1
|
Pisani F, Pisani V, Arcangeli F, Harding A, Singhrao SK. Treponema denticola Has the Potential to Cause Neurodegeneration in the Midbrain via the Periodontal Route of Infection-Narrative Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:6049. [PMID: 37297653 PMCID: PMC10252855 DOI: 10.3390/ijerph20116049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 03/30/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease and the most common example of dementia. The neuropathological features of AD are the abnormal deposition of extracellular amyloid-β (Aβ) and intraneuronal neurofibrillary tangles with hyperphosphorylated tau protein. It is recognized that AD starts in the frontal cerebral cortex, and then it progresses to the entorhinal cortex, the hippocampus, and the rest of the brain. However, some studies on animals suggest that AD could also progress in the reverse order starting from the midbrain and then spreading to the frontal cortex. Spirochetes are neurotrophic: From a peripheral route of infection, they can reach the brain via the midbrain. Their direct and indirect effect via the interaction of their virulence factors and the microglia potentially leads to the host peripheral nerve, the midbrain (especially the locus coeruleus), and cortical damage. On this basis, this review aims to discuss the hypothesis of the ability of Treponema denticola to damage the peripheral axons in the periodontal ligament, to evade the complemental pathway and microglial immune response, to determine the cytoskeletal impairment and therefore causing the axonal transport disruption, an altered mitochondrial migration and the consequent neuronal apoptosis. Further insights about the central neurodegeneration mechanism and Treponema denticola's resistance to the immune response when aggregated in biofilm and its quorum sensing are suggested as a pathogenetic model for the advanced stages of AD.
Collapse
Affiliation(s)
- Flavio Pisani
- Faculty of Clinical and Biomedical Sciences, School of Dentistry, University of Central Lancashire, Preston PR1 2HE, UK
| | - Valerio Pisani
- IRCCS, “Santa Lucia” Foundation, Neurology and Neurorehabilitation Unit, Via Ardeatina, 306, 00179 Rome, Italy
| | - Francesca Arcangeli
- Azienda Sanitaria Locale ASLRM1, Nuovo Regina Margherita Hospital, Geriatric Department, Advanced Centre for Dementia and Cognitive Disorders, Via Emilio Morosini, 30, 00153 Rome, Italy
| | - Alice Harding
- Dementia and Neurodegenerative Disease Research Group, Faculty of Clinical and Biomedical Sciences, School of Dentistry, University of Central Lancashire, Preston PR1 2HE, UK
| | - Simarjit Kaur Singhrao
- Dementia and Neurodegenerative Disease Research Group, Faculty of Clinical and Biomedical Sciences, School of Dentistry, University of Central Lancashire, Preston PR1 2HE, UK
| |
Collapse
|
2
|
Yoshida MW, Hakozaki M, Goshima G. Armadillo repeat-containing kinesin represents the versatile plus-end-directed transporter in Physcomitrella. NATURE PLANTS 2023; 9:733-748. [PMID: 37142749 DOI: 10.1038/s41477-023-01397-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 03/21/2023] [Indexed: 05/06/2023]
Abstract
Kinesin-1, also known as conventional kinesin, is widely used for microtubule plus-end-directed (anterograde) transport of various cargos in animal cells. However, a motor functionally equivalent to the conventional kinesin has not been identified in plants, which lack the kinesin-1 genes. Here we show that plant-specific armadillo repeat-containing kinesin (ARK) is the long sought-after versatile anterograde transporter in plants. In ARK mutants of the moss Physcomitrium patens, the anterograde motility of nuclei, chloroplasts, mitochondria and secretory vesicles was suppressed. Ectopic expression of non-motile or tail-deleted ARK did not restore organelle distribution. Another prominent macroscopic phenotype of ARK mutants was the suppression of cell tip growth. We showed that this defect was attributed to the mislocalization of actin regulators, including RopGEFs; expression and forced apical localization of RopGEF3 partially rescued the growth phenotype of the ARK mutant. The mutant phenotypes were partially rescued by ARK homologues in Arabidopsis thaliana, suggesting the conservation of ARK functions in plants.
Collapse
Affiliation(s)
- Mari W Yoshida
- Department of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Maya Hakozaki
- Department of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Gohta Goshima
- Department of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Japan.
- Sugashima Marine Biological Laboratory, Graduate School of Science, Nagoya University, Toba, Japan.
| |
Collapse
|
3
|
Karan C, Chaudhuri D. Cooperation and competition in the collective drive by motor proteins: mean active force, fluctuations, and self-load. SOFT MATTER 2023; 19:1834-1843. [PMID: 36789956 DOI: 10.1039/d2sm01183b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
We consider the dynamics of a bio-filament under the collective drive of motor proteins. They are attached irreversibly to a substrate and undergo stochastic attachment-detachment with the filament to produce a directed force on it. We establish the dependence of the mean directed force and force correlations on the parameters describing the individual motor proteins using analytical theory and direct numerical simulations. The effective Langevin description for the filament motion gives mean-squared displacement, asymptotic diffusion constant, and mobility leading to an effective temperature. Finally, we show how competition between motor protein extensions generates a self-load, describable in terms of the effective temperature, affecting the filament motion.
Collapse
Affiliation(s)
- Chitrak Karan
- Institute of Physics, Sachivalaya Marg, Sainik School, Bhubaneswar, 751005, India.
- Homi Bhaba National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400094, India.
| | - Debasish Chaudhuri
- Institute of Physics, Sachivalaya Marg, Sainik School, Bhubaneswar, 751005, India.
- Homi Bhaba National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400094, India.
| |
Collapse
|
4
|
Leighton MP, Sivak DA. Dynamic and Thermodynamic Bounds for Collective Motor-Driven Transport. PHYSICAL REVIEW LETTERS 2022; 129:118102. [PMID: 36154431 DOI: 10.1103/physrevlett.129.118102] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 08/17/2022] [Indexed: 06/16/2023]
Abstract
Molecular motors work collectively to transport cargo within cells, with anywhere from one to several hundred motors towing a single cargo. For a broad class of collective-transport systems, we use tools from stochastic thermodynamics to derive a new lower bound for the entropy production rate which is tighter than the second law. This implies new bounds on the velocity, efficiency, and precision of general transport systems and a set of analytic Pareto frontiers for identical motors. In a specific model, we identify conditions for saturation of these Pareto frontiers.
Collapse
Affiliation(s)
- Matthew P Leighton
- Department of Physics, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - David A Sivak
- Department of Physics, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| |
Collapse
|
5
|
Shukla S, Troitskaia A, Swarna N, Maity BK, Tjioe M, Bookwalter CS, Trybus KM, Chemla YR, Selvin PR. High-throughput force measurement of individual kinesin-1 motors during multi-motor transport. NANOSCALE 2022; 14:12463-12475. [PMID: 35980233 PMCID: PMC9983033 DOI: 10.1039/d2nr01701f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Molecular motors often work in teams to move a cellular cargo. Yet measuring the forces exerted by each motor is challenging. Using a sensor made with denatured ssDNA and multi-color fluorescence, we measured picoNewtons of forces and nanometer distances exerted by individual constrained kinesin-1 motors acting together while driving a common microtubule in vitro. We find that kinesins primarily exerted less than 1 pN force, even while the microtubule is bypassing artificial obstacles of 20-100 nanometer size. Occasionally, individual forces increase upon encountering obstacles, although at other times they do not, with the cargo continuing in a directional manner. Our high-throughput technique, which can measure forces by many motors simultaneously, is expected to be useful for many different types of molecular motors.
Collapse
Affiliation(s)
- Saurabh Shukla
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Center for the Physics of Living Cells, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.
| | - Alice Troitskaia
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Nikhila Swarna
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Barun Kumar Maity
- Center for the Physics of Living Cells, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Marco Tjioe
- Center for the Physics of Living Cells, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Carol S Bookwalter
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, VT, USA
| | - Kathleen M Trybus
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, VT, USA
| | - Yann R Chemla
- Center for the Physics of Living Cells, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Paul R Selvin
- Center for the Physics of Living Cells, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
6
|
Alam S, Abdullah CS, Aishwarya R, Morshed M, Bhuiyan MS. Molecular Perspectives of Mitochondrial Adaptations and Their Role in Cardiac Proteostasis. Front Physiol 2020; 11:1054. [PMID: 32982788 PMCID: PMC7481364 DOI: 10.3389/fphys.2020.01054] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 07/31/2020] [Indexed: 12/17/2022] Open
Abstract
Mitochondria are the key to properly functioning energy generation in the metabolically demanding cardiomyocytes and thus essential to healthy heart contractility on a beat-to-beat basis. Mitochondria being the central organelle for cellular metabolism and signaling in the heart, its dysfunction leads to cardiovascular disease. The healthy mitochondrial functioning critical to maintaining cardiomyocyte viability and contractility is accomplished by adaptive changes in the dynamics, biogenesis, and degradation of the mitochondria to ensure cellular proteostasis. Recent compelling evidence suggests that the classical protein quality control system in cardiomyocytes is also under constant mitochondrial control, either directly or indirectly. Impairment of cytosolic protein quality control may affect the position of the mitochondria in relation to other organelles, as well as mitochondrial morphology and function, and could also activate mitochondrial proteostasis. Despite a growing interest in the mitochondrial quality control system, very little information is available about the molecular function of mitochondria in cardiac proteostasis. In this review, we bring together current understanding of the adaptations and role of the mitochondria in cardiac proteostasis and describe the adaptive/maladaptive changes observed in the mitochondrial network required to maintain proteomic integrity. We also highlight the key mitochondrial signaling pathways activated in response to proteotoxic stress as a cellular mechanism to protect the heart from proteotoxicity. A deeper understanding of the molecular mechanisms of mitochondrial adaptations and their role in cardiac proteostasis will help to develop future therapeutics to protect the heart from cardiovascular diseases.
Collapse
Affiliation(s)
- Shafiul Alam
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center, Shreveport, LA, United States
| | - Chowdhury S Abdullah
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center, Shreveport, LA, United States
| | - Richa Aishwarya
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center, Shreveport, LA, United States
| | - Mahboob Morshed
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center, Shreveport, LA, United States
| | - Md Shenuarin Bhuiyan
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center, Shreveport, LA, United States.,Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center, Shreveport, LA, United States
| |
Collapse
|
7
|
Kaneko T, Furuta K, Oiwa K, Shintaku H, Kotera H, Yokokawa R. Different motilities of microtubules driven by kinesin-1 and kinesin-14 motors patterned on nanopillars. SCIENCE ADVANCES 2020; 6:eaax7413. [PMID: 32010782 PMCID: PMC6976292 DOI: 10.1126/sciadv.aax7413] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 11/20/2019] [Indexed: 06/10/2023]
Abstract
Kinesin is a motor protein that plays important roles in a variety of cellular functions. In vivo, multiple kinesin molecules are bound to cargo and work as a team to produce larger forces or higher speeds than a single kinesin. However, the coordination of kinesins remains poorly understood because of the experimental difficulty in controlling the number and arrangement of kinesins, which are considered to affect their coordination. Here, we report that both the number and spacing significantly influence the velocity of microtubules driven by nonprocessive kinesin-14 (Ncd), whereas neither the number nor the spacing changes the velocity in the case of highly processive kinesin-1. This result was realized by the optimum nanopatterning method of kinesins that enables immobilization of a single kinesin on a nanopillar. Our proposed method enables us to study the individual effects of the number and spacing of motors on the collective dynamics of multiple motors.
