aficamten, there is a paradigm shift in the therapeutic approach to oHCM. MAIN BODY The underlying mechanisms of HCM are closely tied to genetic mutations affecting sarcomere proteins, particularly those encoded by the MYH7 and MYBPC3 genes. These mutations lead to disrupted sarcomere function, resulting in hypertrophic changes and LVOT obstruction. While genetic heterogeneity is a hallmark of HCM, clinical diagnosis relies heavily on imaging techniques such as Echocardiography and cardiac magnetic resonance imaging to assess the extent of hypertrophy and obstruction. Current pharmacological management of obstructive HCM (oHCM) focuses on alleviating symptoms rather than modifying disease progression. Beta-blockers and calcium channel blockers are primary treatment options, although their effectiveness varies among patients. Recent clinical trials have highlighted the potential of novel cardiac myosin inhibitors, including mavacamten and aficamten, in enhancing exercise capacity, reducing LVOT obstruction, and improving overall cardiac function. These innovative agents represent a significant breakthrough in targeting the fundamental pathophysiological mechanisms driving oHCM. A comprehensive literature review was conducted, utilizing top-tier databases such as PubMed, Scopus, and Google Scholar, to compile an authoritative and up-to-date overview of the current advancements in the field. This review sheds light on the updated 2024 American Heart Association (AHA) guidelines for HCM management, emphasizing the treatment cascade and tailored management for each stage of oHCM. By introducing a new paradigm for personalized medicine in oHCM, this research leverages advanced genomics, biomarkers, and imaging techniques to optimize treatment strategies. CONCLUSIONS The introduction of cardiac myosin inhibitors heralds a new era in the management of oHCM. By directly targeting the molecular mechanisms underpinning the disease, these novel therapies offer improved symptom relief and functional outcomes. Ongoing research into the genetic basis of HCM and the development of targeted treatments holds promise for further enhancing patient care. Future studies should continue to refine these therapeutic strategies and explore their long-term benefits and potential in diverse patient populations. This review makes a significant contribution to the field by synthesizing the most recent AHA guidelines, emphasizing the crucial role of tailored management strategies in optimizing outcomes for patients with oHCM, and promoting the incorporation of cutting-edge genomics and imaging modalities to enhance personalized care.
Collapse
Affiliation(s)
- Khadija Sarwer
- Liaquat University of Medical and Health Sciences, Jamshoro, Hyderabad, Sindh, Pakistan
| | - Saeeda Lashari
- Liaquat University of Medical and Health Sciences, Jamshoro, Hyderabad, Sindh, Pakistan
| | - Nida Rafaqat
- Liaquat University of Medical and Health Sciences, Jamshoro, Hyderabad, Sindh, Pakistan
| | - Maher
- Liaquat University of Medical and Health Sciences, Jamshoro, Hyderabad, Sindh, Pakistan
| | - Abdul Raheem
- Baqai Medical University, 51, Deh Tor, Gadap Road, Near Toll Plaza, SuperHighway,, P.O. Box 2407, Karachi, 75340, Sindh, Pakistan.
| | - Muneeb Ur Rehman
- CMH Lahore Medical College & IOD, Abdur Rehman Road, Lahore Cantt, Pakistan
| | - Syed Muhammad Iraj Abbas
- Baqai Medical University, 51, Deh Tor, Gadap Road, Near Toll Plaza, SuperHighway,, P.O. Box 2407, Karachi, 75340, Sindh, Pakistan
| |
Collapse
|
2
|
Ewoldt JK, Wang MC, McLellan MA, Cloonan PE, Chopra A, Gorham J, Li L, DeLaughter DM, Gao X, Lee JH, Willcox JAL, Layton O, Luu RJ, Toepfer CN, Eyckmans J, Seidman CE, Seidman JG, Chen CS. Hypertrophic cardiomyopathy-associated mutations drive stromal activation via EGFR-mediated paracrine signaling. SCIENCE ADVANCES 2024; 10:eadi6927. [PMID: 39413182 PMCID: PMC11482324 DOI: 10.1126/sciadv.adi6927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 09/13/2024] [Indexed: 10/18/2024]
Abstract
Hypertrophic cardiomyopathy (HCM) is characterized by thickening of the left ventricular wall, diastolic dysfunction, and fibrosis, and is associated with mutations in genes encoding sarcomere proteins. While in vitro studies have used human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) to study HCM, these models have not examined the multicellular interactions involved in fibrosis. Using engineered cardiac microtissues (CMTs) composed of HCM-causing MYH7-variant hiPSC-CMs and wild-type fibroblasts, we observed cell-cell cross-talk leading to increased collagen deposition, tissue stiffening, and decreased contractility dependent on fibroblast proliferation. hiPSC-CM conditioned media and single-nucleus RNA sequencing data suggested that fibroblast proliferation is mediated by paracrine signals from MYH7-variant cardiomyocytes. Furthermore, inhibiting epidermal growth factor receptor tyrosine kinase with erlotinib hydrochloride attenuated stromal activation. Last, HCM-causing MYBPC3-variant CMTs also demonstrated increased stromal activation and reduced contractility, but with distinct characteristics. Together, these findings establish a paracrine-mediated cross-talk potentially responsible for fibrotic changes observed in HCM.
Collapse
Affiliation(s)
- Jourdan K. Ewoldt
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - Miranda C. Wang
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
- Harvard-MIT Program in Health Sciences and Technology, Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Micheal A. McLellan
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Paige E. Cloonan
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - Anant Chopra
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Joshua Gorham
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Linqing Li
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
- Department of Chemical Engineering, University of New Hampshire, Durham, NH 03824, USA
| | | | - Xining Gao
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
- Harvard-MIT Program in Health Sciences and Technology, Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Joshua H. Lee
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - Jon A. L. Willcox
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Olivia Layton
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Rebeccah J. Luu
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - Christopher N. Toepfer
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DU, UK
| | - Jeroen Eyckmans
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Christine E. Seidman
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
- Division of Cardiovascular Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | | | - Christopher S. Chen
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| |
Collapse
|
3
|
Lee C, Liang LW, Hasegawa K, Maurer MS, Tower-Rader A, Fifer MA, Reilly M, Shimada YJ. Signaling Pathways Associated With Prior Cardiovascular Events in Hypertrophic Cardiomyopathy. J Card Fail 2024; 30:462-472. [PMID: 37562580 PMCID: PMC10853480 DOI: 10.1016/j.cardfail.2023.07.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 07/14/2023] [Accepted: 07/17/2023] [Indexed: 08/12/2023]
Abstract
BACKGROUND Hypertrophic cardiomyopathy (HCM) is the most common genetic cardiomyopathy. A subset of patients experience major adverse cardiovascular events (MACEs), including arrhythmias, strokes and heart failure. However, the molecular mechanisms underlying MACEs in HCM are still not well understood. Therefore, we conducted a multicenter case-control study of patients with HCM, comparing those with and without prior histories of MACEs to identify dysregulated signaling pathways through plasma proteomics profiling. METHODS We performed plasma proteomics profiling of 4986 proteins. We developed a proteomics-based discrimination model in patients enrolled at 1 institution (training set) and externally validated the model in patients enrolled at another institution (test set). We performed pathway analysis of proteins dysregulated in patients with prior MACEs. RESULTS A total of 402 patients were included, with 278 in the training set and 124 in the test set. In this cohort, 257 (64%) patients had prior MACEs (172 in the training set and 85 in the test set). Using the proteomics-based model from the training set, the area under the receiver operating characteristic curve was 0.82 (95% confidence interval, 0.75-0.90) in the test set. Patients with prior MACEs demonstrated dysregulation in pathways known to be associated with MACEs (eg, TGF-β) and novel pathways (eg, Ras-MAPK and associated pathways). CONCLUSIONS In this multicenter study of 402 patients with HCM, we identified both known and novel pathways dysregulated in a subset of patients with more advanced disease.
Collapse
Affiliation(s)
- Charlotte Lee
- Division of Cardiology, Department of Medicine, Columbia University Irving Medical Center, New York, NY
| | - Lusha W Liang
- Division of Cardiology, Department of Medicine, Columbia University Irving Medical Center, New York, NY
| | - Kohei Hasegawa
- Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Mathew S Maurer
- Division of Cardiology, Department of Medicine, Columbia University Irving Medical Center, New York, NY
| | - Albree Tower-Rader
- Cardiology Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Michael A Fifer
- Cardiology Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Muredach Reilly
- Division of Cardiology, Department of Medicine, Columbia University Irving Medical Center, New York, NY; Irving Institute for Clinical and Translational Research, Columbia University Irving Medical Center, New York, NY
| | - Yuichi J Shimada
- Division of Cardiology, Department of Medicine, Columbia University Irving Medical Center, New York, NY.
| |
Collapse
|
4
|
Zhang H, Dhalla NS. The Role of Pro-Inflammatory Cytokines in the Pathogenesis of Cardiovascular Disease. Int J Mol Sci 2024; 25:1082. [PMID: 38256155 PMCID: PMC10817020 DOI: 10.3390/ijms25021082] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/11/2024] [Accepted: 01/12/2024] [Indexed: 01/24/2024] Open
Abstract
With cardiovascular disease (CVD) being a primary source of global morbidity and mortality, it is crucial that we understand the molecular pathophysiological mechanisms at play. Recently, numerous pro-inflammatory cytokines have been linked to several different CVDs, which are now often considered an adversely pro-inflammatory state. These cytokines most notably include interleukin-6 (IL-6),tumor necrosis factor (TNF)α, and the interleukin-1 (IL-1) family, amongst others. Not only does inflammation have intricate and complex interactions with pathophysiological processes such as oxidative stress and calcium mishandling, but it also plays a role in the balance between tissue repair and destruction. In this regard, pre-clinical and clinical evidence has clearly demonstrated the involvement and dynamic nature of pro-inflammatory cytokines in many heart conditions; however, the clinical utility of the findings so far remains unclear. Whether these cytokines can serve as markers or risk predictors of disease states or act as potential therapeutic targets, further extensive research is needed to fully understand the complex network of interactions that these molecules encompass in the context of heart disease. This review will highlight the significant advances in our understanding of the contributions of pro-inflammatory cytokines in CVDs, including ischemic heart disease (atherosclerosis, thrombosis, acute myocardial infarction, and ischemia-reperfusion injury), cardiac remodeling (hypertension, cardiac hypertrophy, cardiac fibrosis, cardiac apoptosis, and heart failure), different cardiomyopathies as well as ventricular arrhythmias and atrial fibrillation. In addition, this article is focused on discussing the shortcomings in both pathological and therapeutic aspects of pro-inflammatory cytokines in CVD that still need to be addressed by future studies.
