1
|
El-Dirany R, Fernández-Rubio C, Peña-Guerrero J, Moreno E, Larrea E, Espuelas S, Abdel-Sater F, Brandenburg K, Martínez-de-Tejada G, Nguewa P. Repurposing the Antibacterial Agents Peptide 19-4LF and Peptide 19-2.5 for Treatment of Cutaneous Leishmaniasis. Pharmaceutics 2022; 14:pharmaceutics14112528. [PMID: 36432719 PMCID: PMC9697117 DOI: 10.3390/pharmaceutics14112528] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 11/22/2022] Open
Abstract
The lack of safe and cost-effective treatments against leishmaniasis highlights the urgent need to develop improved leishmanicidal agents. Antimicrobial peptides (AMPs) are an emerging category of therapeutics exerting a wide range of biological activities such as anti-bacterial, anti-fungal, anti-parasitic and anti-tumoral. In the present study, the approach of repurposing AMPs as antileishmanial drugs was applied. The leishmanicidal activity of two synthetic anti-lipopolysaccharide peptides (SALPs), so-called 19-2.5 and 19-4LF was characterized in Leishmania major. In vitro, both peptides were highly active against intracellular Leishmania major in mouse macrophages without exerting toxicity in host cells. Then, q-PCR-based gene profiling, revealed that this activity was related to the downregulation of several genes involved in drug resistance (yip1), virulence (gp63) and parasite proliferation (Cyclin 1 and Cyclin 6). Importantly, the treatment of BALB/c mice with any of the two AMPs caused a significant reduction in L. major infective burden. This effect was associated with an increase in Th1 cytokine levels (IL-12p35, TNF-α, and iNOS) in the skin lesion and spleen of the L. major infected mice while the Th2-associated genes were downregulated (IL-4 and IL-6). Lastly, we investigated the effect of both peptides in the gene expression profile of the P2X7 purinergic receptor, which has been reported as a therapeutic target in several diseases. The results showed significant repression of P2X7R by both peptides in the skin lesion of L. major infected mice to an extent comparable to that of a common anti-leishmanial drug, Paromomycin. Our in vitro and in vivo studies suggest that the synthetic AMPs 19-2.5 and 19-4LF are promising candidates for leishmaniasis treatment and present P2X7R as a potential therapeutic target in cutaneous leishmaniasis (CL).
Collapse
Affiliation(s)
- Rima El-Dirany
- ISTUN Institute of Tropical Health, Department of Microbiology and Parasitology, IdiSNA (Navarra Institute for Health Research), University of Navarra, c/Irunlarrea 1, 31008 Pamplona, Navarra, Spain
- Laboratory of Molecular Biology and Cancer Immunology, Faculty of Sciences I, Lebanese University, Hadath 1003, Lebanon
| | - Celia Fernández-Rubio
- ISTUN Institute of Tropical Health, Department of Microbiology and Parasitology, IdiSNA (Navarra Institute for Health Research), University of Navarra, c/Irunlarrea 1, 31008 Pamplona, Navarra, Spain
| | - José Peña-Guerrero
- ISTUN Institute of Tropical Health, Department of Microbiology and Parasitology, IdiSNA (Navarra Institute for Health Research), University of Navarra, c/Irunlarrea 1, 31008 Pamplona, Navarra, Spain
| | - Esther Moreno
- ISTUN Institute of Tropical Health, Department of Chemistry and Pharmaceutical Technology, IdiSNA (Navarra Institute for Health Research), University of Navarra, c/Irunlarrea 1, 31008 Pamplona, Navarra, Spain
| | - Esther Larrea
- ISTUN Institute of Tropical Health, IdiSNA (Navarra Institute for Health Research), University of Navarra, 31008 Pamplona, Navarra, Spain
| | - Socorro Espuelas
- ISTUN Institute of Tropical Health, Department of Chemistry and Pharmaceutical Technology, IdiSNA (Navarra Institute for Health Research), University of Navarra, c/Irunlarrea 1, 31008 Pamplona, Navarra, Spain
| | - Fadi Abdel-Sater
- Laboratory of Molecular Biology and Cancer Immunology, Faculty of Sciences I, Lebanese University, Hadath 1003, Lebanon
| | - Klaus Brandenburg
- Brandenburg Antiinfektiva GmbH, c/o Forschungszentrum Borstel, Leibniz Lungenzentrum, 23845 Borstel, Germany
| | - Guillermo Martínez-de-Tejada
- Department of Microbiology and Parasitology, IdiSNA (Navarra Institute for Health Research), University of Navarra, 31008 Pamplona, Navarra, Spain
| | - Paul Nguewa
- ISTUN Institute of Tropical Health, Department of Microbiology and Parasitology, IdiSNA (Navarra Institute for Health Research), University of Navarra, c/Irunlarrea 1, 31008 Pamplona, Navarra, Spain
- Correspondence:
| |
Collapse
|
2
|
Li Z, Qiu K, Yang X, Zhou W, Cai Q. Base-Promoted Tandem S NAr/Boulton-Katritzky Rearrangement: Access to [1,2,4]Triazolo[1,5- a]pyridines. Org Lett 2022; 24:2989-2992. [PMID: 35441511 DOI: 10.1021/acs.orglett.2c00863] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A base-promoted tandem SNAr/Boulton-Katritzky rearrangement is developed. It offers a simple and straightforward method for the formation of functionalized [1,2,4]triazolo[1,5-a]pyridines from 1,2,4-oxadiazol-3-amines or 3-aminoisoxazoles with 2-fluoropyridines.
Collapse
Affiliation(s)
- Zihao Li
- College of Pharmacy, Jinan University, No. 601 Huangpu Avenue West, Guangzhou 510630, China
| | - Kongxi Qiu
- College of Pharmacy, Jinan University, No. 601 Huangpu Avenue West, Guangzhou 510630, China
| | - Xiao Yang
- College of Pharmacy, Jinan University, No. 601 Huangpu Avenue West, Guangzhou 510630, China
| | - Wei Zhou
- College of Pharmacy, Jinan University, No. 601 Huangpu Avenue West, Guangzhou 510630, China
| | - Qian Cai
- College of Pharmacy, Jinan University, No. 601 Huangpu Avenue West, Guangzhou 510630, China
| |
Collapse
|
3
|
Xiong H, Li Z, Tang H, He L, Zhou W. Tandem C-N Coupling/Boulton-Katritzky Rearrangement Reactions of 3-Aminoisoxazoles or 1,2,4-Oxadiazol-3-amines with 2-Pyridyl Trifluoromethanesulfonate: A Rapid Access to [1,2,4]Triazolo[1,5-a]pyridines. Org Chem Front 2022. [DOI: 10.1039/d2qo00514j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An efficient and convenient synthesis of functionalized [1,2,4]triazolo[1,5-a]pyridines derivates is presented. The protocol is through a palladium catalyzed tandem C-N coupling/Boulton-Katritzky rearrangement process from 3-aminoisoxazoles or 1,2,4-oxadiazol-3-amines with 2-pyridyl trifluoromethanesulfonate....
Collapse
|
4
|
Ochoa R, Ortega-Pajares A, Castello FA, Serral F, Fernández Do Porto D, Villa-Pulgarin JA, Varela-M RE, Muskus C. Identification of Potential Kinase Inhibitors within the PI3K/AKT Pathway of Leishmania Species. Biomolecules 2021; 11:biom11071037. [PMID: 34356660 PMCID: PMC8301987 DOI: 10.3390/biom11071037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/09/2021] [Accepted: 07/06/2021] [Indexed: 11/25/2022] Open
Abstract
Leishmaniasis is a public health disease that requires the development of more effective treatments and the identification of novel molecular targets. Since blocking the PI3K/AKT pathway has been successfully studied as an effective anticancer strategy for decades, we examined whether the same approach would also be feasible in Leishmania due to their high amount and diverse set of annotated proteins. Here, we used a best reciprocal hits protocol to identify potential protein kinase homologues in an annotated human PI3K/AKT pathway. We calculated their ligandibility based on available bioactivity data of the reported homologues and modelled their 3D structures to estimate the druggability of their binding pockets. The models were used to run a virtual screening method with molecular docking. We found and studied five protein kinases in five different Leishmania species, which are AKT, CDK, AMPK, mTOR and GSK3 homologues from the studied pathways. The compounds found for different enzymes and species were analysed and suggested as starting point scaffolds for the design of inhibitors. We studied the kinases’ participation in protein–protein interaction networks, and the potential deleterious effects, if inhibited, were supported with the literature. In the case of Leishmania GSK3, an inhibitor of its human counterpart, prioritized by our method, was validated in vitro to test its anti-Leishmania activity and indirectly infer the presence of the enzyme in the parasite. The analysis contributes to improving the knowledge about the presence of similar signalling pathways in Leishmania, as well as the discovery of compounds acting against any of these kinases as potential molecular targets in the parasite.