Collapse
Affiliation(s)
- Taikopaul Kaneko
- Department of Micro Engineering, Kyoto University, Kyoto Daigaku-Katsura, Nishikyo-ku, Kyoto 615-8540, Japan
| | - Ken’ya Furuta
- Advanced ICT Research Institute, National Institute of Information and Communications Technology, 588-2, Iwaoka, Nishi-ku, Kobe, Hyogo 651-2492, Japan
| | - Kazuhiro Oiwa
- Advanced ICT Research Institute, National Institute of Information and Communications Technology, 588-2, Iwaoka, Nishi-ku, Kobe, Hyogo 651-2492, Japan
| | - Hirofumi Shintaku
- Department of Micro Engineering, Kyoto University, Kyoto Daigaku-Katsura, Nishikyo-ku, Kyoto 615-8540, Japan
- Cluster for Pioneering Research, RIKEN, 2-1, Hirosawa, Wako, Saitama 351-0198, Japan
| | - Hidetoshi Kotera
- Department of Micro Engineering, Kyoto University, Kyoto Daigaku-Katsura, Nishikyo-ku, Kyoto 615-8540, Japan
- RIKEN, 2-1, Hirosawa, Wako, Saitama 351-0198, Japan
| | - Ryuji Yokokawa
- Department of Micro Engineering, Kyoto University, Kyoto Daigaku-Katsura, Nishikyo-ku, Kyoto 615-8540, Japan
| |
Collapse
|
8
|
Quantifying Protein Copy Number in Super Resolution Using an Imaging-Invariant Calibration. Biophys J 2019; 116:2195-2203. [PMID: 31103226 DOI: 10.1016/j.bpj.2019.04.026] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 04/20/2019] [Accepted: 04/25/2019] [Indexed: 01/28/2023] Open
Abstract
The use of super-resolution microscopy in recent years has revealed that proteins often form small assemblies inside cells and are organized in nanoclusters. However, determining the copy number of proteins within these nanoclusters constitutes a major challenge because of unknown labeling stoichiometries and complex fluorophore photophysics. We previously developed a DNA-origami-based calibration approach to extract protein copy number from super-resolution images. However, the applicability of this approach is limited by the fact that the calibration is dependent on the specific labeling and imaging conditions used in each experiment. Hence, the calibration must be repeated for each experimental condition, which is a formidable task. Here, using cells stably expressing dynein intermediate chain fused to green fluorescent protein (HeLa IC74 cells) as a reference sample, we demonstrate that the DNA-origami-based calibration data we previously generated can be extended to super-resolution images taken under different experimental conditions, enabling the quantification of any green-fluorescent-protein-fused protein of interest. To do so, we first quantified the copy number of dynein motors within nanoclusters in the cytosol and along the microtubules. Interestingly, this quantification showed that dynein motors form assemblies consisting of more than one motor, especially along microtubules. This quantification enabled us to use the HeLa IC74 cells as a reference sample to calibrate and quantify protein copy number independently of labeling and imaging conditions, dramatically improving the versatility and applicability of our approach.
Collapse
|
9
|
Xie Y, Cheng M, Lu S, Yuan Q, Yang D, Chen Y, Pan C, Qiu Y, Xiong B. Eg5 orchestrates porcine oocyte maturational progression by maintaining meiotic organelle arrangement. Cell Div 2018; 13:4. [PMID: 29796058 PMCID: PMC5966870 DOI: 10.1186/s13008-018-0037-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 05/15/2018] [Indexed: 02/06/2023] Open
Abstract
Background Kinesin superfamily proteins are microtubule-based molecular motors essential for the intracellular transport of various cargos, including organelles, proteins, and RNAs. However, their exact roles during mammalian oocyte meiosis have not been fully clarified. Results Herein, we investigated the critical events during porcine oocyte meiotic maturation with the treatment of Eg5-specific inhibitor monastrol. We found that Eg5 inhibition resulted in oocyte meiotic failure by displaying the poor expansion of cumulus cells and reduced rate of polar body extrusion. In the meantime, the spindle assembly and chromosome alignment were compromised, accompanied by the decreased level of acetylated α-tubulin, indicative of less stable microtubules. Impaired actin dynamics and mitochondria integrity were also observed in Eg5-inhibited oocytes. Additionally, inhibition of Eg5 caused the abnormal distribution of cortical granules and ovastacin, a cortical granule component, potentially leading to the fertilization failure. Conclusions Our findings reveal that Eg5 possesses an important function in porcine oocyte meiotic progression by regulating the organelle dynamics and arrangement.
Collapse
Affiliation(s)
- Yan Xie
- 1Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, 510515 China.,2Department of Reproductive Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120 China
| | - Minghui Cheng
- 3College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095 China
| | - Shan Lu
- 2Department of Reproductive Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120 China
| | - Qilong Yuan
- 2Department of Reproductive Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120 China
| | - Dongyu Yang
- 2Department of Reproductive Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120 China
| | - Ying Chen
- 3College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095 China
| | - Chen Pan
- 3College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095 China
| | - Yurong Qiu
- 1Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, 510515 China
| | - Bo Xiong
- 3College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095 China
| |
Collapse
|
10
|
Sanghavi P, D'Souza A, Rai A, Rai A, Padinhatheeri R, Mallik R. Coin Tossing Explains the Activity of Opposing Microtubule Motors on Phagosomes. Curr Biol 2018; 28:1460-1466.e4. [PMID: 29706510 PMCID: PMC5954897 DOI: 10.1016/j.cub.2018.03.041] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 02/03/2018] [Accepted: 03/19/2018] [Indexed: 01/08/2023]
Abstract
How the opposing activity of kinesin and dynein motors generates polarized distribution of organelles inside cells is poorly understood and hotly debated [1, 2]. Possible explanations include stochastic mechanical competition [3, 4], coordinated regulation by motor-associated proteins [5-7], mechanical activation of motors [8], and lipid-induced organization [9]. Here, we address this question by using phagocytosed latex beads to generate early phagosomes (EPs) that move bidirectionally along microtubules (MTs) in an in vitro assay [9]. Dynein/kinesin activity on individual EPs is recorded as real-time force generation of the motors against an optical trap. Activity of one class of motors frequently coincides with, or is rapidly followed by opposite motors. This leads to frequent and rapid reversals of EPs in the trap. Remarkably, the choice between dynein and kinesin can be explained by the tossing of a coin. Opposing motors therefore appear to function stochastically and independently of each other, as also confirmed by observing no effect on kinesin function when dynein is inhibited on the EPs. A simple binomial probability calculation based on the geometry of EP-microtubule contact explains the observed activity of dynein and kinesin on phagosomes. This understanding of intracellular transport in terms of a hypothetical coin, if it holds true for other cargoes, provides a conceptual framework to explain the polarized localization of organelles inside cells.
Collapse
Affiliation(s)
- Paulomi Sanghavi
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai 400005, India
| | - Ashwin D'Souza
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai 400005, India
| | - Ashim Rai
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai 400005, India
| | - Arpan Rai
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai 400005, India
| | - Ranjith Padinhatheeri
- Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Roop Mallik
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai 400005, India.
| |
Collapse
|
11
|
O'Mealey GB, Plafker KS, Berry WL, Janknecht R, Chan JY, Plafker SM. A PGAM5-KEAP1-Nrf2 complex is required for stress-induced mitochondrial retrograde trafficking. J Cell Sci 2017; 130:3467-3480. [PMID: 28839075 DOI: 10.1242/jcs.203216] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 08/20/2017] [Indexed: 12/12/2022] Open
Abstract
The Nrf2 transcription factor is a master regulator of the cellular anti-stress response. A population of the transcription factor associates with the mitochondria through a complex with KEAP1 and the mitochondrial outer membrane histidine phosphatase, PGAM5. To determine the function of this mitochondrial complex, we knocked down each component and assessed mitochondrial morphology and distribution. We discovered that depletion of Nrf2 or PGAM5, but not KEAP1, inhibits mitochondrial retrograde trafficking induced by proteasome inhibition. Mechanistically, this disrupted motility results from aberrant degradation of Miro2, a mitochondrial GTPase that links mitochondria to microtubules. Rescue experiments demonstrate that this Miro2 degradation involves the KEAP1-cullin-3 E3 ubiquitin ligase and the proteasome. These data are consistent with a model in which an intact complex of PGAM5-KEAP1-Nrf2 preserves mitochondrial motility by suppressing dominant-negative KEAP1 activity. These data further provide a mechanistic explanation for how age-dependent declines in Nrf2 expression impact mitochondrial motility and induce functional deficits commonly linked to neurodegeneration.
Collapse
Affiliation(s)
- Gary B O'Mealey
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73118, USA.,Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73118, USA
| | - Kendra S Plafker
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73118, USA
| | - William L Berry
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73118, USA
| | - Ralf Janknecht
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73118, USA
| | - Jefferson Y Chan
- Department of Pathology, University of Irvine School of Medicine, Irvine, CA 92697, USA
| | - Scott M Plafker
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73118, USA
| |
Collapse
|
12
|
Brady ST, Morfini GA. Regulation of motor proteins, axonal transport deficits and adult-onset neurodegenerative diseases. Neurobiol Dis 2017; 105:273-282. [PMID: 28411118 DOI: 10.1016/j.nbd.2017.04.010] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 03/17/2017] [Accepted: 04/10/2017] [Indexed: 01/07/2023] Open
Abstract
Neurons affected in a wide variety of unrelated adult-onset neurodegenerative diseases (AONDs) typically exhibit a "dying back" pattern of degeneration, which is characterized by early deficits in synaptic function and neuritic pathology long before neuronal cell death. Consistent with this observation, multiple unrelated AONDs including Alzheimer's disease, Parkinson's disease, Huntington's disease, and several motor neuron diseases feature early alterations in kinase-based signaling pathways associated with deficits in axonal transport (AT), a complex cellular process involving multiple intracellular trafficking events powered by microtubule-based motor proteins. These pathogenic events have important therapeutic implications, suggesting that a focus on preservation of neuronal connections may be more effective to treat AONDs than addressing neuronal cell death. While the molecular mechanisms underlying AT abnormalities in AONDs are still being analyzed, evidence has accumulated linking those to a well-established pathological hallmark of multiple AONDs: altered patterns of neuronal protein phosphorylation. Here, we present a short overview on the biochemical heterogeneity of major motor proteins for AT, their regulation by protein kinases, and evidence revealing cell type-specific AT specializations. When considered together, these findings may help explain how independent pathogenic pathways can affect AT differentially in the context of each AOND.
