1
|
Smolobochkin A, Gazizov A, Appazov N, Sinyashin O, Burilov A. Progress in the Stereoselective Synthesis Methods of Pyrrolidine-Containing Drugs and Their Precursors. Int J Mol Sci 2024; 25:11158. [PMID: 39456938 PMCID: PMC11508981 DOI: 10.3390/ijms252011158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/11/2024] [Accepted: 10/12/2024] [Indexed: 10/28/2024] Open
Abstract
The presented review systematizes and summarizes the data on the synthesis of pyrrolidine derivatives, which are precursors for obtaining drugs. Based on the analysis of published data, the most promising directions in the synthesis of biologically active compounds containing a pyrrolidine ring are identified. Stereoselective synthesis methods are classified based on the source of the pyrrolidine ring. The first group includes methods that use a pyrrolidine ring as the starting compound. The second group combines stereoselective methods of cyclization of acyclic starting compounds, which lead to optically pure pyrrolidine derivatives.
Collapse
Affiliation(s)
- Andrey Smolobochkin
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Str., 8, Kazan 420088, Russia; (A.G.); (O.S.); (A.B.)
| | - Almir Gazizov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Str., 8, Kazan 420088, Russia; (A.G.); (O.S.); (A.B.)
| | - Nurbol Appazov
- Laboratory of Engineering Profile, Department of Engineering Technology, Korkyt Ata Kyzylorda University, Aiteke bi Str., 29A, Kyzylorda 120014, Kazakhstan
| | - Oleg Sinyashin
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Str., 8, Kazan 420088, Russia; (A.G.); (O.S.); (A.B.)
| | - Alexander Burilov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Str., 8, Kazan 420088, Russia; (A.G.); (O.S.); (A.B.)
| |
Collapse
|
2
|
Pätsi HT, Kilpeläinen TP, Auno S, Dillemuth PMJ, Arja K, Lahtela-Kakkonen MK, Myöhänen TT, Wallén EAA. 2-Imidazole as a Substitute for the Electrophilic Group Gives Highly Potent Prolyl Oligopeptidase Inhibitors. ACS Med Chem Lett 2021; 12:1578-1584. [PMID: 34671446 PMCID: PMC8521653 DOI: 10.1021/acsmedchemlett.1c00399] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Indexed: 11/28/2022] Open
Abstract
![]()
Different five-membered
nitrogen-containing heteroaromatics in
the position of the typical electrophilic group in prolyl oligopeptidase
(PREP) inhibitors were investigated and compared to tetrazole. The
2-imidazoles were highly potent inhibitors of the proteolytic activity.
The binding mode for the basic imidazole was studied by molecular
docking as it was expected to differ from the acidic tetrazole. A
new putative noncovalent binding mode with an interaction to His680
was found for the 2-imidazoles. Inhibition of the proteolytic activity
did not correlate with the modulating effect on protein–protein-interaction-derived
functions of PREP (i.e., dimerization of alpha-synuclein and autophagy).
Among the highly potent PREP inhibiting 2-imidazoles, only one was
also a potent modulator of PREP-catalyzed alpha-synuclein dimerization,
indicating that the linker length on the opposite side of the molecule
from the five-membered heteroaromatic is critical for the disconnected
structure–activity relationships.
Collapse
Affiliation(s)
- Henri T. Pätsi
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, 00014 Helsinki, Finland
| | - Tommi P. Kilpeläinen
- Drug Research Program, Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, 00014 Helsinki, Finland
| | - Samuli Auno
- Drug Research Program, Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, 00014 Helsinki, Finland
| | - Pyry M. J. Dillemuth
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, 00014 Helsinki, Finland
| | - Khaled Arja
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, 00014 Helsinki, Finland
| | - Maija K. Lahtela-Kakkonen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Yliopistonranta 1C, 70211 Kuopio, Finland
| | - Timo T. Myöhänen
- Drug Research Program, Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, 00014 Helsinki, Finland
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Yliopistonranta 1C, 70211 Kuopio, Finland
- Integrative Physiology and Pharmacology Unit, Institute of Biomedicine, University of Turku, Kiinanmyllynkatu 10, 20014 Turku, Finland
| | - Erik A. A. Wallén
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, 00014 Helsinki, Finland
| |
Collapse
|
3
|
Reeves EK, Entz ED, Neufeldt SR. Chemodivergence between Electrophiles in Cross-Coupling Reactions. Chemistry 2021; 27:6161-6177. [PMID: 33206420 DOI: 10.1002/chem.202004437] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Indexed: 12/14/2022]
Abstract
Chemodivergent cross-couplings are those in which either one of two (or more) potentially reactive functional groups can be made to react based on choice of conditions. In particular, this review focuses on cross-couplings involving two different (pseudo)halides that can compete for the role of the electrophilic coupling partner. The discussion is primarily organized by pairs of electrophiles including chloride vs. triflate, bromide vs. triflate, chloride vs. tosylate, and halide vs. halide. Some common themes emerge regarding the origin of selectivity control. These include catalyst ligation state and solvent polarity or coordinating ability. However, in many cases, further systematic studies will be necessary to deconvolute the influences of metal identity, ligand, solvent, additives, nucleophilic coupling partner, and other factors on chemoselectivity.