Collapse
Affiliation(s)
- Hannah Zhang
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB R2H 2A6, Canada
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, College of Medicine, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Naranjan S. Dhalla
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB R2H 2A6, Canada
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, College of Medicine, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| |
Collapse
|
5
|
Schlittler M, Pramstaller PP, Rossini A, De Bortoli M. Myocardial Fibrosis in Hypertrophic Cardiomyopathy: A Perspective from Fibroblasts. Int J Mol Sci 2023; 24:14845. [PMID: 37834293 PMCID: PMC10573356 DOI: 10.3390/ijms241914845] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 09/25/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023] Open
Abstract
Hypertrophic cardiomyopathy (HCM) is the most common inherited heart disease and the leading cause of sudden cardiac death in young people. Mutations in genes that encode structural proteins of the cardiac sarcomere are the more frequent genetic cause of HCM. The disease is characterized by cardiomyocyte hypertrophy and myocardial fibrosis, which is defined as the excessive deposition of extracellular matrix proteins, mainly collagen I and III, in the myocardium. The development of fibrotic tissue in the heart adversely affects cardiac function. In this review, we discuss the latest evidence on how cardiac fibrosis is promoted, the role of cardiac fibroblasts, their interaction with cardiomyocytes, and their activation via the TGF-β pathway, the primary intracellular signalling pathway regulating extracellular matrix turnover. Finally, we summarize new findings on profibrotic genes as well as genetic and non-genetic factors involved in the pathophysiology of HCM.
Collapse
Affiliation(s)
| | | | | | - Marzia De Bortoli
- Eurac Research, Institute for Biomedicine (Affiliated to the University of Lübeck), 39100 Bolzano, Italy
| |
Collapse
|
6
|
Ravassa S, López B, Treibel TA, San José G, Losada-Fuentenebro B, Tapia L, Bayés-Genís A, Díez J, González A. Cardiac Fibrosis in heart failure: Focus on non-invasive diagnosis and emerging therapeutic strategies. Mol Aspects Med 2023; 93:101194. [PMID: 37384998 DOI: 10.1016/j.mam.2023.101194] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/09/2023] [Accepted: 06/14/2023] [Indexed: 07/01/2023]
Abstract
Heart failure is a leading cause of mortality and hospitalization worldwide. Cardiac fibrosis, resulting from the excessive deposition of collagen fibers, is a common feature across the spectrum of conditions converging in heart failure. Eventually, either reparative or reactive in nature, in the long-term cardiac fibrosis contributes to heart failure development and progression and is associated with poor clinical outcomes. Despite this, specific cardiac antifibrotic therapies are lacking, making cardiac fibrosis an urgent unmet medical need. In this context, a better patient phenotyping is needed to characterize the heterogenous features of cardiac fibrosis to advance toward its personalized management. In this review, we will describe the different phenotypes associated with cardiac fibrosis in heart failure and we will focus on the potential usefulness of imaging techniques and circulating biomarkers for the non-invasive characterization and phenotyping of this condition and for tracking its clinical impact. We will also recapitulate the cardiac antifibrotic effects of existing heart failure and non-heart failure drugs and we will discuss potential strategies under preclinical development targeting the activation of cardiac fibroblasts at different levels, as well as targeting additional extracardiac processes.
Collapse
Affiliation(s)
- Susana Ravassa
- Program of Cardiovascular Diseases, CIMA Universidad de Navarra and IdiSNA, Pamplona, Spain; CIBERCV, Carlos III Institute of Health, Madrid, Spain
| | - Begoña López
- Program of Cardiovascular Diseases, CIMA Universidad de Navarra and IdiSNA, Pamplona, Spain; CIBERCV, Carlos III Institute of Health, Madrid, Spain
| | - Thomas A Treibel
- Institute of Cardiovascular Science, University College London, UK; Barts Heart Centre, St Bartholomew's Hospital, London, UK
| | - Gorka San José
- Program of Cardiovascular Diseases, CIMA Universidad de Navarra and IdiSNA, Pamplona, Spain; CIBERCV, Carlos III Institute of Health, Madrid, Spain
| | - Blanca Losada-Fuentenebro
- Program of Cardiovascular Diseases, CIMA Universidad de Navarra and IdiSNA, Pamplona, Spain; CIBERCV, Carlos III Institute of Health, Madrid, Spain
| | - Leire Tapia
- Program of Cardiovascular Diseases, CIMA Universidad de Navarra and IdiSNA, Pamplona, Spain; CIBERCV, Carlos III Institute of Health, Madrid, Spain
| | - Antoni Bayés-Genís
- CIBERCV, Carlos III Institute of Health, Madrid, Spain; Servei de Cardiologia i Unitat d'Insuficiència Cardíaca, Hospital Universitari Germans Trias i Pujol, Badalona, Spain; Department of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain; ICREC Research Program, Germans Trias i Pujol Health Science Research Institute, Badalona, Spain
| | - Javier Díez
- Program of Cardiovascular Diseases, CIMA Universidad de Navarra and IdiSNA, Pamplona, Spain; CIBERCV, Carlos III Institute of Health, Madrid, Spain.
| | - Arantxa González
- Program of Cardiovascular Diseases, CIMA Universidad de Navarra and IdiSNA, Pamplona, Spain; CIBERCV, Carlos III Institute of Health, Madrid, Spain.
| |
Collapse
|
7
|
Ivanova MM, Dao J, Slayeh OA, Friedman A, Goker-Alpan O. Circulated TGF-β1 and VEGF-A as Biomarkers for Fabry Disease-Associated Cardiomyopathy. Cells 2023; 12:2102. [PMID: 37626912 PMCID: PMC10453505 DOI: 10.3390/cells12162102] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 08/16/2023] [Accepted: 08/18/2023] [Indexed: 08/27/2023] Open
Abstract
Fabry disease (FD) is a lysosomal disorder caused by α-galactosidase A deficiency, resulting in the accumulation of globotriaosylceramide (Gb-3) and its metabolite globotriaosylsphingosine (Lyso-Gb-3). Cardiovascular complications and hypertrophic cardiomyopathy (HCM) are the most frequent manifestations of FD. While an echocardiogram and cardiac MRI are clinical tools to assess cardiac involvement, hypertrophic pattern variations and fibrosis make it crucial to identify biomarkers to predict early cardiac outcomes. This study aims to investigate potential biomarkers associated with HCM in FD: transforming growth factor-β1 (TGF-β1), TGF-β active form (a-TGF-β), vascular endothelial growth factor (VEGF-A), and fibroblast growth factor (FGF2) in 45 patients with FD, categorized into cohorts based on the HCM severity. TGF-β1, a-TGF-β, FGF2, and VEGF-A were elevated in FD. While the association of TGF-β1 with HCM was not gender-related, VEGF was elevated in males with FD and HCM. Female patients with abnormal electrocardiograms but without overt HCM also have elevated TGF-β1. Lyso-Gb3 is correlated with TGF-β1, VEGF-A, and a-TGF-β1. Elevation of TGF-β1 provides evidence of the chronic inflammatory state as a cause of myocardial fibrosis in FD patients; thus, it is a potential marker of early cardiac fibrosis detected even prior to hypertrophy. TGF-β1 and VEGF biomarkers may be prognostic indicators of adverse cardiovascular events in FD.
Collapse
Affiliation(s)
- Margarita M. Ivanova
- Lysosomal & Rare Disorders Research and Treatment Center, 3702 Pender Drive, Ste 170, Fairfax, VA 22030, USA
| | | | | | | | - Ozlem Goker-Alpan
- Lysosomal & Rare Disorders Research and Treatment Center, 3702 Pender Drive, Ste 170, Fairfax, VA 22030, USA
| |
Collapse
|
8
|
The role of SMAD signaling in hypertrophic obstructive cardiomyopathy: an immunohistopathological study in pediatric and adult patients. Sci Rep 2023; 13:3706. [PMID: 36878974 PMCID: PMC9988847 DOI: 10.1038/s41598-023-30776-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 02/28/2023] [Indexed: 03/08/2023] Open
Abstract
Hypertrophic obstructive cardiomyopathy (HOCM) can bring a high risk of sudden cardiac death in young people. It is particularly urgent to understand the development and mechanism of HOCM to prevent unsafe incidents. Here, the comparison between pediatric and adult patients with HOCM has been performed to uncover the signaling mechanism regulating pathological process through histopathological analysis and immunohistochemical analysis. We found SMAD proteins played an important role during myocardial fibrosis for HOCM patients. In patients with HOCM, Masson and HE staining showed that myocardial cells were diffusely hypertrophied with obvious disorganized myocardial fiber alignment, and myocardial tissue was more damaged and collagen fibers increased significantly, which come early in childhood. Increased expressions of SMAD2 and SMAD3 contributed to myocardial fibrosis in patients with HOCM, which happened early in childhood and continued through adulthood. In addition, decreased expression of SMAD7 was closely related to collagen deposition, which negatively expedited fibrotic responses in patients with HOCM. Our study indicated that the abnormal regulation of SMAD signaling pathway can lead to severe myocardial fibrosis in childhood and its fibrogenic effects persist into adulthood, which is a crucial factor in causing sudden cardiac death and heart failure in HOCM patients.