Collapse
Affiliation(s)
- Scott T Brady
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, USA; Marine Biological Laboratory, Woods Hole, MA 02543, USA.
| | - Gerardo A Morfini
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, USA; Marine Biological Laboratory, Woods Hole, MA 02543, USA.
| |
Collapse
|
13
|
Hung COY, Coleman MP. KIF1A mediates axonal transport of BACE1 and identification of independently moving cargoes in living SCG neurons. Traffic 2016; 17:1155-1167. [PMID: 27484852 PMCID: PMC5132087 DOI: 10.1111/tra.12428] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 07/27/2016] [Accepted: 07/29/2016] [Indexed: 12/17/2022]
Abstract
Neurons rely heavily on axonal transport to deliver materials from the sites of synthesis to the axon terminals over distances that can be many centimetres long. KIF1A is the neuron-specific kinesin with the fastest reported anterograde motor activity. Previous studies have shown that KIF1A transports a subset of synaptic proteins, neurofilaments and dense-core vesicles. Using two-colour live imaging, we showed that beta-secretase 1 (BACE1)-mCherry moves together with KIF1A-GFP in both the anterograde and retrograde directions in superior cervical ganglions (SCG) neurons. We confirmed that KIF1A is functionally required for BACE1 transport by using KIF1A siRNA and a KIF1A mutant construct (KIF1A-T312M) to impair its motor activity. We further identified several cargoes that have little or no co-migration with KIF1A-GFP and also move independently from BACE1-mCherry. Together, these findings support a primary role for KIF1A in the anterograde transport of BACE1 and suggest that axonally transported cargoes are sorted into different classes of carrier vesicles in the cell body and are transported by cargo-specific motor proteins through the axon.
Collapse
Affiliation(s)
- Christy O Y Hung
- Department of Signalling Programme, Babraham Institute, Cambridge, UK
| | - Michael P Coleman
- Department of Signalling Programme, Babraham Institute, Cambridge, UK.
- John van Geest Centre for Brain Repair, University of Cambridge, Cambridge, UK.
| |
Collapse
|
14
|
Morfini G, Schmidt N, Weissmann C, Pigino G, Kins S. Conventional kinesin: Biochemical heterogeneity and functional implications in health and disease. Brain Res Bull 2016; 126:347-353. [PMID: 27339812 DOI: 10.1016/j.brainresbull.2016.06.009] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 06/13/2016] [Accepted: 06/18/2016] [Indexed: 11/30/2022]
Abstract
Intracellular trafficking events powered by microtubule-based molecular motors facilitate the targeted delivery of selected molecular components to specific neuronal subdomains. Within this context, we provide a brief review of mechanisms underlying the execution of axonal transport (AT) by conventional kinesin, the most abundant kinesin-related motor protein in the mature nervous system. We emphasize the biochemical heterogeneity of this multi-subunit motor protein, further discussing its significance in light of recent discoveries revealing its regulation by various protein kinases. In addition, we raise issues relevant to the mode of conventional kinesin attachment to cargoes and examine recent evidence linking alterations in conventional kinesin phosphorylation to the pathogenesis of adult-onset neurodegenerative diseases.
Collapse
Affiliation(s)
- Gerardo Morfini
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, USA.
| | - Nadine Schmidt
- Division of Human Biology and Human Genetics, University of Kaiserslautern, Erwin-Schrödinger-Straße 13, 67663 Kaiserslautern, Germany
| | - Carina Weissmann
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, USA
| | - Gustavo Pigino
- Instituto de Investigación Médica "Mercedes y Martín Ferreyra", INIMEC-CONICET-Universidad Nacional de Córdoba, Friuli 2434, 5016 Córdoba, Argentina
| | - Stefan Kins
- Division of Human Biology and Human Genetics, University of Kaiserslautern, Erwin-Schrödinger-Straße 13, 67663 Kaiserslautern, Germany.
| |
Collapse
|
15
|
Hawthorne JL, Mehta PR, Singh PP, Wong NQ, Quintero OA. Positively charged residues within the MYO19 MyMOMA domain are essential for proper localization of MYO19 to the mitochondrial outer membrane. Cytoskeleton (Hoboken) 2016; 73:286-299. [PMID: 27126804 DOI: 10.1002/cm.21305] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 04/26/2016] [Accepted: 04/27/2016] [Indexed: 11/06/2022]
Abstract
Myosins are well characterized molecular motors essential for intracellular transport. MYO19 copurifies with mitochondria, and can be released from mitochondrial membranes by high pH buffer, suggesting that positively-charged residues participate in interactions between MYO19 and mitochondria. The MYO19-specific mitochondria outer membrane association (MyMOMA) domain contains approximately 150 amino acids with a pI approximately 9 and is sufficient for localization to the mitochondrial outer membrane. The minimal sequence and specific residues involved in mitochondrial binding have not been identified. To address this, we generated GFP-MyMOMA truncations, establishing the boundaries for truncations based on sequence homology. We identified an 83-amino acid minimal binding region enriched with basic residues (pI ∼ 10.5). We sequentially replaced basic residues in this region with alanine, identifying residues R882 and K883 as essential for mitochondrial localization. Constructs containing the RK882-883AA mutation primarily localized with the endoplasmic reticulum (ER). To determine if ER-associated mutant MyMOMA domain and mitochondria-associated wild type MyMOMA display differences in kinetics of membrane interaction, we paired FRAP analysis with permeabilization activated reduction in fluorescence (PARF) analysis. Mitochondria-bound and ER-bound MYO19 constructs displayed slow dissociation from their target membrane when assayed by PARF; both constructs displayed exchange within their respective organelle networks. However, ER-bound mutant MYO19 displayed more rapid exchange within the ER network than did mitochondria-bound MYO19. Taken together these data indicate that the MyMOMA domain contains strong membrane-binding activity, and membrane targeting is mediated by a specific, basic region of the MYO19 tail with slow dissociation kinetics appropriate for its role(s) in mitochondrial network dynamics. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
| | | | - Pali P Singh
- Department of Biology, University of Richmond, VA 23173
| | - Nathan Q Wong
- Department of Biology, University of Richmond, VA 23173
| | | |
Collapse
|
16
|
Barnhart EL. Mechanics of mitochondrial motility in neurons. Curr Opin Cell Biol 2016; 38:90-9. [DOI: 10.1016/j.ceb.2016.02.022] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 02/18/2016] [Accepted: 02/25/2016] [Indexed: 11/17/2022]
|
17
|
Kang M, Baker L, Song Y, Brady ST, Morfini G. Biochemical analysis of axon-specific phosphorylation events using isolated squid axoplasms. Methods Cell Biol 2016; 131:199-216. [PMID: 26794515 PMCID: PMC7781298 DOI: 10.1016/bs.mcb.2015.06.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Appropriate functionality of nodes of Ranvier, presynaptic terminals, and other axonal subdomains depends on efficient and timely delivery of proteins synthesized and packaged into membrane-bound organelles (MBOs) within the neuronal cell body. MBOs are transported and delivered to their final sites of utilization within axons by a cellular process known as fast axonal transport (FAT). Conventional kinesin, the most abundant multisubunit motor protein expressed in mature neurons, is responsible for FAT of a large variety of MBOs and plays a major role in the maintenance of appropriate axonal connectivity. Consistent with the variety and large number of discrete subdomains within axons, experimental evidence revealed the identity of several protein kinases that modulate specific functional activities of conventional kinesin. Thus, methods for the analysis of kinase activity and conventional kinesin phosphorylation facilitate the study of FAT regulation in health and disease conditions. Axonal degeneration, abnormal patterns of protein phosphorylation, and deficits in FAT represent early pathological features characteristic of neurological diseases caused by unrelated neuropathogenic proteins. Interestingly, some of these proteins were shown to produce deficits in FAT by modulating the activity of specific protein kinases involved in conventional kinesin phosphorylation. However, experimental systems that facilitate an evaluation of molecular events within axons remain scarce. Using the isolated squid axoplasm preparation, we describe methods for evaluating axon-autonomous effects of neuropathogenic proteins on the activity of protein kinases. Protocols are also provided to evaluate the effect of such proteins on the phosphorylation of endogenous axonal substrates, including conventional kinesin and neurofilaments.
Collapse
Affiliation(s)
- Minsu Kang
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, USA
- Marine Biological Laboratory, Woods Hole, MA, USA
| | - Lisa Baker
- Marine Biological Laboratory, Woods Hole, MA, USA
| | - Yuyu Song
- Marine Biological Laboratory, Woods Hole, MA, USA
| | | | - Gerardo Morfini
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, USA
- Marine Biological Laboratory, Woods Hole, MA, USA
- Corresponding author:
| |
Collapse
|
18
|
Wang H, Liu R, Wang J, Wang P, Shen Y, Liu G. The Arabidopsis kinesin gene AtKin-1 plays a role in the nuclear division process during megagametogenesis. PLANT CELL REPORTS 2014; 33:819-828. [PMID: 24667993 DOI: 10.1007/s00299-014-1594-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Revised: 01/15/2014] [Accepted: 02/26/2014] [Indexed: 06/03/2023]
Abstract
Atkin - 1 , the only Kinesin-1 member of Arabidopsis thaliana , plays a role during female gametogenesis through regulation of nuclear division cycles. Kinesins are microtubule-dependent motor proteins found in eukaryotic organisms. They constitute a superfamily that can be further classified into at least 14 families. In the Kinesin-1 family, members from animal and fungi play roles in long-distance transport of organelles and vesicles. Although Kinesin-1-like sequences have been identified in higher plants, little is known about their function in plant cells, other than in a recently identified Kinesin-1-like protein in a rice pollen semi-sterile mutant. In this study, the gene encoding the only Kinesin-1 member in Arabidopsis, AtKin-1 was found to be specifically expressed in ovules and anthers. AtKin-1 loss-of-function mutants showed substantially aborted ovules in siliques, and this finding was supported by complementation testing. Reciprocal crossing between mutant and wild-type plants indicated that a defect in AtKin-1 results in partially aborted megagametophytes, with no observable effects on pollen fertility. Further observation of ovule development in the mutant pistils indicated that the enlargement of the megaspore was blocked and nuclear division arrested at the one-nucleate stage during embryo sac formation. Our data suggest that AtKin-1 plays a role in the nuclear division cycles during megagametogenesis.