Collapse
Affiliation(s)
- Emily K Reeves
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana, 59717, USA
| | - Emily D Entz
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana, 59717, USA
| | - Sharon R Neufeldt
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana, 59717, USA
| |
Collapse
|
4
|
|
5
|
Fricke C, Sperger T, Mendel M, Schoenebeck F. Catalysis with Palladium(I) Dimers. Angew Chem Int Ed Engl 2021; 60:3355-3366. [PMID: 33058375 PMCID: PMC7898807 DOI: 10.1002/anie.202011825] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 10/09/2020] [Indexed: 12/16/2022]
Abstract
Dinuclear PdI complexes have found widespread applications as diverse catalysts for a multitude of transformations. Initially their ability to function as pre-catalysts for low-coordinated Pd0 species was harnessed in cross-coupling. Such PdI dimers are inherently labile and relatively sensitive to oxygen. In recent years, more stable dinuclear PdI -PdI frameworks, which feature bench-stability and robustness towards nucleophiles as well as recoverability in reactions, were explored and shown to trigger privileged reactivities via dinuclear catalysis. This includes the predictable and substrate-independent, selective C-C and C-heteroatom bond formations of poly(pseudo)halogenated arenes as well as couplings of arenes with relatively weak nucleophiles, which would not engage in Pd0 /PdII catalysis. This Minireview highlights the use of dinuclear PdI complexes as both pre-catalysts for the formation of highly active Pd0 and PdII -H species as well as direct dinuclear catalysts. Focus is set on the mechanistic intricacies, the speciation and the impacts on reactivity.
Collapse
Affiliation(s)
- Christoph Fricke
- Institute of Organic ChemistryRWTH Aachen UniversityLandoltweg 152074AachenGermany
| | - Theresa Sperger
- Institute of Organic ChemistryRWTH Aachen UniversityLandoltweg 152074AachenGermany
| | - Marvin Mendel
- Institute of Organic ChemistryRWTH Aachen UniversityLandoltweg 152074AachenGermany
| | | |
Collapse
|
6
|
Kalvet I, Deckers K, Funes‐Ardoiz I, Magnin G, Sperger T, Kremer M, Schoenebeck F. Selective ortho-Functionalization of Adamantylarenes Enabled by Dispersion and an Air-Stable Palladium(I) Dimer. Angew Chem Int Ed Engl 2020; 59:7721-7725. [PMID: 32065717 PMCID: PMC7317867 DOI: 10.1002/anie.202001326] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 02/16/2020] [Indexed: 12/15/2022]
Abstract
Contrary to the general belief that Pd-catalyzed cross-coupling at sites of severe steric hindrance are disfavored, we herein show that the oxidative addition to C-Br ortho to an adamantyl group is as favored as the corresponding adamantyl-free system due to attractive dispersion forces. This enabled the development of a fully selective arylation and alkylation of C-Br ortho to an adamantyl group, even if challenged with competing non-hindered C-OTf or C-Cl sites. The method makes use of an air-stable PdI dimer and enables straightforward access to diversely substituted therapeutically important adamantylarenes in 5-30 min.