Collapse
|
9
|
Matthia EL, Setteducato ML, Elzeneini M, Vernace N, Salerno M, Kramer CM, Keeley EC. Circulating Biomarkers in Hypertrophic Cardiomyopathy. J Am Heart Assoc 2022; 11:e027618. [PMID: 36382968 PMCID: PMC9851432 DOI: 10.1161/jaha.122.027618] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Hypertrophic cardiomyopathy is the most common genetic heart disease. Biomarkers, molecules measurable in the blood, could inform the clinician by aiding in diagnosis, directing treatment, and predicting outcomes. We present an updated review of circulating biomarkers in hypertrophic cardiomyopathy representing key pathologic processes including wall stretch, myocardial necrosis, fibrosis, inflammation, hypertrophy, and endothelial dysfunction, in addition to their clinical significance.
Collapse
Affiliation(s)
| | | | | | | | - Michael Salerno
- Department of Medicine, Cardiovascular DivisionUniversity of VirginiaCharlottesvilleVA
| | - Christopher M. Kramer
- Department of Medicine, Cardiovascular DivisionUniversity of VirginiaCharlottesvilleVA
| | - Ellen C. Keeley
- Department of MedicineUniversity of FloridaGainesvilleFL,Division of Cardiovascular MedicineUniversity of FloridaGainesvilleFL
| |
Collapse
|
10
|
Liang LW, Raita Y, Hasegawa K, Fifer MA, Maurer MS, Reilly MP, Shimada YJ. Proteomics profiling reveals a distinct high-risk molecular subtype of hypertrophic cardiomyopathy. Heart 2022; 108:1807-1814. [PMID: 35351822 PMCID: PMC9741498 DOI: 10.1136/heartjnl-2021-320729] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 03/08/2022] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVE Hypertrophic cardiomyopathy (HCM) is a heterogeneous disease, likely encompassing several subtypes of disease with distinct biological mechanisms (ie, molecular subtypes). Current models based solely on clinical data have yielded limited accuracy in predicting the risk of major adverse cardiovascular events (MACE). Our aim in this study was to derive molecular subtypes in our multicentre prospective cohort of patients with HCM using proteomics profiling and to examine their longitudinal associations with MACE. METHODS We applied unsupervised machine learning methods to plasma proteomics profiling data of 1681 proteins from 258 patients with HCM who were prospectively followed for a median of 2.8 years. The primary outcome was MACE, defined as a composite of arrhythmia, heart failure, stroke and sudden cardiac death. RESULTS We identified four molecular subtypes of HCM. Time-to-event analysis revealed significant differences in MACE-free survival among the four molecular subtypes (plogrank=0.007). Compared with the reference group with the lowest risk of MACE (molecular subtype A), patients in molecular subtype D had a higher risk of subsequently developing MACE, with an HR of 3.41 (95% CI 1.54 to 7.55, p=0.003). Pathway analysis of proteins differentially regulated in molecular subtype D demonstrated an upregulation of the Ras/mitogen-activated protein kinase and associated pathways, as well as pathways related to inflammation and fibrosis (eg, transforming growth factor-β pathway). CONCLUSIONS Our prospective plasma proteomics study not only exhibited the presence of HCM molecular subtypes but also identified pathobiological mechanisms associated with a distinct high-risk subtype of HCM.
Collapse
Affiliation(s)
- Lusha W Liang
- Division of Cardiology, Department of Medicine, Columbia University Irving Medical Center, New York City, New York, USA
| | - Yoshihiko Raita
- Department of Emergency Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Kohei Hasegawa
- Department of Emergency Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Michael A Fifer
- Cardiology Division, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Mathew S Maurer
- Division of Cardiology, Department of Medicine, Columbia University Irving Medical Center, New York City, New York, USA
| | - Muredach P Reilly
- Division of Cardiology, Department of Medicine, Columbia University Irving Medical Center, New York City, New York, USA
- Irving Institute for Clinical and Translational Research, Columbia University Irving Medical Center, New York City, New York, USA
| | - Yuichi J Shimada
- Division of Cardiology, Department of Medicine, Columbia University Irving Medical Center, New York City, New York, USA
| |
Collapse
|
11
|
Nair A, Preetha Rani MR, Salin Raj P, Ranjit S, Rajankutty K, Raghu KG. Cinnamic acid is beneficial to diabetic cardiomyopathy via its cardioprotective, anti-inflammatory, anti-dyslipidemia, and antidiabetic properties. J Biochem Mol Toxicol 2022; 36:e23215. [PMID: 36117386 DOI: 10.1002/jbt.23215] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 07/29/2022] [Accepted: 08/30/2022] [Indexed: 11/10/2022]
Abstract
Diabetes-related health issues are increasing day by day in public, and diabetic cardiomyopathy (DCM) is one serious issue among them. There is a lack of proper strategy to control and manage DCM. Here we are attempting a nutraceutical-based approach to protect the heart from DCM. The beneficial effect of cinnamic acid (CiA), was evaluated in an experimental model of diabetes. For this, diabetic model was created by feeding male Wistar rats with a high fat, high fructose diet for 6 months and a single dose of streptozotocin (25 mg/kg bwt). Metformin was used as the positive control. The diabetic rats showed insulin resistance, myocardial injury, and a significant increase of total cholesterol, triglycerides, and LDL. Development of DCM was evident from the increased cardiac mass index, LDH, CKMB, ANP, and CRP levels in the diabetic group. There was a significant increase in the levels of cardiac hypertrophy markers like TGF-β and β-MHC in the hearts of diabetic rats revealing DCM. Pro-inflammatory cytokines (TNF-α, IL-6) and lipid peroxides were significantly elevated in the serum of diabetic rats. Histopathology revealed inflammation and necrosis in the heart of diabetic rats confirming DCM. Oral administration of CiA (5 and 10 mg/kg bwt) prevented the development of DCM via its cardioprotective, anti-inflammatory, anti-dyslipidemia potential, and antidiabetic properties. Similarly, metformin (50 mg/kg bwt) has also shown protection against DCM. We conclude from this study that CiA is found to be beneficial against DCM and recommend more detailed preclinical and clinical studies to develop CiA-based nutraceutical against DCM.
Collapse
Affiliation(s)
- Anupama Nair
- Biochemistry and Molecular Mechanism Laboratory, Division of Agro-Processing and Technology, CSIR - National Institute for Interdisciplinary Science and Technology (NIIST), Thiruvananthapuram, Kerala, India.,Academy of Scientific and Innovative Research (AcSIR), Council of Scientific and Industrial Research, Ghaziabad, India
| | - M R Preetha Rani
- Biochemistry and Molecular Mechanism Laboratory, Division of Agro-Processing and Technology, CSIR - National Institute for Interdisciplinary Science and Technology (NIIST), Thiruvananthapuram, Kerala, India.,Academy of Scientific and Innovative Research (AcSIR), Council of Scientific and Industrial Research, Ghaziabad, India
| | - Palayyan Salin Raj
- Biochemistry and Molecular Mechanism Laboratory, Division of Agro-Processing and Technology, CSIR - National Institute for Interdisciplinary Science and Technology (NIIST), Thiruvananthapuram, Kerala, India.,Academy of Scientific and Innovative Research (AcSIR), Council of Scientific and Industrial Research, Ghaziabad, India
| | - S Ranjit
- Jubilee Centre for Medical Research (JCMR), Jubilee Mission Medical College and Research Institute, Thrissur, Kerala, India
| | - K Rajankutty
- Jubilee Centre for Medical Research (JCMR), Jubilee Mission Medical College and Research Institute, Thrissur, Kerala, India
| | - K G Raghu
- Biochemistry and Molecular Mechanism Laboratory, Division of Agro-Processing and Technology, CSIR - National Institute for Interdisciplinary Science and Technology (NIIST), Thiruvananthapuram, Kerala, India.,Academy of Scientific and Innovative Research (AcSIR), Council of Scientific and Industrial Research, Ghaziabad, India
| |
Collapse
|
12
|
Abstract
Transforming growth factor-β (TGFβ) isoforms are upregulated and activated in myocardial diseases and have an important role in cardiac repair and remodelling, regulating the phenotype and function of cardiomyocytes, fibroblasts, immune cells and vascular cells. Cardiac injury triggers the generation of bioactive TGFβ from latent stores, through mechanisms involving proteases, integrins and specialized extracellular matrix (ECM) proteins. Activated TGFβ signals through the SMAD intracellular effectors or through non-SMAD cascades. In the infarcted heart, the anti-inflammatory and fibroblast-activating actions of TGFβ have an important role in repair; however, excessive or prolonged TGFβ signalling accentuates adverse remodelling, contributing to cardiac dysfunction. Cardiac pressure overload also activates TGFβ cascades, which initially can have a protective role, promoting an ECM-preserving phenotype in fibroblasts and preventing the generation of injurious, pro-inflammatory ECM fragments. However, prolonged and overactive TGFβ signalling in pressure-overloaded cardiomyocytes and fibroblasts can promote cardiac fibrosis and dysfunction. In the atria, TGFβ-mediated fibrosis can contribute to the pathogenic substrate for atrial fibrillation. Overactive or dysregulated TGFβ responses have also been implicated in cardiac ageing and in the pathogenesis of diabetic, genetic and inflammatory cardiomyopathies. This Review summarizes the current evidence on the role of TGFβ signalling in myocardial diseases, focusing on cellular targets and molecular mechanisms, and discussing challenges and opportunities for therapeutic translation.