Collapse
Affiliation(s)
- Haiqing Wang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Plateau Institute of Biology, Chinese Academy of Sciences, 23 Xinning Road, Xining, 810001, China,
| | | | | | | | | | | |
Collapse
|
19
|
Soundararajan HC, Bullock SL. The influence of dynein processivity control, MAPs, and microtubule ends on directional movement of a localising mRNA. eLife 2014; 3:e01596. [PMID: 24737859 PMCID: PMC3985186 DOI: 10.7554/elife.01596] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Many cellular constituents travel along microtubules in association with multiple copies of motor proteins. How the activity of these motors is regulated during cargo sorting is poorly understood. In this study, we address this issue using a novel in vitro assay for the motility of localising Drosophila mRNAs bound to native dynein-dynactin complexes. High precision tracking reveals that individual RNPs within a population undergo either diffusive, or highly processive, minus end-directed movements along microtubules. RNA localisation signals stimulate the processive movements, with regulation of dynein-dynactin’s activity rather than its total copy number per RNP, responsible for this effect. Our data support a novel mechanism for multi-motor translocation based on the regulation of dynein processivity by discrete cargo-associated features. Studying the in vitro responses of RNPs to microtubule-associated proteins (MAPs) and microtubule ends provides insights into how an RNA population could navigate the cytoskeletal network and become anchored at its destination in cells. DOI:http://dx.doi.org/10.7554/eLife.01596.001 For a cell to do its job, the different components inside it need to be moved to different locations. This is achieved by an elaborate cellular transport system. To move a component to where it needs to be, motor proteins bind to it, often with the assistance of other ‘accessory’ proteins. This cargo-motor complex then moves along a network of tracks within the cell. Viruses also exploit this transport system in order to be trafficked to specific parts of the cell during their life cycles. Many cargos are moved along microtubule tracks. Multiple microtubule motor proteins often attach to the same cargo, but it is unclear how they work together during transport. Previous studies have attempted to address this issue by attaching motor proteins to artificial cargoes, such as synthetic beads. However, these experiments did not include some of the accessory proteins that are thought to play a role during transport within the living cell. Soundararajan and Bullock have now examined how complexes containing multiple motors bound to accessory proteins move molecules of messenger RNA to specific sites within cells. By visualising fruit fly mRNA moving along microtubules attached to a glass surface, the transport process can be studied in detail. It appears that the complexes travel using one of two methods: they either diffuse along the microtubules, which they can do in either direction, or they power themselves along the microtubules, which they can only do in one direction. Although previous experiments with artificial cargos suggested that the number of motors in the complex determines the likelihood of one-way traffic, it appears that one or more accessory proteins are actually in control during mRNA transport. Soundararajan and Bullock also documented how the mRNA-motor complexes react to roadblocks and dead-ends on the microtubule highway. Rather than letting go of the microtubule upon such an encounter, the complexes can reverse back down the track. This behaviour may help them to find a new route to their destination. DOI:http://dx.doi.org/10.7554/eLife.01596.002
Collapse
|
20
|
Cantuti Castelvetri L, Givogri MI, Hebert A, Smith B, Song Y, Kaminska A, Lopez-Rosas A, Morfini G, Pigino G, Sands M, Brady ST, Bongarzone ER. The sphingolipid psychosine inhibits fast axonal transport in Krabbe disease by activation of GSK3β and deregulation of molecular motors. J Neurosci 2013; 33:10048-56. [PMID: 23761900 PMCID: PMC3682375 DOI: 10.1523/jneurosci.0217-13.2013] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Revised: 05/03/2013] [Accepted: 05/10/2013] [Indexed: 01/06/2023] Open
Abstract
Loss of function of galactosylceramidase lysosomal activity causes demyelination and vulnerability of various neuronal populations in Krabbe disease. Psychosine, a lipid-raft-associated sphingolipid that accumulates in this disease, is thought to trigger these abnormalities. Myelin-free in vitro analyses showed that psychosine inhibited fast axonal transport through the activation of axonal PP1 and GSK3β in the axon. Abnormal levels of activated GSK3β and abnormally phosphorylated kinesin light chains were found in nerve samples from a mouse model of Krabbe disease. Administration of GSK3β inhibitors significantly ameliorated transport defects in vitro and in vivo in peripheral axons of the mutant mouse. This study identifies psychosine as a pathogenic sphingolipid able to block fast axonal transport and is the first to provide a molecular mechanism underlying dying-back degeneration in this genetic leukodystrophy.
Collapse
MESH Headings
- Analysis of Variance
- Animals
- Animals, Newborn
- Axonal Transport/drug effects
- Cells, Cultured
- Cerebral Cortex/pathology
- Disease Models, Animal
- Embryo, Mammalian
- Enzyme Inhibitors/pharmacology
- Gene Expression Regulation, Developmental/drug effects
- Gene Expression Regulation, Developmental/genetics
- Glycogen Synthase Kinase 3/metabolism
- Glycogen Synthase Kinase 3 beta
- Leukodystrophy, Globoid Cell/drug therapy
- Leukodystrophy, Globoid Cell/genetics
- Leukodystrophy, Globoid Cell/pathology
- Membrane Microdomains/drug effects
- Membrane Microdomains/enzymology
- Mice
- Mice, Inbred C57BL
- Mice, Mutant Strains
- Microscopy, Electron, Transmission
- Mitochondria/drug effects
- Mitochondria/physiology
- Molecular Motor Proteins/metabolism
- Nerve Tissue Proteins/metabolism
- Neurons/drug effects
- Neurons/pathology
- Neurons/ultrastructure
- Psychosine/pharmacology
- Sciatic Nerve/pathology
- Time Factors
Collapse
Affiliation(s)
| | - Maria I. Givogri
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, Illinois 60612, and
| | - Amy Hebert
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, Illinois 60612, and
| | - Benjamin Smith
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, Illinois 60612, and
| | - Yuyu Song
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, Illinois 60612, and
| | - Agnieszka Kaminska
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, Illinois 60612, and
| | - Aurora Lopez-Rosas
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, Illinois 60612, and
| | - Gerardo Morfini
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, Illinois 60612, and
| | - Gustavo Pigino
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, Illinois 60612, and
| | - Mark Sands
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Scott T. Brady
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, Illinois 60612, and
| | - Ernesto R. Bongarzone
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, Illinois 60612, and
| |
Collapse
|
21
|
Patil H, Cho KI, Lee J, Yang Y, Orry A, Ferreira PA. Kinesin-1 and mitochondrial motility control by discrimination of structurally equivalent but distinct subdomains in Ran-GTP-binding domains of Ran-binding protein 2. Open Biol 2013; 3:120183. [PMID: 23536549 PMCID: PMC3718338 DOI: 10.1098/rsob.120183] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The pleckstrin homology (PH) domain is a versatile fold that mediates a variety of protein–protein and protein–phosphatidylinositol lipid interactions. The Ran-binding protein 2 (RanBP2) contains four interspersed Ran GTPase-binding domains (RBDn= 1–4) with close structural homology to the PH domain of Bruton's tyrosine kinase. The RBD2, kinesin-binding domain (KBD) and RBD3 comprise a tripartite domain (R2KR3) of RanBP2 that causes the unfolding, microtubule binding and biphasic activation of kinesin-1, a crucial anterograde motor of mitochondrial motility. However, the interplay between Ran GTPase and R2KR3 of RanBP2 in kinesin-1 activation and mitochondrial motility is elusive. We use structure–function, biochemical, kinetic and cell-based assays with time-lapse live-cell microscopy of over 260 000 mitochondrial-motility-related events to find mutually exclusive subdomains in RBD2 and RBD3 towards Ran GTPase binding, kinesin-1 activation and mitochondrial motility regulation. The RBD2 and RBD3 exhibit Ran-GTP-independent, subdomain and stereochemical-dependent discrimination on the biphasic kinetics of kinesin-1 activation or regulation of mitochondrial motility. Further, KBD alone and R2KR3 stimulate and suppress, respectively, multiple biophysical parameters of mitochondrial motility. The regulation of the bidirectional transport of mitochondria by either KBD or R2KR3 is highly coordinated, because their kinetic effects are accompanied always by changes in mitochondrial motile events of either transport polarity. These studies uncover novel roles in Ran GTPase-independent subdomains of RBD2 and RBD3, and KBD of RanBP2, that confer antagonizing and multi-modal mechanisms of kinesin-1 activation and regulation of mitochondrial motility. These findings open new venues towards the pharmacological harnessing of cooperative and competitive mechanisms regulating kinesins, RanBP2 or mitochondrial motility in disparate human disorders.
Collapse
Affiliation(s)
- Hemangi Patil
- Department of Ophthalmology, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | | | |
Collapse
|
22
|
Barry J, Xu M, Gu Y, Dangel AW, Jukkola P, Shrestha C, Gu C. Activation of conventional kinesin motors in clusters by Shaw voltage-gated K+ channels. J Cell Sci 2013; 126:2027-41. [PMID: 23487040 DOI: 10.1242/jcs.122234] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The conventional kinesin motor transports many different cargos to specific locations in neurons. How cargos regulate motor function remains unclear. Here we focus on KIF5, the heavy chain of conventional kinesin, and report that the Kv3 (Shaw) voltage-gated K(+) channel, the only known tetrameric KIF5-binding protein, clusters and activates KIF5 motors during axonal transport. Endogenous KIF5 often forms clusters along axons, suggesting a potential role of KIF5-binding proteins. Our biochemical assays reveal that the high-affinity multimeric binding between the Kv3.1 T1 domain and KIF5B requires three basic residues in the KIF5B tail. Kv3.1 T1 competes with the motor domain and microtubules, but not with kinesin light chain 1 (KLC1), for binding to the KIF5B tail. Live-cell imaging assays show that four KIF5-binding proteins, Kv3.1, KLC1 and two synaptic proteins SNAP25 and VAMP2, differ in how they regulate KIF5B distribution. Only Kv3.1 markedly increases the frequency and number of KIF5B-YFP anterograde puncta. Deletion of Kv3.1 channels reduces KIF5 clusters in mouse cerebellar neurons. Therefore, clustering and activation of KIF5 motors by Kv3 regulate the motor number in carrier vesicles containing the channel proteins, contributing not only to the specificity of Kv3 channel transport, but also to the cargo-mediated regulation of motor function.
