1
|
Shimia M, Amini M, Ravari AO, Tabnak P, Valizadeh A, Ghaheri M, Yousefi B. Thymoquinone reversed doxorubicin resistance in U87 glioblastoma cells via targeting PI3K/Akt/mTOR signaling. Chem Biol Drug Des 2024; 104:e14587. [PMID: 39175102 DOI: 10.1111/cbdd.14587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 06/25/2024] [Accepted: 07/09/2024] [Indexed: 08/24/2024]
Abstract
Natural compounds such as thymoquinone (TQ) have recently gained increasing attention in treating glioblastoma (GBM). However, the effects of TQ in reversing drug resistance are not completely understood. Therefore, we aimed to examine TQ impacts on GBM cells with doxorubicin (DOX) resistance and the involvement of the PI3K/Akt/mTOR pathway. GBM cancer U87 and U87/DOX (resistant cells) cells were exposed to DOX and TQ, and cell proliferation was assessed by the MTT assay. ELISA was applied to evaluate cell apoptosis. The expression of apoptotic mediators such as Caspase-3, Bax, Bcl-2 and PI3K, Akt, mTOR, P-gp, and PTEN was assessed via qRT-PCR and western blot. We found that a combination of TQ and DOX suppressed dose-dependent cell growth capacity in cells and increased the cytotoxic effects of DOX in resistant cells. In addition, TQ treatment increased DOX-mediated apoptosis in U87/DOX cell lines via modulating the pro- and anti-apoptotic markers. A combination of TQ and DOX upregulated PTEN and downregulated PI3K, Akt, and mTOR, suppressing this signal transduction in resistant cells. In conclusion, we showed TQ potentiated doxorubicin-mediated antiproliferative and pro apoptotic function DOX-resistant glioblastoma cells, which is mediated by targeting and suppressing PI3K/Akt/mTOR signal transduction.
Collapse
Affiliation(s)
- Mohammad Shimia
- Department of Neurosurgery, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Monireh Amini
- Department of Neurosurgery, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Armin Ostovar Ravari
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Peyman Tabnak
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Valizadeh
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Ghaheri
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Bahman Yousefi
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
2
|
Zeinali N, Mahmoudzadeh V, Anarjani A, Ebrahimnejad M, Yousefi B, Valizadeh A. Thymoquinone Increases the Sensitivity of SW-480 Colon Cancer Cells to 5-Fluorouracil. BIOMED RESEARCH INTERNATIONAL 2024; 2024:6231095. [PMID: 39015603 PMCID: PMC11251801 DOI: 10.1155/2024/6231095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 05/19/2024] [Accepted: 05/27/2024] [Indexed: 07/18/2024]
Abstract
Background: Studies have concentrated on the therapeutic potential of thymoquinone (TQ), a natural polyphenol, in diverse malignancies, such as colorectal cancer. Nevertheless, the precise mechanisms of TQ-mediated anticancer properties are not yet fully elucidated. Objective: The present study has been designed to scrutinize the impact of TQ on 5-fluorouracil (5-FU)-mediated apoptosis in SW-480 cells. Materials and Methods: SW-480 cells were treated with TQ, 5-FU, and a combination of TQ + 5-FU. MTT assay was employed to assess cell viability. Quantitative real-time polymerase chain reaction (qRT-PCR) was applied to evaluate apoptotic markers comprising Bcl-2, Bax, and caspase-9 expression levels. The γ-H2AX protein expression was assessed by western blotting, and Annexin V flow cytometry was implemented to determine the apoptosis rate. Results: 5-FU significantly reversed the cell proliferation in a dose-dependent circumstance. The concurrent administration of TQ and 5-FU led to a substantial inhibition of cell growth in comparison to single treatments (p < 0.05). TQ also facilitated apoptosis via upregulating Bax and caspase-9 proapoptotic markers and suppressing antiapoptotic mediators, like Bcl-2. In addition, TQ augmented 5-FU-induced apoptosis in SW-480 cells. 5-FU, combined with TQ, increased the protein expression of γ-H2AX in SW-480 cells compared with groups treated with TQ and 5-FU alone. Conclusion: The present study's findings unveil the significance of TQ as a potential therapeutic substance in colorectal cancer, particularly through enhancing 5-FU-induced apoptosis.
Collapse
Affiliation(s)
- Nima Zeinali
- Molecular Medicine Research CenterTabriz University of Medical Sciences, Tabriz, Iran
| | - Vahid Mahmoudzadeh
- Molecular Medicine Research CenterTabriz University of Medical Sciences, Tabriz, Iran
| | - Alireza Anarjani
- Molecular Medicine Research CenterTabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Ebrahimnejad
- Molecular Medicine Research CenterTabriz University of Medical Sciences, Tabriz, Iran
| | - Bahman Yousefi
- Department of Clinical Biochemistry and Laboratory MedicineFaculty of MedicineTabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Valizadeh
- Student Research CommitteeTabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
3
|
Siew EL, Pearanpan L, Zamkhuri Z, Nordin FJ, Ooi TC, Chan KM, Kamarozaman AS, Ahmat N, Rajab NF. Genoprotective potential of Macaranga species phytochemical compounds on HT-29 human colorectal adenocarcinoma cell line. Genes Environ 2023; 45:28. [PMID: 37899475 PMCID: PMC10614388 DOI: 10.1186/s41021-023-00282-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 09/28/2023] [Indexed: 10/31/2023] Open
Abstract
BACKGROUND The species of genus Macaranga are widely found in Malaysian secondary forests and has been used as an alternative for treating varieties of illness. Studies have shown that the medicinal properties of this genus contain anti-inflammatory, antioxidant, and anti-cancer effects. This study aimed to determine the cytotoxicity of six isolated phytochemicals from Macaranga heynei (M. heynei), Macaranga lowii and Shorea leprosula on HT-29 human colorectal adenocarcinoma cell lines. RESULTS One out of six isolated phytochemical compounds, identified as "Laevifolin A", showed a cytotoxicity with an IC50 value of 21.2 µM following 48 h treatment as detected using Sulforhodamine B (SRB) assay. Additionally, no induction of apoptosis and oxidative stress were observed on Laevifolin A treated HT-29 cells as determined using Annexin V-FITC/PI assay and dihydroethidine (HE) staining, respectively. Additionally, no damage to the DNA were observed as measured using the Alkaline Comet assay. Further investigation on menadione-induced oxidative DNA damage showed the genoprotective potential of Laevifolin A on HT-29 cells. CONCLUSIONS In conclusion, this study indicated that only one compound (Laevifolin A) that extracted from M. heynei has the cytotoxicity potential to be developed as an anticancer agent in human colorectal adenocarcinoma. However, besides exhibiting cytotoxic effect, the compound also exhibits genoprotective capability that warrant further investigation.
Collapse
Affiliation(s)
- Ee Ling Siew
- ASASIpintar Program, Pusat PERMATA@Pintar Negara, Universiti Kebangsaan Malaysia, Bangi, Selangor, 43600, Malaysia
- Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abd Aziz, Kuala Lumpur, 50300, Malaysia
| | - Lishantini Pearanpan
- Center for Healthy Ageing and Wellness, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abd Aziz, Kuala Lumpur, 50300, Malaysia
| | - Zhafri Zamkhuri
- Center for Healthy Ageing and Wellness, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abd Aziz, Kuala Lumpur, 50300, Malaysia
| | - Fariza Juliana Nordin
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor, 43600, Malaysia
| | - Theng Choon Ooi
- Center for Healthy Ageing and Wellness, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abd Aziz, Kuala Lumpur, 50300, Malaysia
| | - Kok Meng Chan
- Center for Toxicology and Health Risk Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abd Aziz, Kuala Lumpur, 50300, Malaysia
- Product Stewardship and Toxicology, Group Health, Safety and Environment (GHSE), Petroliam Nasional Berhad (PETRONAS), Kuala Lumpur, 50088, Malaysia
| | - Aisyah Salihah Kamarozaman
- Centre of Foundation Studies, Universiti Teknologi MARA, Cawangan Selangor, Kampus Dengkil, Dengkil, Selangor, 43800, Malaysia
| | - Norizan Ahmat
- Centre of Foundation Studies, Universiti Teknologi MARA, Cawangan Selangor, Kampus Dengkil, Dengkil, Selangor, 43800, Malaysia
| | - Nor Fadilah Rajab
- Center for Healthy Ageing and Wellness, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abd Aziz, Kuala Lumpur, 50300, Malaysia.
| |
Collapse
|
4
|
Sun G, Zhao S, Fan Z, Wang Y, Liu H, Cao H, Sun G, Huang T, Cai H, Pan H, Rong D, Gao Y, Tang W. CHSY1 promotes CD8 + T cell exhaustion through activation of succinate metabolism pathway leading to colorectal cancer liver metastasis based on CRISPR/Cas9 screening. J Exp Clin Cancer Res 2023; 42:248. [PMID: 37749638 PMCID: PMC10519095 DOI: 10.1186/s13046-023-02803-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 08/19/2023] [Indexed: 09/27/2023] Open
Abstract
BACKGROUND The most common site of metastasis in colorectal cancer (CRC) is the liver and liver metastases occur in more than 50% of patients during diagnosis or treatment. The occurrence of metastasis depends on a series of events known as the invasive-metastasis cascade. Currently, the underlying genes and pathways regulating metastasis initiation in the liver microenvironment are unknown. METHODS We performed systematic CRISPR/Cas9 screening using an in vivo mouse model of CRC liver metastasis to identify key regulators of CRC metastasis. We present the full results of this screen,which included a list of genes that promote or repress CRC liver colonization. By silencing these genes individually, we found that chondroitin sulfate synthase 1 (CHSY1) may be involved in CRC metastasis. We verified the function of CHSY1 and its involvement in liver metastasis of CRC through in vivo and in vitro experiments. RESULT The results of TCGA and CRISPR/Cas9 showed that CHSY1 was overexpressed in CRC primary and liver metastasis tissues and indicated a worse clinical prognosis. In vitro and in vivo experiments confirmed that CHSY1 facilitated the liver metastasis of CRC and CHSY1 induced CD8+ T cell exhaustion and upregulated PD-L1 expression. The metabolomic analysis indicated that CHSY1 promoted CD8+ T cell exhaustion by activating the succinate metabolism pathway leading to liver metastasis of CRC. Artemisinin as a CHSY1 inhibitor reduced liver metastasis and enhanced the effect of anti-PD1 in CRC. PLGA-loaded Artemisinin and ICG probe reduced liver metastasis and increased the efficiency of anti-PD1 treatment in CRC. CONCLUSION CHSY1 could promote CD8+ T cell exhaustion through activation of the succinate metabolic and PI3K/AKT/HIF1A pathway, leading to CRC liver metastasis. The combination of CHSY1 knockdown and anti-PD1 contributes to synergistic resistance to CRC liver metastasis. Artemisinin significantly inhibits CHSY1 activity and in combination with anti-PD1 could synergistically treat CRC liver metastases. This study provides new targets and specific strategies for the treatment of CRC liver metastases, bringing new hope and benefits to patients.
Collapse
Affiliation(s)
- Guangshun Sun
- Hepatobiliary/Liver Transplantation Center, the First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Living Donor Transplantation, Chinese Academy of Medical Sciences, Nanjing, China
- Department of Breast Surgery, the First Affiliated Hospital With Nanjing Medical University, Nanjing, China
| | - Siqi Zhao
- Department of Surgery, the Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Zhongguo Fan
- Department of Cardiology Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Yuliang Wang
- School of Basic Medicine, Nanjing Medical University, Nanjing, China
| | - Hanyuan Liu
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Hengsong Cao
- Hepatobiliary/Liver Transplantation Center, the First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Living Donor Transplantation, Chinese Academy of Medical Sciences, Nanjing, China
| | - Guoqiang Sun
- Hepatobiliary/Liver Transplantation Center, the First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Living Donor Transplantation, Chinese Academy of Medical Sciences, Nanjing, China
| | - Tian Huang
- Hepatobiliary/Liver Transplantation Center, the First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Living Donor Transplantation, Chinese Academy of Medical Sciences, Nanjing, China
| | - Hongzhou Cai
- Department of Urology, Jiangsu Cancer Hospital &The Affiliated Cancer Hospital of Nanjing Medical University& Jiangsu Institute of Cancer Research, Nanjing, China.
| | - Hong Pan
- Department of Breast Surgery, the First Affiliated Hospital With Nanjing Medical University, Nanjing, China.
| | - Dawei Rong
- Hepatobiliary/Liver Transplantation Center, the First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Living Donor Transplantation, Chinese Academy of Medical Sciences, Nanjing, China.
| | - Yun Gao
- Hepatobiliary/Liver Transplantation Center, the First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Living Donor Transplantation, Chinese Academy of Medical Sciences, Nanjing, China.
| | - Weiwei Tang
- Hepatobiliary/Liver Transplantation Center, the First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Living Donor Transplantation, Chinese Academy of Medical Sciences, Nanjing, China.
| |
Collapse
|
5
|
Marchesi E, Perrone D, Navacchia ML. Molecular Hybridization as a Strategy for Developing Artemisinin-Derived Anticancer Candidates. Pharmaceutics 2023; 15:2185. [PMID: 37765156 PMCID: PMC10536797 DOI: 10.3390/pharmaceutics15092185] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/21/2023] [Accepted: 08/22/2023] [Indexed: 09/29/2023] Open
Abstract
Artemisinin is a natural compound extracted from Artemisia species belonging to the Asteraceae family. Currently, artemisinin and its derivatives are considered among the most significant small-molecule antimalarial drugs. Artemisinin and its derivatives have also been shown to possess selective anticancer properties, however, there are several limitations and gaps in knowledge that retard their repurposing as effective anticancer agents. Hybridization resulting from a covalent combination of artemisinin with one or more active pharmacophores has emerged as a promising approach to overcome several issues. The variety of hybridization partners allows improvement in artemisinin activity by tuning the ability of conjugated artemisinin to interact with various molecule targets involved in multiple biological pathways. This review highlights the current scenario of artemisinin-derived hybrids with potential anticancer activity. The synthetic approaches to achieve the corresponding hybrids and the structure-activity relationships are discussed to facilitate further rational design of more effective candidates.
