1
|
Schenk M, Mörl K, Herzig S, Beck-Sickinger AG. Targeted modulation of gene expression through receptor-specific delivery of small interfering RNA peptide conjugates. J Pept Sci 2024; 30:e3611. [PMID: 38714526 DOI: 10.1002/psc.3611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/12/2024] [Accepted: 04/15/2024] [Indexed: 05/10/2024]
Abstract
Small interfering RNA (siRNA) has emerged as a valuable tool to address RNA interference (RNAi) to modulate gene expression also in therapy. However, challenges such as inefficient cell targeting and rapid degradation in biological systems have limited its success. To address these issues, the development of a receptor-specific shuttle system represents a promising solution. [F7,P34]-NPY analogues were modified by solid-phase peptide synthesis, enabling non-covalent conjugation with siRNA. This modification yielded an efficient siRNA vehicle capable of binding and transporting its cargo into target cells without adversely affecting receptor activation or cell viability. Mass spectrometry and gel shift assays confirmed successful and stable siRNA binding under various conditions. Microscopy experiments further demonstrated the co-internalization of labeled peptides and siRNA in Hepa1c1 cells, highlighting the stability of the complex. In vitro quantitative RT-PCR experiments, targeting the TSC22D4 gene to normalize systemic glucose homeostasis and insulin resistance, revealed a functional peptide-based siRNA shuttle system with the ability to decrease mRNA expression to approximately 40%. These findings strengthen the potential of receptor-specific siRNA shuttle systems as efficient tools for gene therapy that offer a possibility for reducing side effects.
Collapse
Affiliation(s)
- Mareike Schenk
- Institute of Biochemistry, Faculty of Life Sciences, Leipzig University, Leipzig, Germany
| | - Karin Mörl
- Institute of Biochemistry, Faculty of Life Sciences, Leipzig University, Leipzig, Germany
| | - Stephan Herzig
- Institute for Diabetes and Cancer, Helmholtz Munich, German Center for Diabetes Research (DZD), Neuherberg, Germany
- Department of Endocrinology, Diabetology, Metabolism and Clinical Chemistry (Internal Medicine 1), Heidelberg University Hospital, Heidelberg, Germany
| | | |
Collapse
|
2
|
Zhu W, Tanday N, Lafferty RA, Flatt PR, Irwin N. Novel enzyme-resistant pancreatic polypeptide analogs evoke pancreatic beta-cell rest, enhance islet cell turnover, and inhibit food intake in mice. Biofactors 2024. [PMID: 38635341 DOI: 10.1002/biof.2059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 04/02/2024] [Indexed: 04/20/2024]
Abstract
Pancreatic polypeptide (PP) is a postprandial hormone secreted from pancreatic islets that activates neuropeptide Y4 receptors (NPY4Rs). PP is known to induce satiety but effects at the level of the endocrine pancreas are less well characterized. In addition, rapid metabolism of PP by dipeptidyl peptidase-4 (DPP-4) limits the investigation of the effects of the native peptide. Therefore, in the present study, five novel amino acid substituted and/or fatty acid derivatized PP analogs were synthesized, namely [P3]PP, [K13Pal]PP, [P3,K13Pal]PP, [N-Pal]PP, and [N-Pal,P3]PP, and their impact on pancreatic beta-cell function, as well as appetite regulation and glucose homeostasis investigated. All PP analogs displayed increased resistance to DPP-4 degradation. In addition, all peptides inhibited alanine-induced insulin secretion from BRIN-BD11 beta cells. Native PP and related analogs (10-8 and 10-6 M), and especially [P3]PP and [K13Pal]PP, significantly protected against cytokine-induced beta-cell apoptosis and promoted cellular proliferation, with effects dependent on the NPY4R for all peptides barring [N-Pal,P3]PP. In mice, all peptides, except [N-Pal]PP and [N-Pal,P3]PP, evoked a dose-dependent (25, 75, and 200 nmol/kg) suppression of appetite, with native PP and [P3]PP further augmenting glucagon-like peptide-1 (GLP-1) and cholecystokinin (CCK) induced reductions of food intake. The PP peptides had no obvious detrimental effect on glucose tolerance and they did not noticeably impair the glucose-regulatory actions of GLP-1 or CCK. In conclusion, Pro3 amino acid substitution of PP, either alone or together with mid-chain acylation, creates PP analogs with benefits on beta-cell rest, islet cell turnover, and energy regulation that may be applicable to the treatment of diabetes and obesity.