Collapse
Affiliation(s)
- Rodrigo Ochoa
- Programa de Estudio y Control de Enfermedades Tropicales PECET, Faculty of Medicine, University of Antioquia, Medellín 050010, Colombia;
- Biophysics of Tropical Diseases Max Planck Tandem Group, University of Antioquia, Medellín 050010, Colombia
- Correspondence: (R.O.); (R.E.V.-M.)
| | - Amaya Ortega-Pajares
- Department of Medicine, The Peter Doherty Institute, University of Melbourne, Melbourne, VIC 3000, Australia;
| | - Florencia A. Castello
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), IC-CONICET Ciudad Universitaria, Pabellon 2, Ciudad de Buenos Aires C1428EHA, Argentina; (F.A.C.); (F.S.); (D.F.D.P.)
| | - Federico Serral
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), IC-CONICET Ciudad Universitaria, Pabellon 2, Ciudad de Buenos Aires C1428EHA, Argentina; (F.A.C.); (F.S.); (D.F.D.P.)
| | - Darío Fernández Do Porto
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), IC-CONICET Ciudad Universitaria, Pabellon 2, Ciudad de Buenos Aires C1428EHA, Argentina; (F.A.C.); (F.S.); (D.F.D.P.)
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires Ciudad Universitaria, Pabellon 2, Ciudad de Buenos Aires C1428EHA, Argentina
| | - Janny A. Villa-Pulgarin
- Grupo de Investigaciones Biomédicas, Facultad de Ciencias de la Salud, Corporación Universitaria Remington, Medellín 050034, Colombia;
| | - Rubén E. Varela-M
- Grupo de Investigación en Química y Biotecnología (QUIBIO), Facultad de Ciencias Básicas, Universidad Santiago de Cali, Cali 760035, Colombia
- Correspondence: (R.O.); (R.E.V.-M.)
| | - Carlos Muskus
- Programa de Estudio y Control de Enfermedades Tropicales PECET, Faculty of Medicine, University of Antioquia, Medellín 050010, Colombia;
| |
Collapse
|
5
|
Efstathiou A, Smirlis D. Leishmania Protein Kinases: Important Regulators of the Parasite Life Cycle and Molecular Targets for Treating Leishmaniasis. Microorganisms 2021; 9:microorganisms9040691. [PMID: 33801655 PMCID: PMC8066228 DOI: 10.3390/microorganisms9040691] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 03/21/2021] [Accepted: 03/24/2021] [Indexed: 02/07/2023] Open
Abstract
Leishmania is a protozoan parasite of the trypanosomatid family, causing a wide range of diseases with different clinical manifestations including cutaneous, mucocutaneous and visceral leishmaniasis. According to WHO, one billion people are at risk of Leishmania infection as they live in endemic areas while there are 12 million infected people worldwide. Annually, 0.9-1.6 million new infections are reported and 20-50 thousand deaths occur due to Leishmania infection. As current chemotherapy for treating leishmaniasis exhibits numerous drawbacks and due to the lack of effective human vaccine, there is an urgent need to develop new antileishmanial therapy treatment. To this end, eukaryotic protein kinases can be ideal target candidates for rational drug design against leishmaniasis. Eukaryotic protein kinases mediate signal transduction through protein phosphorylation and their inhibition is anticipated to be disease modifying as they regulate all essential processes for Leishmania viability and completion of the parasitic life cycle including cell-cycle progression, differentiation and virulence. This review highlights existing knowledge concerning the exploitation of Leishmania protein kinases as molecular targets to treat leishmaniasis and the current knowledge of their role in the biology of Leishmania spp. and in the regulation of signalling events that promote parasite survival in the insect vector or the mammalian host.
Collapse
|
6
|
Arendse LB, Wyllie S, Chibale K, Gilbert IH. Plasmodium Kinases as Potential Drug Targets for Malaria: Challenges and Opportunities. ACS Infect Dis 2021; 7:518-534. [PMID: 33590753 PMCID: PMC7961706 DOI: 10.1021/acsinfecdis.0c00724] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Indexed: 12/30/2022]
Abstract
Protein and phosphoinositide kinases have been successfully exploited as drug targets in various disease areas, principally in oncology. In malaria, several protein kinases are under investigation as potential drug targets, and an inhibitor of Plasmodium phosphatidylinositol 4-kinase type III beta (PI4KIIIβ) is currently in phase 2 clinical studies. In this Perspective, we review the potential of kinases as drug targets for the treatment of malaria. Kinases are known to be readily druggable, and many are essential for parasite survival. A key challenge in the design of Plasmodium kinase inhibitors is obtaining selectivity over the corresponding human orthologue(s) and other human kinases due to the highly conserved nature of the shared ATP binding site. Notwithstanding this, there are some notable differences between the Plasmodium and human kinome that may be exploitable. There is also the potential for designed polypharmacology, where several Plasmodium kinases are inhibited by the same drug. Prior to starting the drug discovery process, it is important to carefully assess potential kinase targets to ensure that the inhibition of the desired kinase will kill the parasites in the required life-cycle stages with a sufficiently fast rate of kill. Here, we highlight key target attributes and experimental approaches to consider and summarize the progress that has been made targeting Plasmodium PI4KIIIβ, cGMP-dependent protein kinase, and cyclin-dependent-like kinase 3.
Collapse
Affiliation(s)
- Lauren B. Arendse
- Drug
Discovery and Development Centre (H3D), South African Medical Research
Council Drug Discovery and Development Research Unit, Department of
Chemistry, and Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Rondebosch, Cape Town, Western Cape 7701, South Africa
| | - Susan Wyllie
- Wellcome
Centre for Anti-Infectives Research, Division of Biological Chemistry
and Drug Discovery, University of Dundee, Dundee DD1 5EH, United Kingdom
| | - Kelly Chibale
- Drug
Discovery and Development Centre (H3D), South African Medical Research
Council Drug Discovery and Development Research Unit, Department of
Chemistry, and Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Rondebosch, Cape Town, Western Cape 7701, South Africa
| | - Ian H. Gilbert
- Wellcome
Centre for Anti-Infectives Research, Division of Biological Chemistry
and Drug Discovery, University of Dundee, Dundee DD1 5EH, United Kingdom
| |
Collapse
|
7
|
In vitro effectivity of three approved drugs and their synergistic interaction against Leishmania infantum. ACTA ACUST UNITED AC 2020; 40:89-101. [PMID: 32463611 PMCID: PMC7449103 DOI: 10.7705/biomedica.4891] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Indexed: 12/24/2022]
Abstract
Introduction: Leishmaniasis remains one of the neglected tropical diseases. Repurposing existing drugs has proven to be successful for treating neglected tropical diseases while combination therapy is a strategic alternative for the treatment of infectious diseases. Auranofin, lopinavir/ritonavir, and sorafenib are FDA approved drugs used in the treatment of diverse diseases by acting on different essential biological enzymes. Objective: To evaluate the effects of monotherapy and combined therapies with the three drugs against Leishmania infantum. Materials and methods: We compared the leishmanicidal effects of the three drugs on promastigotes in vitro as regards the parasite count, the drug concentration providing a half-maximal response, and the ultrastructural changes of the parasite. We determined the fractional inhibitory concentration index of combined drugs in two ways, as well as the activity of the three drugs together to establish their synergetic effect. Results: The monotherapy with the three drugs was effective with auranofin showing the best leishmanicidal effect (EC50=1.5 µM), whereas sorafinib reduced parasite growth at EC50=2.5 µM. The scanning electron microscopy of promastigotes from all treated media showed distortion in the shape with loss of flagella and bleb formation. Acidocalcinosis was evident by transmission electron microscopy with all treatments suggesting apoptosis. Treatment with lopinavir/ritonavir showed signs of autophagy. The two-way combination of the drugs led to additive interactions while the combination of the three drugs showed synergistic action. Conclusion: Each drug when used as monotherapy against Leishmania spp. was effective, but the combination therapy was more effective than the individual drugs due to the additive or synergistic effects.
Collapse
|
8
|
Álvarez-Bardón M, Pérez-Pertejo Y, Ordóñez C, Sepúlveda-Crespo D, Carballeira NM, Tekwani BL, Murugesan S, Martinez-Valladares M, García-Estrada C, Reguera RM, Balaña-Fouce R. Screening Marine Natural Products for New Drug Leads against Trypanosomatids and Malaria. Mar Drugs 2020; 18:E187. [PMID: 32244488 PMCID: PMC7230869 DOI: 10.3390/md18040187] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 03/24/2020] [Accepted: 03/25/2020] [Indexed: 02/06/2023] Open
Abstract
Neglected Tropical Diseases (NTD) represent a serious threat to humans, especially for those living in poor or developing countries. Almost one-sixth of the world population is at risk of suffering from these diseases and many thousands die because of NTDs, to which we should add the sanitary, labor and social issues that hinder the economic development of these countries. Protozoan-borne diseases are responsible for more than one million deaths every year. Visceral leishmaniasis, Chagas disease or sleeping sickness are among the most lethal NTDs. Despite not being considered an NTD by the World Health Organization (WHO), malaria must be added to this sinister group. Malaria, caused by the apicomplexan parasite Plasmodium falciparum, is responsible for thousands of deaths each year. The treatment of this disease has been losing effectiveness year after year. Many of the medicines currently in use are obsolete due to their gradual loss of efficacy, their intrinsic toxicity and the emergence of drug resistance or a lack of adherence to treatment. Therefore, there is an urgent and global need for new drugs. Despite this, the scant interest shown by most of the stakeholders involved in the pharmaceutical industry makes our present therapeutic arsenal scarce, and until recently, the search for new drugs has not been seriously addressed. The sources of new drugs for these and other pathologies include natural products, synthetic molecules or repurposing drugs. The most frequent sources of natural products are microorganisms, e.g., bacteria, fungi, yeasts, algae and plants, which are able to synthesize many drugs that are currently in use (e.g. antimicrobials, antitumor, immunosuppressants, etc.). The marine environment is another well-established source of bioactive natural products, with recent applications against parasites, bacteria and other pathogens which affect humans and animals. Drug discovery techniques have rapidly advanced since the beginning of the millennium. The combination of novel techniques that include the genetic modification of pathogens, bioimaging and robotics has given rise to the standardization of High-Performance Screening platforms in the discovery of drugs. These advancements have accelerated the discovery of new chemical entities with antiparasitic effects. This review presents critical updates regarding the use of High-Throughput Screening (HTS) in the discovery of drugs for NTDs transmitted by protozoa, including malaria, and its application in the discovery of new drugs of marine origin.