Collapse
Affiliation(s)
- Nikolaos G Frangogiannis
- The Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
13
|
Sun J, Zhu J, Chen L, Duan B, Wang R, Zhang M, Xu J, Liu W, Xu Y, Feng F, Qu W. Forsythiaside B inhibits myocardial fibrosis via down regulating TGF-β1/Smad signaling pathway. Eur J Pharmacol 2021; 908:174354. [PMID: 34284013 DOI: 10.1016/j.ejphar.2021.174354] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 07/13/2021] [Accepted: 07/14/2021] [Indexed: 11/17/2022]
Abstract
Forsythiaside B is the major ingredient of Callicarpa kwangtungensis Chun, and has been proven to protect myocardium from ischemia-reperfusion injury to achieve myocardial protection. However, the effect of forsythiaside B on adverse myocardial fibrosis remains unclear. In the present study, the myocardial fibrosis animal models were established induced by isoproterenol (ISO) to investigate whether forsythiaside B exhibited antifibrotic actions. Forsythiaside B was found to significantly improve the cardiac ejection fraction and fractional shortening rate of myocardial fibrosis mice compared with the normal saline group. In addition, forsythiaside B could lower the level of TGF-β1, the expression of α-SMA and collagen III. Forsythiaside B down-regulated the expression of Smad4 and the phosphorylation level of Smad3, which indicates that forsythiaside B could suppress myocardial fibrosis by inhibiting the TGF-β1/Smad signaling pathway. These results demonstrated that forsythiaside B could prevent myocardial fibrosis in ISO-induced mice, and may be a potentially rational therapeutic approach for the treatment of myocardial fibrosis.
Collapse
Affiliation(s)
- Jing Sun
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Jiaxin Zhu
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Lei Chen
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, 211198, People's Republic of China; National Engineering Research Center for Modernization of Traditional Chinese Medicine - Hakka Medical Resources Branch, School of Pharmacy, Gan Nan Medical University, Ganzhou, 341000, People's Republic of China
| | - Bingjing Duan
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Ruyi Wang
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Mengyuan Zhang
- Department of Pharmaceutical Engineering, Jiangsu Food & Pharmaceutical Science College, Huaian, Jiangsu, 223003, People's Republic of China
| | - Jian Xu
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Wenyuan Liu
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Yunhui Xu
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, 211198, People's Republic of China; Marshall Institute for Interdisciplinary Research, Marshall University, West Virginia, USA
| | - Feng Feng
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, 211198, People's Republic of China; Jiangsu Food &Pharmaceutical Science College, Huaian, Jiangsu, 223003, People's Republic of China.
| | - Wei Qu
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, 211198, People's Republic of China.
| |
Collapse
|
14
|
Abstract
Cardiac hypertrophy, characterized by the enlargement of cardiomyocytes, is initially an adaptive response to physiological and pathological stimuli. Decompensated cardiac hypertrophy is related to fibrosis, inflammatory cytokine, maladaptive remodeling, and heart failure. Although pathological myocardial hypertrophy is the main cause of hypertrophy-related morbidity and mortality, our understanding of its mechanism is still poor. Long noncoding RNAs (lncRNAs) are noncoding RNAs that regulate various physiological and pathological processes through multiple molecular mechanisms. Recently, accumulating evidence has indicated that lncRNA-H19 is a potent regulator of the progression of cardiac hypertrophy. For the first time, this review summarizes the current studies about the role of lncRNA-H19 in cardiac hypertrophy, including its pathophysiological processes and underlying pathological mechanism, including calcium regulation, fibrosis, apoptosis, angiogenesis, inflammation, and methylation. The context within which lncRNA-H19 might be developed as a target for cardiac hypertrophy treatment is then discussed to gain better insight into the possible biological functions of lncRNA-H19 in cardiac hypertrophy.
Collapse
|
15
|
Krylatov AV, Tsibulnikov SY, Mukhomedzyanov AV, Boshchenko AA, Goldberg VE, Jaggi AS, Erben RG, Maslov LN. The Role of Natriuretic Peptides in the Regulation of Cardiac Tolerance to Ischemia/Reperfusion and Postinfarction Heart Remodeling. J Cardiovasc Pharmacol Ther 2020; 26:131-148. [PMID: 32840121 DOI: 10.1177/1074248420952243] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
In the past 10 years, mortality from acute myocardial infarction has not decreased despite the widespread introduction of percutaneous coronary intervention. The reason for this situation is the absence in clinical practice of drugs capable of preventing reperfusion injury of the heart with high efficiency. In this regard, noteworthy natriuretic peptides (NPs) which have the infarct-limiting effect, prevent reperfusion cardiac injury, prevent adverse post-infarction remodeling of the heart. Atrial natriuretic peptide does not have the infarct-reducing effect in rats with alloxan-induced diabetes mellitus. NPs have the anti-apoptotic and anti-inflammatory effects. There is indirect evidence that NPs inhibit pyroptosis and autophagy. Published data indicate that NPs inhibit reactive oxygen species production in cardiomyocytes, aorta, heart, kidney and the endothelial cells. NPs can suppress aldosterone, angiotensin II, endothelin-1 synthesize and secretion. NPs inhibit the effects aldosterone, angiotensin II on the post-receptor level through intracellular signaling events. NPs activate guanylyl cyclase, protein kinase G and protein kinase A, and reduce phosphodiesterase 3 activity. NO-synthase and soluble guanylyl cyclase are involved in the cardioprotective effect of NPs. The cardioprotective effect of natriuretic peptides is mediated via activation of kinases (AMPK, PKC, PI3 K, ERK1/2, p70s6 k, Akt) and inhibition of glycogen synthase kinase 3β. The cardioprotective effect of NPs is mediated via sarcolemmal KATP channel and mitochondrial KATP channel opening. The cardioprotective effect of brain natriuretic peptide is mediated via MPT pore closing. The anti-fibrotic effect of NPs may be mediated through inhibition TGF-β1 expression. Natriuretic peptides can inhibit NF-κB activity and activate GATA. Hemeoxygenase-1 and peroxisome proliferator-activated receptor γ may be involved in the infarct-reducing effect of NPs. NPs exhibit the infarct-limiting effect in patients with acute myocardial infarction. NPs prevent post-infarction remodeling of the heart. To finally resolve the question of the feasibility of using NPs in AMI, a multicenter, randomized, blind, placebo-controlled study is needed to assess the effect of NPs on the mortality of patients after AMI.
Collapse
Affiliation(s)
- Andrey V Krylatov
- Cardiology Research Institute, 164253Tomsk National Research Medical Center of the RAS, Tomsk, Russia
| | - Sergey Y Tsibulnikov
- Cardiology Research Institute, 164253Tomsk National Research Medical Center of the RAS, Tomsk, Russia
| | | | - Alla A Boshchenko
- Cardiology Research Institute, 164253Tomsk National Research Medical Center of the RAS, Tomsk, Russia
| | - Victor E Goldberg
- Cancer Research Institute, 164253Tomsk National Research Medical Center of the RAS, Tomsk, Russia
| | - Amteshwar S Jaggi
- 429174Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, India
| | - Reinhold G Erben
- Department of Biomedical Research, Institute of Physiology, Pathophysiology and Biophysics, University of Veterinary Medicine, Vienna, Austria
| | - Leonid N Maslov
- Cardiology Research Institute, 164253Tomsk National Research Medical Center of the RAS, Tomsk, Russia
| |
Collapse
|
16
|
Zhao Y, Sun D, Chen Y, Zhan K, Meng Q, Zhang X, Zhu L, Yao X. Si-Miao-Yong-An Decoction attenuates isoprenaline-induced myocardial fibrosis in AMPK-driven Akt/mTOR and TGF-β/SMAD3 pathways. Biomed Pharmacother 2020; 130:110522. [PMID: 32736236 DOI: 10.1016/j.biopha.2020.110522] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 07/06/2020] [Accepted: 07/11/2020] [Indexed: 12/30/2022] Open
Abstract
Myocardial fibrosis is well-known to be the aberrant deposition of extracellular matrix (ECM), which may cause cardiac dysfunction, morbidity, and death. Traditional Chinese medicine formula Si-Miao-Yong-An Decoction (SMYAD), which is used clinically in cardiovascular diseases has been recently reported to able to resist myocardial fibrosis. The anti-fibrosis effects of SMYAD have been evaluated; however, its intricate mechanisms remain to be clarified. Here, we found that SMYAD treatment reduced the fibrosis injury and collagen fiber deposition that could improve cardiac function in isoprenaline (ISO)-induced fibrosis rat models. Combined with our systematic RNA-seq data of SMYAD treatment, we demonstrated that the remarkable up-regulation or down-regulation of several genes were closely related to the functional enrichment of TGF-β and AMPK pathways that were involved in myocardial fibrosis. Accordingly, we further explored the molecular mechanisms of SMYAD were mainly caused by AMPK activation and thereby suppressing its downstream Akt/mTOR and TGF-β/SMAD3 pathways. Moreover, we showed that the ECM deposition and secretion process were attenuated, suggesting that the fibrosis pathological features are changed. Interestingly, we found the similar AMPK-driven pathways in NIH-3T3 mouse fibroblasts treated with ISO. Taken together, these results demonstrate that SMYAD may be a new candidate agent by regulating AMPK-driven Akt/mTOR and TGF-β/SMAD3 pathways for potential therapeutic implications of myocardial fibrosis.