Collapse
Affiliation(s)
- Elena Marchesi
- Department of Environmental and Prevention Sciences, University of Ferrara, 44121 Ferrara, Italy;
| | - Daniela Perrone
- Department of Environmental and Prevention Sciences, University of Ferrara, 44121 Ferrara, Italy;
| | - Maria Luisa Navacchia
- Institute for Organic Synthesis and Photoreactivity (ISOF), National Research Council of Italy (CNR), 40129 Bologna, Italy
| |
Collapse
|
6
|
Zippilli C, Filippi S, Cesarini S, Bizzarri BM, Conigliaro P, De Marchi E, Botta L, Saladino R. Synthesis of Artesunic Acid-Coumarin Hybrids as Potential Antimelanoma Agents. ACS Med Chem Lett 2023; 14:599-605. [PMID: 37197457 PMCID: PMC10184312 DOI: 10.1021/acsmedchemlett.3c00019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 04/20/2023] [Indexed: 05/19/2023] Open
Abstract
Current therapy against melanoma relies on surgical treatment or, in alternative, on conventional drug therapy. Often these therapeutic agents are ineffective due to the development of resistance phenomena. For this purpose, chemical hybridization emerged as an effective strategy to overcome the development of drug resistance. In this study, a series of molecular hybrids were synthesized combining the sesquiterpene artesunic acid with a panel of phytochemical coumarins. Cytotoxicity, antimelanoma effect, and cancer selectivity of the novel compounds were evaluated by MTT assay on primary and metastatic cells and on healthy fibroblasts as a reference. The two most active compounds showed lower cytotoxicity and higher activity against metastatic melanoma than paclitaxel and artesunic acid. Further tests, including cellular proliferation, apoptosis, confocal microscopy, and MTT analyses in the presence of an iron chelating agent, were conducted with the aim of tentatively addressing the mode of action and the pharmacokinetic profile of selected compounds.
Collapse
Affiliation(s)
| | | | - Silvia Cesarini
- Department of Ecological
and Biological Sciences, University of Tuscia, via S. C. De Lellis snc, 01100 Viterbo, Italy
| | - Bruno Mattia Bizzarri
- Department of Ecological
and Biological Sciences, University of Tuscia, via S. C. De Lellis snc, 01100 Viterbo, Italy
| | - Pauline Conigliaro
- Department of Ecological
and Biological Sciences, University of Tuscia, via S. C. De Lellis snc, 01100 Viterbo, Italy
| | - Elisa De Marchi
- Department of Ecological
and Biological Sciences, University of Tuscia, via S. C. De Lellis snc, 01100 Viterbo, Italy
| | - Lorenzo Botta
- Department of Ecological
and Biological Sciences, University of Tuscia, via S. C. De Lellis snc, 01100 Viterbo, Italy
| | - Raffaele Saladino
- Department of Ecological
and Biological Sciences, University of Tuscia, via S. C. De Lellis snc, 01100 Viterbo, Italy
| |
Collapse
|
7
|
El-Sayed SAES, Rizk MA. COVID-19 and Thymoquinone: Clinical Benefits, Cure, and Challenges. BIOMED 2023; 3:59-76. [DOI: 10.3390/biomed3010005] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
In today’s world, the outbreak of the coronavirus disease 2019 (COVID-19) has spread throughout the world, causing severe acute respiratory syndrome (SARS) and several associated complications in various organs (heart, liver, kidney, and gastrointestinal tract), as well as significant multiple organ dysfunction, shock, and even death. In order to overcome the serious complications associated with this pandemic virus and to prevent SARS-CoV-2 entry into the host cell, it is necessary to repurpose currently available drugs with a broad medicinal application as soon as they become available. There are several therapeutics under investigation for improving the overall prognosis of COVID-19 patients, but none of them has demonstrated clinical efficacy to date, which is disappointing. It is in this pattern that Nigella sativa seeds manifest their extensive therapeutic effects, which have been reported to be particularly effective in the treatment of skin diseases, jaundice, and gastrointestinal problems. One important component of these seeds is thymoquinone (TQ), which has a wide range of beneficial properties, including antioxidant and anti-inflammatory properties, as well as antibacterial and parasitic properties, in addition to anticarcinogenic, antiallergic, and antiviral properties. This comprehensive review discussed the possibility of an emerging natural drug with a wide range of medical applications; the use of TQ to overcome the complications of COVID-19 infection; and the challenges that are impeding the commercialization of this promising phytochemical compound. TQ is recommended as a highly effective weapon in the fight against the novel coronavirus because of its dual antiviral action, in addition to its capacity to lessen the possibility of SARS-CoV-2 penetration into cells. However, future clinical trials are required to confirm the role of TQ in overcoming the complications of COVID-19 infection.
Collapse
|
8
|
Marsafari M, Azi F, Dou S, Xu P. Modular co-culture engineering of Yarrowia lipolytica for amorphadiene biosynthesis. Microb Cell Fact 2022; 21:279. [PMID: 36587216 PMCID: PMC9805133 DOI: 10.1186/s12934-022-02010-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 12/23/2022] [Indexed: 01/02/2023] Open
Abstract
Amorphadiene is the precursor to synthesize the antimalarial drug artemisinin. The production of amorphadiene and artemisinin from metabolically engineered microbes may provide an alternate to plant secondary metabolite extraction. Microbial consortia can offer division of labor, and microbial co-culture system can be leveraged to achieve cost-efficient production of natural products. Using a co-culture system of Y. lipolytica Po1f and Po1g strains, subcellular localization of ADS gene (encoding amorphadiene synthase) into the endoplasmic reticulum, co-utilization of mixed carbon source, and enlargement of the endoplasmic reticulum (ER) surface area, we were able to significantly improve amorphadiene production in this work. Using Po1g/PPtM and Po1f/AaADSERx3/iGFMPDU strains and co-utilization of 5 µM sodium acetate with 20 g/L glucose in YPD media, amorphadiene titer were increased to 65.094 mg/L. The enlargement of the ER surface area caused by the deletion of the PAH1 gene provided more subcellular ER space for the action of the ADS-tagged gene. It further increased the amorphadiene production to 71.74 mg/L. The results demonstrated that the importance of the spatial localization of critical enzymes, and manipulating metabolic flux in the co-culture of Y. lipolytica can be efficient over a single culture for the bioproduction of isoprenoid-related secondary metabolites in a modular manner.
Collapse
Affiliation(s)
- Monireh Marsafari
- grid.266673.00000 0001 2177 1144Department of Chemical, Biochemical and Environmental Engineering, University of Maryland Baltimore County, Baltimore, MD 21250 USA
| | - Fidelis Azi
- grid.499254.70000 0004 7668 8980Department of Chemical Engineering, Guangdong Provincial Key Laboratory of Materials and Technologies for Energy Conversion (MATEC), Guangdong Technion – Israel Institute of Technology, Shantou, 515063 Guangdong China
| | - Shaohua Dou
- grid.440706.10000 0001 0175 8217College of Life and Health, Dalian University, Dalian, 116622 Liaoning China ,Liaoning Marine Microorganism Engineering and Technology Research Center, Dalian, 116622 Liaoning China
| | - Peng Xu
- grid.266673.00000 0001 2177 1144Department of Chemical, Biochemical and Environmental Engineering, University of Maryland Baltimore County, Baltimore, MD 21250 USA ,grid.499254.70000 0004 7668 8980Department of Chemical Engineering, Guangdong Provincial Key Laboratory of Materials and Technologies for Energy Conversion (MATEC), Guangdong Technion – Israel Institute of Technology, Shantou, 515063 Guangdong China
| |
Collapse
|
9
|
Hokmabady L, Fani N. In silico elucidation of the interactions of thymoquinone analogues with phosphatase and tensin homolog (PTEN). J Mol Model 2022; 28:321. [DOI: 10.1007/s00894-022-05318-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 08/31/2022] [Indexed: 11/29/2022]
|
10
|
Alam M, Hasan GM, Ansari MM, Sharma R, Yadav DK, Hassan MI. Therapeutic implications and clinical manifestations of thymoquinone. PHYTOCHEMISTRY 2022; 200:113213. [PMID: 35472482 DOI: 10.1016/j.phytochem.2022.113213] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 04/16/2022] [Accepted: 04/17/2022] [Indexed: 06/14/2023]
Abstract
Thymoquinone (TQ), a natural phytochemical predominantly found in Nigella sativa, has been investigated for its numerous health benefits. TQ showed anti-cancer, anti-oxidant, and anti-inflammatory properties, validated in various disease models. The anti-cancer potential of TQ is goverened by anti-proliferation, cell cycle arrest, apoptosis induction, ROS production, anti-metastasis and anti-angiogenesis, inhibition of cell migration and invasion action. Additionally, TQ exhibited antitumor activity via the modulation of multiple pathways and molecular targets, including Akt, ERK1/2, STAT3, and NF-κB. The present review highlighted the anticancer potential of TQ . We summarize the anti-cancer, anti-oxidant, and anti-inflammatory properties of TQ, focusing on its molecular targets and its promising action in cancer therapy. We further described the molecular mechanisms by which TQ prevents signaling pathways that mediate cancer progression, invasion, and metastasis.
Collapse
Affiliation(s)
- Manzar Alam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, 110025, India
| | - Gulam Mustafa Hasan
- Department of Biochemistry, College of Medicine, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj, 11942, Saudi Arabia
| | - Md Meraj Ansari
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, SAS Nagar, Mohali, Punjab, 160062, India
| | - Rishi Sharma
- Department of Forensic Medicine and Toxicology, All India Institute of Medical Sciences, Rishikesh, Uttarakhand, 249203, India
| | - Dharmendra Kumar Yadav
- College of Pharmacy, Gachon University of Medicine and Science, Hambakmoeiro, Yeonsu-gu, Incheon City, 21924, South Korea.
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, 110025, India.
| |
Collapse
|
11
|
Wei MX, Zhang SS, Sun X, Liu Z, Yang PW, Li XQ. Design, Synthesis, and Biological Evaluation of Artemisinin-Piperazine-Phosphoramide Mustard Hybrids as Potential Anticancer Agents. ChemMedChem 2022; 17:e202200239. [PMID: 35771689 DOI: 10.1002/cmdc.202200239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 06/27/2022] [Indexed: 11/09/2022]
Abstract
A series of novel artemisinin-piperazine-phosphoramide mustard (PPM) hybrids were designed and synthesized by incorporating phosphoramide mustard (PM) into dihydroartemisinin (DHA) via an efficient, catalyst-free two-step sequential substitution. Artemisinin-PPM hybrids showed better cytotoxic potency against HepG2 cells than both the parent DHA and the reference, vincristine (VCR). Structure-activity relationship (SAR) studies showed that the cytotoxicity was significantly enhanced by the introduction of a thiazole moiety. Hybrid 7h, the most potent compound with the highest selectivity index IC50 (HEK-293T) / IC50 (HepG2) = 16, displayed 7.4-fold stronger potency than VCR against HepG2 cells. In addition, hybrid 7h was substantially more cytotoxic on all human cancer cells tested than on the corresponding non-cancerous cells. Flow cytometric analysis showed that 7h significantly blocked the cell cycle in the G0/G1 phase and induced apoptosis in a concentration-dependent manner.
Collapse
Affiliation(s)
- Meng-Xue Wei
- Ningxia University, College of Chemistry and Chemical Engineering, 489 Helanshan West Road, 750021, Yinchuan, CHINA
| | - Si-Si Zhang
- Ningxia University, College of Chemistry and Chemical Engineering, CHINA
| | - Xuanrong Sun
- Zhejiang University of Technology, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals & College of Pharmaceutical Science, CHINA
| | - Zhihao Liu
- Ningxia University, Department of Chemistry, UNITED KINGDOM
| | - Pei-Wen Yang
- Ningxia University, College of Chemistry and Chemical Engineering, CHINA
| | - Xue-Qiang Li
- Ningxia University, College of Chemistry and Chemical Engineering, CHINA
| |
Collapse
|
12
|
Khyavi PA, Valizadeh A, Shanehbandi D, Yousefi B, Soleimanpour J. Thymoquinone Potentiates Methotrexate Mediated-Apoptosis in Saos-2 Osteosarcoma Cell Line. Drug Res (Stuttg) 2022; 72:390-395. [PMID: 35760336 DOI: 10.1055/a-1842-7545] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
INTRODUCTION Recently, various studies have concentrated on the therapeutic potential of thymoquinone (TQ), a natural polyphenol, in various human malignancies, including osteosarcoma. However, the underlying mechanisms in TQ-mediated anti-cancer effects are not yet fully understood. Therefore, the present study investigated the effect of TQ on methotrexate (MTX)-induced apoptosis in Saos-2 cells. METHODS Saos-2 cells were treated with MTX, TQ, and a combination of both, and cell viability was assessed by MTT assay. mRNA expression of apoptotic markers, including Bax, Bcl-2, and caspase-3, was assessed using quantitative real-time polymerase chain reaction (qRT-PCR). RESULTS MTX resulted in significant inhibition of cell proliferation in a dose-dependent manner. The combination of TQ and MTX inhibited proliferation compared to single treatments (P<0.05). TQ also induced apoptosis by regulating pro-apoptotic markers including Bax and caspase-3 and reducing anti-apoptotic mediators including Bcl-2. In addition, TQ increased MTX-induced apoptosis in Saos-2 cells. CONCLUSION The findings of the present study highlight new insights into understanding the role of TQ as a potential therapeutic agent in osteosarcoma by increasing MTX-induced apoptosis.
Collapse
Affiliation(s)
- Payam Ali Khyavi
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Valizadeh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Dariush Shanehbandi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Bahman Yousefi
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jafar Soleimanpour
- Department of Orthopedic Surgery, School of Medicine and Shohada Educational Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
13
|
Guo M, Jin J, Zhao D, Rong Z, Cao LQ, Li AH, Sun XY, Jia LY, Wang YD, Huang L, Li YH, He ZJ, Li L, Ma RK, Lv YF, Shao KK, Cao HL. Research Advances on Anti-Cancer Natural Products. Front Oncol 2022; 12:866154. [PMID: 35646647 PMCID: PMC9135452 DOI: 10.3389/fonc.2022.866154] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 03/07/2022] [Indexed: 11/20/2022] Open
Abstract
Malignant tumors seriously threaten people's health and life worldwide. Natural products, with definite pharmacological effects and known chemical structures, present dual advantages of Chinese herbs and chemotherapeutic drug. Some of them exhibit favorable anti-cancer activity. Natural products were categorized into eight classes according to their chemical structures, including alkaloids, terpenoids and volatile oils, inorganic salts, phenylpropanoids, flavonoids and isoflavones, quinone, saponins and polysaccharides. The review focused on the latest advances in anti-cancer activity of representative natural products for every class. Additionally, anti-cancer molecular mechanism and derivatization of natural products were summarized in detail, which would provide new core structures and new insights for anti-cancer new drug development.