Collapse
Affiliation(s)
- María Álvarez-Bardón
- Department of Biomedical Sciences; University of León, 24071 León, Spain; (M.Á.-B.); (Y.P.-P.); (C.O.); (D.S.-C.); (R.M.R.)
| | - Yolanda Pérez-Pertejo
- Department of Biomedical Sciences; University of León, 24071 León, Spain; (M.Á.-B.); (Y.P.-P.); (C.O.); (D.S.-C.); (R.M.R.)
| | - César Ordóñez
- Department of Biomedical Sciences; University of León, 24071 León, Spain; (M.Á.-B.); (Y.P.-P.); (C.O.); (D.S.-C.); (R.M.R.)
| | - Daniel Sepúlveda-Crespo
- Department of Biomedical Sciences; University of León, 24071 León, Spain; (M.Á.-B.); (Y.P.-P.); (C.O.); (D.S.-C.); (R.M.R.)
| | - Nestor M. Carballeira
- Department of Chemistry, University of Puerto Rico, Río Piedras 00925-2537, San Juan, Puerto Rico;
| | - Babu L. Tekwani
- Department of Infectious Diseases, Division of Drug Discovery, Southern Research, Birmingham, AL 35205, USA;
| | - Sankaranarayanan Murugesan
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani Campus, Vidya Vihar, Pilani 333031, India;
| | - Maria Martinez-Valladares
- Department of Animal Health, Instituto de Ganadería de Montaña (CSIC-Universidad de León), Grulleros, 24346 León, Spain;
| | - Carlos García-Estrada
- INBIOTEC (Instituto de Biotecnología de León), Avda. Real 1-Parque Científico de León, 24006 León, Spain;
| | - Rosa M. Reguera
- Department of Biomedical Sciences; University of León, 24071 León, Spain; (M.Á.-B.); (Y.P.-P.); (C.O.); (D.S.-C.); (R.M.R.)
| | - Rafael Balaña-Fouce
- Department of Biomedical Sciences; University of León, 24071 León, Spain; (M.Á.-B.); (Y.P.-P.); (C.O.); (D.S.-C.); (R.M.R.)
| |
Collapse
|
9
|
Moslehi M, Namdar F, Esmaeilifallah M, Hejazi SH, Sokhanvari F, Siadat AH, Hosseini SM, Iraji F. Evaluation of Different Concentrations of Imatinib on the Viability of Leishmania major: An In Vitro Study. Adv Biomed Res 2019; 8:61. [PMID: 31737578 PMCID: PMC6839269 DOI: 10.4103/abr.abr_58_19] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 07/11/2019] [Accepted: 07/16/2019] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Leishmaniasis is an infectious disease caused by an intracellular parasite of Leishmania and is transmitted through the female sandflies bite and may lead to severe skin lesions. Although drugs such as antimony compounds are available, their side effects such as toxicity, low efficacy, and emergence of resistance have raised the importance of effective replacement. Imatinib, as an inhibitor of tyrosine kinase (TK) of Leishmania, stops abnormal function of TK such as Bcr-Abl through assembling into transmembrane pores in a sterol-dependent manner. Hence, the evaluation of killing effects of different concentrations of imatinib against Leishmania major amastigotes and promastigotes in vitro were the objectives of the present study. MATERIALS AND METHODS The killing effects of different concentrations of imatinib (25, 50, and 100 μg) and 25 μg amphotericin B (as positive control) were evaluated against RPMI 1640-cultured promastigotes and the amastigote/macrophage model by MTS cell proliferation assay kit (ab197010) and Giemsa staining method during 24, 48, and 72 h. RESULTS The results showed anti-Leishmania effect of imatinib in concentration and time-dependent manner. The lowest number of live promastigotes and amastigotes were obtained due to treat with 100 μg/ml imatinib at 72 h. Furthermore, 100 μg concentration of imatinib had the same effect as 25 μg amphotericin B on both L. major promastigotes and amastigotes (P < 0.001). CONCLUSION The anti-Leishmania effect of imatinib was confirmed by MTS and direct microscopy. Further study is recommended for evaluating possible therapeutic effects of imatinib on leishmaniasis in vivo.
Collapse
Affiliation(s)
- Mohsen Moslehi
- From the Skin Diseases and Leishmaniasis Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Fatemeh Namdar
- Department of Parasitology and Mycology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mahsa Esmaeilifallah
- Department of Parasitology and Mycology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Seyed Hossein Hejazi
- From the Skin Diseases and Leishmaniasis Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
- Department of Parasitology and Mycology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Fatemeh Sokhanvari
- From the Skin Diseases and Leishmaniasis Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Amir Hossein Siadat
- Department of Dermatology, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Seyed Mohsen Hosseini
- Department of Biostatistics and Epidemiology, School of Public Health, Isfahan University of Medical Sciences Isfahan, Iran
| | - Fariba Iraji
- Department of Dermatology, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
10
|
Kersten C, Fleischer E, Kehrein J, Borek C, Jaenicke E, Sotriffer C, Brenk R. How To Design Selective Ligands for Highly Conserved Binding Sites: A Case Study Using N-Myristoyltransferases as a Model System. J Med Chem 2019; 63:2095-2113. [PMID: 31423787 DOI: 10.1021/acs.jmedchem.9b00586] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
A model system of two related enzymes with conserved binding sites, namely N-myristoyltransferase from two different organisms, was studied to decipher the driving forces that lead to selective inhibition in such cases. Using a combination of computational and experimental tools, two different selectivity-determining features were identified. For some ligands, a change in side-chain flexibility appears to be responsible for selective inhibition. Remarkably, this was observed for residues orienting their side chains away from the ligands. For other ligands, selectivity is caused by interfering with a water molecule that binds more strongly to the off-target than to the target. On the basis of this finding, a virtual screen for selective compounds was conducted, resulting in three hit compounds with the desired selectivity profile. This study delivers a guideline on how to assess selectivity-determining features in proteins with conserved binding sites and to translate this knowledge into the design of selective inhibitors.
Collapse
Affiliation(s)
- Christian Kersten
- Institute of Pharmacy and Biochemistry, Johannes Gutenberg-Universität Mainz, Staudingerweg 5, 55128 Mainz, Germany.,Department of Biomedicine, University of Bergen, Jonas Lies vei 91, 5020 Bergen, Norway
| | - Edmond Fleischer
- Institute of Pharmacy and Biochemistry, Johannes Gutenberg-Universität Mainz, Staudingerweg 5, 55128 Mainz, Germany
| | - Josef Kehrein
- Department of Biomedicine, University of Bergen, Jonas Lies vei 91, 5020 Bergen, Norway.,Institute of Pharmacy and Food Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Christoph Borek
- Institute of Pharmacy and Biochemistry, Johannes Gutenberg-Universität Mainz, Staudingerweg 5, 55128 Mainz, Germany
| | - Elmar Jaenicke
- Institute of Molecular Biophysics, Johannes Gutenberg University, Jakob-Welder-Weg 26, 55128 Mainz, Germany
| | - Christoph Sotriffer
- Institute of Pharmacy and Food Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Ruth Brenk
- Department of Biomedicine, University of Bergen, Jonas Lies vei 91, 5020 Bergen, Norway
| |
Collapse
|
11
|
Torrie LS, Zuccotto F, Robinson DA, Gray DW, Gilbert IH, De Rycker M. Identification of inhibitors of an unconventional Trypanosoma brucei kinetochore kinase. PLoS One 2019; 14:e0217828. [PMID: 31150492 PMCID: PMC6544269 DOI: 10.1371/journal.pone.0217828] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 05/21/2019] [Indexed: 01/13/2023] Open
Abstract
The discovery of 20 unconventional kinetochore proteins in Trypanosoma brucei has opened a new and interesting area of evolutionary research to study a biological process previously thought to be highly conserved in all eukaryotes. In addition, the discovery of novel proteins involved in a critical cellular process provides an opportunity to exploit differences between kinetoplastid and human kinetochore proteins to develop therapeutics for diseases caused by kinetoplastid parasites. Consequently, we identified two of the unconventional kinetochore proteins as key targets (the highly related kinases KKT10 and KKT19). Recombinant T. brucei KKT19 (TbKKT19) protein was produced, a peptide substrate phosphorylated by TbKKT19 identified (KKLRRTLSVA), Michaelis constants for KKLRRTLSVA and ATP were determined (179 μM and 102 μM respectively) and a robust high-throughput compatible biochemical assay developed. This biochemical assay was validated pharmacologically with inhibition by staurosporine and hypothemycin (IC50 values of 288 nM and 65 nM respectively). Surprisingly, a subsequent high-throughput screen of a kinase-relevant compound library (6,624 compounds) yielded few hits (8 hits; final hit rate 0.12%). The low hit rate observed was unusual for a kinase target, particularly when screened against a compound library enriched with kinase hinge binding scaffolds. In an attempt to understand the low hit rate a TbKKT19 homology model, based on human cdc2-like kinase 1 (CLK1), was generated. Analysis of the TbKKT19 sequence and structure revealed no obvious features that could explain the low hit rates. Further work will therefore be necessary to explore this unique kinetochore kinase as well as to assess whether the few hits identified can be developed into tool molecules or new drugs.