Collapse
Affiliation(s)
- Yuqian Zhao
- School of Traditional Chinese Materia Medica, Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Dejuan Sun
- School of Traditional Chinese Materia Medica, Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Yanmei Chen
- School of Traditional Chinese Materia Medica, Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Kaixuan Zhan
- Key Laboratory of Ministry of Education for TCM Viscera-State Theory and Applications, Liaoning University of Traditional Chinese Medicine, Shenyang 110847, China.
| | - Qu Meng
- School of Traditional Chinese Materia Medica, Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Xue Zhang
- School of Traditional Chinese Materia Medica, Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Lingjuan Zhu
- School of Traditional Chinese Materia Medica, Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China; Key Laboratory of Ministry of Education for TCM Viscera-State Theory and Applications, Liaoning University of Traditional Chinese Medicine, Shenyang 110847, China.
| | - Xinsheng Yao
- School of Traditional Chinese Materia Medica, Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China; Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
17
|
Oldfield CJ, Duhamel TA, Dhalla NS. Mechanisms for the transition from physiological to pathological cardiac hypertrophy. Can J Physiol Pharmacol 2020; 98:74-84. [DOI: 10.1139/cjpp-2019-0566] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The heart is capable of responding to stressful situations by increasing muscle mass, which is broadly defined as cardiac hypertrophy. This phenomenon minimizes ventricular wall stress for the heart undergoing a greater than normal workload. At initial stages, cardiac hypertrophy is associated with normal or enhanced cardiac function and is considered to be adaptive or physiological; however, at later stages, if the stimulus is not removed, it is associated with contractile dysfunction and is termed as pathological cardiac hypertrophy. It is during physiological cardiac hypertrophy where the function of subcellular organelles, including the sarcolemma, sarcoplasmic reticulum, mitochondria, and myofibrils, may be upregulated, while pathological cardiac hypertrophy is associated with downregulation of these subcellular activities. The transition of physiological cardiac hypertrophy to pathological cardiac hypertrophy may be due to the reduction in blood supply to hypertrophied myocardium as a consequence of reduced capillary density. Oxidative stress, inflammatory processes, Ca2+-handling abnormalities, and apoptosis in cardiomyocytes are suggested to play a critical role in the depression of contractile function during the development of pathological hypertrophy.
Collapse
Affiliation(s)
- Christopher J. Oldfield
- Faculty of Kinesiology & Recreation Management, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB R2H 2A6, Canada
| | - Todd A. Duhamel
- Faculty of Kinesiology & Recreation Management, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB R2H 2A6, Canada
| | - Naranjan S. Dhalla
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB R2H 2A6, Canada
- Department of Physiology & Pathophysiology, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| |
Collapse
|
18
|
Zaitsev VV, Gurshchenkov AV, Mitrofanova LB, Ryzhkov AV, Kazakova EE, Badaev KD, Gordeev ML, Moiseeva OM. [Clinical significance of different assesment methods of myocardial fibrosis in patients with hypertrophic cardiomyopathy.]. ACTA ACUST UNITED AC 2020; 60:44-50. [PMID: 32375615 DOI: 10.18087/cardio.2020.3.n561] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 06/11/2019] [Indexed: 11/18/2022]
Abstract
Objective To evaluate prospects for clinical use of circulating biomarkers for characterizing fibrotic changes in the myocardium of patients with hypertrophic cardiomyopathy (HCMP) with left ventricular (LV) outflow tract obstruction.Materials and Methods This was a prospective study with a 12-month follow-up period. The study included 47 patients (29 females and 18 males) with obstructive HCMP who were selected for septal reduction. Echocardiography (EchoCG), cardiac magnetic resonance imaging (MRI) and measurements of serum C-reactive protein, N-terminal pro-brain natriuretic peptide, and relevant circulating markers of fibrosis (TGF-β1, MMP-2,-9, TIMP-1, galectin-3, sST2, CITP, PICP, and PIIINP) were performed for all patients. All patients were evaluated at baseline and at 7 days, 6 and 12 months following surgical treatment. Morphometrical analysis of intraoperative biopsy samples was performed for evaluation of the degree of fibrotic changes. Patients received beta-blockers (95.7%), angiotensin-converting enzyme inhibitors/angiotensin receptor blockers (34%), loop diuretics (68.1%), aldosterone antagonists (34%), and statins (66%).Results Women with HCMP were older and more frequently had additional risk factors (arterial hypertension). Men had a higher risk of sudden cardiac death. Histological study of intraoperative myocardial biopsy samples showed that the area of fibrotic changes was 13.9±6.9%. According to cardiac MRI mean area of delayed contrast enhancement was 8.7±3.3% of LV myocardial mass. No association was established between traditional cardiovascular risk factors and severity of myocardial fibrotic changes or levels of circulating fibrosis markers. Perhaps that was due to the modifying effect of the drug therapy received by HCMP patients. According to EchoCG maximum pressure gradient in the LV outflow tract before the surgical treatment was 88 (55; 192) mm Hg, and interventricular septal thickness was 22 (16; 32) mm. A considerable decrease (p=0.0002) in the LV outflow tract gradient was observed after myectomy in all patients. At the same time, the left ventricular dimension, which tended to decrease in the early postoperative period, returned to baseline values by the 6th month of follow-up.Conclusion The study confirmed the increase in relevant circulating markers of fibrosis in patients with obstructive HCMP. At the same time, no correlation was observed between levels of circulating biomarkers and severity of fibrosis according to data of histology and cardiac MRI, which was probably due to the modifying effect of drug therapy and limited sampling.
Collapse
Affiliation(s)
| | | | | | | | | | - K D Badaev
- Pavlov First Saint Petersburg State Medical University
| | | | | |
Collapse
|
19
|
Chen SN, Lombardi R, Karmouch J, Tsai JY, Czernuszewicz G, Taylor MRG, Mestroni L, Coarfa C, Gurha P, Marian AJ. DNA Damage Response/TP53 Pathway Is Activated and Contributes to the Pathogenesis of Dilated Cardiomyopathy Associated With LMNA (Lamin A/C) Mutations. Circ Res 2019; 124:856-873. [PMID: 30696354 DOI: 10.1161/circresaha.118.314238] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
RATIONALE Mutations in the LMNA gene, encoding LMNA (lamin A/C), are responsible for laminopathies. Dilated cardiomyopathy (DCM) is a major cause of mortality and morbidity in laminopathies. OBJECTIVE To gain insights into the molecular pathogenesis of DCM in laminopathies. METHODS AND RESULTS We generated a tet-off bigenic mice expressing either a WT (wild type) or a mutant LMNA (D300N) protein in cardiac myocytes. LMNAD300N mutation is associated with DCM in progeroid syndromes. Expression of LMNAD300N led to severe myocardial fibrosis, apoptosis, cardiac dysfunction, and premature death. Administration of doxycycline suppressed LMNAD300N expression and prevented the phenotype. Whole-heart RNA sequencing in 2-week-old WT and LMNAD300N mice led to identification of ≈6000 differentially expressed genes. Gene Set Enrichment and Hallmark Pathway analyses predicted activation of E2F (E2F transcription factor), DNA damage response, TP53 (tumor protein 53), NFκB (nuclear factor κB), and TGFβ (transforming growth factor-β) pathways, which were validated by Western blotting, quantitative polymerase chain reaction of selected targets, and immunofluorescence staining. Differentially expressed genes involved cell death, cell cycle regulation, inflammation, and epithelial-mesenchymal differentiation. RNA sequencing of human hearts with DCM associated with defined LMNA pathogenic variants corroborated activation of the DNA damage response/TP53 pathway in the heart. Increased expression of CDKN2A (cyclin-dependent kinase inhibitor 2A)-a downstream target of E2F pathway and an activator of TP53-provided a plausible mechanism for activation of the TP53 pathway. To determine pathogenic role of TP53 pathway in DCM, Tp53 gene was conditionally deleted in cardiac myocytes in mice expressing the LMNAD300N protein. Deletion of Tp53 partially rescued myocardial fibrosis, apoptosis, proliferation of nonmyocyte cells, left ventricular dilatation and dysfunction, and slightly improved survival. CONCLUSIONS Cardiac myocyte-specific expression of LMNAD300N, associated with DCM, led to pathogenic activation of the E2F/DNA damage response/TP53 pathway in the heart and induction of myocardial fibrosis, apoptosis, cardiac dysfunction, and premature death. The findings denote the E2F/DNA damage response/TP53 axis as a responsible mechanism for DCM in laminopathies and as a potential intervention target.
Collapse
Affiliation(s)
- Suet Nee Chen
- From the Center for Cardiovascular Genetics, Institute of Molecular Medicine, University of Texas Health Sciences Center at Houston (S.N.C., R.L., J.K., J.-Y.T., G.C., P.G., A.J.M.).,Section of Cardiology, University of Colorado-Anschutz Medical Campus, Denver (S.N.C., M.R.G.T., L.M.)
| | - Raffaella Lombardi
- From the Center for Cardiovascular Genetics, Institute of Molecular Medicine, University of Texas Health Sciences Center at Houston (S.N.C., R.L., J.K., J.-Y.T., G.C., P.G., A.J.M.).,Division of Cardiology, Department of Advanced Biomedical Science, University of Naples Federico II, Italy (R.L.)
| | - Jennifer Karmouch
- From the Center for Cardiovascular Genetics, Institute of Molecular Medicine, University of Texas Health Sciences Center at Houston (S.N.C., R.L., J.K., J.-Y.T., G.C., P.G., A.J.M.).,MD Anderson Cancer Center, Houston, TX (J.K.)
| | - Ju-Yun Tsai
- From the Center for Cardiovascular Genetics, Institute of Molecular Medicine, University of Texas Health Sciences Center at Houston (S.N.C., R.L., J.K., J.-Y.T., G.C., P.G., A.J.M.).,Thermo Fisher Scientific, Taiwan (J.-Y.T.)
| | - Grace Czernuszewicz
- From the Center for Cardiovascular Genetics, Institute of Molecular Medicine, University of Texas Health Sciences Center at Houston (S.N.C., R.L., J.K., J.-Y.T., G.C., P.G., A.J.M.)
| | - Matthew R G Taylor
- Section of Cardiology, University of Colorado-Anschutz Medical Campus, Denver (S.N.C., M.R.G.T., L.M.)
| | - Luisa Mestroni
- Section of Cardiology, University of Colorado-Anschutz Medical Campus, Denver (S.N.C., M.R.G.T., L.M.)
| | - Cristian Coarfa
- Department of Cell Biology, Baylor College of Medicine, Houston, TX (C.C.)