Collapse
Affiliation(s)
- Wuyun Zhu
- Diabetes Research Centre, Schools of Biomedical Sciences and Pharmacy & Pharmaceutical Sciences, Ulster University, Coleraine, UK
| | - Neil Tanday
- Diabetes Research Centre, Schools of Biomedical Sciences and Pharmacy & Pharmaceutical Sciences, Ulster University, Coleraine, UK
| | - Ryan A Lafferty
- Diabetes Research Centre, Schools of Biomedical Sciences and Pharmacy & Pharmaceutical Sciences, Ulster University, Coleraine, UK
| | - Peter R Flatt
- Diabetes Research Centre, Schools of Biomedical Sciences and Pharmacy & Pharmaceutical Sciences, Ulster University, Coleraine, UK
| | - Nigel Irwin
- Diabetes Research Centre, Schools of Biomedical Sciences and Pharmacy & Pharmaceutical Sciences, Ulster University, Coleraine, UK
| |
Collapse
|
3
|
Bodin S, Peuker LC, Jestin E, Alves ID, Velasco V, Ait-Arsa I, Schollhammer R, Lamare F, Vimont D, MacGrogan G, Hindié E, Beck-Sickinger AG, Morgat C. Development of Radiopharmaceuticals for NPY Receptor-5 (Y5) Nuclear Imaging in Tumors by Synthesis of Specific Agonists and Investigation of Their Binding Mode. Bioconjug Chem 2023; 34:2014-2021. [PMID: 37556437 DOI: 10.1021/acs.bioconjchem.3c00313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2023]
Abstract
The neuropeptide-Y (NPY) family acts through four G protein-coupled receptor subtypes in humans, namely, Y1, Y2, Y4, and Y5. A growing body of evidence suggest the involvement of the NPY system in several cancers, notably the Y5 subtype, thus acting as a relevant target for the development of radiopharmaceuticals for imaging or targeted radionuclide therapy (TRT). Here, the [cPP(1-7),NPY(19-23),Ala31,Aib32,Gln34]hPP scaffold, further referred to as sY5ago, was modified with a DOTA chelator and radiolabeled with 68Ga and 111In and investigated in vitro and in vivo using the MCF-7 model. For in vivo studies, MCF-7 cells were orthotopically implanted in female nude mice and imaging with small animal positron emission tomography/computed tomography (μPET/CT) was performed. At the end of imaging, the mice were sacrificed. A scrambled version of sY5ago, which was also modified with a DOTA chelator, served as a negative control (DOTA-[Nle]sY5ago_scrambled). sY5ago and DOTA-sY5ago showed subnanomolar affinity toward the Y5 (0.9 ± 0.1 and 0.8 ± 0.1 nM, respectively) and a single binding site at the Y5 was identified. [68Ga]Ga-DOTA-sY5ago and [111In]In-DOTA-sY5ago were hydrophilic and showed high specific internalization (1.61 ± 0.75%/106 cells at 1 h) and moderate efflux (55% of total binding externalized at 45 min). On μPET/CT images, most of the signal was depicted in the kidneys and the liver. MCF-7 tumors were clearly visualized. On biodistribution studies, [68Ga]Ga-DOTA-sY5ago was eliminated by the kidneys (∼60 %ID/g). The kidney uptake is Y5-mediated. A specific uptake was also noted in the liver (5.09 ± 1.15 %ID/g vs 1.13 ± 0.21 %ID/g for [68Ga]Ga-DOTA-[Nle]sY5ago_scrambled, p < 0.05), the lungs (1.03 ± 0.34 %ID/g vs 0.20 %ID/g, p < 0.05), and the spleen (0.85 ± 0.09%ID/g vs 0.16 ± 0.16%ID/g, p < 0.05). In MCF-7 tumors, [68Ga]Ga-DOTA-sY5ago showed 12-fold higher uptake than [68Ga]Ga-DOTA-[Nle]sY5ago_scrambled (3.43 ± 2.32 vs 0.27 ± 0.15 %ID/g, respectively, p = 0.0008) at 1 h post-injection. Finally, a proof-of-principle tissular micro-imaging study on a human primary cancer sample showed weak binding of [111In]In-DOTA-sY5ago in prostatic intra-neoplasia and high binding in the ISUP1 lesion while normal prostate was free of signal.
Collapse
Affiliation(s)
- Sacha Bodin
- Department of Nuclear Medicine, University Hospital of Bordeaux, F-33076 Bordeaux, France
- CNRS, EPHE, INCIA UMR 5287, University of Bordeaux, F-33400 Talence, France
| | - Lisa C Peuker
- Institute of Biochemistry, Faculty of Life Sciences, Leipzig University, Brüderstr. 34, 04103 Leipzig, Germany
| | - Emmanuelle Jestin
- GIP CYROI - Cyclotron Réunion Océan Indien, F-97490 Saint Clotilde, France
| | - Isabel D Alves
- CNRS UMR 248, Institute of Chemistry & Biology of Membranes & Nano-objects (CBMN), University of Bordeaux, F-33600 Pessac, France
| | - Valérie Velasco
- Surgical Pathology Unit, Department of Biopathology, Institut Bergonié, F-33076 Bordeaux, France
- ACTION U1218, INSERM, F-33076 Bordeaux, France
| | - Imade Ait-Arsa
- GIP CYROI - Cyclotron Réunion Océan Indien, F-97490 Saint Clotilde, France
| | - Romain Schollhammer
- Department of Nuclear Medicine, University Hospital of Bordeaux, F-33076 Bordeaux, France
- CNRS, EPHE, INCIA UMR 5287, University of Bordeaux, F-33400 Talence, France
| | - Frédéric Lamare
- CNRS, EPHE, INCIA UMR 5287, University of Bordeaux, F-33400 Talence, France
| | - Delphine Vimont
- CNRS, EPHE, INCIA UMR 5287, University of Bordeaux, F-33400 Talence, France
| | - Gaétan MacGrogan
- Surgical Pathology Unit, Department of Biopathology, Institut Bergonié, F-33076 Bordeaux, France
- ACTION U1218, INSERM, F-33076 Bordeaux, France
| | - Elif Hindié
- Department of Nuclear Medicine, University Hospital of Bordeaux, F-33076 Bordeaux, France
- CNRS, EPHE, INCIA UMR 5287, University of Bordeaux, F-33400 Talence, France
- Institut Universitaire de France, F-75000 Paris, France
| | - Annette G Beck-Sickinger
- Institute of Biochemistry, Faculty of Life Sciences, Leipzig University, Brüderstr. 34, 04103 Leipzig, Germany
| | - Clément Morgat
- Department of Nuclear Medicine, University Hospital of Bordeaux, F-33076 Bordeaux, France
- CNRS, EPHE, INCIA UMR 5287, University of Bordeaux, F-33400 Talence, France
| |
Collapse
|
4
|
Wygas MM, Laugwitz JM, Schmidt P, Elgeti M, Kaiser A. Dynamics of the Second Extracellular Loop Control Transducer Coupling of Peptide-Activated GPCRs. Int J Mol Sci 2023; 24:12197. [PMID: 37569573 PMCID: PMC10419011 DOI: 10.3390/ijms241512197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/20/2023] [Accepted: 07/28/2023] [Indexed: 08/13/2023] Open
Abstract
Many peptide-activated rhodopsin-like GPCRs share a β-hairpin folding motif in the extracellular loop 2 (ECL2), which interacts with the peptide ligand while at the same time being connected to transmembrane helix 3 (TM3) via a highly conserved disulfide bond. Currently, it remains unknown whether the coupling of the specifically shaped ECL2 to TM3 influences the activation of peptide-activated GPCRs. We investigated this possibility in a selection of peptide GPCRs with known structures. Most of the receptors with cysteine to alanine mutations folded like the respective wild-type and resided in the cell membrane, challenging pure folding stabilization by the disulfide bridge. G-protein signaling of the disulfide mutants was retained to a greater extent in secretin-like GPCRs than in rhodopsin-like GPCRs, while recruitment of arrestin was completely abolished in both groups, which may be linked to alterations in ligand residence time. We found a correlation between receptor activity of the neuropeptide Y2 receptor and alterations in ECL2 dynamics using engineered disulfide bridges or site-directed spin labeling and EPR spectroscopy. These data highlight the functional importance of the TM3-ECL2 link for the activation of specific signaling pathways in peptide-activated GPCRs, which might have implications for future drug discovery.