Collapse
Affiliation(s)
- Leah S. Torrie
- Drug Discovery Unit, Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Fabio Zuccotto
- Drug Discovery Unit, Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - David A. Robinson
- Drug Discovery Unit, Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - David W. Gray
- Drug Discovery Unit, Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Ian H. Gilbert
- Drug Discovery Unit, Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, United Kingdom
- * E-mail: (IHG); (MDR)
| | - Manu De Rycker
- Drug Discovery Unit, Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, United Kingdom
- * E-mail: (IHG); (MDR)
| |
Collapse
|
12
|
Méndez-Arriaga JM, Oyarzabal I, Martín-Montes Á, García-Rodríguez J, Quirós M, Sánchez-Moreno M. First Example of Antiparasitic Activity Influenced by Thermochromism: Leishmanicidal Evaluation of 5,7-dimethyl-1,2,4-triazolo[1,5-a]pyrimidine Metal Complexes. Med Chem 2019; 16:422-430. [PMID: 30931864 DOI: 10.2174/1573406415666190401120607] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 01/31/2019] [Accepted: 03/07/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND The World Health Organization catalogues illnesses such as Leishmaniasis as neglected diseases, due to low investment in new drugs to fight them. The search of novel and non-side effects anti-parasitic compounds is one of the urgent needs for the Third World. The use of triazolopyrimidines and their metallic complexes has demonstrated hopeful results in this field. OBJECTIVE This work studies the antiparasitic efficacy of a series of 5,7-dimethyl-1,2,4- triazolo[1,5-a]pyrimidine first row transition metal complexes against three leishmania spp. strains. METHODS The in vitro antiproliferation of promastigote forms of different strains of leishmania spp. (L. infantum, L. braziliensis and L donovani) and the cytotoxicity in macrophage host cells are reported here. The antiparasitic assays have been complemented with enzymatic tests to elucidate the mechanisms of action. New crystal structure description, thermal analysis, magnetic susceptibility and magnetization experiments have also been carried out in order to present a whole characterization of the studied compounds and interesting physical properties besides the biological tests. RESULTS The results of antiproliferation screening and cytotoxicity show great antiparasitic efficacy in the studied complexes. The superoxide dismutase enzymatic assays exhibit a different behaviour according to the thermochromic triazolopyrimidine form tested. CONCLUSION Antiproliferative assays and enzymatic tests corroborate the synergetic leishmanicidal effect present in coordination triazolopyrimidine complexes. The changes in coordination sphere derived from thermochromism affect the physical properties as well as the biological efficacy.
Collapse
Affiliation(s)
- José M Méndez-Arriaga
- Department of Inorganic Chemistry, Faculty of Sciences, University of Granada, Avda. Fuentenueva, 18071 Granada, Spain.,Department of Parasitology, Faculty of Sciences, University of Granada Avda. Fuentenueva, 18071 Granada, Spain
| | - Itziar Oyarzabal
- CNRS, CRPP, UMR 5031, 33600 Pessac, France.,University of Bordeaux, CRPP, UMR 5031, 33600 Pessac, France
| | - Álvaro Martín-Montes
- Department of Parasitology, Faculty of Sciences, University of Granada Avda. Fuentenueva, 18071 Granada, Spain
| | - Judith García-Rodríguez
- Department of Inorganic Chemistry, Faculty of Sciences, University of Granada, Avda. Fuentenueva, 18071 Granada, Spain
| | - Miguel Quirós
- Department of Inorganic Chemistry, Faculty of Sciences, University of Granada, Avda. Fuentenueva, 18071 Granada, Spain
| | - Manuel Sánchez-Moreno
- Department of Parasitology, Faculty of Sciences, University of Granada Avda. Fuentenueva, 18071 Granada, Spain
| |
Collapse
|
13
|
Yamagami T, Kobayashi R, Moriyama N, Horiuchi H, Toyofuku E, Kadoh Y, Kawanishi E, Izumoto S, Hiramatsu H, Nanjo T, Sugino M, Utsugi M, Moritani Y. Scalable Process Design for a PDE10A Inhibitor Consisting of Pyrazolopyrimidine and Quinoxaline as Key Units. Org Process Res Dev 2019. [DOI: 10.1021/acs.oprd.9b00068] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Takafumi Yamagami
- Process Development Department, Production Technology & Supply Chain Management Division, Mitsubishi Tanabe Pharma Corporation, 3-16-89, Kashima, Yodogawa-ku, Osaka 532-8505, Japan
| | - Ryo Kobayashi
- Technology Management Department, Production Technology & Supply Chain Management Division, Mitsubishi Tanabe Pharma Corporation, 3-16-89, Kashima, Yodogawa-ku, Osaka 532-8505, Japan
| | - Noriaki Moriyama
- Technology Management Department, Production Technology & Supply Chain Management Division, Mitsubishi Tanabe Pharma Corporation, 3-16-89, Kashima, Yodogawa-ku, Osaka 532-8505, Japan
| | - Hideki Horiuchi
- Global Quality Assurance Department, Mitsubishi Tanabe Pharma Corporation, 3-16-89, Kashima, Yodogawa-ku, Osaka 532-8505, Japan
| | - Eiji Toyofuku
- Technology Management Department, Production Technology & Supply Chain Management Division, Mitsubishi Tanabe Pharma Corporation, 3-16-89, Kashima, Yodogawa-ku, Osaka 532-8505, Japan
| | - Yoichi Kadoh
- Research Unit/Immunology & Inflammation, Sohyaku Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, 1000, Kamoshida-cho, Aoba-ku, Yokohama 227-0033, Japan
| | - Eiji Kawanishi
- Research Unit/Frontier, Sohyaku Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, 2-2-50, Kawagishi, Toda-shi, Saitama 335-8505, Japan
| | - Shinichi Izumoto
- Analytical Research Department, Production Technology & Supply Chain Management Division, Mitsubishi Tanabe Pharma Corporation, 3-16-89, Kashima, Yodogawa-ku, Osaka 532-8505, Japan
| | - Hajime Hiramatsu
- Analytical Research Department, Production Technology & Supply Chain Management Division, Mitsubishi Tanabe Pharma Corporation, 3-16-89, Kashima, Yodogawa-ku, Osaka 532-8505, Japan
| | - Takehiro Nanjo
- Analytical Research Department, Production Technology & Supply Chain Management Division, Mitsubishi Tanabe Pharma Corporation, 3-16-89, Kashima, Yodogawa-ku, Osaka 532-8505, Japan
| | - Masuhiro Sugino
- Process Development Department, Production Technology & Supply Chain Management Division, Mitsubishi Tanabe Pharma Corporation, 3-16-89, Kashima, Yodogawa-ku, Osaka 532-8505, Japan
| | - Masayuki Utsugi
- Process Development Department, Production Technology & Supply Chain Management Division, Mitsubishi Tanabe Pharma Corporation, 3-16-89, Kashima, Yodogawa-ku, Osaka 532-8505, Japan
| | - Yasunori Moritani
- Process Development Department, Production Technology & Supply Chain Management Division, Mitsubishi Tanabe Pharma Corporation, 3-16-89, Kashima, Yodogawa-ku, Osaka 532-8505, Japan
| |
Collapse
|
14
|
Borba JV, Silva AC, Ramos PI, Grazzia N, Miguel DC, Muratov EN, Furnham N, Andrade CH. Unveiling the Kinomes of Leishmania infantum and L. braziliensis Empowers the Discovery of New Kinase Targets and Antileishmanial Compounds. Comput Struct Biotechnol J 2019; 17:352-361. [PMID: 30949306 PMCID: PMC6429582 DOI: 10.1016/j.csbj.2019.02.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 02/04/2019] [Accepted: 02/06/2019] [Indexed: 01/31/2023] Open
Abstract
Leishmaniasis is a neglected tropical disease caused by parasites of the genus Leishmania (NTD) endemic in 98 countries. Although some drugs are available, current treatments deal with issues such as toxicity, low efficacy, and emergence of resistance. Therefore, there is an urgent need to identify new targets for the development of new antileishmanial drugs. Protein kinases (PKs), which play an essential role in many biological processes, have become potential drug targets for many parasitic diseases. A refined bioinformatics pipeline was applied in order to define and compare the kinomes of L. infantum and L. braziliensis, species that cause cutaneous and visceral manifestations of leishmaniasis in the Americas, the latter being potentially fatal if untreated. Respectively, 224 and 221 PKs were identified in L. infantum and L. braziliensis overall. Almost all unclassified eukaryotic PKs were assigned to six of nine major kinase groups and, consequently, most have been classified into family and subfamily. Furthermore, revealing the kinomes for both Leishmania species allowed for the prioritization of potential drug targets that could be explored for discovering new drugs against leishmaniasis. Finally, we used a drug repurposing approach and prioritized seven approved drugs and investigational compounds to be experimentally tested against Leishmania. Trametinib and NMS-1286937 inhibited the growth of L. infantum and L. braziliensis promastigotes and amastigotes and therefore might be good candidates for the drug repurposing pipeline.