Collapse
Affiliation(s)
- Indrek Kalvet
- Institute of Organic ChemistryRWTH Aachen UniversityLandoltweg 152074AachenGermany
| | - Kristina Deckers
- Institute of Organic ChemistryRWTH Aachen UniversityLandoltweg 152074AachenGermany
| | - Ignacio Funes‐Ardoiz
- Institute of Organic ChemistryRWTH Aachen UniversityLandoltweg 152074AachenGermany
| | - Guillaume Magnin
- Institute of Organic ChemistryRWTH Aachen UniversityLandoltweg 152074AachenGermany
| | - Theresa Sperger
- Institute of Organic ChemistryRWTH Aachen UniversityLandoltweg 152074AachenGermany
| | - Marius Kremer
- Institute of Organic ChemistryRWTH Aachen UniversityLandoltweg 152074AachenGermany
| | | |
Collapse
|
7
|
Kalvet I, Deckers K, Funes‐Ardoiz I, Magnin G, Sperger T, Kremer M, Schoenebeck F. Selective
ortho
‐Functionalization of Adamantylarenes Enabled by Dispersion and an Air‐Stable Palladium(I) Dimer. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202001326] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Indrek Kalvet
- Institute of Organic Chemistry RWTH Aachen University Landoltweg 1 52074 Aachen Germany
| | - Kristina Deckers
- Institute of Organic Chemistry RWTH Aachen University Landoltweg 1 52074 Aachen Germany
| | - Ignacio Funes‐Ardoiz
- Institute of Organic Chemistry RWTH Aachen University Landoltweg 1 52074 Aachen Germany
| | - Guillaume Magnin
- Institute of Organic Chemistry RWTH Aachen University Landoltweg 1 52074 Aachen Germany
| | - Theresa Sperger
- Institute of Organic Chemistry RWTH Aachen University Landoltweg 1 52074 Aachen Germany
| | - Marius Kremer
- Institute of Organic Chemistry RWTH Aachen University Landoltweg 1 52074 Aachen Germany
| | - Franziska Schoenebeck
- Institute of Organic Chemistry RWTH Aachen University Landoltweg 1 52074 Aachen Germany
| |
Collapse
|
8
|
Mendel M, Kalvet I, Hupperich D, Magnin G, Schoenebeck F. Site-Selective, Modular Diversification of Polyhalogenated Aryl Fluorosulfates (ArOSO 2 F) Enabled by an Air-Stable Pd I Dimer. Angew Chem Int Ed Engl 2020; 59:2115-2119. [PMID: 31733009 PMCID: PMC7003813 DOI: 10.1002/anie.201911465] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 10/18/2019] [Indexed: 01/14/2023]
Abstract
Since 2014, the interest in aryl fluorosulfates (ArOSO2 F) as well as their implementation in powerful applications has continuously grown. In this context, the enabling capability of ArOSO2 F will strongly depend on the substitution pattern of the arene, which ultimately dictates its overall function as drug candidate, material, or bio-linker. This report showcases the modular, substrate-independent, and fully predictable, selective functionalization of polysubstituted arenes bearing C-OSO2 F, C-Br, and C-Cl sites, which makes it possible to diversify the arene in the presence of OSO2 F or utilize OSO2 F as a triflate surrogate. Sequential and triply selective arylations and alkylations were realized within minutes at room temperature, using a single and air-stable PdI dimer.
Collapse
Affiliation(s)
- Marvin Mendel
- Institute of Organic ChemistryRWTH Aachen UniversityLandoltweg 152074AachenGermany
| | - Indrek Kalvet
- Institute of Organic ChemistryRWTH Aachen UniversityLandoltweg 152074AachenGermany
| | - Daniel Hupperich
- Institute of Organic ChemistryRWTH Aachen UniversityLandoltweg 152074AachenGermany
| | - Guillaume Magnin
- Institute of Organic ChemistryRWTH Aachen UniversityLandoltweg 152074AachenGermany
| | | |
Collapse
|
9
|
Mendel M, Kalvet I, Hupperich D, Magnin G, Schoenebeck F. Chemoselektive, modulare Diversifikation polyhalogenierter Arylfluorosulfate (ArOSO
2
F), ermöglicht durch ein luftstabiles Pd
I
‐Dimer. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201911465] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Marvin Mendel
- Institut für Organische ChemieRWTH Aachen Landoltweg 1 52074 Aachen Deutschland
| | - Indrek Kalvet
- Institut für Organische ChemieRWTH Aachen Landoltweg 1 52074 Aachen Deutschland
| | - Daniel Hupperich
- Institut für Organische ChemieRWTH Aachen Landoltweg 1 52074 Aachen Deutschland
| | - Guillaume Magnin
- Institut für Organische ChemieRWTH Aachen Landoltweg 1 52074 Aachen Deutschland
| | | |
Collapse
|
10
|
Keaveney ST, Kundu G, Schoenebeck F. Modular Functionalization of Arenes in a Triply Selective Sequence: Rapid C(sp 2 ) and C(sp 3 ) Coupling of C-Br, C-OTf, and C-Cl Bonds Enabled by a Single Palladium(I) Dimer. Angew Chem Int Ed Engl 2018; 57:12573-12577. [PMID: 30091504 PMCID: PMC6175235 DOI: 10.1002/anie.201808386] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Indexed: 01/01/2023]
Abstract
Full control over multiple competing coupling sites would enable straightforward access to densely functionalized compound libraries. Historically, the site selection in Pd0 -catalyzed functionalizations of poly(pseudo)halogenated arenes has been unpredictable, being dependent on the employed catalyst, the reaction conditions, and the substrate itself. Building on our previous report of C-Br-selective functionalization in the presence of C-OTf and C-Cl bonds, we herein complete the sequence and demonstrate the first general arylations and alkylations of C-OTf bonds (in <10 min), followed by functionalization of the C-Cl site (in <25 min), at room temperature using the same air- and moisture-stable PdI dimer. This allowed the realization of the first general and triply selective sequential C-C coupling (in 2D and 3D space) of C-Br followed by C-OTf and then C-Cl bonds.