Collapse
Affiliation(s)
- Joshua Barry
- Molecular, Cellular and Developmental Biology Graduate Program, The Ohio State University, Columbus, OH 43210, USA
| | | | | | | | | | | | | |
Collapse
|
23
|
Leidel C, Longoria RA, Gutierrez FM, Shubeita GT. Measuring molecular motor forces in vivo: implications for tug-of-war models of bidirectional transport. Biophys J 2013; 103:492-500. [PMID: 22947865 DOI: 10.1016/j.bpj.2012.06.038] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Revised: 06/03/2012] [Accepted: 06/20/2012] [Indexed: 12/27/2022] Open
Abstract
Molecular motor proteins use the energy released from ATP hydrolysis to generate force and haul cargoes along cytoskeletal filaments. Thus, measuring the force motors generate amounts to directly probing their function. We report on optical trapping methodology capable of making precise in vivo stall-force measurements of individual cargoes hauled by molecular motors in their native environment. Despite routine measurement of motor forces in vitro, performing and calibrating such measurements in vivo has been challenging. We describe the methodology recently developed to overcome these difficulties, and used to measure stall forces of both kinesin-1 and cytoplasmic dynein-driven lipid droplets in Drosophila embryos. Critically, by measuring the cargo dynamics in the optical trap, we find that there is memory: it is more likely for a cargo to resume motion in the same direction-rather than reverse direction-after the motors transporting it detach from the microtubule under the force of the optical trap. This suggests that only motors of one polarity are active on the cargo at any instant in time and is not consistent with the tug-of-war models of bidirectional transport where both polarity motors can bind the microtubules at all times. We further use the optical trap to measure in vivo the detachment rates from microtubules of kinesin-1 and dynein-driven lipid droplets. Unlike what is commonly assumed, we find that dynein's but not kinesin's detachment time in vivo increases with opposing load. This suggests that dynein's interaction with microtubules behaves like a catch bond.
Collapse
Affiliation(s)
- Christina Leidel
- Center for Nonlinear Dynamics and Department of Physics, The University of Texas at Austin, Austin, Texas
| | - Rafael A Longoria
- Center for Nonlinear Dynamics and Department of Physics, The University of Texas at Austin, Austin, Texas
| | - Franciso Marquez Gutierrez
- Center for Nonlinear Dynamics and Department of Physics, The University of Texas at Austin, Austin, Texas
| | - George T Shubeita
- Center for Nonlinear Dynamics and Department of Physics, The University of Texas at Austin, Austin, Texas; Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas.
| |
Collapse
|
24
|
Fort AG, Murray JW, Dandachi N, Davidson MW, Dermietzel R, Wolkoff AW, Spray DC. In vitro motility of liver connexin vesicles along microtubules utilizes kinesin motors. J Biol Chem 2011; 286:22875-85. [PMID: 21536677 PMCID: PMC3123055 DOI: 10.1074/jbc.m111.219709] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2011] [Revised: 04/17/2011] [Indexed: 11/06/2022] Open
Abstract
Trafficking of the proteins that form gap junctions (connexins) from the site of synthesis to the junctional domain appears to require cytoskeletal delivery mechanisms. Although many cell types exhibit specific delivery of connexins to polarized cell sites, such as connexin32 (Cx32) gap junctions specifically localized to basolateral membrane domains of hepatocytes, the precise roles of actin- and tubulin-based systems remain unclear. We have observed fluorescently tagged Cx32 trafficking linearly at speeds averaging 0.25 μm/s in a polarized hepatocyte cell line (WIF-B9), which is abolished by 50 μM of the microtubule-disrupting agent nocodazole. To explore the involvement of cytoskeletal components in the delivery of connexins, we have used a preparation of isolated Cx32-containing vesicles from rat hepatocytes and assayed their ATP-driven motility along stabilized rhodamine-labeled microtubules in vitro. These assays revealed the presence of Cx32 and kinesin motor proteins in the same vesicles. The addition of 50 μM ATP stimulated vesicle motility along linear microtubule tracks with velocities of 0.4-0.5 μm/s, which was inhibited with 1 mM of the kinesin inhibitor AMP-PNP (adenylyl-imidodiphosphate) and by anti-kinesin antibody but only minimally affected by 5 μM vanadate, a dynein inhibitor, or by anti-dynein antibody. These studies provide evidence that Cx32 can be transported intracellularly along microtubules and presumably to junctional domains in cells and highlight an important role of kinesin motor proteins in microtubule-dependent motility of Cx32.
Collapse
Affiliation(s)
| | - John W. Murray
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York 10461
| | | | - Michael W. Davidson
- the National High Magnetic Field Laboratory and Department of Biological Science, The Florida State University, Tallahassee, Florida 32310, and
| | - Rolf Dermietzel
- the Neuroanatomy and Molecular Brain Research, Ruhr University, 44801 Bochum, Germany
| | - Allan W. Wolkoff
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York 10461
| | - David C. Spray
- From the Dominick P. Purpura Department of Neuroscience and
| |
Collapse
|
25
|
Morel M, Authelet M, Dedecker R, Brion J. Glycogen synthase kinase-3β and the p25 activator of cyclin dependent kinase 5 increase pausing of mitochondria in neurons. Neuroscience 2010; 167:1044-56. [DOI: 10.1016/j.neuroscience.2010.02.077] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2009] [Revised: 02/26/2010] [Accepted: 02/28/2010] [Indexed: 01/01/2023]
|
26
|
Morfini GA, Burns M, Binder LI, Kanaan NM, LaPointe N, Bosco DA, Brown RH, Brown H, Tiwari A, Hayward L, Edgar J, Nave KA, Garberrn J, Atagi Y, Song Y, Pigino G, Brady ST. Axonal transport defects in neurodegenerative diseases. J Neurosci 2009; 29:12776-86. [PMID: 19828789 PMCID: PMC2801051 DOI: 10.1523/jneurosci.3463-09.2009] [Citation(s) in RCA: 339] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2009] [Accepted: 08/04/2009] [Indexed: 12/26/2022] Open
Abstract
Adult-onset neurodegenerative diseases (AONDs) comprise a heterogeneous group of neurological disorders characterized by a progressive, age-dependent decline in neuronal function and loss of selected neuronal populations. Alterations in synaptic function and axonal connectivity represent early and critical pathogenic events in AONDs, but molecular mechanisms underlying these defects remain elusive. The large size and complex subcellular architecture of neurons render them uniquely vulnerable to alterations in axonal transport (AT). Accordingly, deficits in AT have been documented in most AONDs, suggesting a common defect acquired through different pathogenic pathways. These observations suggest that many AONDs can be categorized as dysferopathies, diseases in which alterations in AT represent a critical component in pathogenesis. Topics here address various molecular mechanisms underlying alterations in AT in several AONDs. Illumination of such mechanisms provides a framework for the development of novel therapeutic strategies aimed to prevent axonal and synaptic dysfunction in several major AONDs.
Collapse
Affiliation(s)
- Gerardo A Morfini
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, Illinois 60612, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Saunter CD, Perng MD, Love GD, Quinlan RA. Stochastically determined directed movement explains the dominant small-scale mitochondrial movements within non-neuronal tissue culture cells. FEBS Lett 2009; 583:1267-73. [PMID: 19265695 DOI: 10.1016/j.febslet.2009.02.041] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2008] [Revised: 02/13/2009] [Accepted: 02/26/2009] [Indexed: 12/26/2022]
Abstract
The apparently stationary phase of mitochondrial motion was investigated in epithelial cells by spinning disk confocal light microscopy combined with image correlation based single particle tracking using custom software producing sub-pixel accuracy measurements (approximately 5 nm) at 10-12 Hz frame-rates. The analysis of these data suggests that the previously described stationary, or anchored phase, in mitochondrial movement actually comprise Brownian diffusion, interspersed with frequent and brief motor-driven events whose duration are stochastically determined. We have therefore discovered a new aspect of mitochondrial behavior, which we call stochastically determined, directed movement.
Collapse
Affiliation(s)
- Christopher D Saunter
- Biophysical Sciences Institute, Department of Physics, South Road, Durham University, Durham DH1 3LE, UK
| | | | | | | |
Collapse
|
28
|
Secondary structure and compliance of a predicted flexible domain in kinesin-1 necessary for cooperation of motors. Biophys J 2008; 95:5216-27. [PMID: 18775962 DOI: 10.1529/biophysj.108.132449] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Although the mechanism by which a kinesin-1 molecule moves individually along a microtubule is quite well-understood, the way that many kinesin-1 motor proteins bound to the same cargo move together along a microtubule is not. We identified a 60-amino-acid-long domain, termed Hinge 1, in kinesin-1 from Drosophila melanogaster that is located between the coiled coils of the neck and stalk domains. Its deletion reduces microtubule gliding speed in multiple-motor assays but not single-motor assays. Hinge 1 thus facilitates the cooperation of motors by preventing them from impeding each other. We addressed the structural basis for this phenomenon. Video-microscopy of single microtubule-bound full-length motors reveals the sporadic occurrence of high-compliance states alternating with longer-lived, low-compliance states. The deletion of Hinge 1 abolishes transitions to the high-compliance state. Based on Fourier transform infrared, circular dichroism, and fluorescence spectroscopy of Hinge 1 peptides, we propose that low-compliance states correspond to an unexpected structured organization of the central Hinge 1 region, whereas high-compliance states correspond to the loss of that structure. We hypothesize that strain accumulated during multiple-kinesin motility populates the high-compliance state by unfolding helical secondary structure in the central Hinge 1 domain flanked by unordered regions, thereby preventing the motors from interfering with each other in multiple-motor situations.