| | - Priyatansh Gurha
- From the Center for Cardiovascular Genetics, Institute of Molecular Medicine, University of Texas Health Sciences Center at Houston (S.N.C., R.L., J.K., J.-Y.T., G.C., P.G., A.J.M.)
| | - Ali J Marian
- From the Center for Cardiovascular Genetics, Institute of Molecular Medicine, University of Texas Health Sciences Center at Houston (S.N.C., R.L., J.K., J.-Y.T., G.C., P.G., A.J.M.)
| |
Collapse
|
20
|
CaMKII Activity in the Inflammatory Response of Cardiac Diseases. Int J Mol Sci 2019; 20:ijms20184374. [PMID: 31489895 PMCID: PMC6770001 DOI: 10.3390/ijms20184374] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 09/02/2019] [Accepted: 09/03/2019] [Indexed: 12/20/2022] Open
Abstract
Inflammation is a physiological process by which the body responds to external insults and stress conditions, and it is characterized by the production of pro-inflammatory mediators such as cytokines. The acute inflammatory response is solved by removing the threat. Conversely, a chronic inflammatory state is established due to a prolonged inflammatory response and may lead to tissue damage. Based on the evidence of a reciprocal regulation between inflammation process and calcium unbalance, here we described the involvement of a calcium sensor in cardiac diseases with inflammatory drift. Indeed, the Ca2+/calmodulin-dependent protein kinase II (CaMKII) is activated in several diseases with an inflammatory component, such as myocardial infarction, ischemia/reperfusion injury, pressure overload/hypertrophy, and arrhythmic syndromes, in which it actively regulates pro-inflammatory signaling, among which includes nuclear factor kappa-B (NF-κB), thus contributing to pathological cardiac remodeling. Thus, CaMKII may represent a key target to modulate the severity of the inflammatory-driven degeneration.
Collapse
|
21
|
Tran KV, Tanriverdi K, Aurigemma GP, Lessard D, Sardana M, Parker M, Shaikh A, Gottbrecht M, Milstone Z, Tanriverdi S, Vitseva O, Keaney JF, Kiefe CI, McManus DD, Freedman JE. Circulating extracellular RNAs, myocardial remodeling, and heart failure in patients with acute coronary syndrome. J Clin Transl Res 2019; 5:33-43. [PMID: 31579840 PMCID: PMC6765153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 06/02/2019] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND Given high on-treatment mortality in heart failure (HF), identifying molecular pathways that underlie adverse cardiac remodeling may offer novel biomarkers and therapeutic avenues. Circulating extracellular RNAs (ex-RNAs) regulate important biological processes and are emerging as biomarkers of disease, but less is known about their role in the acute setting, particularly in the setting of HF. METHODS We examined the ex-RNA profiles of 296 acute coronary syndrome (ACS) survivors enrolled in the Transitions, Risks, and Actions in Coronary Events Center for Outcomes Research and Education Cohort. We measured 374 ex-RNAs selected a priori, based on previous findings from a large population study. We employed a two-step, mechanism-driven approach to identify ex-RNAs associated with echocardiographic phenotypes (left ventricular [LV] ejection fraction, LV mass, LV end-diastolic volume, left atrial [LA] dimension, and LA volume index) then tested relations of these ex-RNAs with prevalent HF (N=31, 10.5%). We performed further bioinformatics analysis of microRNA (miRNAs) predicted targets' genes ontology categories and molecular pathways. RESULTS We identified 44 ex-RNAs associated with at least one echocardiographic phenotype associated with HF. Of these 44 exRNAs, miR-29-3p, miR-584-5p, and miR-1247-5p were also associated with prevalent HF. The three microRNAs were implicated in the regulation p53 and transforming growth factor-β signaling pathways and predicted to be involved in cardiac fibrosis and cell death; miRNA predicted targets were enriched in gene ontology categories including several involving the extracellular matrix and cellular differentiation. CONCLUSIONS Among ACS survivors, we observed that miR-29-3p, miR-584-5p, and miR-1247-5p were associated with both echocardiographic markers of cardiac remodeling and prevalent HF. RELEVANCE FOR PATIENTS miR-29c-3p, miR-584-5p, and miR-1247-5p were associated with echocardiographic phenotypes and prevalent HF and are potential biomarkers for adverse cardiac remodeling in HF.
Collapse
Affiliation(s)
- Khanh-Van Tran
- 1Department of Medicine, Health Sciences University of Massachusetts Medical School, Worcester, MA, USA,Corresponding author: Khanh-Van Tran Cardiovascular Fellow, Department of Medicine, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA 01655, USA
| | - Kahraman Tanriverdi
- 1Department of Medicine, Health Sciences University of Massachusetts Medical School, Worcester, MA, USA
| | - Gerard P. Aurigemma
- 1Department of Medicine, Health Sciences University of Massachusetts Medical School, Worcester, MA, USA
| | - Darleen Lessard
- 2Population and Quantitative Health Sciences University of Massachusetts Medical School, Worcester, MA, USA
| | - Mayank Sardana
- 1Department of Medicine, Health Sciences University of Massachusetts Medical School, Worcester, MA, USA
| | - Matthew Parker
- 1Department of Medicine, Health Sciences University of Massachusetts Medical School, Worcester, MA, USA
| | - Amir Shaikh
- 1Department of Medicine, Health Sciences University of Massachusetts Medical School, Worcester, MA, USA
| | - Matthew Gottbrecht
- 1Department of Medicine, Health Sciences University of Massachusetts Medical School, Worcester, MA, USA
| | | | - Selim Tanriverdi
- 1Department of Medicine, Health Sciences University of Massachusetts Medical School, Worcester, MA, USA
| | - Olga Vitseva
- 1Department of Medicine, Health Sciences University of Massachusetts Medical School, Worcester, MA, USA
| | - John F. Keaney
- 1Department of Medicine, Health Sciences University of Massachusetts Medical School, Worcester, MA, USA
| | - Catarina I. Kiefe
- 2Population and Quantitative Health Sciences University of Massachusetts Medical School, Worcester, MA, USA
| | - David D. McManus
- 1Department of Medicine, Health Sciences University of Massachusetts Medical School, Worcester, MA, USA,2Population and Quantitative Health Sciences University of Massachusetts Medical School, Worcester, MA, USA
| | - Jane E. Freedman
- 1Department of Medicine, Health Sciences University of Massachusetts Medical School, Worcester, MA, USA
| |
Collapse
|
22
|
Bartekova M, Radosinska J, Jelemensky M, Dhalla NS. Role of cytokines and inflammation in heart function during health and disease. Heart Fail Rev 2019; 23:733-758. [PMID: 29862462 DOI: 10.1007/s10741-018-9716-x] [Citation(s) in RCA: 178] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
By virtue of their actions on NF-κB, an inflammatory nuclear transcription factor, various cytokines have been documented to play important regulatory roles in determining cardiac function under both physiological and pathophysiological conditions. Several cytokines including TNF-α, TGF-β, and different interleukins such as IL-1 IL-4, IL-6, IL-8, and IL-18 are involved in the development of various inflammatory cardiac pathologies, namely ischemic heart disease, myocardial infarction, heart failure, and cardiomyopathies. In ischemia-related pathologies, most of the cytokines are released into the circulation and serve as biological markers of inflammation. Furthermore, there is an evidence of their direct role in the pathogenesis of ischemic injury, suggesting cytokines as potential targets for the development of some anti-ischemic therapies. On the other hand, certain cytokines such as IL-2, IL-4, IL-6, IL-8, and IL-10 are involved in the post-ischemic tissue repair and thus are considered to exert beneficial effects on cardiac function. Conflicting reports regarding the role of some cytokines in inducing cardiac dysfunction in heart failure and different types of cardiomyopathies seem to be due to differences in the nature, duration, and degree of heart disease as well as the concentrations of some cytokines in the circulation. In spite of extensive research work in this field of investigation, no satisfactory anti-cytokine therapy for improving cardiac function in any type of heart disease is available in the literature.
Collapse
Affiliation(s)
- Monika Bartekova
- Institute for Heart Research, Centre of Experimental Medicine, Slovak Academy of Sciences, Bratislava, Slovak Republic.,Institute of Physiology, Faculty of Medicine, Comenius University in Bratislava, Bratislava, Slovak Republic
| | - Jana Radosinska
- Institute for Heart Research, Centre of Experimental Medicine, Slovak Academy of Sciences, Bratislava, Slovak Republic.,Institute of Physiology, Faculty of Medicine, Comenius University in Bratislava, Bratislava, Slovak Republic
| | - Marek Jelemensky
- Institute for Heart Research, Centre of Experimental Medicine, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Naranjan S Dhalla
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Center, 351 Tache Avenue, Winnipeg, MB, R2H 2A6, Canada. .,Department of Physiology and Pathophysiology, Max Rady College of Medicine, University of Manitoba, Winnipeg, Canada.
| |
Collapse
|
23
|
Liu JC, Zhou L, Wang F, Cheng ZQ, Rong C. Osthole decreases collagen I/III contents and their ratio in TGF-β1-overexpressed mouse cardiac fibroblasts through regulating the TGF-β/Smad signaling pathway. Chin J Nat Med 2018; 16:321-329. [PMID: 29860992 DOI: 10.1016/s1875-5364(18)30063-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2017] [Indexed: 01/05/2023]
Abstract
The present study was designed to elucidate whether the mechanism by which osthole decreases collagenI/III contents and their ratio is regulating the TGF-β/Smad signaling pathway in TGF-β1-overexpressed mouse cardiac fibroblasts (CFs). These CFs were cultured and treated with different concentrations of osthole. Our results showed that the TGF-β1 expression in the CFs transfected with that the recombinant expression plasmids pcDNA3.1(+)-TGF-β1 was significantly enhanced. After the CFs were treated with 1.25-5 μg·mL-1 of osthole for 24 h, the mRNA and protein expression levels of collagensIand III were reduced. The collagen I/III ratio was also reduced. The mRNA and protein expression levels of TGF-β1, TβRI, Smad2/3, P-Smad2/3, Smad4, and α-SMA were decreased, whereas the expression level of Smad7 was increased. These effects suggested that osthole could inhibit collagen I and III expression and reduce their ratio via the TGF-β/Smad signaling pathway in TGF-β1 overexpressed CFs. These effects of osthole may play beneficial roles in the prevention and treatment of myocardial fibrosis.