Collapse
Affiliation(s)
- Joyce V.B. Borba
- Labmol – Laboratory for Molecular Modeling and Drug Design, Faculdade de Farmácia, Universidade Federal de Goiás - UFG, Goiânia, GO, 74605-510, Brazil
| | - Arthur C. Silva
- Labmol – Laboratory for Molecular Modeling and Drug Design, Faculdade de Farmácia, Universidade Federal de Goiás - UFG, Goiânia, GO, 74605-510, Brazil
| | - Pablo I.P. Ramos
- Instituto Gonçalo Moniz (IGM), Fundação Oswaldo Cruz (FIOCRUZ), Salvador, BA, 40296-710, Brazil
| | - Nathalia Grazzia
- LEBIL – Laboratory of Leishmania Biology Infection Studies, Department of Animal Biology, Biology Institute, State University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Danilo C. Miguel
- LEBIL – Laboratory of Leishmania Biology Infection Studies, Department of Animal Biology, Biology Institute, State University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Eugene N. Muratov
- Laboratory for Molecular Modeling, Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, 27599, USA
- Department of Chemical Technology, Odessa National Polytechnic University, Odessa, 65000, Ukraine
| | - Nicholas Furnham
- Department of Pathogen Molecular Biology, London School of Hygiene and Tropical Medicine, London, UK
| | - Carolina H. Andrade
- Labmol – Laboratory for Molecular Modeling and Drug Design, Faculdade de Farmácia, Universidade Federal de Goiás - UFG, Goiânia, GO, 74605-510, Brazil
| |
Collapse
|
15
|
Hazra S, Ghosh S, Hazra B. Phytochemicals With Antileishmanial Activity. STUDIES IN NATURAL PRODUCTS CHEMISTRY 2017. [DOI: 10.1016/b978-0-444-63931-8.00008-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
16
|
Drug repositioning approaches to parasitic diseases: a medicinal chemistry perspective. Drug Discov Today 2016; 21:1699-1710. [PMID: 27365271 DOI: 10.1016/j.drudis.2016.06.021] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2016] [Revised: 05/20/2016] [Accepted: 06/21/2016] [Indexed: 01/25/2023]
Abstract
Identifying new indications for clinically useful drugs is a worthwhile approach for neglected tropical diseases. The number of successful repurposing cases in the field is growing as not-for-profit organizations, in association with academia and pharmaceutical companies, enable screening campaigns for the identification of new repositioning candidates. Current programs have delivered encouraging results as the use of state-of-the-art technologies, such as genomic and structural biology tools, and high-throughput screening platforms have become increasingly common in infectious disease research. Drug repositioning has played a key part in improving the lives of those suffering from these conditions, as evidenced by successful precedents and recent studies on preeminent parasitic disorders.
Collapse
|
17
|
Duncan SM, Myburgh E, Philipon C, Brown E, Meissner M, Brewer J, Mottram JC. Conditional gene deletion with DiCre demonstrates an essential role for CRK3 in Leishmania mexicana cell cycle regulation. Mol Microbiol 2016; 100:931-44. [PMID: 26991545 PMCID: PMC4913733 DOI: 10.1111/mmi.13375] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/15/2016] [Indexed: 12/22/2022]
Abstract
Leishmania mexicana has a large family of cyclin‐dependent kinases (CDKs) that reflect the complex interplay between cell cycle and life cycle progression. Evidence from previous studies indicated that Cdc2‐related kinase 3 (CRK3) in complex with the cyclin CYC6 is a functional homologue of the major cell cycle regulator CDK1, yet definitive genetic evidence for an essential role in parasite proliferation is lacking. To address this, we have implemented an inducible gene deletion system based on a dimerised Cre recombinase (diCre) to target CRK3 and elucidate its role in the cell cycle of L. mexicana. Induction of diCre activity in promastigotes with rapamycin resulted in efficient deletion of floxed CRK3, resulting in G2/M growth arrest. Co‐expression of a CRK3 transgene during rapamycin‐induced deletion of CRK3 resulted in complementation of growth, whereas expression of an active site CRK3T178E mutant did not, showing that protein kinase activity is crucial for CRK3 function. Inducible deletion of CRK3 in stationary phase promastigotes resulted in attenuated growth in mice, thereby confirming CRK3 as a useful therapeutic target and diCre as a valuable new tool for analyzing essential genes in Leishmania.
Collapse
Affiliation(s)
- Samuel M Duncan
- Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, UK
| | - Elmarie Myburgh
- Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, UK.,Centre for Immunology and Infection, Department of Biology, University of York, Wentworth Way, Heslington, York, YO10 5DD, UK
| | - Cintia Philipon
- Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, UK
| | - Elaine Brown
- Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, UK.,Centre for Immunology and Infection, Department of Biology, University of York, Wentworth Way, Heslington, York, YO10 5DD, UK
| | - Markus Meissner
- Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, UK
| | - James Brewer
- Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, UK
| | - Jeremy C Mottram
- Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, UK.,Centre for Immunology and Infection, Department of Biology, University of York, Wentworth Way, Heslington, York, YO10 5DD, UK
| |
Collapse
|
18
|
Synthesis, antileishmanial activity and cytotoxicity of 2,3-diaryl- and 2,3,8-trisubstituted imidazo[1,2-a]pyrazines. Eur J Med Chem 2015; 103:381-95. [DOI: 10.1016/j.ejmech.2015.09.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 09/01/2015] [Accepted: 09/03/2015] [Indexed: 12/13/2022]
|
19
|
Woodland A, Thompson S, Cleghorn LAT, Norcross N, De Rycker M, Grimaldi R, Hallyburton I, Rao B, Norval S, Stojanovski L, Brun R, Kaiser M, Frearson JA, Gray DW, Wyatt PG, Read KD, Gilbert IH. Discovery of Inhibitors of Trypanosoma brucei by Phenotypic Screening of a Focused Protein Kinase Library. ChemMedChem 2015; 10:1809-20. [PMID: 26381210 PMCID: PMC4648050 DOI: 10.1002/cmdc.201500300] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Indexed: 11/10/2022]
Abstract
A screen of a focused kinase inhibitor library against Trypanosoma brucei rhodesiense led to the identification of seven series, totaling 121 compounds, which showed >50 % inhibition at 5 μm. Screening of these hits in a T. b. brucei proliferation assay highlighted three compounds with a 1H-imidazo[4,5-b]pyrazin-2(3H)-one scaffold that showed sub-micromolar activity and excellent selectivity against the MRC5 cell line. Subsequent rounds of optimisation led to the identification of compounds that exhibited good in vitro drug metabolism and pharmacokinetics (DMPK) properties, although in general this series suffered from poor solubility. A scaffold-hopping exercise led to the identification of a 1H-pyrazolo[3,4-b]pyridine scaffold, which retained potency. A number of examples were assessed in a T. b. brucei growth assay, which could differentiate static and cidal action. Compounds from the 1H-imidazo[4,5-b]pyrazin-2(3H)-one series were found to be either static or growth-slowing and not cidal. Compounds with the 1H-pyrazolo[3,4-b]pyridine scaffold were found to be cidal and showed an unusual biphasic nature in this assay, suggesting they act by at least two mechanisms.
Collapse
Affiliation(s)
- Andrew Woodland
- Drug Discovery Unit, Division of Biological Chemistry and Drug Discovery, University of Dundee, Dundee, DD1 5EH, UK
| | - Stephen Thompson
- Drug Discovery Unit, Division of Biological Chemistry and Drug Discovery, University of Dundee, Dundee, DD1 5EH, UK
| | - Laura A T Cleghorn
- Drug Discovery Unit, Division of Biological Chemistry and Drug Discovery, University of Dundee, Dundee, DD1 5EH, UK
| | - Neil Norcross
- Drug Discovery Unit, Division of Biological Chemistry and Drug Discovery, University of Dundee, Dundee, DD1 5EH, UK
| | - Manu De Rycker
- Drug Discovery Unit, Division of Biological Chemistry and Drug Discovery, University of Dundee, Dundee, DD1 5EH, UK
| | - Raffaella Grimaldi
- Drug Discovery Unit, Division of Biological Chemistry and Drug Discovery, University of Dundee, Dundee, DD1 5EH, UK
| | - Irene Hallyburton
- Drug Discovery Unit, Division of Biological Chemistry and Drug Discovery, University of Dundee, Dundee, DD1 5EH, UK
| | - Bhavya Rao
- Drug Discovery Unit, Division of Biological Chemistry and Drug Discovery, University of Dundee, Dundee, DD1 5EH, UK
| | - Suzanne Norval
- Drug Discovery Unit, Division of Biological Chemistry and Drug Discovery, University of Dundee, Dundee, DD1 5EH, UK
| | - Laste Stojanovski
- Drug Discovery Unit, Division of Biological Chemistry and Drug Discovery, University of Dundee, Dundee, DD1 5EH, UK
| | - Reto Brun
- Swiss Tropical and Public Health Institute, Socinstrasse 57, P.O. Box, 4002, Basel, Switzerland
| | - Marcel Kaiser
- Swiss Tropical and Public Health Institute, Socinstrasse 57, P.O. Box, 4002, Basel, Switzerland
| | - Julie A Frearson
- Drug Discovery Unit, Division of Biological Chemistry and Drug Discovery, University of Dundee, Dundee, DD1 5EH, UK
| | - David W Gray
- Drug Discovery Unit, Division of Biological Chemistry and Drug Discovery, University of Dundee, Dundee, DD1 5EH, UK
| | - Paul G Wyatt
- Drug Discovery Unit, Division of Biological Chemistry and Drug Discovery, University of Dundee, Dundee, DD1 5EH, UK
| | - Kevin D Read
- Drug Discovery Unit, Division of Biological Chemistry and Drug Discovery, University of Dundee, Dundee, DD1 5EH, UK
| | - Ian H Gilbert
- Drug Discovery Unit, Division of Biological Chemistry and Drug Discovery, University of Dundee, Dundee, DD1 5EH, UK.