Collapse
Affiliation(s)
- Sinead T. Keaveney
- Institute of Organic ChemistryRWTH Aachen UniversityLandoltweg 152074AachenGermany
| | - Gourab Kundu
- Institute of Organic ChemistryRWTH Aachen UniversityLandoltweg 152074AachenGermany
| | | |
Collapse
|
11
|
Keaveney ST, Kundu G, Schoenebeck F. Modular Functionalization of Arenes in a Triply Selective Sequence: Rapid C(sp2
) and C(sp3
) Coupling of C−Br, C−OTf, and C−Cl Bonds Enabled by a Single Palladium(I) Dimer. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201808386] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Sinead T. Keaveney
- Institute of Organic Chemistry; RWTH Aachen University; Landoltweg 1 52074 Aachen Germany
| | - Gourab Kundu
- Institute of Organic Chemistry; RWTH Aachen University; Landoltweg 1 52074 Aachen Germany
| | - Franziska Schoenebeck
- Institute of Organic Chemistry; RWTH Aachen University; Landoltweg 1 52074 Aachen Germany
| |
Collapse
|
12
|
Almond-Thynne J, Blakemore DC, Pryde DC, Spivey AC. Site-selective Suzuki-Miyaura coupling of heteroaryl halides - understanding the trends for pharmaceutically important classes. Chem Sci 2017; 8:40-62. [PMID: 28451148 PMCID: PMC5304707 DOI: 10.1039/c6sc02118b] [Citation(s) in RCA: 126] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 08/04/2016] [Indexed: 12/22/2022] Open
Abstract
Suzuki-Miyaura cross-coupling reactions of heteroaryl polyhalides with aryl boronates are surveyed. Drawing on data from literature sources as well as bespoke searches of Pfizer's global chemistry RKB and CAS Scifinder® databases, the factors that determine the site-selectivity of these reactions are discussed with a view to rationalising the trends found.
Collapse
Affiliation(s)
- Joshua Almond-Thynne
- Department of Chemistry , Imperial College London , South Kensington Campus , London , SW& 2AZ , UK .
| | - David C Blakemore
- Pfizer Worldwide Medicinal Chemistry , The Portway Building, Granta Park, Great Abington , Cambridge , CB21 6GS , UK
| | - David C Pryde
- Pfizer Worldwide Medicinal Chemistry , The Portway Building, Granta Park, Great Abington , Cambridge , CB21 6GS , UK
| | - Alan C Spivey
- Department of Chemistry , Imperial College London , South Kensington Campus , London , SW& 2AZ , UK .
| |
Collapse
|
13
|
Kalvet I, Magnin G, Schoenebeck F. Rapid Room-Temperature, Chemoselective Csp2
−Csp2
Coupling of Poly(pseudo)halogenated Arenes Enabled by Palladium(I) Catalysis in Air. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201609635] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Indrek Kalvet
- Institute of Organic Chemistry; RWTH Aachen University; Landoltweg 1 52074 Aachen Germany
| | - Guillaume Magnin
- Institute of Organic Chemistry; RWTH Aachen University; Landoltweg 1 52074 Aachen Germany
| | - Franziska Schoenebeck
- Institute of Organic Chemistry; RWTH Aachen University; Landoltweg 1 52074 Aachen Germany
| |
Collapse
|
14
|
Kalvet I, Magnin G, Schoenebeck F. Rapid Room-Temperature, Chemoselective Csp2 -Csp2 Coupling of Poly(pseudo)halogenated Arenes Enabled by Palladium(I) Catalysis in Air. Angew Chem Int Ed Engl 2016; 56:1581-1585. [PMID: 28032945 PMCID: PMC5299498 DOI: 10.1002/anie.201609635] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Revised: 11/04/2016] [Indexed: 11/23/2022]
Abstract
While chemoselectivities in Pd0‐catalyzed coupling reactions are frequently non‐intuitive and a result of a complex interplay of ligand/catalyst, substrate, and reaction conditions, we herein report a general method based on PdI that allows for an a priori predictable chemoselective Csp2
−Csp2
coupling at C−Br in preference to C−OTf and C−Cl bonds, regardless of the electronic or steric bias of the substrate. The C−C bond formations are extremely rapid (<5 min at RT) and are catalyzed by an air‐ and moisture‐stable PdI dimer under open‐flask conditions.