Collapse
|
29
|
DeBoer SR, You Y, Szodorai A, Kaminska A, Pigino G, Nwabuisi E, Wang B, Estrada-Hernandez T, Kins S, Brady ST, Morfini G. Conventional kinesin holoenzymes are composed of heavy and light chain homodimers. Biochemistry 2008; 47:4535-43. [PMID: 18361505 PMCID: PMC2644488 DOI: 10.1021/bi702445j] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Conventional kinesin is a major microtubule-based motor protein responsible for anterograde transport of various membrane-bounded organelles (MBO) along axons. Structurally, this molecular motor protein is a tetrameric complex composed of two heavy (kinesin-1) chains and two light chain (KLC) subunits. The products of three kinesin-1 (kinesin-1A, -1B, and -1C, formerly KIF5A, -B, and -C) and two KLC (KLC1, KLC2) genes are expressed in mammalian nervous tissue, but the functional significance of this subunit heterogeneity remains unknown. In this work, we examine all possible combinations among conventional kinesin subunits in brain tissue. In sharp contrast with previous reports, immunoprecipitation experiments here demonstrate that conventional kinesin holoenzymes are formed of kinesin-1 homodimers. Similar experiments confirmed previous findings of KLC homodimerization. Additionally, no specificity was found in the interaction between kinesin-1s and KLCs, suggesting the existence of six variant forms of conventional kinesin, as defined by their gene product composition. Subcellular fractionation studies indicate that such variants associate with biochemically different MBOs and further suggest a role of kinesin-1s in the targeting of conventional kinesin holoenzymes to specific MBO cargoes. Taken together, our data address the combination of subunits that characterize endogenous conventional kinesin. Findings on the composition and subunit organization of conventional kinesin as described here provide a molecular basis for the regulation of axonal transport and delivery of selected MBOs to discrete subcellular locations.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Gerardo Morfini
- To whom correspondence should be addressed. Phone: (312) 996−6791. Fax: (312) 413−0354. E-mail:
| |
Collapse
|
30
|
Cho KI, Cai Y, Yi H, Yeh A, Aslanukov A, Ferreira PA. Association of the Kinesin‐Binding Domain of RanBP2 to KIF5B and KIF5C Determines Mitochondria Localization and Function. Traffic 2007; 8:1722-1735. [PMID: 17887960 DOI: 10.1111/j.1600-0854.2007.00647.x] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The Ran-binding protein 2 (RanBP2) is a large mosaic protein with a pleiotropic role in cell function. Although the contribution of each partner and domain of RanBP2 to its biological functions are not understood, physiological deficits of RanBP2 downregulate glucose catabolism and energy homeostasis and lead to delocalization of mitochondria components in photosensory neurons. The kinesin-binding domain (KBD) of RanBP2 associates selectively in the central nervous system (CNS), and directly, with the ubiquitous and CNS-specific kinesins, KIF5B and KIF5C, respectively, but not with the highly homologous KIF5A. Here, we determine the molecular and biological bases of the selective interaction between RanBP2 and KIF5B/KIF5C. This interaction is conferred by a approximately 100-residue segment, comprising a portion of the coiled-coil and globular tail cargo-binding domains of KIF5B/KIF5C. A single residue conserved in KIF5B and KIF5C, but not KIF5A, confers KIF5-isotype-specific association with RanBP2. This interaction is also mediated by a conserved leucine-like heptad motif present in KIF5s and KBD of RanBP2. Selective inhibition of the interaction between KBD of RanBP2 and KIF5B/KIF5C in cell lines causes perinuclear clustering of mitochondria, but not of lysosomes, deficits in mitochondrial membrane potential and ultimately, cell shrinkage. Collectively, the data provide a rationale of the KIF5 subtype-specific interaction with RanBP2 and support a novel kinesin-dependent role of RanBP2 in mitochondria transport and function. The data also strengthen a model whereby the selection of a large array of cargoes for transport by a restricted number of motor proteins is mediated by adaptor proteins such as RanBP2.
Collapse
Affiliation(s)
- Kyoung-In Cho
- Department of Ophthalmology, Duke University Medical Center, Durham, NC 27710, USA
| | - Yunfei Cai
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Haiqing Yi
- Department of Ophthalmology, Duke University Medical Center, Durham, NC 27710, USA
| | - Andrew Yeh
- Department of Ophthalmology, Duke University Medical Center, Durham, NC 27710, USA
| | - Azamat Aslanukov
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Paulo A Ferreira
- Department of Ophthalmology, Duke University Medical Center, Durham, NC 27710, USA
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
31
|
Chung S, Zhang Y, Van Der Hoorn F, Hawkes R. The anatomy of the cerebellar nuclei in the normal and scrambler mouse as revealed by the expression of the microtubule-associated protein kinesin light chain 3. Brain Res 2007; 1140:120-31. [PMID: 17447264 DOI: 10.1016/j.brainres.2006.01.100] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Conventional kinesin is a motor protein complex including two heavy chains and two light chains (KLC). Junco et al. (Junco, A., Bhullar, B., Tarnasky, H.A. and van der Hoorn, F.A., 2001. Kinesin light-chain KLC3 expression in testis is restricted to spermatids. Biol. Reprod. 64, 1320-1330). recently reported the isolation of a novel KLC gene, klc3. In the present report, immunohistochemistry has been used to characterize the expression of KLC3 in the cerebella of normal and scrambler (scm) mutant mice. In cryostat sections through the cerebellum of the normal adult mouse immunoperoxidase stained for KLC3, reaction product is deposited in the nuclei and somata of deep cerebellar nuclear neurons. No other structures are stained in the cerebellum. Strong and specific KLC3 expression is observed in the adult cerebellum in all three major cerebellar nuclei--medial, interposed, and lateral. Double immunofluorescence studies reveal that KLC3 immunoreactivity is colocalized with both endosomes and GW bodies. KLC3 immunohistochemistry has been exploited to study the organization of the cerebellar nuclei in scrambler mice, in which disruption of the mdab1 gene results in severe foliation defects due to Purkinje cell ectopia, with most Purkinje cells clumped in centrally located clusters. Despite the severe failure of Purkinje cell migration, the cerebellar nuclei appear normal in scrambler mutant mice, suggesting that their topography is dependent neither on normal Purkinje cell positioning nor the Reelin signaling pathway.
Collapse
Affiliation(s)
- Seunghyuk Chung
- Department of Cell Biology and Anatomy, Hotchkiss Brain Institute, and Genes and Development Research Group, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada
| | | | | | | |
Collapse
|
32
|
Abstract
Molecular motor proteins are crucial for the proper distribution of organelles and vesicles in cells. Much of our current understanding of how motors function stems from studies of single motors moving cargos in vitro. More recently, however, there has been mounting evidence that the cooperation of multiple motors in moving cargos and the regulation of motor-filament affinity could be key mechanisms that cells utilize to regulate cargo transport. Here, we review these recent advances and present a picture of how the different mechanisms of regulating the number of motors moving a cargo could facilitate cellular functions.
Collapse
Affiliation(s)
- Steven P Gross
- Department of Developmental and Cell Biology, 2222 Nat Sci I, University of California Irvine, Irvine, California, USA.
| | | | | |
Collapse
|
33
|
Abstract
The mammalian central nervous system (CNS) requires the proper formation of exquisitely precise circuits to function correctly. These neuronal circuits are assembled during development by the formation of synaptic connections between thousands of differentiating neurons. Proper synapse formation during childhood provides the substrate for cognition, whereas improper formation or function of these synapses leads to neurodevelopmental disorders, including mental retardation and autism. Recent work has begun to identify some of the early cellular events in synapse formation as well as the molecular signals that initiate this process. However, despite the wealth of information published on this topic in the past few years, some of the most fundamental questions about how, whether, and where glutamatergic synapses form in the mammalian CNS remain unanswered. This review focuses on the dynamic aspects of the early cellular and molecular events in the initial assembly of glutamatergic synapses in the mammalian CNS.
Collapse
|
34
|
De Vos KJ, Sheetz MP. Visualization and quantification of mitochondrial dynamics in living animal cells. Methods Cell Biol 2007; 80:627-82. [PMID: 17445716 DOI: 10.1016/s0091-679x(06)80030-0] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Kurt J De Vos
- Department of Neuroscience, MRC Centre for Neurodegeneration Research, The Institute of Psychiatry, King's College London, De Crespigny Park, Denmark Hill, London, United Kingdom
| | | |
Collapse
|
35
|
Boldogh IR, Pon LA. Interactions of mitochondria with the actin cytoskeleton. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2006; 1763:450-62. [PMID: 16624426 DOI: 10.1016/j.bbamcr.2006.02.014] [Citation(s) in RCA: 200] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2006] [Revised: 02/19/2006] [Accepted: 02/23/2006] [Indexed: 11/26/2022]
Abstract
Interactions between mitochondria and the cytoskeleton are essential for normal mitochondrial morphology, motility and distribution. While microtubules and their motors have been established as important factors for mitochondrial transport, emerging evidence indicates that mitochondria interact with the actin cytoskeleton in many cell types. In certain fungi, such as the budding yeast and Aspergillus, or in plant cells mitochondrial motility is largely actin-based. Even in systems such as neurons, where microtubules are the primary means of long-distance mitochondrial transport, the actin cytoskeleton is required for short-distance mitochondrial movements and for immobilization of the organelle at the cell cortex. The actin cytoskeleton is also involved in the immobilization of mitochondria at the cortex in cultured tobacco cells and in budding yeast. While the exact nature of these immobilizations is not known, they may be important for retaining mitochondria at sites of high ATP utilization or at other cellular locations where they are needed. Recent findings also indicate that mutations in actin or actin-binding proteins can influence mitochondrial pathways leading to cell death. Thus, mitochondria-actin interactions contribute to apoptosis.
Collapse
Affiliation(s)
- Istvan R Boldogh
- Department of Anatomy and Cell Biology, Columbia University College of Physicians and Surgeons, 12-425, 630 West 168th Street, New York, NY 10032, USA
| | | |
Collapse
|
36
|
Abstract
Organelle transport is vital for the development and maintenance of axons, in which the distances between sites of organelle biogenesis, function, and recycling or degradation can be vast. Movement of mitochondria in axons can serve as a general model for how all organelles move: mitochondria are easy to identify, they move along both microtubule and actin tracks, they pause and change direction, and their transport is modulated in response to physiological signals. However, they can be distinguished from other axonal organelles by the complexity of their movement and their unique functions in aerobic metabolism, calcium homeostasis and cell death. Mitochondria are thus of special interest in relating defects in axonal transport to neuropathies and degenerative diseases of the nervous system. Studies of mitochondrial transport in axons are beginning to illuminate fundamental aspects of the distribution mechanism. They use motors of one or more kinesin families, along with cytoplasmic dynein, to translocate along microtubules, and bidirectional movement may be coordinated through interaction between dynein and kinesin-1. Translocation along actin filaments is probably driven by myosin V, but the protein(s) that mediate docking with actin filaments remain unknown. Signaling through the PI 3-kinase pathway has been implicated in regulation of mitochondrial movement and docking in the axon, and additional mitochondrial linker and regulatory proteins, such as Milton and Miro, have recently been described.