Collapse
Affiliation(s)
- Meng Guo
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Jie Jin
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Dong Zhao
- Xi’an Key Laboratory of Basic and Translation of Cardiovascular Metabolic Disease, Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Institute of Basic and Translational Medicine, Xi’an Medical University, Xi’an, China
| | - Zheng Rong
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Lu-Qi Cao
- Xi’an Key Laboratory of Basic and Translation of Cardiovascular Metabolic Disease, Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Institute of Basic and Translational Medicine, Xi’an Medical University, Xi’an, China
| | - Ai-Hong Li
- Shaanxi Key Laboratory of Chinese Herb and Natural Drug Development, Medicine Research Institute, Shaanxi Pharmaceutical Holding Group Co., LTD, Xi’an, China
| | - Xiao-Ying Sun
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Li-Yi Jia
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Yin-Di Wang
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Ling Huang
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Yi-Heng Li
- College of Life Sciences, Northwest University, Xi’an, China
| | - Zhong-Jing He
- College of Life Sciences, Northwest University, Xi’an, China
| | - Long Li
- Xi’an Key Laboratory of Basic and Translation of Cardiovascular Metabolic Disease, Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Institute of Basic and Translational Medicine, Xi’an Medical University, Xi’an, China
| | - Rui-Kang Ma
- Xi’an Key Laboratory of Basic and Translation of Cardiovascular Metabolic Disease, Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Institute of Basic and Translational Medicine, Xi’an Medical University, Xi’an, China
| | - Yi-Fan Lv
- Xi’an Key Laboratory of Basic and Translation of Cardiovascular Metabolic Disease, Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Institute of Basic and Translational Medicine, Xi’an Medical University, Xi’an, China
| | - Ke-Ke Shao
- Xi’an Key Laboratory of Basic and Translation of Cardiovascular Metabolic Disease, Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Institute of Basic and Translational Medicine, Xi’an Medical University, Xi’an, China
| | - Hui-Ling Cao
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, China
- Xi’an Key Laboratory of Basic and Translation of Cardiovascular Metabolic Disease, Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Institute of Basic and Translational Medicine, Xi’an Medical University, Xi’an, China
- Shaanxi Key Laboratory of Chinese Herb and Natural Drug Development, Medicine Research Institute, Shaanxi Pharmaceutical Holding Group Co., LTD, Xi’an, China
- College of Life Sciences, Northwest University, Xi’an, China
| |
Collapse
|
14
|
Zhang S, Yi C, Li WW, Luo Y, Wu YZ, Ling HB. The current scenario on anticancer activity of artemisinin metal complexes, hybrids, and dimers. Arch Pharm (Weinheim) 2022; 355:e2200086. [PMID: 35484335 DOI: 10.1002/ardp.202200086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/28/2022] [Accepted: 03/31/2022] [Indexed: 11/09/2022]
Abstract
Cancer, the most significant cause of morbidity and mortality, has already posed a heavy burden on health care systems globally. In recent years, cancer treatment has made a significant breakthrough, but cancer cells inevitably acquire resistance, and the efficacy of the treatment is greatly reduced as the tumor progresses. To overcome the above issues, novel chemotherapeutics are needed urgently. Artemisinin and its derivatives-sesquiterpene lactone compounds possessing a unique peroxy bridge moiety-exhibit excellent safety and tolerability profiles. Mechanistically, artemisinin derivatives can promote cancer cell apoptosis, induce cell cycle arrest and autophagy, and inhibit cancer cell invasion and migration. Accordingly, artemisinin derivatives demonstrate promising anticancer efficacy both in vitro and in vivo, and even in clinical Phase I/II trials. The purpose of the present review article is to provide an emphasis on the current scenario (January 2017-January 2022) of artemisinin derivatives with potential anticancer activity, inclusive of artemisinin metal complexes, hybrids, and dimers. The structure-activity relationships and mechanisms of action are also discussed to facilitate the further rational design of more effective candidates.
Collapse
Affiliation(s)
- Shu Zhang
- Hubei Provincial Academy of Eco-Environmental Sciences, Wuhan, Hubei, People's Republic of China
| | - Chuan Yi
- Hubei Provincial Academy of Eco-Environmental Sciences, Wuhan, Hubei, People's Republic of China
| | - Wei-Wei Li
- Hubei Provincial Academy of Eco-Environmental Sciences, Wuhan, Hubei, People's Republic of China
| | - Yang Luo
- Hubei Provincial Academy of Eco-Environmental Sciences, Wuhan, Hubei, People's Republic of China
| | - Yi-Zhe Wu
- Hubei Provincial Academy of Eco-Environmental Sciences, Wuhan, Hubei, People's Republic of China
| | - Hai-Bo Ling
- Hubei Provincial Academy of Eco-Environmental Sciences, Wuhan, Hubei, People's Republic of China
| |
Collapse
|
15
|
Idris S, Refaat B, Almaimani RA, Ahmed HG, Ahmad J, Alhadrami M, El-Readi MZ, Elzubier ME, Alaufi HAA, Al-Amin B, Alghamdi AA, Bahwerth F, Minshawi F, Kabrah SM, Aslam A. Enhanced in vitro tumoricidal effects of 5-Fluorouracil, thymoquinone, and active vitamin D 3 triple therapy against colon cancer cells by attenuating the PI3K/AKT/mTOR pathway. Life Sci 2022; 296:120442. [PMID: 35245520 DOI: 10.1016/j.lfs.2022.120442] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 02/16/2022] [Accepted: 02/25/2022] [Indexed: 12/26/2022]
Abstract
AIMS This study measured the effects of 5-Fluorouracil (5-FU), calcitriol (VD3), and/or thymoquinone (TQ) single/dual/triple therapies on cell cycle progression, apoptosis, inhibition of the PI3K/AKT/mTOR pathway, and oxidative stress against colorectal cancer (CRC). MAIN METHODS The HT29, SW480 and SW620 cell lines were treated with 5-FU (50 μM), VD3 (25 μM), and TQ (75 μM), alone or combined for 12 h, prior to cell cycle/apoptosis analyses. KEY FINDINGS TQ monotherapy had greater anticancer effects to active VD3 or 5-FU, revealing higher expression of p21/p27/PTEN/BAX/Cyto-C/Casp-3 and increased levels of total glutathione, with inhibitions in CCND1/CCND3/BCL-2 and PI3K/AKT/mTOR molecules, alongside higher rates of apoptosis in HT29, SW480 and SW620 cells (P < 0.005 for all markers). Additionally, all combination protocols revealed enhanced modulations of the PI3K/PTEN/Akt/mTOR pathway, higher expression of p21/p27/PTEN/BAX/Cyto-C/Casp-3, and better anti-oxidant effects, than the monotherapies. Although TQ/5-FU and TQ/VD3 co-therapies were better relative to the VD3/5-FU regimen, the best tumoricidal effects were observed with triple therapy in the HT29 and SW480 cell lines, possibly by boosted attenuations of the PI3K/AKT/mTOR oncogenic pathway. In contrast, TQ single treatment was more effective than the triple therapy regimen in metastatic SW620 cells, suggesting that this protocol would be more useful therapeutically in late-stage CRC. SIGNIFICANCE In conclusion, this study is the first to demonstrated enhanced anti-tumorigenic effects for VD3, TQ, and 5-FU triple therapy against CRC cells and could represent the best strategy for treating early stages of malignancy, whereas TQ monotherapy could be a better approach for treating metastatic forms of the disease.
Collapse
Affiliation(s)
- Shakir Idris
- Department of Histopathology and Cytology, Faculty of Medical Laboratory Sciences, University of Khartoum, Khartoum, Sudan; Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Al Abdeyah, PO Box 7607, Makkah, Saudi Arabia
| | - Bassem Refaat
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Al Abdeyah, PO Box 7607, Makkah, Saudi Arabia
| | - Riyad A Almaimani
- Department of Biochemistry, Faculty of Medicine, Umm Al-Qura University, Al Abdeyah, Makkah, Saudi Arabia
| | - Hussain G Ahmed
- Department of Histopathology and Cytology, Faculty of Medical Laboratory Sciences, University of Khartoum, Khartoum, Sudan
| | - Jawwad Ahmad
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Al Abdeyah, PO Box 7607, Makkah, Saudi Arabia
| | - Mai Alhadrami
- Department of Pathology, Faculty of Medicine, Umm Al-Qura University, Al Abdeyah, Makkah, Saudi Arabia
| | - Mahmoud Zaki El-Readi
- Department of Biochemistry, Faculty of Medicine, Umm Al-Qura University, Al Abdeyah, Makkah, Saudi Arabia; Biochemistry Department, Faculty of Pharmacy, Al-Azhar University, Assuit, Egypt
| | - Mohamed E Elzubier
- Department of Biochemistry, Faculty of Medicine, Umm Al-Qura University, Al Abdeyah, Makkah, Saudi Arabia
| | - Haneen A A Alaufi
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Al Abdeyah, PO Box 7607, Makkah, Saudi Arabia; Pathology and Laboratory Medicine, Department of Anatomic Medicine, Prince Mohammed Bin Abdul Aziz Hospital, Madinah, Saudi Arabia
| | - Badriah Al-Amin
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Al Abdeyah, PO Box 7607, Makkah, Saudi Arabia
| | - Ahmad A Alghamdi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - Fayez Bahwerth
- Laboratory and Blood Bank Department, King Faisal Hospital, Makkah, Saudi Arabia
| | - Faisal Minshawi
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Al Abdeyah, PO Box 7607, Makkah, Saudi Arabia
| | - Saeed M Kabrah
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Al Abdeyah, PO Box 7607, Makkah, Saudi Arabia
| | - Akhmed Aslam
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Al Abdeyah, PO Box 7607, Makkah, Saudi Arabia.
| |
Collapse
|
16
|
Farmanpour-Kalalagh K, Beyraghdar Kashkooli A, Babaei A, Rezaei A, van der Krol AR. Artemisinins in Combating Viral Infections Like SARS-CoV-2, Inflammation and Cancers and Options to Meet Increased Global Demand. FRONTIERS IN PLANT SCIENCE 2022; 13:780257. [PMID: 35197994 PMCID: PMC8859114 DOI: 10.3389/fpls.2022.780257] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 01/03/2022] [Indexed: 05/05/2023]
Abstract
Artemisinin is a natural bioactive sesquiterpene lactone containing an unusual endoperoxide 1, 2, 4-trioxane ring. It is derived from the herbal medicinal plant Artemisia annua and is best known for its use in treatment of malaria. However, recent studies also indicate the potential for artemisinin and related compounds, commonly referred to as artemisinins, in combating viral infections, inflammation and certain cancers. Moreover, the different potential modes of action of artemisinins make these compounds also potentially relevant to the challenges the world faces in the COVID-19 pandemic. Initial studies indicate positive effects of artemisinin or Artemisia spp. extracts to combat SARS-CoV-2 infection or COVID-19 related symptoms and WHO-supervised clinical studies on the potential of artemisinins to combat COVID-19 are now in progress. However, implementing multiple potential new uses of artemisinins will require effective solutions to boost production, either by enhancing synthesis in A. annua itself or through biotechnological engineering in alternative biosynthesis platforms. Because of this renewed interest in artemisinin and its derivatives, here we review its modes of action, its potential application in different diseases including COVID-19, its biosynthesis and future options to boost production.
Collapse
Affiliation(s)
- Karim Farmanpour-Kalalagh
- Department of Horticultural Science, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| | - Arman Beyraghdar Kashkooli
- Department of Horticultural Science, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
- *Correspondence: Arman Beyraghdar Kashkooli,
| | - Alireza Babaei
- Department of Horticultural Science, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| | - Ali Rezaei
- Department of Horticultural Science, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| | | |
Collapse
|
17
|
Zou X, Liu C, Li C, Fu R, Xu W, Bian H, Dong X, Zhao X, Xu Z, Zhang J, Shen Z. Study on the structure-activity relationship of dihydroartemisinin derivatives: Discovery, synthesis, and biological evaluation of dihydroartemisinin-bile acid conjugates as potential anticancer agents. Eur J Med Chem 2021; 225:113754. [PMID: 34399390 DOI: 10.1016/j.ejmech.2021.113754] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 08/05/2021] [Accepted: 08/05/2021] [Indexed: 11/20/2022]
Abstract
A series of dihydroartemisinin derivatives was synthesized, and their anti-proliferation activity against cancer cells was evaluated. Structure-activity relationship studies led to the discovery of dihydroartemisinin-bile acid conjugates that exhibit broad-spectrum anti-proliferation activities. Among them, the dihydroartemisinin-ursodeoxycholic acid conjugate (49) was the most potent, with IC50 values between 0.04 and 0.96 μM when tested to determine its inhibitory properties against 15 various cancer cell lines. In vivo experiments showed that compound 49 effectively suppressed tumor growth in an A549 cell xenograft model at the dosage of 10 mg/kg body weight and in Lewis lung cancer cell transplant model at the dosage of 12 mg/kg body weight.
Collapse
Affiliation(s)
- Xiaosu Zou
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 CaiLun Road, Shanghai, 201203, China
| | - Chang Liu
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 South WanPing Road, Shanghai, 200032, China
| | - Congcong Li
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 CaiLun Road, Shanghai, 201203, China
| | - Rong Fu
- School of Medicine, Shanghai Jiao Tong University, 280 South Chongqing Road, Shanghai, 200025, China
| | - Wei Xu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 CaiLun Road, Shanghai, 201203, China
| | - Hongzhu Bian
- Yunnan Baiyao Group Co. Ltd, 3686 Yunnan Baiyao Street, Kunming, 650200, China
| | - Xun Dong
- Yunnan Baiyao Group Co. Ltd, 3686 Yunnan Baiyao Street, Kunming, 650200, China
| | - Xiaozhen Zhao
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 South WanPing Road, Shanghai, 200032, China
| | - Zhenye Xu
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 South WanPing Road, Shanghai, 200032, China.
| | - Jinghua Zhang
- School of Medicine, Shanghai Jiao Tong University, 280 South Chongqing Road, Shanghai, 200025, China.
| | - Zhengwu Shen
- School of Medicine, Shanghai Jiao Tong University, 280 South Chongqing Road, Shanghai, 200025, China; School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 CaiLun Road, Shanghai, 201203, China.
| |
Collapse
|
18
|
Abd-Rabou AA, Edris AE. Cytotoxic, apoptotic, and genetic evaluations of Nigella sativa essential oil nanoemulsion against human hepatocellular carcinoma cell lines. Cancer Nanotechnol 2021. [DOI: 10.1186/s12645-021-00101-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Phytochemicals and plant extracts are showing promising anticancer potentials. In the current study, the volatile faction (essential oil) of Nigella sativa seeds was evaluated against some hepatocellular carcinoma (HCC). The essential oil was extracted and characterized by chromatographic techniques to reveal its chemical composition, especially thymoquinone. Then, the oil was fabricated in two nanoemulsion formulations (F1 and F2), which differ in their composition of surfactants. The cytotoxicity and apoptotic activities of the essential oil and its nanoemulsions were evaluated in vitro against HepG2 and Huh-7 cell lines. Normal WI-38 cell line was also included in that evaluation to study the selectivity and safety of the different formulations on normal cells.