| |
Collapse
|
20
|
Wang XM, Mao S, Cao L, Xie XX, Xin MH, Lian JF, Cao YX, Zhang SQ. Modification of N -(6-(2-methoxy-3-(4-fluorophenylsulfonamido)pyridin-5-yl)-[1,2,4]triazolo[1,5- a ]pyridin-2-yl)acetamide as PI3Ks inhibitor by replacement of the acetamide group with alkylurea. Bioorg Med Chem 2015. [DOI: 10.1016/j.bmc.2015.07.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
21
|
2,6,9-Trisubstituted purines as CRK3 kinase inhibitors with antileishmanial activity in vitro. Bioorg Med Chem Lett 2015; 25:2298-301. [PMID: 25937014 DOI: 10.1016/j.bmcl.2015.04.030] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Revised: 04/07/2015] [Accepted: 04/09/2015] [Indexed: 11/23/2022]
Abstract
Here we describe the leishmanicidal activities of a library of 2,6,9-trisubstituted purines that were screened for interaction with Cdc2-related protein kinase 3 (CRK3) and subsequently for activity against parasitic Leishmania species. The most active compound inhibited recombinant CRK3 with an IC50 value of 162 nM and was active against Leishmania major and Leishmania donovani at low micromolar concentrations in vitro. Its mode of binding to CRK3 was investigated by molecular docking using a homology model.
Collapse
|
22
|
Oxidative cyclization of 1-(pyridin-2-yl)guanidine derivatives: a synthesis of [1,2,4]triazolo[1,5-a]pyridin-2-amines and an unexpected synthesis of [1,2,4]triazolo[4,3-a]pyridin-3-amines. Tetrahedron 2015. [DOI: 10.1016/j.tet.2014.12.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
23
|
Bartels B, Bolas CG, Cueni P, Fantasia S, Gaeng N, Trita AS. Cu-catalyzed aerobic oxidative cyclization of guanidylpyridines and derivatives. J Org Chem 2014; 80:1249-57. [PMID: 25495477 DOI: 10.1021/jo502536t] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
A new method for the straightforward synthesis of 2-amino-[1,2,4]triazolo[1,5-a]pyridines and derivatives is presented. The target products are synthesized in high yields from guanidylpyridines and analogues via copper-catalyzed N-N coupling. The present methodology shows a wide scope, tolerating not only different substituents on the pyridine ring but also different heterocylic rings such as pyrazines, pyrimidines, and pyridazines.
Collapse
Affiliation(s)
- Björn Bartels
- Roche Pharmaceutical Research and Early Development, Roche Innovation Center Basel, preclinical CMC, Process Research, F. Hoffmann-La Roche Ltd. , Grenzacherstrasse 124, 4070 Basel, Switzerland
| | | | | | | | | | | |
Collapse
|
24
|
Using a non-image-based medium-throughput assay for screening compounds targeting N-myristoylation in intracellular Leishmania amastigotes. PLoS Negl Trop Dis 2014; 8:e3363. [PMID: 25522361 PMCID: PMC4270692 DOI: 10.1371/journal.pntd.0003363] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2014] [Accepted: 10/22/2014] [Indexed: 12/21/2022] Open
Abstract
We have refined a medium-throughput assay to screen hit compounds for activity against N-myristoylation in intracellular amastigotes of Leishmania donovani. Using clinically-relevant stages of wild type parasites and an Alamar blue-based detection method, parasite survival following drug treatment of infected macrophages is monitored after macrophage lysis and transformation of freed amastigotes into replicative extracellular promastigotes. The latter transformation step is essential to amplify the signal for determination of parasite burden, a factor dependent on equivalent proliferation rate between samples. Validation of the assay has been achieved using the anti-leishmanial gold standard drugs, amphotericin B and miltefosine, with EC50 values correlating well with published values. This assay has been used, in parallel with enzyme activity data and direct assay on isolated extracellular amastigotes, to test lead-like and hit-like inhibitors of Leishmania N-myristoyl transferase (NMT). These were derived both from validated in vivo inhibitors of Trypanosoma brucei NMT and a recent high-throughput screen against L. donovani NMT. Despite being a potent inhibitor of L. donovani NMT, the activity of the lead T. brucei NMT inhibitor (DDD85646) against L. donovani amastigotes is relatively poor. Encouragingly, analogues of DDD85646 show improved translation of enzyme to cellular activity. In testing the high-throughput L. donovani hits, we observed macrophage cytotoxicity with compounds from two of the four NMT-selective series identified, while all four series displayed low enzyme to cellular translation, also seen here with the T. brucei NMT inhibitors. Improvements in potency and physicochemical properties will be required to deliver attractive lead-like Leishmania NMT inhibitors. We have developed an assay for screening test compounds for their ability to kill intracellular amastigotes of Leishmania parasites, causative agents of human leishmaniasis. The assay is based on freeing amastigotes from infected macrophages by mild detergent lysis and measuring the number of parasites following their extracellular replication by a fluorescence-based method. The validity of the assay has been confirmed using the gold standard drugs, Amphotericin B and Miltefosine, which kill parasites at highly reproducible concentrations. Our results show that this assay is easily transferable between laboratories, can be adapted to specific applications and used to test any parasite species or strain, and does not rely on genetically-modified parasites. These features will enable its use in screening isolates taken directly from patients, vectors or reservoir hosts. We used this assay, in parallel with enzyme activity data, to test lead-like and hit-like inhibitors of a validated target enzyme, Leishmania N-myristoyltransferase (NMT). Compounds from two of four newly-identified Leishmania NMT-selective hit series displayed host cell cytotoxicity, while all four series displayed low translation of enzyme to cellular activity in analysis of intracellular parasite viability. Improvements in potency and physicochemical properties will be required to deliver attractive lead-like Leishmania NMT inhibitors.