Collapse
Affiliation(s)
- Marcel M. Wygas
- Faculty of Life Sciences, Institute of Biochemistry, Leipzig University, Brüderstr. 34, 04103 Leipzig, Germany
| | - Jeannette M. Laugwitz
- Medical Faculty, Institute of Medical Physics and Biophysics, Leipzig University, Haertelstasse 16-18, 04107 Leipzig, Germany
| | - Peter Schmidt
- Medical Faculty, Institute of Medical Physics and Biophysics, Leipzig University, Haertelstasse 16-18, 04107 Leipzig, Germany
| | - Matthias Elgeti
- Medical Faculty, Institute of Medical Physics and Biophysics, Leipzig University, Haertelstasse 16-18, 04107 Leipzig, Germany
- Medical Faculty, Institute for Drug Discovery, Leipzig University, Haertelstasse 16-18, 04107 Leipzig, Germany
| | - Anette Kaiser
- Faculty of Life Sciences, Institute of Biochemistry, Leipzig University, Brüderstr. 34, 04103 Leipzig, Germany
- Medical Faculty, Department of Anesthesiology and Intensive Care, Leipzig University, Liebigstrasse 19, 04103 Leipzig, Germany
| |
Collapse
|
5
|
Kurtzhals P, Østergaard S, Nishimura E, Kjeldsen T. Derivatization with fatty acids in peptide and protein drug discovery. Nat Rev Drug Discov 2023; 22:59-80. [PMID: 36002588 DOI: 10.1038/s41573-022-00529-w] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/29/2022] [Indexed: 01/28/2023]
Abstract
Peptides and proteins are widely used to treat a range of medical conditions; however, they often have to be injected and their effects are short-lived. These shortcomings of the native structure can be addressed by molecular engineering, but this is a complex undertaking. A molecular engineering technology initially applied to insulin - and which has now been successfully applied to several biopharmaceuticals - entails the derivatization of peptides and proteins with fatty acids. Various protraction mechanisms are enabled by the specific characteristics and positions of the attached fatty acid. Furthermore, the technology can ensure a long half-life following oral administration of peptide drugs, can alter the distribution of peptides and may hold potential for tissue targeting. Due to the inherent safety and well-defined chemical nature of the fatty acids, this technology provides a versatile approach to peptide and protein drug discovery.
Collapse
|
6
|
Østergaard S, Paulsson JF, Kofoed J, Zosel F, Olsen J, Jeppesen CB, Spetzler J, Ynddal L, Schleiss LG, Christoffersen BØ, Raun K, Sensfuss U, Nielsen FS, Jørgensen R, Wulff BS. The effect of fatty diacid acylation of human PYY 3-36 on Y 2 receptor potency and half-life in minipigs. Sci Rep 2021; 11:21179. [PMID: 34707178 PMCID: PMC8551270 DOI: 10.1038/s41598-021-00654-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 10/13/2021] [Indexed: 01/02/2023] Open
Abstract
Peptides are notoriously known to display very short in vivo half-lives often measured in minutes which in many cases greatly reduces or eliminates sufficient in vivo efficacy. To obtain long half-lives allowing for up to once-weekly dosing regimen, fatty acid acylation (lipidation) have been used to non-covalently associate the peptide to serum albumin thus serving as a circulating depot. This approach is generally considered in the scientific and patent community as a standard approach to protract almost any given peptide. However, it is not trivial to prolong the half-life of peptides by lipidation and still maintain high potency and good formulation properties. Here we show that attaching a fatty acid to the obesity-drug relevant peptide PYY3-36 is not sufficient for long pharmacokinetics (PK), since the position in the backbone, but also type of fatty acid and linker strongly influences PK and potency. Furthermore, understanding the proteolytic stability of the backbone is key to obtain long half-lives by lipidation, since backbone cleavage still occurs while associated to albumin. Having identified a PYY analogue with a sufficient half-life, we show that in combination with a GLP-1 analogue, liraglutide, additional weight loss can be achieved in the obese minipig model.
Collapse
Affiliation(s)
- Søren Østergaard
- Global Research Technologies, Novo Nordisk A/S, Novo Nordisk Research Park, 2760, Maaloev, Denmark.