Results
Gas chromatographic analysis indicated that the essential oil is composed mainly of p-cymene (40.0%), thymoquinone (31.2%) and trans-α-thujene (12.8%). Particle size of the nanoemulsions ranged between 9.4 and 119.7 nm depending on the type of surfactant used in the formulation process. The pure essential oil and its two nanoemulsions (F1 and F2) showed dose-dependent antiproliferative activity against both HCC cells. This activity reached its highest cell inhibition in the case of nanoemulsion (F2) where the proliferation percentage was only 21.9% and 9.2% against HepG2 and Huh-7 cells, respectively. The same nanoemulsion (F2) also showed the lowest IC50 values (55.7 and 35.5 µg/ml) against both HepG2 and Huh-7 cells, respectively, compared to 100 µg/ml for the reference drug Doxorubicin. Flow cytometric analysis also confirmed that nanoemulsion (F2) has the highest apoptotic activity compared to nanoemulsion (F1) and the pure unformulated essential oil. Genetic expressions of pro-apoptotic (Bax) and the anti-apoptotic (Bcl-2) gene markers evaluation revealed that nanoemulsion (F2) has better activity in upregulating (Bax) and down-regulate (Bcl-2) with the highest Bax/Bcl-2 ratio (69) was found against Huh-7 cells. All N. sativa nanoemulsions showed minimal cytotoxicity on the normal WI-38 cell, indicating wide safety margins due to selective properties.
Conclusion
Overall, the study revealed the potentials of N. sativa essential oil, after formulation in specially tailored nanoemulsion for application as potential adjuvant liver anticancer agent.
Graphical Abstract
Collapse
|
19
|
Fatfat Z, Fatfat M, Gali-Muhtasib H. Therapeutic potential of thymoquinone in combination therapy against cancer and cancer stem cells. World J Clin Oncol 2021; 12:522-543. [PMID: 34367926 PMCID: PMC8317652 DOI: 10.5306/wjco.v12.i7.522] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 04/11/2021] [Accepted: 06/18/2021] [Indexed: 02/06/2023] Open
Abstract
The long-term success of standard anticancer monotherapeutic strategies has been hampered by intolerable side effects, resistance to treatment and cancer relapse. These monotherapeutic strategies shrink the tumor bulk but do not effectively eliminate the population of self-renewing cancer stem cells (CSCs) that are normally present within the tumor. These surviving CSCs develop mechanisms of resistance to treatment and refuel the tumor, thus causing cancer relapse. To ensure durable tumor control, research has moved away from adopting the monotreatment paradigm towards developing and using combination therapy. Combining different therapeutic modalities has demonstrated significant therapeutic outcomes by strengthening the anti-tumor potential of monotreatment against cancer and cancer stem cells, mitigating their toxic adverse effects, and ultimately overcoming resistance. Recently, there has been growing interest in combining natural products from different sources or with clinically used chemotherapeutics to further improve treatment efficacy and tolerability. Thymoquinone (TQ), the main bioactive constituent of Nigella sativa, has gained great attention in combination therapy research after demonstrating its low toxicity to normal cells and remarkable anticancer efficacy in extensive preclinical studies in addition to its ability to target chemoresistant CSCs. Here, we provide an overview of the therapeutic responses resulting from combining TQ with conventional therapeutic agents such as alkylating agents, antimetabolites and antimicrotubules as well as with topoisomerase inhibitors and non-coding RNA. We also review data on anticancer effects of TQ when combined with ionizing radiation and several natural products such as vitamin D3, melatonin and other compounds derived from Chinese medicinal plants. The focus of this review is on two outcomes of TQ combination therapy, namely eradicating CSCs and treating various types of cancers. In conclusion, the ability of TQ to potentiate the anticancer activity of many chemotherapeutic agents and sensitize cancer cells to radiotherapy makes it a promising molecule that could be used in combination therapy to overcome resistance to standard chemotherapeutic agents and reduce their associated toxicities.
Collapse
Affiliation(s)
- Zaynab Fatfat
- Department of Biology, American University of Beirut, Beirut 1107 2020, Lebanon
| | - Maamoun Fatfat
- Department of Biology, American University of Beirut, Beirut 1107 2020, Lebanon
| | - Hala Gali-Muhtasib
- Department of Biology, American University of Beirut, Beirut 1107 2020, Lebanon
- Center for Drug Discovery, American University of Beirut, Beirut 1107 2020, Lebanon
| |
Collapse
|
20
|
Wu L, Abreu BL, Blake AJ, Taylor LJ, Lewis W, Argent SP, Poliakoff M, Boufroura H, George MW. Multigram Synthesis of Trioxanes Enabled by a Supercritical CO2 Integrated Flow Process. Org Process Res Dev 2021. [DOI: 10.1021/acs.oprd.1c00111] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Lingqiao Wu
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| | - Bruna L. Abreu
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| | - Alexander J. Blake
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| | - Laurence J. Taylor
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| | - William Lewis
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| | - Stephen P. Argent
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| | - Martyn Poliakoff
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| | - Hamza Boufroura
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| | - Michael W. George
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| |
Collapse
|
21
|
Çapcı A, Herrmann L, Sampath Kumar HM, Fröhlich T, Tsogoeva SB. Artemisinin-derived dimers from a chemical perspective. Med Res Rev 2021; 41:2927-2970. [PMID: 34114227 DOI: 10.1002/med.21814] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 03/02/2021] [Accepted: 04/19/2021] [Indexed: 12/14/2022]
Abstract
Considerable progress has been made with the rather recently developed dimer approach, which has already found applications in the development of new effective artemisinin-derived antimalarial, anticancer, and antiviral agents. One observation common to these potential applications is the significant (i.e., much more than double) improvement in activity of artemisinin based dimers, which are not toxic to normal cells and have fewer or less harmful side effects, with respect to monomers against parasites, cancer cells and viruses. Due to the high potential of the dimerization concept, many new artemisinin-derived dimer compounds and their biological activities have been recently reported. In this review an overview of the synthesis of dimer drug candidates based on the clinically used drug artemisinin and its semisynthetic derivatives is given. Besides the highlighting of biological activities of the selected dimers, the main focus is set on different synthetic approaches toward the dimers containing a broad variety of symmetric and nonsymmetric linking moieties.
Collapse
Affiliation(s)
- Aysun Çapcı
- Organic Chemistry Chair I and Interdisciplinary Center for Molecular Materials (ICMM), Friedrich Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Lars Herrmann
- Organic Chemistry Chair I and Interdisciplinary Center for Molecular Materials (ICMM), Friedrich Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Halmuthur M Sampath Kumar
- Organic Chemistry Chair I and Interdisciplinary Center for Molecular Materials (ICMM), Friedrich Alexander University Erlangen-Nürnberg, Erlangen, Germany.,CSIR-Indian Institute of Chemical Technology, Hyderabad, India
| | - Tony Fröhlich
- Organic Chemistry Chair I and Interdisciplinary Center for Molecular Materials (ICMM), Friedrich Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Svetlana B Tsogoeva
- Organic Chemistry Chair I and Interdisciplinary Center for Molecular Materials (ICMM), Friedrich Alexander University Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
22
|
Almajali B, Al-Jamal HAN, Taib WRW, Ismail I, Johan MF, Doolaanea AA, Ibrahim WN. Thymoquinone, as a Novel Therapeutic Candidate of Cancers. Pharmaceuticals (Basel) 2021; 14:369. [PMID: 33923474 PMCID: PMC8074212 DOI: 10.3390/ph14040369] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/06/2021] [Accepted: 04/13/2021] [Indexed: 12/11/2022] Open
Abstract
To date, natural products are widely used as pharmaceutical agents for many human diseases and cancers. One of the most popular natural products that have been studied for anticancer properties is thymoquinone (TQ). As a bioactive compound of Nigella sativa, TQ has shown anticancer activities through the inhibition of cell proliferation, migration, and invasion. The anticancer efficacy of TQ is being investigated in several human cancers such as pancreatic cancer, breast cancer, colon cancer, hepatic cancer, cervical cancer, and leukemia. Even though TQ induces apoptosis by regulating the expression of pro- apoptotic and anti-apoptotic genes in many cancers, the TQ effect mechanism on such cancers is not yet fully understood. Therefore, the present review has highlighted the TQ effect mechanisms on several signaling pathways and expression of tumor suppressor genes (TSG). Data from relevant published experimental articles on TQ from 2015 to June 2020 were selected by using Google Scholar and PubMed search engines. The present study investigated the effectiveness of TQ alone or in combination with other anticancer therapeutic agents, such as tyrosine kinase inhibitors on cancers, as a future anticancer therapy nominee by using nanotechnology.
Collapse
Affiliation(s)
- Belal Almajali
- School of Biomedicine, Faculty of Health Sciences, Universiti Sultan Zainal Abidin (UniSZA), Terengganu 21300, Malaysia; (B.A.); (W.R.W.T.); (I.I.)
| | - Hamid Ali Nagi Al-Jamal
- School of Biomedicine, Faculty of Health Sciences, Universiti Sultan Zainal Abidin (UniSZA), Terengganu 21300, Malaysia; (B.A.); (W.R.W.T.); (I.I.)
| | - Wan Rohani Wan Taib
- School of Biomedicine, Faculty of Health Sciences, Universiti Sultan Zainal Abidin (UniSZA), Terengganu 21300, Malaysia; (B.A.); (W.R.W.T.); (I.I.)
| | - Imilia Ismail
- School of Biomedicine, Faculty of Health Sciences, Universiti Sultan Zainal Abidin (UniSZA), Terengganu 21300, Malaysia; (B.A.); (W.R.W.T.); (I.I.)
| | - Muhammad Farid Johan
- Department of Haematology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan 16150, Malaysia;
| | - Abd Almonem Doolaanea
- Department of Pharmaceutical Technology, Faculty of Pharmacy, International Islamic University Malaysia, Kuantan 25594, Malaysia;
| | - Wisam Nabeel Ibrahim
- Department of Biomedical Sciences, College of Health sciences, QU Health, Qatar University, Doha 2713, Qatar;
| |
Collapse
|
23
|
Zhu S, Yu Q, Huo C, Li Y, He L, Ran B, Chen J, Li Y, Liu W. Ferroptosis: A Novel Mechanism of Artemisinin and its Derivatives in Cancer Therapy. Curr Med Chem 2021; 28:329-345. [PMID: 31965935 DOI: 10.2174/0929867327666200121124404] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 12/06/2019] [Accepted: 12/12/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Artemisinin is a sesquiterpene lactone compound with a special peroxide bridge that is tightly linked to the cytotoxicity involved in fighting malaria and cancer. Artemisinin and its derivatives (ARTs) are considered to be potential anticancer drugs that promote cancer cell apoptosis, induce cell cycle arrest and autophagy, inhibit cancer cell invasion and migration. Additionally, ARTs significantly increase intracellular Reactive Oxygen Species (ROS) in cancer cells, which result in ferroptosis, a new form of cell death, depending on the ferritin concentration. Ferroptosis is regarded as a cancer suppressor and as well as considered a new mechanism for cancer therapy. METHODS The anticancer activities of ARTs and reference molecules were compared by literature search and analysis. The latest research progress on ferroptosis was described, with a special focus on the molecular mechanism of artemisinin-induced ferroptosis. RESULTS Artemisinin derivatives, artemisinin-derived dimers, hybrids and artemisinin-transferrin conjugates, could significantly improve anticancer activity, and their IC50 values are lower than those of reference molecules such as doxorubicin and paclitaxel. The biological activities of linkers in dimers and hybrids are important in the drug design processes. ARTs induce ferroptosis mainly by triggering intracellular ROS production, promoting the lysosomal degradation of ferritin and regulating the System Xc-/Gpx4 axis. Interestingly, ARTs also stimulate the feedback inhibition pathway. CONCLUSION Artemisinin and its derivatives could be used in the future as cancer therapies with broader applications due to their induction of ferroptosis. Meanwhile, more attention should be paid to the development of novel artemisinin-related drugs based on the mechanism of artemisinininduced ferroptosis.
Collapse
Affiliation(s)
- Shunqin Zhu
- School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Qin Yu
- School of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing 401331, China
| | - Chunsong Huo
- School of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing 401331, China
| | - Yuanpeng Li
- School of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing 401331, China
| | - Linshen He
- School of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing 401331, China
| | - Botian Ran
- School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Ji Chen
- School of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing 401331, China
| | - Yonghao Li
- School of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing 401331, China
| | - Wanhong Liu
- School of Life Sciences, Southwest University, Chongqing 400715, China
| |
Collapse
|
24
|
Nanotechnologies: An Innovative Tool to Release Natural Extracts with Antimicrobial Properties. Pharmaceutics 2021; 13:pharmaceutics13020230. [PMID: 33562128 PMCID: PMC7915176 DOI: 10.3390/pharmaceutics13020230] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/02/2021] [Accepted: 02/03/2021] [Indexed: 12/17/2022] Open
Abstract
Site-Specific release of active molecules with antimicrobial activity spurred the interest in the development of innovative polymeric nanocarriers. In the preparation of polymeric devices, nanotechnologies usually overcome the inconvenience frequently related to other synthetic strategies. High performing nanocarriers were synthesized using a wide range of starting polymer structures, with tailored features and great chemical versatility. Over the last decade, many antimicrobial substances originating from plants, herbs, and agro-food waste by-products were deeply investigated, significantly catching the interest of the scientific community. In this review, the most innovative strategies to synthesize nanodevices able to release antimicrobial natural extracts were discussed. In this regard, the properties and structure of the starting polymers, either synthetic or natural, as well as the antimicrobial activity of the biomolecules were deeply investigated, outlining the right combination able to inhibit pathogens in specific biological compartments.
Collapse
|
25
|
Li Y, Zhou X, Liu J, Yuan X, He Q. Therapeutic Potentials and Mechanisms of Artemisinin and its Derivatives for Tumorigenesis and Metastasis. Anticancer Agents Med Chem 2021; 20:520-535. [PMID: 31958040 DOI: 10.2174/1871520620666200120100252] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 10/10/2019] [Accepted: 10/24/2019] [Indexed: 12/21/2022]
Abstract
BACKGROUND Tumor recurrence and metastasis are still leading causes of cancer mortality worldwide. The influence of traditional treatment strategies against metastatic tumors may still be limited. To search for novel and powerful agents against tumors has become a major research focus. In this study, Artemisinin (ARM), a natural compound isolated from herbs, Artemisia annua L., proceeding from drug repurposing methods, attracts more attention due to its good efficacy and tolerance in antimalarial practices, as well as newly confirmed anticancer activity. METHODS We have searched and reviewed the literatures about ARM and its derivatives (ARMs) for cancer using keywords "artemisinin" until May 2019. RESULTS In preclinical studies, ARMs can induce cell cycle arrest and cell death by apoptosis etc., to inhibit the progression of tumors, and suppress EMT and angiogenesis to inhibit the metastasis of tumors. Notably, the complex relationships of ARMs and autophagy are worth exploring. Inspired by the limitations of its antimalarial applications and the mechanical studies of artemisinin and cancer, people are also committed to develop safer and more potent ARM-based modified compounds (ARMs) or combination therapy, such as artemisinin dimers/ trimers, artemisinin-derived hybrids. Some clinical trials support artemisinins as promising candidates for cancer therapy. CONCLUSION ARMs show potent therapeutic potentials against carcinoma including metastatic tumors. Novel compounds derived from artemisinin and relevant combination therapies are supposed to be promising treatment strategies for tumors, as the important future research directions.