Collapse
|
25
|
Nagle A, Khare S, Kumar AB, Supek F, Buchynskyy A, Mathison CJN, Chennamaneni N, Pendem N, Buckner FS, Gelb M, Molteni V. Recent developments in drug discovery for leishmaniasis and human African trypanosomiasis. Chem Rev 2014; 114:11305-47. [PMID: 25365529 PMCID: PMC4633805 DOI: 10.1021/cr500365f] [Citation(s) in RCA: 243] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Indexed: 02/08/2023]
Affiliation(s)
- Advait
S. Nagle
- Genomics
Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| | - Shilpi Khare
- Genomics
Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| | - Arun Babu Kumar
- Departments of Chemistry, Biochemistry, and Medicine, University
of Washington, Seattle, Washington 98195, United States
| | - Frantisek Supek
- Genomics
Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| | - Andriy Buchynskyy
- Departments of Chemistry, Biochemistry, and Medicine, University
of Washington, Seattle, Washington 98195, United States
| | - Casey J. N. Mathison
- Genomics
Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| | - Naveen
Kumar Chennamaneni
- Departments of Chemistry, Biochemistry, and Medicine, University
of Washington, Seattle, Washington 98195, United States
| | - Nagendar Pendem
- Departments of Chemistry, Biochemistry, and Medicine, University
of Washington, Seattle, Washington 98195, United States
| | - Frederick S. Buckner
- Departments of Chemistry, Biochemistry, and Medicine, University
of Washington, Seattle, Washington 98195, United States
| | - Michael
H. Gelb
- Departments of Chemistry, Biochemistry, and Medicine, University
of Washington, Seattle, Washington 98195, United States
| | - Valentina Molteni
- Genomics
Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| |
Collapse
|
26
|
Merritt C, Silva L, Tanner AL, Stuart K, Pollastri MP. Kinases as druggable targets in trypanosomatid protozoan parasites. Chem Rev 2014; 114:11280-304. [PMID: 26443079 PMCID: PMC4254031 DOI: 10.1021/cr500197d] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Indexed: 12/21/2022]
Affiliation(s)
- Christopher Merritt
- Seattle
Biomedical Research Institute, 307 Westlake Avenue North, Suite 500, Seattle, Washington 98109-5219, United States
| | - Lisseth
E. Silva
- Department
of Chemistry & Chemical Biology, Northeastern
University, 417 Egan
Research Center, 360 Huntington Avenue, Boston, Massachusetts 02115, United States
| | - Angela L. Tanner
- Department
of Chemistry & Chemical Biology, Northeastern
University, 417 Egan
Research Center, 360 Huntington Avenue, Boston, Massachusetts 02115, United States
| | - Kenneth Stuart
- Seattle
Biomedical Research Institute, 307 Westlake Avenue North, Suite 500, Seattle, Washington 98109-5219, United States
| | - Michael P. Pollastri
- Department
of Chemistry & Chemical Biology, Northeastern
University, 417 Egan
Research Center, 360 Huntington Avenue, Boston, Massachusetts 02115, United States
| |
Collapse
|
27
|
Efstathiou A, Gaboriaud-Kolar N, Smirlis D, Myrianthopoulos V, Vougogiannopoulou K, Alexandratos A, Kritsanida M, Mikros E, Soteriadou K, Skaltsounis AL. An inhibitor-driven study for enhancing the selectivity of indirubin derivatives towards leishmanial Glycogen Synthase Kinase-3 over leishmanial cdc2-related protein kinase 3. Parasit Vectors 2014; 7:234. [PMID: 24886176 PMCID: PMC4039064 DOI: 10.1186/1756-3305-7-234] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Accepted: 05/03/2014] [Indexed: 11/15/2022] Open
Abstract
Background In search of new antiparasitic agents for overcoming the limitations of current leishmaniasis chemotherapy, we have previously shown that 6-bromoindirubin-3'-oxime (6BIO) and several other 6-substituted analogues of indirubin, a naturally occurring bis-indole present in mollusks and plants, displayed reverse selectivity from the respective mammalian kinases, targeting more potently the leishmanial Cyclin-Dependent Kinase-1 (CDK1) homologue [cdc2-related protein kinase 3 (LCRK3)] over leishmanial Glycogen Synthase Kinase-3 (LGSK-3). This reversal of selectivity in Leishmania parasites compared to mammalian cells makes the design of specific indirubin-based LGSK-3 inhibitors difficult. In this context, the identification of compounds bearing specific substitutions that shift indirubin inhibition towards LGSK-3, previously found to be a potential drug target, over LCRK3 is imperative for antileishmanial targeted drug discovery. Methods A new in-house indirubin library, composed of 35 compounds, initially designed to target mammalian kinases (CDKs, GSK-3), was tested against Leishmania donovani promastigotes and intracellular amastigotes using the Alamar blue assay. Indirubins with antileishmanial activity were tested against LGSK-3 and LCRK3 kinases, purified from homologous expression systems. Flow cytometry (FACS) was used to measure the DNA content for cell-cycle analysis and the mode of cell death. Comparative structural analysis of the involved kinases was then performed using the Szmap algorithm. Results We have identified 7 new indirubin analogues that are selective inhibitors of LGSK-3 over LCRK3. These new inhibitors were also found to display potent antileishmanial activity with GI50 values of <1.5 μΜ. Surprisingly, all the compounds that displayed enhanced selectivity towards LGSK-3, were 6BIO analogues bearing an additional 3'-bulky amino substitution, namely a piperazine or pyrrolidine ring. A comparative structural analysis of the two aforementioned leishmanial kinases was subsequently undertaken to explain and rationalize the selectivity trend determined by the in vitro binding assays. Interestingly, the latter analysis showed that selectivity could be correlated with differences in kinase solvation thermo dynamics induced by minor sequence variations of the otherwise highly similar ATP binding pockets. Conclusions In conclusion, 3'-bulky amino substituted 6-BIO derivatives, which demonstrate enhanced specificity towards LGSK-3, represent a new scaffold for targeted drug development to treat leishmaniasis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Alexios-Leandros Skaltsounis
- Laboratories of Pharmacognosy and Pharmaceutical Chemistry, Department of Pharmacy, University of Athens, Panepistimiopolis-Zografou, 15771 Athens, Greece.
| |
Collapse
|
28
|
Goyal S, Dhanjal JK, Tyagi C, Goyal M, Grover A. Novel fragment-based QSAR modeling and combinatorial design of pyrazole-derived CRK3 inhibitors as potent antileishmanials. Chem Biol Drug Des 2014; 84:54-62. [PMID: 24447365 DOI: 10.1111/cbdd.12290] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Revised: 12/19/2013] [Accepted: 01/15/2014] [Indexed: 11/29/2022]
Abstract
The CRK3 cyclin-dependent kinase of Leishmania plays an important role in regulating the cell-cycle progression at the G2/M phase checkpoint transition, proliferation, and viability inside the host macrophage. In this study, a novel fragment-based QSAR model has been developed using 22 pyrazole-derived compounds exhibiting inhibitory activity against Leishmanial CRK3. Unlike other QSAR methods, this fragment-based method gives flexibility to study the relationship between molecular fragments of interest and their contribution for the variation in the biological response by evaluating cross-term fragment descriptors. Based on the fragment-based QSAR model, a combinatorial library was generated, and top two compounds were reported after predicting their activity. The QSAR model showed satisfactory statistical parameters for the data set (r(2) = 0.8752, q(2) = 0.6690, F-ratio = 30.37, and pred_r(2) = 0.8632) with four descriptors describing the nature of substituent groups and the environment of the substitution site. Evaluation of the model implied that electron-rich substitution at R1 position improves the inhibitory activity, while decline in inhibitory activity was observed in presence of nitrogen at R2 position. The analysis carried out in this study provides a substantial basis for consideration of the designed pyrazole-based leads as potent antileishmanial drugs.
Collapse
Affiliation(s)
- Sukriti Goyal
- Apaji Institute of Mathematics & Applied Computer Technology, Banasthali University, Tonk, 304022, India
| | | | | | | | | |
Collapse
|
29
|
Sanderson L, Yardley V, Croft SL. Activity of anti-cancer protein kinase inhibitors against Leishmania spp. J Antimicrob Chemother 2014; 69:1888-91. [PMID: 24668412 DOI: 10.1093/jac/dku069] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
OBJECTIVES There is an urgent need to develop new and effective treatments for poverty-related neglected diseases. In light of the time required to bring a new drug to market and the cost involved (10-15 years, >1 billion US$), one approach to identifying new treatments for diseases like leishmaniasis is to evaluate drugs that are already registered for the treatment of other diseases. This paper describes the anti-leishmanial activities of 10 FDA-approved protein kinase inhibitors already available for the treatment of human cancers. METHODS In vitro and in vivo models of Leishmania infection were used to evaluate the potency of selected protein kinase inhibitors. RESULTS Sunitinib, sorafenib and lapatinib were identified as active against Leishmania donovani amastigotes in cultured murine macrophages with IC(50) values of 1.1, 3.7 and 2.5 μM, respectively, a level of potency similar to that of miltefosine (IC(50) = 1.0 μM), and were not toxic to mammalian cells. In addition, some of the protein kinase inhibitors were active against L. donovani in the BALB/c mouse model of infection; dosing on days 7-11 with a 50 mg/kg oral dose of sunitinib, lapatinib or sorafenib reduced liver amastigote burdens by 41%, 36% and 30%, respectively, compared with untreated control mice. Although less efficacious, sorafenib was also active in vitro against intracellular amastigotes of the cutaneous disease-causing species Leishmania amazonensis, Leishmania major and Leishmania mexicana. CONCLUSIONS This study demonstrates in vivo anti-leishmanial activity of clinically used protein kinase inhibitors and provides further evidence of the potential of drug repurposing.
Collapse
Affiliation(s)
- Lisa Sanderson
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| | - Vanessa Yardley
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| | - Simon L Croft
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| |
Collapse
|
30
|
Smirlis D, Soares MBP. Selection of molecular targets for drug development against trypanosomatids. Subcell Biochem 2014; 74:43-76. [PMID: 24264240 DOI: 10.1007/978-94-007-7305-9_2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Trypanosomatid parasites are a group of flagellated protozoa that includes the genera Leishmania and Trypanosoma, which are the causative agents of diseases (leishmaniases, sleeping sickness and Chagas disease) that cause considerable morbidity and mortality, affecting more than 27 million people worldwide. Today no effective vaccines for the prevention of these diseases exist, whereas current chemotherapy is ineffective, mainly due to toxic side effects of current drugs and to the emergence of drug resistance and lack of cost effectiveness. For these reasons, rational drug design and the search of good candidate drug targets is of prime importance. The search for drug targets requires a multidisciplinary approach. To this end, the completion of the genome project of many trypanosomatid species gives a vast amount of new information that can be exploited for the identification of good drug candidates with a prediction of "druggability" and divergence from mammalian host proteins. In addition, an important aspect in the search for good drug targets is the "target identification" and evaluation in a biological pathway, as well as the essentiality of the gene in the mammalian stage of the parasite, which is provided by basic research and genetic and proteomic approaches. In this chapter we will discuss how these bioinformatic tools and experimental evaluations can be integrated for the selection of candidate drug targets, and give examples of metabolic and signaling pathways in the parasitic protozoa that can be exploited for rational drug design.