| | - Johan F Paulsson
- Global Research Technologies, Novo Nordisk A/S, Novo Nordisk Research Park, 2760, Maaloev, Denmark
| | - Jacob Kofoed
- Global Research Technologies, Novo Nordisk A/S, Novo Nordisk Research Park, 2760, Maaloev, Denmark
| | - Franziska Zosel
- Global Research Technologies, Novo Nordisk A/S, Novo Nordisk Research Park, 2760, Maaloev, Denmark
| | - Jørgen Olsen
- Global Research Technologies, Novo Nordisk A/S, Novo Nordisk Research Park, 2760, Maaloev, Denmark
| | - Claus Bekker Jeppesen
- Global Research Technologies, Novo Nordisk A/S, Novo Nordisk Research Park, 2760, Maaloev, Denmark
| | - Jane Spetzler
- Global Research Technologies, Novo Nordisk A/S, Novo Nordisk Research Park, 2760, Maaloev, Denmark
| | - Lars Ynddal
- Global Research Technologies, Novo Nordisk A/S, Novo Nordisk Research Park, 2760, Maaloev, Denmark.,Gubra Aps, Hørsholm Kongevej 11B, 2970, Hørsholm, Denmark
| | - Luise Gram Schleiss
- Global Research Technologies, Novo Nordisk A/S, Novo Nordisk Research Park, 2760, Maaloev, Denmark
| | | | - Kirsten Raun
- Global Research Technologies, Novo Nordisk A/S, Novo Nordisk Research Park, 2760, Maaloev, Denmark
| | - Ulrich Sensfuss
- Global Research Technologies, Novo Nordisk A/S, Novo Nordisk Research Park, 2760, Maaloev, Denmark.,STipe Therapeutics, Copenhagen, Denmark
| | - Flemming Seier Nielsen
- Global Research Technologies, Novo Nordisk A/S, Novo Nordisk Research Park, 2760, Maaloev, Denmark
| | - Rasmus Jørgensen
- Global Research Technologies, Novo Nordisk A/S, Novo Nordisk Research Park, 2760, Maaloev, Denmark.,CitoKi Pharma, Værløse, Denmark
| | - Birgitte S Wulff
- Global Research Technologies, Novo Nordisk A/S, Novo Nordisk Research Park, 2760, Maaloev, Denmark
| |
Collapse
|
7
|
Jialin Du, Pei X, Zhao H, Gong C, Xu X. Identification of Fatty Acids and Triacylglycerols in Schisandrae chinensis fructus Oil. JOURNAL OF ANALYTICAL CHEMISTRY 2020. [DOI: 10.1134/s1061934820080079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
8
|
Hofmann S, Bellmann-Sickert K, Beck-Sickinger AG. Chemical modification of neuropeptide Y for human Y1 receptor targeting in health and disease. Biol Chem 2019; 400:299-311. [PMID: 30653463 DOI: 10.1515/hsz-2018-0364] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 12/17/2018] [Indexed: 12/14/2022]
Abstract
As a very abundant neuropeptide in the brain and widely distributed peptide hormone in the periphery, neuropeptide Y (NPY) appears to be a multisignaling key peptide. Together with peptide YY, pancreatic polypeptide and the four human G protein-coupled receptor subtypes hY1R, hY2R, hY4R and hY5R it forms the NPY/hYR multiligand/multireceptor system, which is involved in essential physiological processes as well as in human diseases. In particular, NPY-induced hY1R signaling plays a central role in the regulation of food intake and stress response as well as in obesity, mood disorders and cancer. Thus, several hY1R-preferring NPY analogs have been developed as versatile tools to unravel the complex NPY/hY1R signaling in health and disease. Further, these peptides provide basic lead structures for the development of innovative drugs. Here, the current research is summarized focusing on the development of differently sized hY1R-preferring NPY analogs as well as their advances with respect to hY1R profiling, potential therapeutic applications and targeted cancer imaging and therapy. Finally, major limitations and innovative strategies for next generation hY1R-preferring NPY analogs are addressed.
Collapse
Affiliation(s)
- Sven Hofmann
- Institute of Biochemistry, Faculty of Life Sciences, Leipzig University, Brüderstr. 34, D-04103 Leipzig, Germany
| | - Kathrin Bellmann-Sickert
- Institute of Biochemistry, Faculty of Life Sciences, Leipzig University, Brüderstr. 34, D-04103 Leipzig, Germany
| | - Annette G Beck-Sickinger
- Institute of Biochemistry, Faculty of Life Sciences, Leipzig University, Brüderstr. 34, D-04103 Leipzig, Germany
| |
Collapse
|
9
|
Kozek KA, Du Y, Sharma S, Prael FJ, Spitznagel BD, Kharade SV, Denton JS, Hopkins CR, Weaver CD. Discovery and Characterization of VU0529331, a Synthetic Small-Molecule Activator of Homomeric G Protein-Gated, Inwardly Rectifying, Potassium (GIRK) Channels. ACS Chem Neurosci 2019; 10:358-370. [PMID: 30136838 PMCID: PMC6528656 DOI: 10.1021/acschemneuro.8b00287] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
G protein-gated, inwardly rectifying, potassium (GIRK) channels are important regulators of cellular excitability throughout the body. GIRK channels are heterotetrameric and homotetrameric combinations of the Kir3.1-4 (GIRK1-4) subunits. Different subunit combinations are expressed throughout the central nervous system (CNS) and the periphery, and most of these combinations contain a GIRK1 subunit. For example, the predominance of GIRK channels in the CNS are composed of GIRK1 and GIRK2 subunits, while the GIRK channels in cardiac atrial myocytes are made up mostly of GIRK1 and GIRK4 subunits. Although the vast majority of GIRK channels contain a GIRK1 subunit, discrete populations of cells that express non-GIRK1-containing GIRK (non-GIRK1/X) channels do exist. For instance, dopaminergic neurons in the ventral tegmental area of the brain, associated with addiction and reward, do not express the GIRK1 subunit. Targeting these non-GIRK1/X channels with subunit-selective pharmacological probes could lead to important insights into how GIRK channels are involved in reward and addiction. Such insights may, in turn, reveal therapeutic opportunities for the treatment or prevention of addiction. Previously, our laboratory discovered small molecules that can specifically modulate the activity of GIRK1-containing GIRK channels. However, efforts to generate compounds active on non-GIRK1/X channels from these scaffolds have been unsuccessful. Recently, ivermectin was shown to modulate non-GIRK1/X channels, and historically, ivermectin is known to modulate a wide variety of neuronal channels and receptors. Further, ivermectin is a complex natural product, which makes it a challenging starting point for development of more selective, effective, and potent compounds. Thus, while ivermectin provides proof-of-concept as a non-GIRK1/X channel activator, it is of limited utility. Therefore, we sought to discover a synthetic small molecule that would serve as a starting point for the development of non-GIRK1/X channel modulators. To accomplish this, we used a high-throughput thallium flux assay to screen a 100 000-compound library in search of activators of homomeric GIRK2 channels. Using this approach, we discovered VU0529331, the first synthetic small molecule reported to activate non-GIRK1/X channels, to our knowledge. This discovery represents the first step toward developing potent and selective non-GIRK1/X channel probes. Such molecules will help elucidate the role of GIRK channels in addiction, potentially establishing a foundation for future development of therapies utilizing targeted GIRK channel modulation.