Collapse
Affiliation(s)
- Indrek Kalvet
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| | - Guillaume Magnin
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| | - Franziska Schoenebeck
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| |
Collapse
|
15
|
Moore TO, Paradowski M, Ward SE. An atom-efficient and convergent approach to the preparation of NS5A inhibitors by C-H activation. Org Biomol Chem 2016; 14:3307-13. [PMID: 26936019 DOI: 10.1039/c6ob00340k] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A novel approach of the convergent functionalisation of aryl dibromides to form NS5A type inhibitors using C-H activation is reported. The focus of investigation was to reduce the formation of homodimeric side product, as well as to investigate the scope of different aryl dibromides that were tolerated under the reaction conditions. The C-H activation methodology was found to give a viable synthetic route to NS5A inhibitors, with late stage functionalisation of the core portion of the molecule, albeit with some chemical functionalities not tolerated.
Collapse
Affiliation(s)
- Thomas O Moore
- Sussex Drug Discovery Centre, University of Sussex, Brighton, England BN1 9QJ, UK.
| | - Michael Paradowski
- Sussex Drug Discovery Centre, University of Sussex, Brighton, England BN1 9QJ, UK.
| | - Simon E Ward
- Sussex Drug Discovery Centre, University of Sussex, Brighton, England BN1 9QJ, UK.
| |
Collapse
|
16
|
Meanwell NA. Improving Drug Design: An Update on Recent Applications of Efficiency Metrics, Strategies for Replacing Problematic Elements, and Compounds in Nontraditional Drug Space. Chem Res Toxicol 2016; 29:564-616. [DOI: 10.1021/acs.chemrestox.6b00043] [Citation(s) in RCA: 120] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Nicholas A. Meanwell
- Department of Discovery Chemistry, Bristol-Myers Squibb Research & Development, Wallingford, Connecticut 06492, United States
| |
Collapse
|
17
|
Novel benzidine and diaminofluorene prolinamide derivatives as potent hepatitis C virus NS5A inhibitors. Eur J Med Chem 2015; 101:163-78. [PMID: 26134551 DOI: 10.1016/j.ejmech.2015.06.033] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Revised: 06/14/2015] [Accepted: 06/15/2015] [Indexed: 12/21/2022]
Abstract
Our study describes the discovery of a series of highly potent hepatitis C virus (HCV) NS5A inhibitors based on symmetrical prolinamide derivatives of benzidine and diaminofluorene. Through modification of benzidine, l-proline, and diaminofluorene derivatives, we developed novel inhibitor structures, which allowed us to establish a library of potent HCV NS5A inhibitors. After optimizing the benzidine prolinamide backbone, we identified inhibitors embedding meta-substituted benzidine core structures that exhibited the most potent anti-HCV activities. Furthermore, through a battery of studies including hERG ligand binding assay, CYP450 binding assay, rat plasma stability test, human liver microsomal stability test, and pharmacokinetic studies, the identified compounds 24, 26, 27, 42, and 43 are found to be nontoxic, and are expected to be effective therapeutic anti-HCV agents.
Collapse
|
18
|
Wakenhut F, Tran TD, Pickford C, Shaw S, Westby M, Smith-Burchnell C, Watson L, Paradowski M, Milbank J, Stonehouse D, Cheung K, Wybrow R, Daverio F, Crook S, Statham K, Leese D, Stead D, Adam F, Hay D, Roberts LR, Chiva JY, Nichols C, Blakemore DC, Goetz GH, Che Y, Gardner I, Dayal S, Pike A, Webster R, Pryde DC. The Discovery of Potent Nonstructural Protein 5A (NS5A) Inhibitors with a Unique Resistance Profile-Part 2. ChemMedChem 2014; 9:1387-96. [DOI: 10.1002/cmdc.201400046] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Indexed: 01/07/2023]
|