Collapse
Affiliation(s)
- Jin-Cheng Liu
- Clinic Pharmacology Laboratory, Department of Pharmacy, The First Affiliated Hospital of Soochow University, Suzhou 215006, China; Department of Pharmacology, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Lei Zhou
- Laboratory Department, Wuxi Center for Disease Control and Prevention, Wuxi 214023, China
| | - Feng Wang
- Department of Pharmacology, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Zong-Qi Cheng
- Clinic Pharmacology Laboratory, Department of Pharmacy, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Chen Rong
- Clinic Pharmacology Laboratory, Department of Pharmacy, The First Affiliated Hospital of Soochow University, Suzhou 215006, China.
| |
Collapse
|
24
|
Liu J, Wang F, Xie M, Chen R. Response to inhibition of TGF-β1 might be a novel therapeutic target in the treatment of cardiac fibrosis. Int J Cardiol 2018; 256:20. [PMID: 29454403 DOI: 10.1016/j.ijcard.2017.08.064] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 08/28/2017] [Indexed: 02/03/2023]
Affiliation(s)
- Jincheng Liu
- Department of Pharmacology, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, Jiangsu Province, China; Department of Pharmacy, The First People's Hospital of Jingmen, Jingmen 448000, Hubei Province, China
| | - Feng Wang
- Department of Pharmacology, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, Jiangsu Province, China
| | - Meilin Xie
- Department of Pharmacology, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, Jiangsu Province, China
| | - Rong Chen
- Clinic Pharmacology Laboratory, Department of Pharmacy, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu Province, China.
| |
Collapse
|
25
|
Sun M, Ishii R, Okumura K, Krauszman A, Breitling S, Gomez O, Hinek A, Boo S, Hinz B, Connelly KA, Kuebler WM, Friedberg MK. Experimental Right Ventricular Hypertension Induces Regional β1-Integrin-Mediated Transduction of Hypertrophic and Profibrotic Right and Left Ventricular Signaling. J Am Heart Assoc 2018; 7:e007928. [PMID: 29599211 PMCID: PMC5907585 DOI: 10.1161/jaha.117.007928] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Accepted: 02/28/2018] [Indexed: 02/06/2023]
Abstract
BACKGROUND Development of right ventricular (RV) hypertension eventually contributes to RV and left ventricular (LV) myocardial fibrosis and dysfunction. The molecular mechanisms are not fully elucidated. METHODS AND RESULTS Pulmonary artery banding was used to induce RV hypertension in rats in vivo. Then, we evaluated cardiac function and regional remodeling 6 weeks after pulmonary artery banding. To further elucidate mechanisms responsible for regional cardiac remodeling, we also mimicked RV hypertensive stress by cyclic mechanical stretching applied to confluent cultures of cardiac fibroblasts, isolated from the RV free wall, septal hinge points, and LV free wall. Echocardiography and catheter evaluation demonstrated that rats in the pulmonary artery banding group developed RV hypertension with leftward septal displacement, LV compression, and increased LV end-diastolic pressures. Picrosirius red staining indicated that pulmonary artery banding induced marked RV fibrosis and dysfunction, with prominent fibrosis and elastin deposition at the septal hinge points but less LV fibrosis. These changes were associated with proportionally increased expressions of integrin-β1 and profibrotic signaling proteins, including phosphorylated Smad2/3 and transforming growth factor-β1. Moreover, mechanically stretched fibroblasts also expressed significantly increased levels of α-smooth muscle actin, integrin-β1, transforming growth factor-β1, collagen I deposition, and wrinkle formation on gel assays, consistent with myofibroblast transformation. These changes were not observed in parallel cultures of mechanically stretched fibroblasts, preincubated with the integrin inhibitor (BTT-3033). CONCLUSIONS Experimentally induced RV hypertension triggers regional RV, hinge-point, and LV integrin β1-dependent mechanotransduction signaling pathways that eventually trigger myocardial fibrosis via transforming growth factor-β1 signaling. Reduced LV fibrosis and preserved global function, despite geometrical and pressure aberrations, suggest a possible elastin-mediated protective mechanism at the septal hinge points.
Collapse
MESH Headings
- Animals
- Arterial Pressure
- Cells, Cultured
- Collagen Type I/metabolism
- Disease Models, Animal
- Elastin/metabolism
- Fibrosis
- Heart Ventricles/metabolism
- Heart Ventricles/pathology
- Heart Ventricles/physiopathology
- Hypertension, Pulmonary/complications
- Hypertension, Pulmonary/metabolism
- Hypertension, Pulmonary/pathology
- Hypertension, Pulmonary/physiopathology
- Hypertrophy, Left Ventricular/etiology
- Hypertrophy, Left Ventricular/metabolism
- Hypertrophy, Left Ventricular/pathology
- Hypertrophy, Left Ventricular/physiopathology
- Hypertrophy, Right Ventricular/etiology
- Hypertrophy, Right Ventricular/metabolism
- Hypertrophy, Right Ventricular/pathology
- Hypertrophy, Right Ventricular/physiopathology
- Integrin beta1/metabolism
- Male
- Mechanotransduction, Cellular
- Pulmonary Artery/physiopathology
- Rats, Sprague-Dawley
- Transforming Growth Factor beta1/metabolism
- Ventricular Function, Left
- Ventricular Function, Right
- Ventricular Remodeling
Collapse
Affiliation(s)
- Mei Sun
- Division of Cardiology, Labatt Family Heart Center, Toronto, Ontario, Canada
- Translational Medicine, Hospital for Sick Children and University of Toronto, Ontario, Canada
| | - Ryo Ishii
- Division of Cardiology, Labatt Family Heart Center, Toronto, Ontario, Canada
- Translational Medicine, Hospital for Sick Children and University of Toronto, Ontario, Canada
| | - Kenichi Okumura
- Division of Cardiology, Labatt Family Heart Center, Toronto, Ontario, Canada
- Translational Medicine, Hospital for Sick Children and University of Toronto, Ontario, Canada
| | - Adrienn Krauszman
- The Keenan Research Center for Biomedical Science, St Michael's Hospital, Toronto, Canada
| | - Siegfried Breitling
- The Keenan Research Center for Biomedical Science, St Michael's Hospital, Toronto, Canada
| | - Olga Gomez
- Division of Cardiology, Labatt Family Heart Center, Toronto, Ontario, Canada
- Translational Medicine, Hospital for Sick Children and University of Toronto, Ontario, Canada
| | - Aleksander Hinek
- Translational Medicine, Hospital for Sick Children and University of Toronto, Ontario, Canada
| | - Stellar Boo
- Laboratory of Tissue Repair and Regeneration, Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Ontario, Canada
| | - Boris Hinz
- Laboratory of Tissue Repair and Regeneration, Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Ontario, Canada
| | - Kim A Connelly
- The Keenan Research Center for Biomedical Science, St Michael's Hospital, Toronto, Canada
| | - Wolfgang M Kuebler
- The Keenan Research Center for Biomedical Science, St Michael's Hospital, Toronto, Canada
| | - Mark K Friedberg
- Division of Cardiology, Labatt Family Heart Center, Toronto, Ontario, Canada
- Translational Medicine, Hospital for Sick Children and University of Toronto, Ontario, Canada
| |
Collapse
|
26
|
Hao H, Li X, Li Q, Lin H, Chen Z, Xie J, Xuan W, Liao W, Bin J, Huang X, Kitakaze M, Liao Y. FGF23 promotes myocardial fibrosis in mice through activation of β-catenin. Oncotarget 2018; 7:64649-64664. [PMID: 27579618 PMCID: PMC5323105 DOI: 10.18632/oncotarget.11623] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 08/21/2016] [Indexed: 11/25/2022] Open
Abstract
Fibroblast growth factor 23 (FGF23) has been reported to induce left ventricular hypertrophy, but it remains unclear whether FGF23 plays a role in cardiac fibrosis. This study is attempted to investigate the role of FGF23 in post-infarct myocardial fibrosis in mice. We noted that myocardial and plasma FGF23 and FGF receptor 4 were increased in mice with heart failure as well as in cultured adult mouse cardiac fibroblasts (AMCFs) exposed to angiotensin II, phenylephrine, soluble fractalkine. Recombinant FGF23 protein increased active β-catenin , procollagen I and procollagen III expression in cultured AMCFs. Furthermore, intra-myocardial injection of adeno-associated virus-FGF23 in mice significantly increased left ventricular end-diastolic pressure and myocardial fibrosis, and markedly upregulated active β-catenin, transforming growth factor β (TGF-β), procollagen I and procollagen III in both myocardial infarction (MI) and ischemia/reperfusion (IR) mice, while β-catenin inhibitor or silencing of β-catenin antagonized the FGF23-promoted myocardial fibrosis in vitro and in vivo. These findings indicate that FGF23 promotes myocardial fibrosis and exacerbates diastolic dysfunction induced by MI or IR, which is associated with the upregulation of active β-catenin and TGF-β.