Collapse
Affiliation(s)
- Peter J Hollenbeck
- Department of Biological Sciences, Purdue University, 915 West State Street, West Lafayette, IN 47907, USA.
| | | |
Collapse
|
37
|
Lazarov O, Morfini GA, Lee EB, Farah MH, Szodorai A, DeBoer SR, Koliatsos VE, Kins S, Lee VMY, Wong PC, Price DL, Brady ST, Sisodia SS. Axonal transport, amyloid precursor protein, kinesin-1, and the processing apparatus: revisited. J Neurosci 2006; 25:2386-95. [PMID: 15745965 PMCID: PMC6726084 DOI: 10.1523/jneurosci.3089-04.2005] [Citation(s) in RCA: 173] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The sequential enzymatic actions of beta-APP cleaving enzyme 1 (BACE1), presenilins (PS), and other proteins of the gamma-secretase complex liberate beta-amyloid (Abeta) peptides from larger integral membrane proteins, termed beta-amyloid precursor proteins (APPs). Relatively little is known about the normal function(s) of APP or the neuronal compartment(s) in which APP undergoes proteolytic processing. Recent studies have been interpreted as consistent with the idea that APP serves as a kinesin-1 cargo receptor and that PS and BACE1 are associated with the APP-resident membranous cargos that undergo rapid axonal transport. In this report, derived from a collaboration among several independent laboratories, we examined the potential associations of APP and kinesin-1 using glutathione S-transferase pull-down and coimmunoprecipitation assays. In addition, we assessed the trafficking of membrane proteins in the sciatic nerves of transgenic mice with heterozygous or homozygous deletions of APP. In contrast to previous reports, we were unable to find evidence for direct interactions between APP and kinesin-1. Furthermore, the transport of kinesin-1 and tyrosine kinase receptors, previously reported to require APP, was unchanged in axons of APP-deficient mice. Finally, we show that two components of the APP proteolytic machinery, i.e., PS1 and BACE1, are not cotransported with APP in the sciatic nerves of mice. These findings suggest that the hypothesis that APP serves as a kinesin-1 receptor and that the proteolytic processing machinery responsible for generating Abeta is transported in the same vesicular compartment in axons of peripheral nerves requires revision.
Collapse
Affiliation(s)
- Orly Lazarov
- Department of Neurobiology, Pharmacology, and Physiology, The University of Chicago, Chicago, Illinois 60637, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Pilling AD, Horiuchi D, Lively CM, Saxton WM. Kinesin-1 and Dynein are the primary motors for fast transport of mitochondria in Drosophila motor axons. Mol Biol Cell 2006; 17:2057-68. [PMID: 16467387 PMCID: PMC1415296 DOI: 10.1091/mbc.e05-06-0526] [Citation(s) in RCA: 498] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
To address questions about mechanisms of filament-based organelle transport, a system was developed to image and track mitochondria in an intact Drosophila nervous system. Mutant analyses suggest that the primary motors for mitochondrial movement in larval motor axons are kinesin-1 (anterograde) and cytoplasmic dynein (retrograde), and interestingly that kinesin-1 is critical for retrograde transport by dynein. During transport, there was little evidence that force production by the two opposing motors was competitive, suggesting a mechanism for alternate coordination. Tests of the possible coordination factor P150(Glued) suggested that it indeed influenced both motors on axonal mitochondria, but there was no evidence that its function was critical for the motor coordination mechanism. Observation of organelle-filled axonal swellings ("organelle jams" or "clogs") caused by kinesin and dynein mutations showed that mitochondria could move vigorously within and pass through them, indicating that they were not the simple steric transport blockades suggested previously. We speculate that axonal swellings may instead reflect sites of autophagocytosis of senescent mitochondria that are stranded in axons by retrograde transport failure; a protective process aimed at suppressing cell death signals and neurodegeneration.
Collapse
Affiliation(s)
- Aaron D Pilling
- Department of Biology, Indiana University, Bloomington, IN 47405-3700, USA
| | | | | | | |
Collapse
|
39
|
Richardson DN, Simmons MP, Reddy ASN. Comprehensive comparative analysis of kinesins in photosynthetic eukaryotes. BMC Genomics 2006; 7:18. [PMID: 16448571 PMCID: PMC1434745 DOI: 10.1186/1471-2164-7-18] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2005] [Accepted: 01/31/2006] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Kinesins, a superfamily of molecular motors, use microtubules as tracks and transport diverse cellular cargoes. All kinesins contain a highly conserved approximately 350 amino acid motor domain. Previous analysis of the completed genome sequence of one flowering plant (Arabidopsis) has resulted in identification of 61 kinesins. The recent completion of genome sequencing of several photosynthetic and non-photosynthetic eukaryotes that belong to divergent lineages offers a unique opportunity to conduct a comprehensive comparative analysis of kinesins in plant and non-plant systems and infer their evolutionary relationships. RESULTS We used the kinesin motor domain to identify kinesins in the completed genome sequences of 19 species, including 13 newly sequenced genomes. Among the newly analyzed genomes, six represent photosynthetic eukaryotes. A total of 529 kinesins was used to perform comprehensive analysis of kinesins and to construct gene trees using the Bayesian and parsimony approaches. The previously recognized 14 families of kinesins are resolved as distinct lineages in our inferred gene tree. At least three of the 14 kinesin families are not represented in flowering plants. Chlamydomonas, a green alga that is part of the lineage that includes land plants, has at least nine of the 14 known kinesin families. Seven of ten families present in flowering plants are represented in Chlamydomonas, indicating that these families were retained in both the flowering-plant and green algae lineages. CONCLUSION The increase in the number of kinesins in flowering plants is due to vast expansion of the Kinesin-14 and Kinesin-7 families. The Kinesin-14 family, which typically contains a C-terminal motor, has many plant kinesins that have the motor domain at the N terminus, in the middle, or the C terminus. Several domains in kinesins are present exclusively either in plant or animal lineages. Addition of novel domains to kinesins in lineage-specific groups contributed to the functional diversification of kinesins. Results from our gene-tree analyses indicate that there was tremendous lineage-specific duplication and diversification of kinesins in eukaryotes. Since the functions of only a few plant kinesins are reported in the literature, this comprehensive comparative analysis will be useful in designing functional studies with photosynthetic eukaryotes.
Collapse
Affiliation(s)
- Dale N Richardson
- Department of Biology, Colorado State University, Fort Collins, CO, USA, 80523
| | - Mark P Simmons
- Department of Biology, Colorado State University, Fort Collins, CO, USA, 80523
| | - Anireddy SN Reddy
- Department of Biology and Program in Cell and Molecular Biology, Colorado State University, Fort Collins, CO, USA, 80523
| |
Collapse
|
40
|
Cai Q, Gerwin C, Sheng ZH. Syntabulin-mediated anterograde transport of mitochondria along neuronal processes. ACTA ACUST UNITED AC 2005; 170:959-69. [PMID: 16157705 PMCID: PMC1804288 DOI: 10.1083/jcb.200506042] [Citation(s) in RCA: 169] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In neurons, proper distribution of mitochondria in axons and at synapses is critical for neurotransmission, synaptic plasticity, and axonal outgrowth. However, mechanisms underlying mitochondrial trafficking throughout the long neuronal processes have remained elusive. Here, we report that syntabulin plays a critical role in mitochondrial trafficking in neurons. Syntabulin is a peripheral membrane-associated protein that targets to mitochondria through its carboxyl-terminal tail. Using real-time imaging in living cultured neurons, we demonstrate that a significant fraction of syntabulin colocalizes and co-migrates with mitochondria along neuronal processes. Knockdown of syntabulin expression with targeted small interfering RNA or interference with the syntabulin–kinesin-1 heavy chain interaction reduces mitochondrial density within axonal processes by impairing anterograde movement of mitochondria. These findings collectively suggest that syntabulin acts as a linker molecule that is capable of attaching mitochondrial organelles to the microtubule-based motor kinesin-1, and in turn, contributes to anterograde trafficking of mitochondria to neuronal processes.
Collapse
Affiliation(s)
- Qian Cai
- Synaptic Function Unit, The Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
41
|
Abdel-Ghany SE, Day IS, Simmons MP, Kugrens P, Reddy ASN. Origin and evolution of Kinesin-like calmodulin-binding protein. PLANT PHYSIOLOGY 2005; 138:1711-22. [PMID: 15951483 PMCID: PMC1176440 DOI: 10.1104/pp.105.060913] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2005] [Revised: 03/25/2005] [Accepted: 03/26/2005] [Indexed: 05/02/2023]
Abstract
Kinesin-like calmodulin-binding protein (KCBP), a member of the Kinesin-14 family, is a C-terminal microtubule motor with three unique domains including a myosin tail homology region 4 (MyTH4), a talin-like domain, and a calmodulin-binding domain (CBD). The MyTH4 and talin-like domains (found in some myosins) are not found in other reported kinesins. A calmodulin-binding kinesin called kinesin-C (SpKinC) isolated from sea urchin (Strongylocentrotus purpuratus) is the only reported kinesin with a CBD. Analysis of the completed genomes of Homo sapiens, Saccharomyces cerevisiae, Caenorhabditis elegans, Drosophila melanogaster, and a red alga (Cyanidioschyzon merolae 10D) did not reveal the presence of a KCBP. This prompted us to look at the origin of KCBP and its relationship to SpKinC. To address this, we isolated KCBP from a gymnosperm, Picea abies, and a green alga, Stichococcus bacillaris. In addition, database searches resulted in identification of KCBP in another green alga, Chlamydomonas reinhardtii, and several flowering plants. Gene tree analysis revealed that the motor domain of KCBPs belongs to a clade within the Kinesin-14 (C-terminal motors) family. Only land plants and green algae have a kinesin with the MyTH4 and talin-like domains of KCBP. Further, our analysis indicates that KCBP is highly conserved in green algae and land plants. SpKinC from sea urchin, which has the motor domain similar to KCBP and contains a CBD, lacks the MyTH4 and talin-like regions. Our analysis indicates that the KCBPs, SpKinC, and a subset of the kinesin-like proteins are all more closely related to one another than they are to any other kinesins, but that either KCBP gained the MyTH4 and talin-like domains or SpKinC lost them.
Collapse
Affiliation(s)
- Salah E Abdel-Ghany
- Department of Biology, Colorado State University, Fort Collins, Colorado 80523, USA
| | | | | | | | | |
Collapse
|
42
|
Abstract
Bidirectional organelle transport along microtubules is most likely mediated by the opposing forces generated by two microtubule-based motors: kinesin and cytoplasmic dynein. Because the direction and timing of organelle movements are controlled by the cell, the activity of one or both of these motor molecules must be regulated. Recent studies demonstrate that kinesin, kinesin-like proteins and kinesin-associated proteins can be phosphorylated, and suggest that changes in their phosphorylation state may modulate kinesin's ability to interact with either microtubules or organelles. Thus, it is possible that phosphorylation regulates kinesin-driven movements.
Collapse
Affiliation(s)
- L T Haimo
- Dept of Biology, University of California, Riverside, CA 92521, USA
| |
Collapse
|
43
|
Abstract
Organelle transporters are very important for cellular morphogenesis and other cellular functions, conveying and targeting important materials to the correct destination, often at considerable velocities. One of the first proteins to be identified as a motor was kinesin, and recently at least 10 new kinesin superfamily proteins (KIFs) have been described. Characterization of some of them reveals that each member can convey a specific organelle or cargo, although there is some redundancy. It has also become clear that there are distinct subclasses of KIFs that form monomeric, heterodimeric and homodimeric motors. Here, Nobutaka Hirokawa reviews what is known about the kinesin superfamily and discusses how a study of the different types of motors is helping to elucidate the mechanism of mechanical force generation.