Collapse
Affiliation(s)
- Yue Li
- Department of Clinical Laboratories, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Xiaoyan Zhou
- Department of Clinical Laboratories, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Jiali Liu
- Department of Clinical Laboratories, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Xiaohong Yuan
- Department of Clinical Laboratories, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Qian He
- Department of Clinical Laboratories, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| |
Collapse
|
26
|
El-Far AH, Godugu K, Noreldin AE, Saddiq AA, Almaghrabi OA, Al Jaouni SK, Mousa SA. Thymoquinone and Costunolide Induce Apoptosis of Both Proliferative and Doxorubicin-Induced-Senescent Colon and Breast Cancer Cells. Integr Cancer Ther 2021; 20:15347354211035450. [PMID: 34490824 PMCID: PMC8427913 DOI: 10.1177/15347354211035450] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 02/03/2021] [Accepted: 06/23/2021] [Indexed: 11/15/2022] Open
Abstract
Doxorubicin (Dox) induces senescence in numerous cancer cell types, but these senescent cancer cells relapse again if they are not eliminated. On this principle, we investigated the apoptotic effect of thymoquinone (TQ), the active ingredient of Nigella sativa seeds and costunolide (COS), the active ingredient of Costus speciosus, on the senescent colon (Sen-HCT116) and senescent breast (Sen-MCF7) cancer cell lines in reference to their corresponding proliferative cells to rapidly eliminate the senescent cancer cells. The senescence markers of Sen-HCT116 and Sen-MCF7 were determined by a significant decrease in bromodeoxyuridine (BrdU) incorporation and significant increases in SA-β-gal, p53, and p21 levels. Then proliferative, Sen-HCT116, and Sen-MCF7 cells were subjected to either TQ (50 µM) or COS (30 µM), the Bcl2-associated X protein (Bax), B-cell lymphoma 2 (Bcl2), caspase 3 mRNA expression and its activity were established. Results revealed that TQ significantly increased the Bax/Bcl2 ratio in HCT116 + Dox5 + TQ, MCF7 + TQ, and MCF7 + Dox5 + TQ compared with their corresponding controls. COS significantly increased the Bax/Bcl2 ratio in HCT116 + Dox5 + TQ and MCF7 + Dox5 + TQ compared with their related controls. Also, TQ and COS were significantly increased caspase 3 activity and cell proliferation of Sen-HCT116 and Sen-MCF7. The data revealed a higher sensitivity of senescent cells to TQ or COS than their corresponding proliferative cells.
Collapse
Affiliation(s)
- Ali H El-Far
- Damanhour University, Damanhour, Al-Beheira, Egypt
| | - Kavitha Godugu
- Albany College of Pharmacy and Health Sciences, Rensselaer, NY, USA
| | | | | | | | | | - Shaker A. Mousa
- Albany College of Pharmacy and Health Sciences, Rensselaer, NY, USA
| |
Collapse
|
27
|
Carullo G, Mazzotta S, Koch A, Hartmann KM, Friedrich O, Gilbert DF, Vega-Holm M, Schneider-Stock R, Aiello F. New Oleoyl Hybrids of Natural Antioxidants: Synthesis and In Vitro Evaluation as Inducers of Apoptosis in Colorectal Cancer Cells. Antioxidants (Basel) 2020; 9:antiox9111077. [PMID: 33153029 PMCID: PMC7692320 DOI: 10.3390/antiox9111077] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 10/27/2020] [Accepted: 10/30/2020] [Indexed: 12/13/2022] Open
Abstract
Nowadays, the beneficial role of a healthy lifestyle, particularly emphasizing the quality of foods and cancer management, is accepted worldwide. Polyphenols and oleic acid play a key role in this context, but are still scarcely used as anti-cancer agents due to their bio-accessibility limits. Therefore, we aimed to synthesize a set of new oleoyl-hybrids of quercetin, morin, pinocembrin, and catechin to overcome the low bioavailability of polyphenols, throughout a bio-catalytic approach using pancreatic porcine lipase as a catalyst. The in vitro assays, using a wide panel of human cancer cell lines showed, mainly for two novel regioisomer oleoyl-hybrids of quercetin, a remarkable increase in apoptotic cell populations. We suggested that the DNA damage shown as ɣH2AX signals might be the major cause of apoptotic cell death. Finally, we demonstrated convincing data about two novel polyphenol-based hybrids displaying a highly selective anti-cancer cytotoxicity and being superior compared to their reference/parental compounds.
Collapse
Affiliation(s)
- Gabriele Carullo
- Department of Biotechnology, Chemistry and Pharmacy, Department of Excellence 2018-2022, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy;
- Department of Pharmacy, Health and Nutritional Sciences, Department of Excellence 2018-2022, University of Calabria, Edificio Polifunzionale, 87036 Rende (CS), Italy
| | - Sarah Mazzotta
- Department of Pharmacy, Health and Nutritional Sciences, Department of Excellence 2018-2022, University of Calabria, Edificio Polifunzionale, 87036 Rende (CS), Italy
- Department of Pharmaceutical Sciences, University of Milan Via Luigi Mangiagalli 25, 20133 Milano, Italy;
- Department of Organic and Medicinal Chemistry, Faculty of Pharmacy, University of Seville, Profesor García González 2, 41071 Seville, Spain;
| | - Adrian Koch
- Institiute of Pathology, University Hospital, Friedrich-Alexander University Erlangen-Nürnberg Universitätsstr. 22, 91054 Erlangen, Germany;
- Experimental Tumorpathology, University Hospital, Friedrich-Alexander University Erlangen-Nürnberg Universitätsstr. 22, 91054 Erlangen, Germany
| | - Kristin M. Hartmann
- Institute of Medical Biotechnology Friedrich-Alexander-University Erlangen-Nürnberg, Paul-Gordan-Str. 3, 91052 Erlangen, Germany; (K.M.H.); (O.F.); (D.F.G.)
- Erlangen Graduate School in Advanced Optical Technologies (SAOT), Friedrich-Alexander-University Erlangen-Nürnberg, Paul-Gordan-Str. 6, 91052 Erlangen, Germany
| | - Oliver Friedrich
- Institute of Medical Biotechnology Friedrich-Alexander-University Erlangen-Nürnberg, Paul-Gordan-Str. 3, 91052 Erlangen, Germany; (K.M.H.); (O.F.); (D.F.G.)
| | - Daniel F. Gilbert
- Institute of Medical Biotechnology Friedrich-Alexander-University Erlangen-Nürnberg, Paul-Gordan-Str. 3, 91052 Erlangen, Germany; (K.M.H.); (O.F.); (D.F.G.)
| | - Margarita Vega-Holm
- Department of Organic and Medicinal Chemistry, Faculty of Pharmacy, University of Seville, Profesor García González 2, 41071 Seville, Spain;
| | - Regine Schneider-Stock
- Institiute of Pathology, University Hospital, Friedrich-Alexander University Erlangen-Nürnberg Universitätsstr. 22, 91054 Erlangen, Germany;
- Experimental Tumorpathology, University Hospital, Friedrich-Alexander University Erlangen-Nürnberg Universitätsstr. 22, 91054 Erlangen, Germany
- Correspondence: (R.S.-S.); (F.A.)
| | - Francesca Aiello
- Department of Pharmacy, Health and Nutritional Sciences, Department of Excellence 2018-2022, University of Calabria, Edificio Polifunzionale, 87036 Rende (CS), Italy
- Correspondence: (R.S.-S.); (F.A.)
| |
Collapse
|
28
|
Xu C, Zhang H, Mu L, Yang X. Artemisinins as Anticancer Drugs: Novel Therapeutic Approaches, Molecular Mechanisms, and Clinical Trials. Front Pharmacol 2020; 11:529881. [PMID: 33117153 PMCID: PMC7573816 DOI: 10.3389/fphar.2020.529881] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 09/16/2020] [Indexed: 12/26/2022] Open
Abstract
Artemisinin and its derivatives have shown broad-spectrum antitumor activities in vitro and in vivo. Furthermore, outcomes from a limited number of clinical trials provide encouraging evidence for their excellent antitumor activities. However, some problems such as poor solubility, toxicity and controversial mechanisms of action hamper their use as effective antitumor agents in the clinic. In order to accelerate the use of ARTs in the clinic, researchers have recently developed novel therapeutic approaches including developing novel derivatives, manufacturing novel nano-formulations, and combining ARTs with other drugs for cancer therapy. The related mechanisms of action were explored. This review describes ARTs used to induce non-apoptotic cell death containing oncosis, autophagy, and ferroptosis. Moreover, it highlights the ARTs-caused effects on cancer metabolism, immunosuppression and cancer stem cells and discusses clinical trials of ARTs used to treat cancer. The review provides additional insight into the molecular mechanism of action of ARTs and their considerable clinical potential.
Collapse
Affiliation(s)
- Cangcang Xu
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, China
| | - Huihui Zhang
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, China
| | - Lingli Mu
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, China
| | - Xiaoping Yang
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, China
| |
Collapse
|
29
|
The Artemisinin-Derived Autofluorescent Compound BG95 Exerts Strong Anticytomegaloviral Activity Based on a Mitochondrial Targeting Mechanism. Int J Mol Sci 2020; 21:ijms21155578. [PMID: 32759737 PMCID: PMC7432203 DOI: 10.3390/ijms21155578] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/30/2020] [Accepted: 07/31/2020] [Indexed: 01/05/2023] Open
Abstract
Human cytomegalovirus (HCMV) is a major human pathogen associated with severe pathology. Current options of antiviral therapy only partly satisfy the needs of a well-tolerated long-term treatment/prophylaxis free from drug-induced viral resistance. Recently, we reported the strong antiviral properties in vitro and in vivo of the broad-spectrum anti-infective drug artesunate and its optimized derivatives. NF-κB signaling was described as a targeting mechanism and additional target proteins have recently been identified. Here, we analyzed the autofluorescent hybrid compound BG95, which could be utilized for intracellular visualization by confocal imaging and a tracking analysis in virus-infected primary human fibroblasts. As an important finding, BG95 accumulated in mitochondria visualized by anti-prohibitin and MitoTracker staining, and induced statistically significant changes of mitochondrial morphology, distinct from those induced by HCMV infection. Notably, mitochondrial membrane potential was found substantially reduced by BG95, an effect apparently counteracting efficient HCMV replication, which requires active mitochondria and upregulated energy levels. This finding was consistent with binding properties of artesunate-like compounds to mitochondrial proteins and thereby suggested a new mechanistic aspect. Combined, the present study underlines an important role of mitochondria in the multifaceted, host-directed antiviral mechanism of this drug class, postulating a new mitochondria-specific mode of protein targeting.
Collapse
|
30
|
Botta L, Filippi S, Zippilli C, Cesarini S, Bizzarri BM, Cirigliano A, Rinaldi T, Paiardini A, Fiorucci D, Saladino R, Negri R, Benedetti P. Artemisinin Derivatives with Antimelanoma Activity Show Inhibitory Effect against Human DNA Topoisomerase 1. ACS Med Chem Lett 2020; 11:1035-1040. [PMID: 32435422 DOI: 10.1021/acsmedchemlett.0c00131] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 04/10/2020] [Indexed: 02/07/2023] Open
Abstract
Artesunic acid and artemisinin are natural substances with promiscuous anticancer activity against different types of cancer cell lines. The mechanism of action of these compounds is associated with the formation of reactive radical species by cleavage of the sesquiterpene pharmacophore endoperoxide bridge. Here we suggested topoisomerase 1 as a possible molecular target for the improvement of the anticancer activity of these compounds. In this context, we report that novel hybrid and dimer derivatives of artesunic acid and artemisinin, bearing camptothecin and SN38 as side-chain biological effectors, can inhibit growth of yeast cells overexpressing human topoisomerase 1 and its enzymatic activity in vitro. These derivatives showed also anticancer activity in melanoma cell lines higher than camptothecin and paclitaxel. In silico molecular docking calculations highlighted a common binding mode for the novel derivatives, with the sesquiterpene lactone scaffold being located near the traditional recognition site for camptothecin, while the bioactive side-chain effector laid in the camptothecin cleft.
Collapse
Affiliation(s)
- Lorenzo Botta
- Department of Ecological and Biological Sciences, University of Tuscia, via S. C. De Lellis 44, 01100 Viterbo, Italy
| | - Silvia Filippi
- Department of Ecological and Biological Sciences, University of Tuscia, via S. C. De Lellis 44, 01100 Viterbo, Italy
| | - Claudio Zippilli
- Department of Ecological and Biological Sciences, University of Tuscia, via S. C. De Lellis 44, 01100 Viterbo, Italy
| | - Silvia Cesarini
- Department of Ecological and Biological Sciences, University of Tuscia, via S. C. De Lellis 44, 01100 Viterbo, Italy
| | - Bruno Mattia Bizzarri
- Department of Ecological and Biological Sciences, University of Tuscia, via S. C. De Lellis 44, 01100 Viterbo, Italy
| | - Angela Cirigliano
- Istituto di Biologia e Patologia Molecolari, CNR Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Teresa Rinaldi
- Sapienza University of Rome, Department of Biology and Biotechnology, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Alessandro Paiardini
- Department of Biochemical Sciences “A. Rossi Fanelli”, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Diego Fiorucci
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via A. Moro 2, 53100 Siena, Italy
| | - Raffaele Saladino
- Department of Ecological and Biological Sciences, University of Tuscia, via S. C. De Lellis 44, 01100 Viterbo, Italy
| | - Rodolfo Negri
- Sapienza University of Rome, Department of Biology and Biotechnology, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Pietro Benedetti
- Dipartimento di Biologia, Università di Padova Distaccato presso il “Centro Linceo Beniamino Segre” Accademia Nazionale dei Lincei, Palazzo Corsini, Via della Lungara 10, 00165 Rome, Italy
| |
Collapse
|
31
|
Yaremenko IA, Radulov PS, Belyakova YY, Demina AA, Fomenkov DI, Barsukov DV, Subbotina IR, Fleury F, Terent'ev AO. Catalyst Development for the Synthesis of Ozonides and Tetraoxanes Under Heterogeneous Conditions: Disclosure of an Unprecedented Class of Fungicides for Agricultural Application. Chemistry 2020; 26:4734-4751. [PMID: 31774931 DOI: 10.1002/chem.201904555] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 11/24/2019] [Indexed: 01/31/2023]
Abstract
The catalyst H3+x PMo12-x +6 Mox +5 O40 supported on SiO2 was developed for peroxidation of 1,3- and 1,5-diketones with hydrogen peroxide with the formation of bridged 1,2,4,5-tetraoxanes and bridged 1,2,4-trioxolanes (ozonides) with high yield based on isolated products (up to 86 and 90 %, respectively) under heterogeneous conditions. Synthesis of peroxides under heterogeneous conditions is a rare process and represents a challenge for this field of chemistry, because peroxides tend to decompose on the surface of a catalyst . A new class of antifungal agents for crop protection, that is, cyclic peroxides: bridged 1,2,4,5-tetraoxanes and bridged ozonides, was discovered. Some ozonides and tetraoxanes exhibit a very high antifungal activity and are superior to commercial fungicides, such as Triadimefon and Kresoxim-methyl. It is important to note that none of the fungicides used in agricultural chemistry contains a peroxide fragment.