Collapse
|
31
|
Target-based drug discovery for human African trypanosomiasis: selection of molecular target and chemical matter. Parasitology 2013; 141:28-36. [PMID: 23931634 PMCID: PMC3884840 DOI: 10.1017/s0031182013001017] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Target-based approaches for human African trypanosomiasis (HAT) and related parasites can be a valuable route for drug discovery for these diseases. However, care needs to be taken in selection of both the actual drug target and the chemical matter that is developed. In this article, potential criteria to aid target selection are described. Then the physiochemical properties of typical oral drugs are discussed and compared to those of known anti-parasitics.
Collapse
|
32
|
Synthesis and anticancer activity evaluation of a series of [1,2,4]triazolo[1,5-a]pyridinylpyridines in vitro and in vivo. Eur J Med Chem 2013; 67:243-51. [PMID: 23871904 DOI: 10.1016/j.ejmech.2013.06.052] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Revised: 06/15/2013] [Accepted: 06/19/2013] [Indexed: 11/20/2022]
Abstract
A series of [1,2,4]triazolo[1,5-a]pyridinylpyridines were synthesized and characterized. Their antiproliferative activities in vitro were evaluated by MTT against three human cancer cell lines including HCT-116, U-87 MG and MCF-7 cell lines. The SAR of target compounds was preliminarily discussed. The compounds 1c and 2d with potent antiproliferative activities were tested for their effects on the AKT and p-AKT(473). The anticancer effect of 1c was evaluated in mice bearing sarcoma S-180 model. The results suggest that the title compounds are potent anticancer agents.
Collapse
|
33
|
Woodland A, Grimaldi R, Luksch T, Cleghorn LAT, Ojo KK, Van Voorhis WC, Brenk R, Frearson JA, Gilbert IH, Wyatt PG. From on-target to off-target activity: identification and optimisation of Trypanosoma brucei GSK3 inhibitors and their characterisation as anti-Trypanosoma brucei drug discovery lead molecules. ChemMedChem 2013; 8:1127-37. [PMID: 23776181 PMCID: PMC3728731 DOI: 10.1002/cmdc.201300072] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2013] [Revised: 05/15/2013] [Indexed: 01/09/2023]
Abstract
Human African trypanosomiasis (HAT) is a life-threatening disease with approximately 30 000–40 000 new cases each year. Trypanosoma brucei protein kinase GSK3 short (TbGSK3) is required for parasite growth and survival. Herein we report a screen of a focused kinase library against T. brucei GSK3. From this we identified a series of several highly ligand-efficient TbGSK3 inhibitors. Following the hit validation process, we optimised a series of diaminothiazoles, identifying low-nanomolar inhibitors of TbGSK3 that are potent in vitro inhibitors of T. brucei proliferation. We show that the TbGSK3 pharmacophore overlaps with that of one or more additional molecular targets.
Collapse
Affiliation(s)
- Andrew Woodland
- Drug Discovery Unit (DDU), Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, Sir James Black Centre, DD1 5EH, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Ali KA, Ragab EA, Mlostoń G, Celeda M, Linden A, Heimgartner H. Unexpected Reaction Course of 3-Amino-5-aryl-1H-pyrazoles with Dialkyl Dicyanofumarates. Helv Chim Acta 2013. [DOI: 10.1002/hlca.201200633] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
35
|
Mok NY, Maxe S, Brenk R. Locating sweet spots for screening hits and evaluating pan-assay interference filters from the performance analysis of two lead-like libraries. J Chem Inf Model 2013; 53:534-44. [PMID: 23451880 PMCID: PMC3739413 DOI: 10.1021/ci300382f] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
![]()
The efficiency of automated compound
screening is heavily influenced
by the design and the quality of the screening libraries used. We
recently reported on the assembly of one diverse and one target-focused
lead-like screening library. Using data from 15 enzyme-based screenings
conducted using these libraries, their performance was investigated.
Both libraries delivered screening hits across a range of targets,
with the hits distributed across the entire chemical space represented
by both libraries. On closer inspection, however, hit distribution
was uneven across the chemical space, with enrichments observed in
octants characterized by compounds at the higher end of the molecular
weight and lipophilicity spectrum for lead-like compounds, while polar
and sp3-carbon atom rich compounds were underrepresented
among the screening hits. Based on these observations, we propose
that screening libraries should not be evenly distributed in lead-like
chemical space but be enriched in polar, aliphatic compounds. In conjunction
with variable concentration screening, this could lead to more balanced
hit rates across the chemical space and screening hits of higher ligand
efficiency will be captured. Apart from chemical diversity, both screening
libraries were shown to be clean from any pan-assay interference (PAINS)
behavior. Even though some compounds were flagged to contain PAINS
structural motifs, some of these motifs were demonstrated to be less
problematic than previously suggested. To maximize the diversity of
the chemical space sampled in a screening campaign, we therefore consider
it justifiable to retain compounds containing PAINS structural motifs
that were apparently clean in this analysis when assembling screening
libraries.
Collapse
Affiliation(s)
- N Yi Mok
- Drug Discovery Unit, Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee , Dow Street, Dundee DD1 5EH, U.K
| | | | | |
Collapse
|
36
|
Urbaniak MD, Mathieson T, Bantscheff M, Eberhard D, Grimaldi R, Miranda-Saavedra D, Wyatt P, Ferguson MAJ, Frearson J, Drewes G. Chemical proteomic analysis reveals the drugability of the kinome of Trypanosoma brucei. ACS Chem Biol 2012; 7:1858-65. [PMID: 22908928 PMCID: PMC3621575 DOI: 10.1021/cb300326z] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The protozoan parasite Trypanosoma brucei is the causative agent of African sleeping sickness, and there is an urgent unmet need for improved treatments. Parasite protein kinases are attractive drug targets, provided that the host and parasite kinomes are sufficiently divergent to allow specific inhibition to be achieved. Current drug discovery efforts are hampered by the fact that comprehensive assay panels for parasite targets have not yet been developed. Here, we employ a kinase-focused chemoproteomics strategy that enables the simultaneous profiling of kinase inhibitor potencies against more than 50 endogenously expressed T. brucei kinases in parasite cell extracts. The data reveal that T. brucei kinases are sensitive to typical kinase inhibitors with nanomolar potency and demonstrate the potential for the development of species-specific inhibitors.
Collapse
Affiliation(s)
- Michael D. Urbaniak
- Division of
Biological Chemistry
and Drug Discovery, College of Life Sciences, University
of Dundee, Dow Street, Dundee DD1 5EH, U.K
- E-mail: ;
| | - Toby Mathieson
- Cellzome AG, Meyerhofstrasse 1, D-69117 Heidelberg, Germany
| | | | - Dirk Eberhard
- Cellzome AG, Meyerhofstrasse 1, D-69117 Heidelberg, Germany
| | - Raffaella Grimaldi
- Division of
Biological Chemistry
and Drug Discovery, College of Life Sciences, University
of Dundee, Dow Street, Dundee DD1 5EH, U.K
| | - Diego Miranda-Saavedra
- World Premier International Immunology
Frontier Research Centre, Osaka University, 3-1 Yamadaoka, Suita 565-0871, Osaka, Japan
| | - Paul Wyatt
- Division of
Biological Chemistry
and Drug Discovery, College of Life Sciences, University
of Dundee, Dow Street, Dundee DD1 5EH, U.K
| | - Michael A. J. Ferguson
- Division of
Biological Chemistry
and Drug Discovery, College of Life Sciences, University
of Dundee, Dow Street, Dundee DD1 5EH, U.K
| | - Julie Frearson
- BioFocus, Chesterford
Park, Saffron Walden, Essex CB10 1XL, U.K
| | - Gerard Drewes
- Cellzome AG, Meyerhofstrasse 1, D-69117 Heidelberg, Germany
- E-mail: ;
| |
Collapse
|
37
|
Marhadour S, Marchand P, Pagniez F, Bazin MA, Picot C, Lozach O, Ruchaud S, Antoine M, Meijer L, Rachidi N, Le Pape P. Synthesis and biological evaluation of 2,3-diarylimidazo[1,2-a]pyridines as antileishmanial agents. Eur J Med Chem 2012; 58:543-56. [PMID: 23164660 DOI: 10.1016/j.ejmech.2012.10.048] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Revised: 10/22/2012] [Accepted: 10/29/2012] [Indexed: 11/19/2022]
Abstract
A novel series of 2,3-diarylimidazo[1,2-a]pyridines was synthesized and evaluated for their antileishmanial activities. Four derivatives exhibited good activity against the promastigote and intracellular amastigote stages of Leishmania major, coupled with a low cytotoxicity against the HeLa human cell line. The impact of compound lipophilicity on antiparasitic activities was investigated by Log D comparison. Although LmCK1 could be the parasitic target for three compounds (13, 18, 21), the inhibition of another target is under study to explain the antileishmanial effect of the most promising compounds.
Collapse
Affiliation(s)
- Sophie Marhadour
- Université de Nantes, Nantes Atlantique Universités, Laboratoire de Chimie Thérapeutique, Cibles et Médicaments des Infections et du Cancer, IICiMed UPRES EA 1155, UFR des Sciences Pharmaceutiques et Biologiques, 1 rue Gaston Veil, 44035 Nantes, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Rotella DP. Recent results in protein kinase inhibition for tropical diseases. Bioorg Med Chem Lett 2012; 22:6788-93. [DOI: 10.1016/j.bmcl.2012.09.044] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Revised: 09/11/2012] [Accepted: 09/14/2012] [Indexed: 11/30/2022]
|