Collapse
Affiliation(s)
- Krystian A. Kozek
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee, USA
- vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee, USA
- vanderbilt Medical Scientist Training Program, Vanderbilt University, Nashville, Tennessee, USA
| | - Yu Du
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee, USA
- vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee, USA
| | - Swagat Sharma
- Department of Pharmaceutical Sciences, Center for Drug Discovery, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Francis J. Prael
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee, USA
- vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee, USA
| | - Brittany D. Spitznagel
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee, USA
- vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee, USA
| | - Sujay V. Kharade
- Department of Anesthesiology, Vanderbilt University, Nashville, Tennessee, USA
| | - Jerod S. Denton
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee, USA
- Department of Anesthesiology, Vanderbilt University, Nashville, Tennessee, USA
| | - Corey R. Hopkins
- Department of Pharmaceutical Sciences, Center for Drug Discovery, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - C. David Weaver
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee, USA
- vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee, USA
| |
Collapse
|
10
|
Hofmann S, Lindner J, Beck-Sickinger AG, Hey-Hawkins E, Bellmann-Sickert K. Carbaboranylation of Truncated C-Terminal Neuropeptide Y Analogue Leads to Full hY1
Receptor Agonism. Chembiochem 2018; 19:2300-2306. [DOI: 10.1002/cbic.201800343] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Indexed: 12/25/2022]
Affiliation(s)
- Sven Hofmann
- Faculty of Life Sciences; Institute of Biochemistry; Leipzig University; Brüderstrasse 34 04103 Leipzig Germany
| | - Josephin Lindner
- Faculty of Life Sciences; Institute of Biochemistry; Leipzig University; Brüderstrasse 34 04103 Leipzig Germany
| | - Annette G. Beck-Sickinger
- Faculty of Life Sciences; Institute of Biochemistry; Leipzig University; Brüderstrasse 34 04103 Leipzig Germany
| | - Evamarie Hey-Hawkins
- Faculty of Chemistry and Mineralogy; Institute of Inorganic Chemistry, Leipzig University; Johannisallee 29 04103 Leipzig Germany
| | - Kathrin Bellmann-Sickert
- Faculty of Life Sciences; Institute of Biochemistry; Leipzig University; Brüderstrasse 34 04103 Leipzig Germany
| |
Collapse
|
11
|
Schubert M, Stichel J, Du Y, Tough IR, Sliwoski G, Meiler J, Cox HM, Weaver CD, Beck-Sickinger AG. Identification and Characterization of the First Selective Y4 Receptor Positive Allosteric Modulator. J Med Chem 2017; 60:7605-7612. [DOI: 10.1021/acs.jmedchem.7b00976] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Mario Schubert
- Faculty
of Biosciences, Pharmacy and Psychology, Institute of Biochemistry, Leipzig University, Leipzig 04103, Germany
| | - Jan Stichel
- Faculty
of Biosciences, Pharmacy and Psychology, Institute of Biochemistry, Leipzig University, Leipzig 04103, Germany
| | - Yu Du
- Department
of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Iain R. Tough
- Wolfson
Centre for Age-Related Diseases, King’s College London, Guy’s Campus, London SE1 1UL, U.K
| | - Gregory Sliwoski
- Department
of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Jens Meiler
- Department
of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
- Vanderbilt
Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Helen M. Cox
- Wolfson
Centre for Age-Related Diseases, King’s College London, Guy’s Campus, London SE1 1UL, U.K
| | - C. David Weaver
- Department
of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232, United States
- Vanderbilt
Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Annette G. Beck-Sickinger
- Faculty
of Biosciences, Pharmacy and Psychology, Institute of Biochemistry, Leipzig University, Leipzig 04103, Germany
| |
Collapse
|
12
|
Huang C, Wille CB, He H, Reddy VBG, Nargund RP, Lin S, Palani A. Late-stage lipidation of fully elaborated tryptophan-containing peptides for improved pharmacokinetics. Tetrahedron Lett 2017. [DOI: 10.1016/j.tetlet.2017.02.031] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
13
|
Cherepanov SM, Yokoyama S, Mizuno A, Ichinose W, Lopatina O, Shabalova AA, Salmina AB, Yamamoto Y, Okamoto H, Shuto S, Higashida H. Structure-specific effects of lipidated oxytocin analogs on intracellular calcium levels, parental behavior, and oxytocin concentrations in the plasma and cerebrospinal fluid in mice. Pharmacol Res Perspect 2017; 5:e00290. [PMID: 28596839 PMCID: PMC5461640 DOI: 10.1002/prp2.290] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 11/25/2016] [Accepted: 11/29/2016] [Indexed: 12/27/2022] Open
Abstract
Oxytocin (OT) is a neuroendocrine nonapeptide that plays an important role in social memory and behavior. Nasal administration of OT has been shown to improve trust in healthy humans and social interaction in autistic subjects in some clinical trials. As a central nervous system (CNS) drug, however, OT has two unfavorable characteristics: OT is short‐acting and shows poor permeability across the blood–brain barrier, because it exists in charged form in the plasma and has short half‐life. To overcome these drawbacks, an analog with long‐lasting effects is required. We previously synthesized the analog, lipo‐oxytocin‐1 (LOT‐1), in which two palmitoyl groups are conjugated to the cysteine and tyrosine residues. In this study, we synthesized and evaluated the analogs lipo‐oxytocin‐2 (LOT‐2) and lipo‐oxytocin‐3 (LOT‐3), which feature the conjugation of one palmitoyl group at the cysteine and tyrosine residues, respectively. In human embryonic kidney‐293 cells overexpressing human OT receptors, these three LOTs demonstrated comparably weak effects on the elevation of intracellular free calcium concentrations after OT receptor activation, compared to the effects of OT. The three LOTs and OT exhibited different time‐dependent effects on recovery from impaired pup retrieval behavior in sires of CD38‐knockout mice. Sires treated with LOT‐1 showed the strongest effect, whereas others had no or little effects at 24 h after injection. These results indicated that LOTs have structure‐specific agonistic effects, and suggest that lipidation of OT might have therapeutic benefits for social impairment.