Collapse
Affiliation(s)
- Ivan A Yaremenko
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 119991, Moscow, Russia.,Faculty of Chemical and Pharmaceutical Technology and, Biomedical Products, D.I. Mendeleev University of, Chemical Technology of Russia, 9 Miusskaya Square, Moscow, 125047, Russia.,All-Russian Research Institute for Phytopathology, 143050 B. Vyazyomy, Moscow Region, Russia
| | - Peter S Radulov
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 119991, Moscow, Russia.,All-Russian Research Institute for Phytopathology, 143050 B. Vyazyomy, Moscow Region, Russia
| | - Yulia Y Belyakova
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 119991, Moscow, Russia
| | - Arina A Demina
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 119991, Moscow, Russia.,Department of Chemistry, M.V. Lomonosov Moscow State University, 1-3 Leninskie Gory, Moscow, 119991, Russia
| | - Dmitriy I Fomenkov
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 119991, Moscow, Russia.,Faculty of Chemical and Pharmaceutical Technology and, Biomedical Products, D.I. Mendeleev University of, Chemical Technology of Russia, 9 Miusskaya Square, Moscow, 125047, Russia
| | - Denis V Barsukov
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 119991, Moscow, Russia
| | - Irina R Subbotina
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 119991, Moscow, Russia
| | - Fabrice Fleury
- Mechanism and regulation of DNA repair team, UFIP CNRS UMR 6286 Université de Nantes, 2 rue de la Houssinière, 44322, Nantes, France
| | - Alexander O Terent'ev
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 119991, Moscow, Russia.,Faculty of Chemical and Pharmaceutical Technology and, Biomedical Products, D.I. Mendeleev University of, Chemical Technology of Russia, 9 Miusskaya Square, Moscow, 125047, Russia.,All-Russian Research Institute for Phytopathology, 143050 B. Vyazyomy, Moscow Region, Russia
| |
Collapse
|
32
|
Gao F, Sun Z, Kong F, Xiao J. Artemisinin-derived hybrids and their anticancer activity. Eur J Med Chem 2020; 188:112044. [PMID: 31945642 DOI: 10.1016/j.ejmech.2020.112044] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 01/01/2020] [Accepted: 01/06/2020] [Indexed: 11/16/2022]
Abstract
The emergence of drug-resistance and the low specificity of anticancer agents are the major challenges in the treatment of cancer and can result in many side effects, creating an urgent demand to develop novel anticancer agents. Artemisinin-derived compounds, bearing a peroxide-containing sesquiterpene lactone moiety, could form free radicals with high reactivity and possess diverse pharmaceutical properties including in vitro and in vivo anticancer activity besides their typical antimalarial activity. Hybrid molecules have the potential to improve the specificity and overcome the drug resistance, therefore hybridization of artemisinin skeleton with other anticancer pharmacophores may provide novel anticancer candidates with high specificity and great potency against drug-resistant cancers. The review outlines the recent advances of artemisinin-derived hybrids as potential anticancer agents, and the structure-activity relationships are also discussed to provide an insight for rational designs of novel hybrids with high activity.
Collapse
Affiliation(s)
- Feng Gao
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan, PR China.
| | - Zhou Sun
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan, PR China
| | - Fangong Kong
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan, PR China
| | - Jiaqi Xiao
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan, PR China.
| |
Collapse
|
33
|
Design and synthesis of novel artemisinin derivatives with potent activities against colorectal cancer in vitro and in vivo. Eur J Med Chem 2019; 182:111665. [DOI: 10.1016/j.ejmech.2019.111665] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 08/29/2019] [Accepted: 08/29/2019] [Indexed: 01/24/2023]
|
34
|
Yu C, Sun P, Zhou Y, Shen B, Zhou M, Wu L, Kong M. Inhibition of AKT enhances the anti-cancer effects of Artemisinin in clear cell renal cell carcinoma. Biomed Pharmacother 2019; 118:109383. [DOI: 10.1016/j.biopha.2019.109383] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 08/09/2019] [Accepted: 08/22/2019] [Indexed: 12/24/2022] Open
|
35
|
Orth N, Scheitler A, Josef V, Franke A, Zahl A, Ivanović‐Burmazović I. Synthesis of a Hybrid between SOD Mimetic and Ebselen to Target Oxidative Stress. Eur J Inorg Chem 2019. [DOI: 10.1002/ejic.201900407] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Nicole Orth
- Department of Chemistry and Pharmacy University of Erlangen‐Nuremberg Egerlandstrasse 1 91058 Erlangen Germany
| | - Andreas Scheitler
- Department of Chemistry and Pharmacy University of Erlangen‐Nuremberg Egerlandstrasse 1 91058 Erlangen Germany
| | - Verena Josef
- Department of Chemistry and Pharmacy University of Erlangen‐Nuremberg Egerlandstrasse 1 91058 Erlangen Germany
| | - Alicja Franke
- Department of Chemistry and Pharmacy University of Erlangen‐Nuremberg Egerlandstrasse 1 91058 Erlangen Germany
| | - Achim Zahl
- Department of Chemistry and Pharmacy University of Erlangen‐Nuremberg Egerlandstrasse 1 91058 Erlangen Germany
| | - Ivana Ivanović‐Burmazović
- Department of Chemistry and Pharmacy University of Erlangen‐Nuremberg Egerlandstrasse 1 91058 Erlangen Germany
| |
Collapse
|
36
|
Combination of 5-fluorouracil and thymoquinone targets stem cell gene signature in colorectal cancer cells. Cell Death Dis 2019; 10:379. [PMID: 31097715 PMCID: PMC6522523 DOI: 10.1038/s41419-019-1611-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 04/06/2019] [Accepted: 04/17/2019] [Indexed: 12/12/2022]
Abstract
Cancer stem cells (CSCs) residing in colorectal cancer tissues have tumorigenic capacity and contribute to chemotherapeutic resistance and disease relapse. It is well known that the survival of colorectal CSCs after 5-fluorouracil (5-FU)-based therapy leads to cancer recurrence. Thus CSCs represent a promising drug target. Here, we designed and synthesized novel hybrid molecules linking 5-FU with the plant-derived compound thymoquinone (TQ) and tested the potential of individual compounds and their combination to eliminate colorectal CSCs. Both, Combi and SARB hybrid showed augmented cytotoxicity against colorectal cancer cells, but were non-toxic to organoids prepared from healthy murine small intestine. NanoString analysis revealed a unique signature of deregulated gene expression in response to the combination of TQ and 5-FU (Combi) and SARB treatment. Importantly, two principle stem cell regulatory pathways WNT/ß-Catenin and PI3K/AKT were found to be downregulated after Combi and hybrid treatment. Furthermore, both treatments strikingly eliminated CD133+ CSC population, accompanying the depleted self-renewal capacity by eradicating long-term propagated 3D tumor cell spheres at sub-toxic doses. In vivo xenografts on chicken eggs of SARB-treated HCT116 cells showed a prominent nuclear ß-Catenin and E-cadherin staining. This was in line with the reduced transcriptional activity of ß-Catenin and diminished cell adhesion under SARB exposure. In contrast to 5-FU, both, Combi and SARB treatment effectively reduced the angiogenic capacity of the remaining resistant tumor cells. Taken together, combination or hybridization of single compounds target simultaneously a broader spectrum of oncogenic pathways leading to an effective eradication of colorectal cancer cells.
Collapse
|
37
|
Sun X, Yan P, Zou C, Wong YK, Shu Y, Lee YM, Zhang C, Yang ND, Wang J, Zhang J. Targeting autophagy enhances the anticancer effect of artemisinin and its derivatives. Med Res Rev 2019; 39:2172-2193. [PMID: 30972803 DOI: 10.1002/med.21580] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 03/07/2019] [Accepted: 03/16/2019] [Indexed: 12/12/2022]
Abstract
Artemisinin and its derivatives, with their outstanding clinical efficacy and safety, represent the most effective and impactful antimalarial drugs. Apart from its antimalarial effect, artemisinin has also been shown to exhibit selective anticancer properties against multiple cancer types both in vitro and in vivo. Specifically, our previous studies highlighted the therapeutic effects of artemisinin on autophagy regulation. Autophagy is a well-conserved degradative process that recycles cytoplasmic contents and organelles in lysosomes to maintain cellular homeostasis. The deregulation of autophagy is often observed in cancer cells, where it contributes to tumor adaptation to nutrient-deficient tumor microenvironments. This review discusses recent advances in the anticancer properties of artemisinin and its derivatives via their regulation of autophagy, mitophagy, and ferritinophagy. In particular, we will discuss the mechanisms of artemisinin activation in cancer and novel findings regarding the role of artemisinin in regulating autophagy, which involves changes in multiple signaling pathways. More importantly, with increasing failure rates and the high cost of the development of novel anticancer drugs, the strategy of repurposing traditional therapeutic Chinese medicinal agents such as artemisinin to treat cancer provides a more attractive alternative. We believe that the topics covered here will be important in demonstrating the potential of artemisinin and its derivatives as safe and potent anticancer agents.
Collapse
Affiliation(s)
- Xin Sun
- Department of Oncology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Peiyi Yan
- Department of Clinical Laboratory, Shanghai Putuo District People's Hospital, Shanghai, China
| | - Chang Zou
- Clinical Medical Research Center, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University, Shenzhen Public Service Platform on Tumor Precision Medicine and Molecular Diagnosis, Shenzhen People's Hospital, Shenzhen, China
| | - Yin-Kwan Wong
- Department of Pharmacology, Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Yuhan Shu
- College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China
| | - Yew Mun Lee
- Department of Pharmacology, Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Chongjing Zhang
- Institute of Material Medical, Peking Union Medical College, Beijing, China
| | - Nai-Di Yang
- Department of Pharmacology, Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Jigang Wang
- Clinical Medical Research Center, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University, Shenzhen Public Service Platform on Tumor Precision Medicine and Molecular Diagnosis, Shenzhen People's Hospital, Shenzhen, China.,Department of Pharmacology, Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China.,Key Laboratory of Cardio-Cerebrovascular Disease Prevention & Therapy, Gannan Medical University, Ganzhou, China
| | - Jianbin Zhang
- Department of Oncology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| |
Collapse
|
38
|
Liu X, Cao J, Huang G, Zhao Q, Shen J. Biological Activities of Artemisinin Derivatives Beyond Malaria. Curr Top Med Chem 2019; 19:205-222. [DOI: 10.2174/1568026619666190122144217] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 11/19/2018] [Accepted: 11/21/2018] [Indexed: 12/26/2022]
Abstract
Artemisinin is isolated from Artemisia annua L. with peroxide-containing sesquiterpene lactone structure. Because of its unique structural characteristics and promising anticancer, antivirus activities, it has recently received increasing attention. The aim of this review is to summarize recent discoveries of artemisinin's novel derivatives with new pharmaceutical effects beyond malaria with a focus on its antitumor and antivirus activity, as well as potential results of combination therapy with other clinical drugs.
Collapse
Affiliation(s)
- Xiaoyan Liu
- CAS Key Laboratory for Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Jianguo Cao
- College of Life and Environmental Sciences, Shanghai Normal University, Shanghai, 201418, China
| | - Guozheng Huang
- College of Life and Environmental Sciences, Shanghai Normal University, Shanghai, 201418, China
| | - Qingjie Zhao
- CAS Key Laboratory for Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Jingshan Shen
- CAS Key Laboratory for Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| |
Collapse
|
39
|
Vil’ VA, Gorlov ES, Bityukov OV, Krylov IB, Nikishin GI, Pivnitsky KK, Terent’ev AO. Oxidative C–O coupling as a new idea in the ‘click-like chemistry’: malonyl peroxides for the conjugation of two molecules. MENDELEEV COMMUNICATIONS 2019. [DOI: 10.1016/j.mencom.2019.03.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
40
|
Karagöz AÇ, Leidenberger M, Hahn F, Hampel F, Friedrich O, Marschall M, Kappes B, Tsogoeva SB. Synthesis of new betulinic acid/betulin-derived dimers and hybrids with potent antimalarial and antiviral activities. Bioorg Med Chem 2018; 27:110-115. [PMID: 30503412 DOI: 10.1016/j.bmc.2018.11.018] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 10/31/2018] [Accepted: 11/13/2018] [Indexed: 02/07/2023]
Abstract
Severe malaria and viral infections cause life-threatening diseases in millions of people worldwide every year. In search for effective bioactive hybrid molecules, which may possess improved properties compared to their parent compounds, a series of betulinic acid/betulin based dimer and hybrid compounds carrying ferrocene and/or artesunic acid moieties, was designed and, synthesized de novo. Furthermore, they were analyzed in vitro against malaria parasites (growth inhibition of 3D7-strain P. falciparum-infected erythrocytes) and human cytomegalovirus (HCMV). From this series of hybrids/dimers, the betulinic acid/betulin and artesunic acid hybrids 11 and 12 showed the most potent activities against P. falciparum and HCMV. On the strength of results, additive and/or synergistic effects between the natural or semisynthetic products, such as betulinic acid-/betulin- and artesunic acid-derived compounds, are suggested on the basis of putatively complex modes of antimicrobial action. This advantage may be taken into account in future drug development.