Collapse
Affiliation(s)
- N Hirokawa
- Dept of Anatomy and Cell Biology, Faculty of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113, Japan
| |
Collapse
|
44
|
Abstract
Over the past decade, a remarkable number and diversity of molecular motors have been described in eukaryotic cells. In addition to the identification of novel forms of myosin and dynein, the kinesins have been defined as an entirely new family of molecular motors. There may be as many as 30 different genes in a single organism encoding members of the kinesin superfamily. Why is such diversity in molecular motors needed? The biochemical and functional diversity of the originally defined form of kinesin provides some insights into the roles of molecular motors in cellular dynamics.
Collapse
Affiliation(s)
- S T Brady
- Dept of Cell Biology and Neuroscience, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75235-9111, USA
| |
Collapse
|
45
|
Zhang Y, Oko R, van der Hoorn FA. Rat kinesin light chain 3 associates with spermatid mitochondria. Dev Biol 2004; 275:23-33. [PMID: 15464570 PMCID: PMC3138780 DOI: 10.1016/j.ydbio.2004.07.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2004] [Revised: 07/15/2004] [Accepted: 07/19/2004] [Indexed: 01/25/2023]
Abstract
We recently discovered that in rat spermatids, kinesin light chain KLC3 can associate with outer dense fibers, major sperm tail components, and accumulates in the sperm midpiece. Here, we show that mitochondria isolated from rat-elongating spermatids have bound KLC3. Immunoelectron microscopy indicates that the association of KLC3 with mitochondria coincides with the stage in spermatogenesis when mitochondria move from the plasma membrane to the developing midpiece. KLC3 is able to bind in vitro to mitochondria from spermatids as well as somatic cells employing a conserved kinesin light chain motif, the tetratrico-peptide repeats. Expression of KLC3 in fibroblasts results in formation of large KLC3 clusters close to the nucleus, which also contain mitochondria: no other organelles were present in these clusters. Mitochondria are not present in KLC3 clusters after deletion of KLC3's tetratrico-peptide repeats. Our results indicate that the rat spermatid kinesin light chain KLC3 can associate with mitochondria.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Biochemistry & Molecular Biology, University of Calgary, Calgary, Alberta, Canada T2N 4N1
| | - Richard Oko
- Department of Anatomy & Cell Biology, Queen’s University, Kingston, Ontario, Canada K7L 3N6
| | - Frans A. van der Hoorn
- Department of Biochemistry & Molecular Biology, University of Calgary, Calgary, Alberta, Canada T2N 4N1
| |
Collapse
|
46
|
Sakamoto R, Byrd DT, Brown HM, Hisamoto N, Matsumoto K, Jin Y. The Caenorhabditis elegans UNC-14 RUN domain protein binds to the kinesin-1 and UNC-16 complex and regulates synaptic vesicle localization. Mol Biol Cell 2004; 16:483-96. [PMID: 15563606 PMCID: PMC545882 DOI: 10.1091/mbc.e04-07-0553] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Kinesin-1 is a heterotetramer composed of kinesin heavy chain (KHC) and kinesin light chain (KLC). The Caenorhabditis elegans genome has a single KHC, encoded by the unc-116 gene, and two KLCs, encoded by the klc-1 and klc-2 genes. We show here that UNC-116/KHC and KLC-2 form a complex orthologous to conventional kinesin-1. KLC-2 also binds UNC-16, the C. elegans JIP3/JSAP1 JNK-signaling scaffold protein, and the UNC-14 RUN domain protein. The localization of UNC-16 and UNC-14 depends on kinesin-1 (UNC-116 and KLC-2). Furthermore, mutations in unc-16, klc-2, unc-116, and unc-14 all alter the localization of cargos containing synaptic vesicle markers. Double mutant analysis is consistent with these four genes functioning in the same pathway. Our data support a model whereby UNC-16 and UNC-14 function together as kinesin-1 cargos and regulators for the transport or localization of synaptic vesicle components.
Collapse
Affiliation(s)
- Rie Sakamoto
- Department of Molecular Biology, Graduate School of Science, Nagoya University and Core Research for Evolutional Science and Technology, Japan Science and Technology Corporation, Nagoya 464-8602, Japan
| | | | | | | | | | | |
Collapse
|
47
|
De Vos KJ, Sable J, Miller KE, Sheetz MP. Expression of phosphatidylinositol (4,5) bisphosphate-specific pleckstrin homology domains alters direction but not the level of axonal transport of mitochondria. Mol Biol Cell 2003; 14:3636-49. [PMID: 12972553 PMCID: PMC196556 DOI: 10.1091/mbc.e02-10-0638] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Axonal transport of membranous organelles such as mitochondria is essential for neuron viability and function. How signaling mechanisms regulate or influence mitochondrial distribution and transport is still largely unknown. We observed an increase in the distal distribution of mitochondria in neurons upon the expression of pleckstrin homology (PH) domains of phospholipase Cdelta1 (PLCdelta-PH) and spectrin (spectrin-PH). Quantitative analysis of mitochondrial transport showed that specific binding of PH domains to phosphatidylinositol (4,5) bisphosphate (PtdIns(4,5)P2) but not 3' phosphorylated phosphatidylinositol species enhanced plus-end-directed transport of mitochondria two- to threefold and at the same time decreased minus-end-directed transport of mitochondria along axonal microtubules (MTs) without altering the overall level of motility. Further, the velocity and duration of mitochondrial transport plus the association of molecular motors with mitochondria remained unchanged by the expression of PH domains. Thus, PtdIns(4,5)P2-specific PH domains caused an increase in distal mitochondria by disturbing the balance of plus- and minus-end-directed transport rather than directly affecting the molecular machinery involved. Taken together our data reveal that level and directionality of transport are separable and that PtdIns(4,5)P2 has a novel role in regulation of the directionality of axonal transport of mitochondria.
Collapse
Affiliation(s)
- Kurt J De Vos
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | | | | | | |
Collapse
|
48
|
Morfini G, Szebenyi G, Elluru R, Ratner N, Brady ST. Glycogen synthase kinase 3 phosphorylates kinesin light chains and negatively regulates kinesin-based motility. EMBO J 2002; 21:281-93. [PMID: 11823421 PMCID: PMC125832 DOI: 10.1093/emboj/21.3.281] [Citation(s) in RCA: 307] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2001] [Revised: 11/26/2001] [Accepted: 11/26/2001] [Indexed: 12/20/2022] Open
Abstract
Membrane-bounded organelles (MBOs) are delivered to different domains in neurons by fast axonal transport. The importance of kinesin for fast antero grade transport is well established, but mechanisms for regulating kinesin-based motility are largely unknown. In this report, we provide biochemical and in vivo evidence that kinesin light chains (KLCs) interact with and are in vivo substrates for glycogen synthase kinase 3 (GSK3). Active GSK3 inhibited anterograde, but not retrograde, transport in squid axoplasm and reduced the amount of kinesin bound to MBOs. Kinesin microtubule binding and microtubule-stimulated ATPase activities were unaffected by GSK3 phosphorylation of KLCs. Active GSK3 was also localized preferentially to regions known to be sites of membrane delivery. These data suggest that GSK3 can regulate fast anterograde axonal transport and targeting of cargos to specific subcellular domains in neurons.
Collapse
Affiliation(s)
- Gerardo Morfini
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9039, USA
| | | | | | | | | |
Collapse
|
49
|
Byrd DT, Kawasaki M, Walcoff M, Hisamoto N, Matsumoto K, Jin Y. UNC-16, a JNK-signaling scaffold protein, regulates vesicle transport in C. elegans. Neuron 2001; 32:787-800. [PMID: 11738026 DOI: 10.1016/s0896-6273(01)00532-3] [Citation(s) in RCA: 181] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Transport of synaptic components is a regulated process. Loss-of-function mutations in the C. elegans unc-16 gene result in the mislocalization of synaptic vesicle and glutamate receptor markers. unc-16 encodes a homolog of mouse JSAP1/JIP3 and Drosophila Sunday Driver. Like JSAP1/JIP3, UNC-16 physically interacts with JNK and JNK kinases. Deletion mutations in Caenorhabditis elegans JNK and JNK kinases result in similar mislocalization of synaptic vesicle markers and enhance weak unc-16 mutant phenotypes. unc-116 kinesin heavy chain mutants also mislocalize synaptic vesicle markers, as well as a functional UNC-16::GFP. Intriguingly, unc-16 mutations partially suppress the vesicle retention defect in unc-104 KIF1A kinesin mutants. Our results suggest that UNC-16 may regulate the localization of vesicular cargo by integrating JNK signaling and kinesin-1 transport.
Collapse
Affiliation(s)
- D T Byrd
- Department of MCD Biology, Sinsheimer Laboratories, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | | | | | | | | | | |
Collapse
|
50
|
Lindén M, Li Z, Paulin D, Gotow T, Leterrier JF. Effects of desmin gene knockout on mice heart mitochondria. J Bioenerg Biomembr 2001; 33:333-41. [PMID: 11710808 DOI: 10.1023/a:1010611408007] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
In heart tissue from mice lacking the intermediate filament (IF) desmin, mitochondria show an abnormal shape and distribution (Thornell et al., 1997). In the present study we have isolated heart mitochondria from desmin null (D-/-) and control (D+/+) mice, and analyzed their composition by SDS-PAGE, immunoblotting, and enzyme measurements. We found both in vitro and in situ that the conventional kinesin, the microtubule-associated plus-end directed motor, was frequently associated with D+/+ heart mitochondria, but not with D-/- heart mitochondria, suggesting that the positioning of mitochondria in heart is a dynamic event involving the IF desmin, the molecular motor kinesin, and, most likely, the microtubules (MT) network. Furthermore, an increased capacity in energy production was found, as indicated by a threefold higher creatine kinase activity in heart mitochondria from D-/- compared to D+/+ mice. We also observed a significantly lower amount of cytochrome c in heart mitochondria from D-/- mice, and a relocalization of Bcl-2, which may indicate an apoptotic condition in the cell leading to the earlier reported pathological events, such as cardiomyocytes degeneration and calcinosis of the heart (Thornell et al., 1997).
Collapse
Affiliation(s)
- M Lindén
- Groupe de Biologie des Interactions Cellulaires, UMR CNRS 6558, Poitiers, France.
| | | | | | | | | |
Collapse
|