Collapse
Affiliation(s)
- Huixin Hao
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xixian Li
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Qingman Li
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hairuo Lin
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhenhuan Chen
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jiahe Xie
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Wanling Xuan
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Wangjun Liao
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jianping Bin
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaobo Huang
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Masafumi Kitakaze
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Cardiovascular Division of the Department of Medicine, National Cerebral and Cardiovascular Center, Fujishirodai, Suita, Osaka, Japan
| | - Yulin Liao
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
27
|
Fang L, Ellims AH, Beale AL, Taylor AJ, Murphy A, Dart AM. Systemic inflammation is associated with myocardial fibrosis, diastolic dysfunction, and cardiac hypertrophy in patients with hypertrophic cardiomyopathy. Am J Transl Res 2017; 9:5063-5073. [PMID: 29218105 PMCID: PMC5714791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 10/10/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND Regional or diffuse fibrosis is an early feature of hypertrophic cardiomyopathy (HCM) and is related to poor prognosis. Previous studies have documented low-grade inflammation in HCM. The aim of this study was to examine the relationships between circulating inflammatory markers and myocardial fibrosis, systolic and diastolic dysfunction, and the degree of cardiac hypertrophy in HCM patients. METHODS AND RESULTS Fifty HCM patients were recruited while 20 healthy subjects served as the control group. Seventeen inflammatory cytokines/chemokines were measured in plasma. Cardiac magnetic resonance imaging and echocardiography were used to assess cardiac phenotypes. Tumour necrosis factor (TNF)-α, interleukin (IL)-6 and serum amyloid P (SAP) were significantly increased in HCM patients compared to controls. IL-6, IL-4, and monocyte chemotactic protein (MCP)-1 were correlated with regional fibrosis while stromal cell-derived factor-1 and MCP-1 were correlated with diffuse fibrosis. Fractalkine and interferon-γ were associated with left ventricular wall thickness. The above associations remained significant in a linear regression model including age, gender, body mass index and family history. TNF-α, IL-6, SAP, MCP-1 and IL-10 were associated with parameters of diastolic dysfunction. White blood cells were also increased in HCM patients and correlated with diffuse fibrosis and diastolic dysfunction. However the associations between parameters of systemic inflammation and diastolic dysfunction were weakened in the linear regression analysis. CONCLUSIONS Systemic inflammation is associated with parameters of the disease severity of HCM patients, particularly regional and diffuse fibrosis. Modifying inflammation may reduce myocardial fibrosis in HCM patients.
Collapse
Affiliation(s)
- Lu Fang
- Baker IDI Heart and Diabetes InstituteMelbourne, Australia
| | - Andris H Ellims
- Baker IDI Heart and Diabetes InstituteMelbourne, Australia
- Department of Cardiovascular Medicine, Alfred Heart Centre, The Alfred HospitalMelbourne, Australia
| | - Anna L Beale
- Department of Cardiovascular Medicine, Alfred Heart Centre, The Alfred HospitalMelbourne, Australia
| | - Andrew J Taylor
- Baker IDI Heart and Diabetes InstituteMelbourne, Australia
- Department of Cardiovascular Medicine, Alfred Heart Centre, The Alfred HospitalMelbourne, Australia
| | - Andrew Murphy
- Baker IDI Heart and Diabetes InstituteMelbourne, Australia
| | - Anthony M Dart
- Baker IDI Heart and Diabetes InstituteMelbourne, Australia
- Department of Cardiovascular Medicine, Alfred Heart Centre, The Alfred HospitalMelbourne, Australia
- Monash UniversityMelbourne, Australia
| |
Collapse
|
28
|
Li Y, Zhang Y, Wen M, Zhang J, Zhao X, Zhao Y, Deng J. Ginkgo biloba extract prevents acute myocardial infarction and suppresses the inflammation- and apoptosis-regulating p38 mitogen-activated protein kinases, nuclear factor-κB and B-cell lymphoma 2 signaling pathways. Mol Med Rep 2017; 16:3657-3663. [DOI: 10.3892/mmr.2017.6999] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2016] [Accepted: 04/19/2017] [Indexed: 11/06/2022] Open
|
29
|
Usefulness of Preoperative Transforming Growth Factor-Beta to Predict New Onset Atrial Fibrillation After Surgical Ventricular Septal Myectomy in Patients With Obstructive Hypertrophic Cardiomyopathy. Am J Cardiol 2017; 120:118-123. [PMID: 28483207 DOI: 10.1016/j.amjcard.2017.03.252] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2017] [Revised: 03/28/2017] [Accepted: 03/28/2017] [Indexed: 12/19/2022]
Abstract
Postoperative atrial fibrillation (AF) occurs frequently after cardiac surgery and contributes significantly to mortality. Transforming growth factor-beta (TGF-β) is associated with postoperative AF after coronary artery bypass grafting and valve surgery. We performed a prospective study to evaluate the role of TGF-β as a predictor of AF after myectomy. A total of 109 consecutive obstructive hypertrophic cardiomyopathy patients without previous AF who underwent myectomy were identified. We measured plasma TGF-β levels before surgery, monitored heart rhythm until discharge, and followed patients for a mean of 36 ± 10 months. AF was documented in 19 patients (17%). AF patients were older (50 ± 10 vs 43 ± 15 years, p = 0.037). Patients who developed AF had higher plasma TGF-β levels (1,695 ± 2,011 vs 1,099 ± 2,494 pg/ml, p = 0.011), more major adverse cardiac events (32% vs 7%, p = 0.006), and more strokes (16% vs 0%, p = 0.005) than patients who did not. TGF-β level ≥358 pg/ml predicted AF with sensitivity and specificity of 58% and 77% (p = 0.011), respectively. Higher TGF-β levels were associated with pulmonary hypertension (25% vs 8%, p = 0.033). In multivariable regression analysis, age (odds ratio 1.05, 95% confidence interval 1.00 to 1.11, p = 0.041) and TGF-β levels (odds ratio 2.42, 95% confidence interval 1.30 to 4.50, p = 0.005) predicted AF independently. In conclusion, elevated preoperative TGF-β value is an independent predictor of postoperative AF in hypertrophic cardiomyopathy patients after surgical ventricular septal myectomy.
Collapse
|
30
|
Yazaki K, Ajiro Y, Mori F, Watanabe M, Tsukamoto K, Saito T, Mizobuchi K, Iwade K. Multiple focal and macroreentrant left atrial tachycardias originating from a spontaneous scar at the contiguous aorta-left atrium area in a patient with hypertrophic cardiomyopathy: a case report. BMC Cardiovasc Disord 2017; 17:29. [PMID: 28095774 PMCID: PMC5240401 DOI: 10.1186/s12872-016-0448-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 12/16/2016] [Indexed: 02/04/2023] Open
Abstract
Background Spontaneous scar-related left atrial tachycardia (AT) is a rare arrhythmia. We describe a patient with hypertrophic cardiomyopathy (HCM) who developed multiple, both focal and macroreentrant left ATs associated with a spontaneous scar located at the aorta-left atrium (LA) contiguous area. Case presentation A 65-year-old man with HCM complained of palpitations. Twelve-lead electrocardiogram showed narrow QRS tachycardia with 2:1 atrioventricular conduction. Two sessions of radiofrequency ablation (RFA) were required to eliminate all left ATs. In the first session, 3-dimensional electroanatomical mapping fused with the image constructed by multi-detector computed tomography showed a clockwise macroreentrant AT (AT1) associated with a low-voltage or dense scar area located along the aorta-LA contiguous area. AT1 was eliminated by RFA to the narrow isthmus with slow conduction velocity within the scar. Additional ATs (AT2-AT4) occurred 1 month after the first ablation. In the second session, AT2 and AT3 were identified as focal ATs with centrifugal propagation and few accompanying fragmentations, and AT4 as a macroreentrant AT with features similar to AT1. AT2 and AT3 were successfully eliminated by performing RFA to the earliest activation site, and AT4 was terminated by performing RFA to the narrow isthmus with slow conduction velocity. No ATs have recurred for 11 months after these RFAs. Interestingly, the substrate for all left ATs was associated with the aorta-LA contiguous area. Conclusion To our knowledge, this is the first case of multiple, both focal and macroreentrant left ATs associated with a contiguous aorta-LA spontaneous scar area in a patient with HCM. Electronic supplementary material The online version of this article (doi:10.1186/s12872-016-0448-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kyoichiro Yazaki
- Department of Cardiology, National Hospital Organization Yokohama Medical Center, 3-60-2 Harajuku, Totsuka-ku, Yokohama-shi, Kanagawa, 245-8575, Japan.
| | - Yoichi Ajiro
- Department of Cardiology, National Hospital Organization Yokohama Medical Center, 3-60-2 Harajuku, Totsuka-ku, Yokohama-shi, Kanagawa, 245-8575, Japan
| | - Fumiaki Mori
- Department of Cardiology, National Hospital Organization Yokohama Medical Center, 3-60-2 Harajuku, Totsuka-ku, Yokohama-shi, Kanagawa, 245-8575, Japan
| | - Masahiro Watanabe
- Department of Cardiology, National Hospital Organization Yokohama Medical Center, 3-60-2 Harajuku, Totsuka-ku, Yokohama-shi, Kanagawa, 245-8575, Japan
| | - Kei Tsukamoto
- Department of Cardiology, National Hospital Organization Yokohama Medical Center, 3-60-2 Harajuku, Totsuka-ku, Yokohama-shi, Kanagawa, 245-8575, Japan
| | - Takashi Saito
- Department of Cardiology, National Hospital Organization Yokohama Medical Center, 3-60-2 Harajuku, Totsuka-ku, Yokohama-shi, Kanagawa, 245-8575, Japan
| | - Keiko Mizobuchi
- Department of Cardiology, National Hospital Organization Yokohama Medical Center, 3-60-2 Harajuku, Totsuka-ku, Yokohama-shi, Kanagawa, 245-8575, Japan
| | - Kazunori Iwade
- Department of Cardiology, National Hospital Organization Yokohama Medical Center, 3-60-2 Harajuku, Totsuka-ku, Yokohama-shi, Kanagawa, 245-8575, Japan
| |
Collapse
|
31
|
Al-Mohanna F. The Cardiokines. ENDOCRINOLOGY OF THE HEART IN HEALTH AND DISEASE 2017:87-114. [DOI: 10.1016/b978-0-12-803111-7.00004-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|