Collapse
Affiliation(s)
- Aysun Çapcı Karagöz
- Organic Chemistry Chair I and Interdisciplinary Center for Molecular Materials (ICMM), Friedrich-Alexander University of Erlangen-Nürnberg, Nikolaus-Fiebiger-Straße 10, 91058 Erlangen, Germany
| | - Maria Leidenberger
- Institute of Medical Biotechnology, University of Erlangen-Nürnberg, Paul-Gordon-Straße 3, 91052 Erlangen, Germany
| | - Friedrich Hahn
- Institute for Clinical and Molecular Virology, University of Erlangen-Nürnberg, Schlossgarten 4, 91054 Erlangen, Germany
| | - Frank Hampel
- Organic Chemistry Chair I and Interdisciplinary Center for Molecular Materials (ICMM), Friedrich-Alexander University of Erlangen-Nürnberg, Nikolaus-Fiebiger-Straße 10, 91058 Erlangen, Germany
| | - Oliver Friedrich
- Institute of Medical Biotechnology, University of Erlangen-Nürnberg, Paul-Gordon-Straße 3, 91052 Erlangen, Germany
| | - Manfred Marschall
- Institute for Clinical and Molecular Virology, University of Erlangen-Nürnberg, Schlossgarten 4, 91054 Erlangen, Germany
| | - Barbara Kappes
- Institute of Medical Biotechnology, University of Erlangen-Nürnberg, Paul-Gordon-Straße 3, 91052 Erlangen, Germany
| | - Svetlana B Tsogoeva
- Organic Chemistry Chair I and Interdisciplinary Center for Molecular Materials (ICMM), Friedrich-Alexander University of Erlangen-Nürnberg, Nikolaus-Fiebiger-Straße 10, 91058 Erlangen, Germany.
| |
Collapse
|
41
|
Fröhlich T, Kiss A, Wölfling J, Mernyák E, Kulmány ÁE, Minorics R, Zupkó I, Leidenberger M, Friedrich O, Kappes B, Hahn F, Marschall M, Schneider G, Tsogoeva SB. Synthesis of Artemisinin-Estrogen Hybrids Highly Active against HCMV, P. falciparum, and Cervical and Breast Cancer. ACS Med Chem Lett 2018; 9:1128-1133. [PMID: 30429957 PMCID: PMC6231177 DOI: 10.1021/acsmedchemlett.8b00381] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 10/19/2018] [Indexed: 12/20/2022] Open
Abstract
Artemisinin-estrogen hybrids were for the first time both synthesized and investigated for their in vitro biological activity against malaria parasites (Plasmodium falciparum 3D7), human cytomegalovirus (HCMV), and a panel of human malignant cells of gynecological origin containing breast (MCF7, MDA-MB-231, MDA-MB-361, T47D) and cervical tumor cell lines (HeLa, SiHa, C33A). In terms of antimalarial efficacy, hybrid 8 (EC50 = 3.8 nM) was about two times more active than its parent compound artesunic acid (7) (EC50 = 8.9 nM) as well as the standard drug chloroquine (EC50 = 9.8 nM) and was, therefore, comparable to the clinically used dihydroartemisinin (6) (EC50 = 2.4 nM). Furthermore, hybrids 9-12 showed a strong antiviral effect with EC50 values in the submicromolar range (0.22-0.38 μM) and thus possess profoundly stronger anti-HCMV activity (approximately factor 25) than the parent compound artesunic acid (7) (EC50 = 5.41 μM). These compounds also exerted a higher in vitro anti-HCMV efficacy than ganciclovir used as the standard of current antiviral treatment. In addition, hybrids 8-12 elicited substantially more pronounced growth inhibiting action on all cancer cell lines than their parent compounds and the reference drug cisplatin. The most potent agent, hybrid 12, exhibited submicromolar EC50 values (0.15-0.93 μM) against breast cancer and C33A cell lines.
Collapse
Affiliation(s)
- Tony Fröhlich
- Organic
Chemistry Chair I and Interdisciplinary Center for Molecular Materials
(ICMM), Friedrich-Alexander University of
Erlangen-Nürnberg, Nikolaus-Fiebiger-Straße 10, 91058 Erlangen, Germany
| | - Anita Kiss
- Department
of Organic Chemistry, University of Szeged, Dóm tér 8, H-6720 Szeged, Hungary
| | - János Wölfling
- Department
of Organic Chemistry, University of Szeged, Dóm tér 8, H-6720 Szeged, Hungary
| | - Erzsébet Mernyák
- Department
of Organic Chemistry, University of Szeged, Dóm tér 8, H-6720 Szeged, Hungary
| | - Ágnes E. Kulmány
- Department
of Pharmacodynamics and Biopharmacy, University
of Szeged, Eötvös
u. 6, H-6720 Szeged, Hungary
| | - Renáta Minorics
- Department
of Pharmacodynamics and Biopharmacy, University
of Szeged, Eötvös
u. 6, H-6720 Szeged, Hungary
| | - István Zupkó
- Department
of Pharmacodynamics and Biopharmacy, University
of Szeged, Eötvös
u. 6, H-6720 Szeged, Hungary
| | - Maria Leidenberger
- Institute
of Medical Biotechnology, Friedrich-Alexander
University of Erlangen-Nürnberg, Paul-Gordon-Straße 3, 91052 Erlangen, Germany
| | - Oliver Friedrich
- Institute
of Medical Biotechnology, Friedrich-Alexander
University of Erlangen-Nürnberg, Paul-Gordon-Straße 3, 91052 Erlangen, Germany
| | - Barbara Kappes
- Institute
of Medical Biotechnology, Friedrich-Alexander
University of Erlangen-Nürnberg, Paul-Gordon-Straße 3, 91052 Erlangen, Germany
| | - Friedrich Hahn
- Institute
for Clinical and Molecular Virology, Friedrich-Alexander
University of Erlangen-Nürnberg, Schlossgarten 4, 91054 Erlangen, Germany
| | - Manfred Marschall
- Institute
for Clinical and Molecular Virology, Friedrich-Alexander
University of Erlangen-Nürnberg, Schlossgarten 4, 91054 Erlangen, Germany
| | - Gyula Schneider
- Department
of Organic Chemistry, University of Szeged, Dóm tér 8, H-6720 Szeged, Hungary
| | - Svetlana B. Tsogoeva
- Organic
Chemistry Chair I and Interdisciplinary Center for Molecular Materials
(ICMM), Friedrich-Alexander University of
Erlangen-Nürnberg, Nikolaus-Fiebiger-Straße 10, 91058 Erlangen, Germany
| |
Collapse
|
42
|
Eske A, Ecker S, Fendinger C, Goldfuss B, Jonen M, Lefarth J, Neudörfl J, Spilles M, Griesbeck AG. Spirofused and Annulated 1,2,4‐Trioxepane‐, 1,2,4‐Trioxocane‐, and 1,2,4‐Trioxonane‐Cyclohexadienones: Cyclic Peroxides with Unusual Ring Conformation Dynamics. Angew Chem Int Ed Engl 2018; 57:13770-13774. [DOI: 10.1002/anie.201807485] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 08/02/2018] [Indexed: 12/20/2022]
Affiliation(s)
- Angelika Eske
- Department of ChemistryUniversity of Cologne Greinstr. 4 50939 Köln Germany
| | - Sabrina Ecker
- Department of ChemistryUniversity of Cologne Greinstr. 4 50939 Köln Germany
| | - Carolina Fendinger
- Department of ChemistryUniversity of Cologne Greinstr. 4 50939 Köln Germany
| | - Bernd Goldfuss
- Department of ChemistryUniversity of Cologne Greinstr. 4 50939 Köln Germany
| | - Matthis Jonen
- Department of ChemistryUniversity of Cologne Greinstr. 4 50939 Köln Germany
| | - Jens Lefarth
- Department of ChemistryUniversity of Cologne Greinstr. 4 50939 Köln Germany
| | - Jörg‐M. Neudörfl
- Department of ChemistryUniversity of Cologne Greinstr. 4 50939 Köln Germany
| | - Matthias Spilles
- Department of ChemistryUniversity of Cologne Greinstr. 4 50939 Köln Germany
| | - Axel G. Griesbeck
- Department of ChemistryUniversity of Cologne Greinstr. 4 50939 Köln Germany
| |
Collapse
|
43
|
Zhang J, Sun X, Wang L, Wong YK, Lee YM, Zhou C, Wu G, Zhao T, Yang L, Lu L, Zhong J, Huang D, Wang J. Artesunate-induced mitophagy alters cellular redox status. Redox Biol 2018; 19:263-273. [PMID: 30196190 PMCID: PMC6128040 DOI: 10.1016/j.redox.2018.07.025] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Revised: 07/30/2018] [Accepted: 07/31/2018] [Indexed: 12/22/2022] Open
Abstract
Artesunate (ART) is a prominent anti-malarial with significant anti-cancer properties. Our previous studies showed that ART enhances lysosomal function and ferritin degradation, which was necessary for its anti-cancer properties. ART targeting to mitochondria also significantly improved its efficacy, but the effect of ART on mitophagy, an important cellular pathway that facilitates the removal of damaged mitochondria, remains unknown. Here, we first observed that ART mainly localizes in the mitochondria and its probe labeling revealed that it binds to a large number of mitochondrial proteins and causes mitochondrial fission. Second, we found that ART treatment leads to autophagy induction and the decrease of mitochondrial proteins. When autophagy is inhibited, the decrease of mitochondrial proteins could be reversed, indicating that the degradation of mitochondrial proteins is through mitophagy. Third, our results showed that ART treatment stabilizes the full-length form of PTEN induced putative kinase 1 (PINK1) on the mitochondria and activates the PINK1-dependent pathway. This in turn leads to the recruitment of Parkin, sequestosome 1 (SQSTM1), ubiquitin and microtubule-associated proteins 1A/1B light chain 3 (LC3) to the mitochondria and culminates in mitophagy. When PINK1 is knocked down, ART-induced mitophagy is markedly suppressed. Finally, we investigated the effect of mitophagy by ART on mitochondrial functions and found that knockdown of PINK1 alters the cellular redox status in ART-treated cells, which is accompanied with a significant decrease in glutathione (GSH) and increase in mitochondrial reactive oxidative species (mROS) and cellular lactate levels. Additionally, knockdown of PINK1 leads to a significant increase of mitochondrial depolarization and more cell apoptosis by ART, suggesting that mitophagy protects from ART-induced cell death. Taken together, our findings reveal the molecular mechanism that ART induces cytoprotective mitophagy through the PINK1-dependent pathway, suggesting that mitophagy inhibition could enhance the anti-cancer activity of ART.
Collapse
Affiliation(s)
- Jianbin Zhang
- Department of Oncology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310014, China; Clinical Research Institute, Key Laboratory of Tumor Molecular Diagnosis and Individual Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310014, China; Key Laboratory of Cardio-cerebrovascular disease prevention & therapy, Gannan Medical University, Ganzhou 341000, China.
| | - Xin Sun
- Department of Oncology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310014, China
| | - Liming Wang
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, 117593, Singapore
| | - Yin Kwan Wong
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, 117593, Singapore; Artemisinin Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yew Mun Lee
- Department of Pharmacology, National University of Singapore, 117600, Singapore
| | - Chao Zhou
- Department of Oncology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310014, China
| | - Guoqing Wu
- Department of Oncology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310014, China
| | - Tongwei Zhao
- Department of Oncology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310014, China
| | - Liu Yang
- Clinical Research Institute, Key Laboratory of Tumor Molecular Diagnosis and Individual Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310014, China
| | - Liqin Lu
- Department of Oncology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310014, China
| | - Jianing Zhong
- Key Laboratory of Cardio-cerebrovascular disease prevention & therapy, Gannan Medical University, Ganzhou 341000, China
| | - Dongsheng Huang
- Clinical Research Institute, Key Laboratory of Tumor Molecular Diagnosis and Individual Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310014, China.
| | - Jigang Wang
- Artemisinin Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China; Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; Department of Pharmacology, National University of Singapore, 117600, Singapore; Key Laboratory of Cardio-cerebrovascular disease prevention & therapy, Gannan Medical University, Ganzhou 341000, China.
| |
Collapse
|
44
|
Eske A, Ecker S, Fendinger C, Goldfuss B, Jonen M, Lefarth J, Neudörfl J, Spilles M, Griesbeck AG. Spiroverknüpfte und ringanellierte 1,2,4‐Trioxepan‐, 1,2,4‐Trioxocan‐ und 1,2,4‐Trioxonan‐Cyclohexadienone: cyclische Peroxide mit ungewöhnlicher Ringkonformationsdynamik. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201807485] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Angelika Eske
- Department für ChemieUniversität zu Köln Greinstraße 4 50939 Köln Deutschland
| | - Sabrina Ecker
- Department für ChemieUniversität zu Köln Greinstraße 4 50939 Köln Deutschland
| | - Carolina Fendinger
- Department für ChemieUniversität zu Köln Greinstraße 4 50939 Köln Deutschland
| | - Bernd Goldfuss
- Department für ChemieUniversität zu Köln Greinstraße 4 50939 Köln Deutschland
| | - Matthis Jonen
- Department für ChemieUniversität zu Köln Greinstraße 4 50939 Köln Deutschland
| | - Jens Lefarth
- Department für ChemieUniversität zu Köln Greinstraße 4 50939 Köln Deutschland
| | - Jörg‐M. Neudörfl
- Department für ChemieUniversität zu Köln Greinstraße 4 50939 Köln Deutschland
| | - Matthias Spilles
- Department für ChemieUniversität zu Köln Greinstraße 4 50939 Köln Deutschland
| | - Axel G. Griesbeck
- Department für ChemieUniversität zu Köln Greinstraße 4 50939 Köln Deutschland
| |
Collapse
|
45
|
Zhang Y, Xu G, Zhang S, Wang D, Saravana Prabha P, Zuo Z. Antitumor Research on Artemisinin and Its Bioactive Derivatives. NATURAL PRODUCTS AND BIOPROSPECTING 2018; 8:303-319. [PMID: 29633188 PMCID: PMC6102173 DOI: 10.1007/s13659-018-0162-1] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 03/27/2018] [Indexed: 05/02/2023]
Abstract
Cancer is the leading cause of human death which seriously threatens human life. The antimalarial drug artemisinin and its derivatives have been discovered with considerable anticancer properties. Simultaneously, a variety of target-selective artemisinin-related compounds with high efficiency have been discovered. Many researches indicated that artemisinin-related compounds have cytotoxic effects against a variety of cancer cells through pleiotropic effects, including inhibiting the proliferation of tumor cells, promoting apoptosis, inducing cell cycle arrest, disrupting cancer invasion and metastasis, preventing angiogenesis, mediating the tumor-related signaling pathways, and regulating tumor microenvironment. More importantly, artemisinins demonstrated minor side effects to normal cells and manifested the ability to overcome multidrug-resistance which is widely observed in cancer patients. Therefore, we concentrated on the new advances and development of artemisinin and its derivatives as potential antitumor agents in recent 5 years. It is our hope that this review could be helpful for further exploration of novel artemisinin-related antitumor agents.
Collapse
Affiliation(s)
- Yunqin Zhang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Guowei Xu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Shuqun Zhang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Dong Wang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - P Saravana Prabha
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Zhili Zuo
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China.
- Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming, 650201, Yunnan, China.
| |
Collapse
|
46
|
Mirza-Aghazadeh-Attari M, Darband SG, Kaviani M, Mihanfar A, Aghazadeh Attari J, Yousefi B, Majidinia M. DNA damage response and repair in colorectal cancer: Defects, regulation and therapeutic implications. DNA Repair (Amst) 2018; 69:34-52. [PMID: 30055507 DOI: 10.1016/j.dnarep.2018.07.005] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 07/15/2018] [Accepted: 07/15/2018] [Indexed: 12/11/2022]
Abstract
DNA damage response, a key factor involved in maintaining genome integrity and stability, consists of several kinase-dependent signaling pathways, which sense and transduce DNA damage signal. The severity of damage appears to determine DNA damage responses, which can include cell cycle arrest, damage repair and apoptosis. A number of recent studies have demonstrated that defection in signaling through this network is thought to be an underlying mechanism behind the development and progression of various types of human malignancies, including colorectal cancer. In this review, colorectal cancer and its molecular pathology as well as DNA damage response is briefly introduced. Finally, the involvement of key components of this network in the initiation/progression, prognosis, response to treatment and development of drug resistance is comprehensively discussed.