Collapse
Affiliation(s)
- Stanislav M Cherepanov
- Department of Basic Research on Social Recognition Research Center for Child Mental Development Kanazawa University Kanazawa 920-8640 Japan
| | - Shigeru Yokoyama
- Department of Basic Research on Social Recognition Research Center for Child Mental Development Kanazawa University Kanazawa 920-8640 Japan
| | - Akira Mizuno
- Faculty of Pharmaceutical Sciences Hokkaido University Kita-12, Nishi-6, Kita-ku Sapporo 060-0812 Japan
| | - Wataru Ichinose
- Faculty of Pharmaceutical Sciences Hokkaido University Kita-12, Nishi-6, Kita-ku Sapporo 060-0812 Japan
| | - Olga Lopatina
- Research Institute of Molecular Medicine & Pathobiochemistry Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky Krasnoyarsk 660022 Russia
| | - Anna A Shabalova
- Department of Basic Research on Social Recognition Research Center for Child Mental Development Kanazawa University Kanazawa 920-8640 Japan
| | - Alla B Salmina
- Department of Basic Research on Social Recognition Research Center for Child Mental Development Kanazawa University Kanazawa 920-8640 Japan.,Research Institute of Molecular Medicine & Pathobiochemistry Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky Krasnoyarsk 660022 Russia
| | - Yasuhiko Yamamoto
- Department of Biochemistry and Molecular Vascular BiologyGraduate School of Medical Sciences Kanazawa University Kanazawa 920-8640 Japan
| | - Hiroshi Okamoto
- Department of Biochemistry and Molecular Vascular BiologyGraduate School of Medical Sciences Kanazawa University Kanazawa 920-8640 Japan.,Department of Advanced Biological Sciences for Regeneration (Kotobiken Medical Laboratories) Tohoku University Graduate School of Medicine Sendai 980-8575 Japan
| | - Satoshi Shuto
- Faculty of Pharmaceutical Sciences Hokkaido University Kita-12, Nishi-6, Kita-ku Sapporo 060-0812 Japan.,Center for Research and Education on Drug Discovery Hokkaido University Kita-12, Nishi-6, Kita-ku Sapporo060-0812 Japan
| | - Haruhiro Higashida
- Department of Basic Research on Social Recognition Research Center for Child Mental Development Kanazawa University Kanazawa 920-8640 Japan
| |
Collapse
|
14
|
Thieme V, Jolly N, Madsen AN, Bellmann-Sickert K, Schwartz TW, Holst B, Cox HM, Beck-Sickinger AG. High molecular weight PEGylation of human pancreatic polypeptide at position 22 improves stability and reduces food intake in mice. Br J Pharmacol 2016; 173:3208-3221. [PMID: 27545829 DOI: 10.1111/bph.13582] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Revised: 08/16/2016] [Accepted: 08/17/2016] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND AND PURPOSE Human pancreatic polypeptide (hPP) is known to suppress appetite and food intake, thereby representing a potential therapeutic approach against obesity and associated metabolic disorders. The aim of this study was to improve hPP stability by covalent PEGylation with diverse molecular weight polyethylene glycols (PEGs) at two positions using promising lead structures while maintaining target activity. EXPERIMENTAL APPROACH Modified peptides were synthesized by combined solid-phase and solution-phase peptide synthesis. Their potency was investigated in constitutively expressing human epithelial cells and isolated human colonic mucosa as well as receptor-transfected artificial cell lines. Human blood plasma and porcine liver homogenates were used to examine the in vitro stability of the analogues. The most promising variants were injected s.c. in C57BL/6JRj mice to monitor fasting-induced food intake and bioavailability. KEY RESULTS In human epithelia and colonic mucosal preparations, activity of the modified hPP peptides depended on the core sequence and latency of the peptides was related to PEG size. Peptides modified with a 22 kDa PEG (PEG22) remained intact in blood plasma and on incubation with liver homogenates for more than 96 h. Finally, hPP2-36 , [K22 (PEG22)]hPP2-36 and [K22 (PEG22),Q34 ]hPP significantly reduced cumulative food intake in mice over 16 h after s.c. administration. CONCLUSIONS AND IMPLICATIONS Modification with PEG22 at position 22 stabilizes hPP significantly while extending its biological activities and could be used in drug development prospectively.
Collapse
Affiliation(s)
- V Thieme
- Faculty of Biosciences, Pharmacy and Psychology, Institute of Biochemistry, Universität Leipzig, Leipzig, Germany
| | - N Jolly
- Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology and Neuroscience, King's College London, Guy's Campus, London, UK
| | - A N Madsen
- Department of Neuroscience and Pharmacology, Laboratory for Molecular Pharmacology, The Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - K Bellmann-Sickert
- Faculty of Biosciences, Pharmacy and Psychology, Institute of Biochemistry, Universität Leipzig, Leipzig, Germany
| | - T W Schwartz
- Department of Neuroscience and Pharmacology, Laboratory for Molecular Pharmacology, The Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - B Holst
- Department of Neuroscience and Pharmacology, Laboratory for Molecular Pharmacology, The Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - H M Cox
- Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology and Neuroscience, King's College London, Guy's Campus, London, UK
| | - A G Beck-Sickinger
- Faculty of Biosciences, Pharmacy and Psychology, Institute of Biochemistry, Universität Leipzig, Leipzig, Germany.
| |
Collapse
|
15
|
Juhl C, Els-Heindl S, Schönauer R, Redlich G, Haaf E, Wunder F, Riedl B, Burkhardt N, Beck-Sickinger AG, Bierer D. Development of Potent and Metabolically Stable APJ Ligands with High Therapeutic Potential. ChemMedChem 2016; 11:2378-2384. [DOI: 10.1002/cmdc.201600307] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Indexed: 12/18/2022]
Affiliation(s)
- Cathleen Juhl
- Department of Medicinal Chemistry; Bayer Pharma AG; Aprather Weg 18 A 42096 Wuppertal Germany
| | - Sylvia Els-Heindl
- Institute of Biochemistry; Leipzig University; Brüderstraße 34 04103 Leipzig Germany
| | - Ria Schönauer
- Institute of Biochemistry; Leipzig University; Brüderstraße 34 04103 Leipzig Germany
| | - Gorden Redlich
- Global External Innovation & Alliances; Bayer Pharma AG; Aprather Weg 18 A 42096 Wuppertal Germany
| | - Erik Haaf
- Department of Pharmacokinetics and Metabolism; Bayer Pharma AG; Aprather Weg 18 A 42096 Wuppertal Germany
| | - Frank Wunder
- Lead Discovery Wuppertal; Bayer Pharma AG; Aprather Weg 18 A 42096 Wuppertal Germany
| | - Bernd Riedl
- Department of Medicinal Chemistry; Bayer Pharma AG; Aprather Weg 18 A 42096 Wuppertal Germany
| | - Nils Burkhardt
- Lead Discovery Wuppertal; Bayer Pharma AG; Aprather Weg 18 A 42096 Wuppertal Germany
| | | | - Donald Bierer
- Department of Medicinal Chemistry; Bayer Pharma AG; Aprather Weg 18 A 42096 Wuppertal Germany
| |
Collapse
|
16
|
Sliwoski G, Schubert M, Stichel J, Weaver D, Beck-Sickinger AG, Meiler J. Discovery of Small-Molecule Modulators of the Human Y4 Receptor. PLoS One 2016; 11:e0157146. [PMID: 27294784 PMCID: PMC4905667 DOI: 10.1371/journal.pone.0157146] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2016] [Accepted: 05/25/2016] [Indexed: 12/11/2022] Open
Abstract
The human neuropeptide Y4 receptor (Y4R) and its native ligand, pancreatic polypeptide, are critically involved in the regulation of human metabolism by signaling satiety and regulating food intake, as well as increasing energy expenditure. Thus, this receptor represents a putative target for treatment of obesity. With respect to new approaches to treat complex metabolic disorders, especially in multi-receptor systems, small molecule allosteric modulators have been in the focus of research in the last years. However, no positive allosteric modulators or agonists of the Y4R have been described so far. In this study, small molecule compounds derived from the Niclosamide scaffold were identified by high-throughput screening to increase Y4R activity. Compounds were characterized for their potency and their effects at the human Y4R and as well as their selectivity towards Y1R, Y2R and Y5R. These compounds provide a structure-activity relationship profile around this common scaffold and lay the groundwork for hit-to-lead optimization and characterization of positive allosteric modulators of the Y4R.
Collapse
Affiliation(s)
- Gregory Sliwoski
- Faculty of Biosciences, Pharmacy and Psychology, Institute of Biochemistry, Leipzig University, Leipzig, Germany
- Center for Structural Biology, Department of Chemistry, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Mario Schubert
- Faculty of Biosciences, Pharmacy and Psychology, Institute of Biochemistry, Leipzig University, Leipzig, Germany
| | - Jan Stichel
- Faculty of Biosciences, Pharmacy and Psychology, Institute of Biochemistry, Leipzig University, Leipzig, Germany
| | - David Weaver
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Annette G. Beck-Sickinger
- Faculty of Biosciences, Pharmacy and Psychology, Institute of Biochemistry, Leipzig University, Leipzig, Germany
- * E-mail: (JM); (ABS)
| | - Jens Meiler
- Center for Structural Biology, Department of Chemistry, Vanderbilt University, Nashville, Tennessee, United States of America
- * E-mail: (JM); (ABS)
| |
Collapse
|
17
|
Schönauer R, Els-Heindl S, Fischer JP, Köbberling J, Riedl B, Beck-Sickinger AG. Adrenomedullin 2.0: Adjusting Key Levers for Metabolic Stability. J Med Chem 2016; 59:5695-705. [PMID: 27166982 DOI: 10.1021/acs.jmedchem.6b00126] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The 52 amino acid peptide hormone adrenomedullin (ADM) plays a major role in the development and regulation of the cardiovascular and lymphatic system and has therefore gained significant interest for clinical applications. Because adrenomedullin exhibits low metabolic stability, enhancement of the plasma half-life is essential for peptide-based drug design. Fluorescently labeled ADM analogues synthesized by Fmoc/t-Bu solid phase peptide synthesis were used to analyze their enzymatic degradation and specific fragmentation pattern in human blood plasma. The determination of important cleavage sites allowed the development of selectively modified peptides in a rational approach. By combination of palmitoylation, lactam-bridging, and Nα-methylation, ADM analogues protected from enzymatic cleavage in human blood were developed and revealed an explicitly elongated half-life of 5 days in comparison to the wild-type in vitro. This triple-modification did not alter the selectivity of the analogues at the AM1 receptor, highlighting their potential for therapeutic applications.
Collapse
Affiliation(s)
- Ria Schönauer
- Institut für Biochemie, Universität Leipzig , Brüderstraße 34, 04103 Leipzig, Germany
| | - Sylvia Els-Heindl
- Institut für Biochemie, Universität Leipzig , Brüderstraße 34, 04103 Leipzig, Germany
| | - Jan-Patrick Fischer
- Institut für Biochemie, Universität Leipzig , Brüderstraße 34, 04103 Leipzig, Germany
| | | | - Bernd Riedl
- Bayer Pharma AG , Aprather Weg 18A, 42113 Wuppertal, Germany
| | | |
Collapse
|
18
|
Ting CH, Chen YC, Liaw WJ, Lin HC, Chen CY. Peripheral injection of pancreatic polypeptide enhances colonic transit without eliciting anxiety or altering colonic secretion in rats. Neuropeptides 2016; 55:67-71. [PMID: 26601891 DOI: 10.1016/j.npep.2015.10.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 10/10/2015] [Accepted: 10/11/2015] [Indexed: 12/11/2022]
Abstract
Pancreatic polypeptide (PP) is a negative regulator of energy homeostasis that suppresses food intake and lowers body weight. Similar to other gastrointestinal-derived peptides, PP also modulates gastrointestinal motility and may be involved in the regulation of anxiety. Previous studies revealed that PP suppresses gastric emptying but increases colonic motility in mice. In our present study, we assessed the effect of PP on anxiety as well as colonic motility and secretory function. Intracerebroventricular and intravenous routes of PP were administered in conscious rats. Our results showed that intracerebroventricular administration of PP did not affect anxiety in the open field test. Intravenous injection of PP accelerated colonic transit, but did not significantly change fecal amount and fecal fluid composition. On the other hand, intracerebroventricular injection of PP did not alter colonic transit, fecal amount, or fluid composition. In conclusion, peripheral, but not central PP administration enhances colonic motility without eliciting anxiety or altering colonic secretion.
Collapse
Affiliation(s)
- Ching-Heng Ting
- Department of Medical Education, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Ying-Chieh Chen
- Division of Digestive Medicine, Taipei City Hospital Yangming Branch, Taipei, Taiwan
| | - Wen-Jinn Liaw
- Department of Anesthesiology, Tungs' Taichung MetroHarbor Hospital, Taichung, Taiwan; Department of Pharmacology, National Defense Medical Center, Taipei, Taiwan
| | - Han-Chieh Lin
- Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan; National Yang-Ming University School of Medicine, Taipei, Taiwan
| | - Chih-Yen Chen
- Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan; National Yang-Ming University School of Medicine, Taipei, Taiwan.
| |
Collapse
|
19
|
Kilian TM, Klöting N, Bergmann R, Els-Heindl S, Babilon S, Clément-Ziza M, Zhang Y, Beck-Sickinger AG, Chollet C. Rational design of dual peptides targeting ghrelin and Y2 receptors to regulate food intake and body weight. J Med Chem 2015; 58:4180-93. [PMID: 25905598 DOI: 10.1021/jm501702q] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Ghrelin and Y2 receptors play a central role in appetite regulation inducing opposite effects. The Y2 receptor induces satiety, while the ghrelin receptor promotes hunger and weight gain. However, the food regulating system is tightly controlled by interconnected pathways where redundancies can lead to poor efficacy and drug tolerance when addressing a single molecule. We developed a multitarget strategy to synthesize dual peptides simultaneously inhibiting the ghrelin receptor and stimulating the Y2 receptor. Dual peptides showed dual activity in vitro, and one compound induced a slight diminution of food intake in a rodent model of obesity. In addition, stability studies in rats revealed different behaviors between the dual peptide and its corresponding monomers. The Y2 receptor agonist was unstable in blood, while the dual peptide showed an intermediate stability compared to that of the highly stable ghrelin receptor inverse agonist.
Collapse
Affiliation(s)
- Tom-Marten Kilian
- †Faculty of Biosciences, Pharmacy and Psychology, Institute of Biochemistry, Universität Leipzig, Brüderstrasse 34, 04103 Leipzig, Germany
| | - Nora Klöting
- ‡Integrated Research and Treatment Center Adiposity Diseases (IFB), Core Unit "Animal Models", Universität Leipzig, Liebigstrasse 21, 04103 Leipzig, Germany
| | - Ralf Bergmann
- §Department of Radiopharmaceutical and Chemical Biology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, P.O. Box 510119, 01314 Dresden, Germany
| | - Sylvia Els-Heindl
- †Faculty of Biosciences, Pharmacy and Psychology, Institute of Biochemistry, Universität Leipzig, Brüderstrasse 34, 04103 Leipzig, Germany
| | - Stefanie Babilon
- †Faculty of Biosciences, Pharmacy and Psychology, Institute of Biochemistry, Universität Leipzig, Brüderstrasse 34, 04103 Leipzig, Germany
| | - Mathieu Clément-Ziza
- ∥CECAD - Cluster of Excellence, University of Cologne, Joseph-Stelzmann-Str. 26, 50931 Cologne, Germany
| | - Yixin Zhang
- ⊥B CUBE-Center for Molecular Bioengineering, Technische Universität Dresden, Arnoldstrasse 18, 01307 Dresden, Germany
| | - Annette G Beck-Sickinger
- †Faculty of Biosciences, Pharmacy and Psychology, Institute of Biochemistry, Universität Leipzig, Brüderstrasse 34, 04103 Leipzig, Germany
| | - Constance Chollet
- †Faculty of Biosciences, Pharmacy and Psychology, Institute of Biochemistry, Universität Leipzig, Brüderstrasse 34, 04103 Leipzig, Germany.,⊥B CUBE-Center for Molecular Bioengineering, Technische Universität Dresden, Arnoldstrasse 18, 01307 Dresden, Germany
| |
Collapse
|
20
|
Mörl K, Beck-Sickinger AG. Intracellular Trafficking of Neuropeptide Y Receptors. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2015; 132:73-96. [PMID: 26055055 DOI: 10.1016/bs.pmbts.2015.02.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The multireceptor multiligand system of neuropeptide Y receptors and their ligands is involved in the regulation of a multitude of physiological and pathophysiological processes. Specific expression patterns, ligand-binding modes, and signaling properties contribute to the complex network regulating distinct cellular responses. Intracellular trafficking processes are important key steps that are regulated in context with accessory proteins. These proteins exert their influence by interacting directly or indirectly with the receptors, causing modification of the receptors, or operating as scaffolds for the assembly of larger signaling complexes. On the intracellular receptor faces, sequence-specific motifs have been identified that play an important role in this process. Interestingly, it is also possible to influence the receptor internalization by modification of the peptide ligand.
Collapse
Affiliation(s)
- Karin Mörl
- Faculty of Biosciences, Pharmacy and Psychology, Institute of Biochemistry, Universität Leipzig, Leipzig, Germany.
| | - Annette G Beck-Sickinger
- Faculty of Biosciences, Pharmacy and Psychology, Institute of Biochemistry, Universität Leipzig, Leipzig, Germany
| |
Collapse
|
21
|
Nissen KB, Andersen JJ, Haugaard-Kedström LM, Bach A, Strømgaard K. Design, synthesis, and characterization of fatty acid derivatives of a dimeric peptide-based postsynaptic density-95 (PSD-95) inhibitor. J Med Chem 2015; 58:1575-80. [PMID: 25590984 DOI: 10.1021/jm501755d] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Dimeric peptide-based inhibitors of postsynaptic density-95 (PSD-95) can reduce ischemic brain damage and inflammatory pain in rodents. To modify the pharmacokinetic profile, we designed a series of fatty acid linked dimeric ligands, which potently inhibits PSD-95 and shows improved in vitro blood plasma stability. Subcutaneous administration in rats showed extended stability and sustained release of these ligands. This can facilitate new pharmacological uses of PSD-95 inhibitors and further exploration of PSD-95 as a drug target.
Collapse
Affiliation(s)
- Klaus B Nissen
- Department of Drug Design and Pharmacology, University of Copenhagen , Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | | | | | | | | |
Collapse
|