Collapse
Affiliation(s)
- Mohammad Mirza-Aghazadeh-Attari
- Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saber Ghazizadeh Darband
- Danesh Pey Hadi Co., Health Technology Development Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Mojtaba Kaviani
- School of Nutrition and Dietetics, Acadia University, Wolfville, Nova Scotia, Canada
| | - Ainaz Mihanfar
- Stem Cell and Regenerative Medicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Bahman Yousefi
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Maryam Majidinia
- Solid Tumor Research Center, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
47
|
Imran M, Rauf A, Khan IA, Shahbaz M, Qaisrani TB, Fatmawati S, Abu-Izneid T, Imran A, Rahman KU, Gondal TA. Thymoquinone: A novel strategy to combat cancer: A review. Biomed Pharmacother 2018; 106:390-402. [PMID: 29966985 DOI: 10.1016/j.biopha.2018.06.159] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 06/25/2018] [Accepted: 06/27/2018] [Indexed: 02/06/2023] Open
Abstract
The higher consumption of fruit, herbs, spices, and vegetables is well known and practical strategy to cure human cancers owing to their presence of bioactive compounds. Among these, Nigella sativa is a promising source of bioactive compounds including thymoquinone, monoterpenes, p-cymene and α-piene etc. Thymoquinone has been found effective to inhibit the different cancer stages such as proliferation, migration and invasion. It also acts as anticancer agent against different human cancers such as breast, pancreatic, prostate, blood, oral, bone, head and neck, cervical, liver and lung. It significantly mediated miR-34a up-regulation, enhanced the levels of miR-34a through p53, and down controlled Rac1 expression. Thymoquinone induces apoptosis, regulates the levels of pro- and anti- apoptotic genes. It also has been known to lower the phosphorylation of NF-κB and IKKα/β and reduces the metastasis as well as also lowered the ERK1/2 and PI3K activities. Thymoquinone inhibits the metastasis through activation of JNK and p38. The present review article highlights the anticancer perspectives of thymoquinone in human by various pathways and use of this compound as diet based therapy has proven new pharmacological agent against several types of cancers.
Collapse
Affiliation(s)
- Muhammad Imran
- University Institute of Diet and Nutritional Sciences, Faculty of Allied Health Sciences, The University of Lahore, Pakistan
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Anbar-23561, Khyber Pakhtunkhwa, Pakistan.
| | - Imtiaz Ali Khan
- Department ofAgriculture, University of Swabi, Anbar-23561, Khyber Pakhtunkhwa, Pakistan
| | - Muhammad Shahbaz
- Department of Food science and Technology, Muhammad Nawaz Shareef University of Agriculture, Multan, Pakistan
| | | | - Sri Fatmawati
- Department of Chemistry,Faculty of Mathematics and Natural Sciences, Institut Teknologi Sepuluh Nopember, Kampus ITS-Sukolilo, Surabaya, Indonesia
| | - Tareq Abu-Izneid
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Umm Al-Qura University, Makkah, P.O.Box 42, Saudi Arabia
| | - Ali Imran
- Institute of Home and Food Sciences, Faculty of Science and Technology, Government College University, Faisalabad, Pakistan
| | - Khaliq Ur Rahman
- Department of Chemistry, University of Swabi, Anbar-23561, Khyber Pakhtunkhwa, Pakistan
| | - Tanweer Aslam Gondal
- School of Exercise and Nutrition, Centre of Advanced Sensory Science, Deakin University, Australia
| |
Collapse
|
48
|
Fröhlich T, Reiter C, Saeed MEM, Hutterer C, Hahn F, Leidenberger M, Friedrich O, Kappes B, Marschall M, Efferth T, Tsogoeva SB. Synthesis of Thymoquinone-Artemisinin Hybrids: New Potent Antileukemia, Antiviral, and Antimalarial Agents. ACS Med Chem Lett 2018; 9:534-539. [PMID: 29937978 DOI: 10.1021/acsmedchemlett.7b00412] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 12/21/2017] [Indexed: 12/15/2022] Open
Abstract
A series of hybrid compounds based on the natural products artemisinin and thymoquinone was synthesized and investigated for their biological activity against the malaria parasite Plasmodium falciparum 3D7 strain, human cytomegalovirus (HCMV), and two leukemia cell lines (drug-sensitive CCRF-CEM and multidrug-resistant subline CEM/ADR5000). An unprecedented one-pot method of selective formation of C-10α-acetate 14 starting from a 1:1 mixture of C-10α- to C-10β-dihydroartemisinin was developed. The key step of this facile method is a mild decarboxylative activation of malonic acid mediated by DCC/DMAP. Ether-linked thymoquinone-artemisinin hybrids 6a/b stood out as the most active compounds in all categories, while showing no toxic side effects toward healthy human foreskin fibroblasts and thus being selective. They exhibited EC50 values of 0.2 μM against the doxorubicin-sensitive as well as the multidrug-resistant leukemia cells and therefore can be regarded as superior to doxorubicin. Moreover, they showed to be five times more active than the standard drug ganciclovir and nearly eight times more active than artesunic acid against HCMV. In addition, hybrids 6a/b possessed excellent antimalarial activity (EC50 = 5.9/3.7 nM), which was better than that of artesunic acid (EC50 = 8.2 nM) and chloroquine (EC50 = 9.8 nM). Overall, most of the presented thymoquinone-artemisinin-based hybrids exhibit an excellent and broad variety of biological activities (anticancer, antimalarial, and antiviral) combined with a low toxicity/high selectivity profile.
Collapse
Affiliation(s)
- Tony Fröhlich
- Organic Chemistry Chair I and Interdisciplinary Center for Molecular Materials (ICMM), Friedrich-Alexander University of Erlangen-Nürnberg, Nikolaus-Fiebiger-Straße 10, 91058 Erlangen, Germany
| | - Christoph Reiter
- Organic Chemistry Chair I and Interdisciplinary Center for Molecular Materials (ICMM), Friedrich-Alexander University of Erlangen-Nürnberg, Nikolaus-Fiebiger-Straße 10, 91058 Erlangen, Germany
| | - Mohamed E. M. Saeed
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, University of Mainz, Staudinger Weg 5, 55128 Mainz, Germany
| | - Corina Hutterer
- Institute for Clinical and Molecular Virology, Friedrich-Alexander University of Erlangen-Nürnberg, Schlossgarten 4, 91054 Erlangen, Germany
| | - Friedrich Hahn
- Institute for Clinical and Molecular Virology, Friedrich-Alexander University of Erlangen-Nürnberg, Schlossgarten 4, 91054 Erlangen, Germany
| | - Maria Leidenberger
- Institute of Medical Biotechnology, Friedrich-Alexander University of Erlangen-Nürnberg, Paul-Gordon-Straße 3, 91052 Erlangen, Germany
| | - Oliver Friedrich
- Institute of Medical Biotechnology, Friedrich-Alexander University of Erlangen-Nürnberg, Paul-Gordon-Straße 3, 91052 Erlangen, Germany
| | - Barbara Kappes
- Institute of Medical Biotechnology, Friedrich-Alexander University of Erlangen-Nürnberg, Paul-Gordon-Straße 3, 91052 Erlangen, Germany
| | - Manfred Marschall
- Institute for Clinical and Molecular Virology, Friedrich-Alexander University of Erlangen-Nürnberg, Schlossgarten 4, 91054 Erlangen, Germany
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, University of Mainz, Staudinger Weg 5, 55128 Mainz, Germany
| | - Svetlana B. Tsogoeva
- Organic Chemistry Chair I and Interdisciplinary Center for Molecular Materials (ICMM), Friedrich-Alexander University of Erlangen-Nürnberg, Nikolaus-Fiebiger-Straße 10, 91058 Erlangen, Germany
| |
Collapse
|
49
|
Çapcı Karagöz A, Reiter C, Seo EJ, Gruber L, Hahn F, Leidenberger M, Klein V, Hampel F, Friedrich O, Marschall M, Kappes B, Efferth T, Tsogoeva SB. Access to new highly potent antileukemia, antiviral and antimalarial agents via hybridization of natural products (homo)egonol, thymoquinone and artemisinin. Bioorg Med Chem 2018; 26:3610-3618. [PMID: 29887512 DOI: 10.1016/j.bmc.2018.05.041] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 05/21/2018] [Accepted: 05/23/2018] [Indexed: 01/27/2023]
Abstract
Hybridization of natural products has high potential to further improve their activities and may produce synergistic effects between linked pharmacophores. Here we report synthesis of nine new hybrids of natural products egonol, homoegonol, thymoquinone and artemisinin and evaluation of their activities against P. falciparum 3D7 parasites, human cytomegalovirus, sensitive and multidrug-resistant human leukemia cells. Most of the new hybrids exceed their parent compounds in antimalarial, antiviral and antileukemia activities and in some cases show higher in vitro efficacy than clinically used reference drugs chloroquine, ganciclovir and doxorubicin. Combined, our findings stress the high potency of these hybrids and encourages further use of the hybridization concept in applied pharmacological research.
Collapse
Affiliation(s)
- Aysun Çapcı Karagöz
- Organic Chemistry Chair I and Interdisciplinary Center for Molecular Materials (ICMM), Friedrich-Alexander University of Erlangen-Nürnberg, Nikolaus-Fiebiger-Straße 10, 91058 Erlangen, Germany
| | - Christoph Reiter
- Organic Chemistry Chair I and Interdisciplinary Center for Molecular Materials (ICMM), Friedrich-Alexander University of Erlangen-Nürnberg, Nikolaus-Fiebiger-Straße 10, 91058 Erlangen, Germany
| | - Ean-Jeong Seo
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, University of Mainz, Staudinger Weg 5, 55128 Mainz, Germany
| | - Lisa Gruber
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, University of Mainz, Staudinger Weg 5, 55128 Mainz, Germany
| | - Friedrich Hahn
- Institute for Clinical and Molecular Virology, Friedrich-Alexander University of Erlangen-Nürnberg, Schlossgarten 4, 91054 Erlangen, Germany
| | - Maria Leidenberger
- Institute of Medical Biotechnology, Friedrich-Alexander University of Erlangen-Nürnberg, Paul-Gordon-Straße 3, 91052 Erlangen, Germany
| | - Volker Klein
- Organic Chemistry Chair I and Interdisciplinary Center for Molecular Materials (ICMM), Friedrich-Alexander University of Erlangen-Nürnberg, Nikolaus-Fiebiger-Straße 10, 91058 Erlangen, Germany
| | - Frank Hampel
- Organic Chemistry Chair I and Interdisciplinary Center for Molecular Materials (ICMM), Friedrich-Alexander University of Erlangen-Nürnberg, Nikolaus-Fiebiger-Straße 10, 91058 Erlangen, Germany
| | - Oliver Friedrich
- Institute of Medical Biotechnology, Friedrich-Alexander University of Erlangen-Nürnberg, Paul-Gordon-Straße 3, 91052 Erlangen, Germany
| | - Manfred Marschall
- Institute for Clinical and Molecular Virology, Friedrich-Alexander University of Erlangen-Nürnberg, Schlossgarten 4, 91054 Erlangen, Germany
| | - Barbara Kappes
- Institute of Medical Biotechnology, Friedrich-Alexander University of Erlangen-Nürnberg, Paul-Gordon-Straße 3, 91052 Erlangen, Germany
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, University of Mainz, Staudinger Weg 5, 55128 Mainz, Germany
| | - Svetlana B Tsogoeva
- Organic Chemistry Chair I and Interdisciplinary Center for Molecular Materials (ICMM), Friedrich-Alexander University of Erlangen-Nürnberg, Nikolaus-Fiebiger-Straße 10, 91058 Erlangen, Germany.
| |
Collapse
|
50
|
Fröhlich T, Hahn F, Belmudes L, Leidenberger M, Friedrich O, Kappes B, Couté Y, Marschall M, Tsogoeva SB. Synthesis of Artemisinin-Derived Dimers, Trimers and Dendrimers: Investigation of Their Antimalarial and Antiviral Activities Including Putative Mechanisms of Action. Chemistry 2018; 24:8103-8113. [PMID: 29570874 DOI: 10.1002/chem.201800729] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Indexed: 12/23/2022]
Abstract
Generation of dimers, trimers and dendrimers of bioactive compounds is an approach that has recently been developed for the discovery of new potent drug candidates. Herein, we present the synthesis of new artemisinin-derived dimers and dendrimers and investigate their action against malaria parasite Plasmodium falciparum 3D7 strain and human cytomegalovirus (HCMV). Dimer 7 was the most active compound (EC50 1.4 nm) in terms of antimalarial efficacy and was even more effective than the standard drugs dihydroartemisinin (EC50 2.4 nm), artesunic acid (EC50 8.9 nm) and chloroquine (EC50 9.8 nm). Trimer 4 stood out as the most active agent against HCMV in vitro replication and exerted an EC50 value of 0.026 μm, representing an even higher activity than the two reference drugs ganciclovir (EC50 2.60 μm) and artesunic acid (EC50 5.41 μm). In addition, artemisinin-derived dimer 13 and trimer 15 were for the first time both immobilized on TOYOPEARL AF-Amino-650M beads and used for mass spectrometry-based target identification experiments using total lysates of HCMV-infected primary human fibroblasts. Two major groups of novel target candidates, namely cytoskeletal and mitochondrial proteins were obtained. Two putatively compound-binding viral proteins, namely major capsid protein (MCP) and envelope glycoprotein pUL132, which are both essential for HCMV replication, were identified.
Collapse
Affiliation(s)
- Tony Fröhlich
- Organic Chemistry Chair I and Interdisciplinary Center for Molecular, Materials (ICMM), Friedrich-Alexander University of Erlangen-Nürnberg, Nikolaus-Fiebiger-Straße 10, 91058, Germany
| | - Friedrich Hahn
- Institute for Clinical and Molecular Virology, Friedrich-Alexander University of Erlangen-Nürnberg, Schlossgarten 4, 91054, Erlangen, Germany
| | - Lucid Belmudes
- Université Grenoble Alpes, CEA, INSERM, BIG-BGE, 38000, Grenoble, France
| | - Maria Leidenberger
- Institute of Medical Biotechnology, Friedrich-Alexander University of Erlangen-Nürnberg, Paul-Gordon-Straße 3, 91052, Erlangen, Germany
| | - Oliver Friedrich
- Institute of Medical Biotechnology, Friedrich-Alexander University of Erlangen-Nürnberg, Paul-Gordon-Straße 3, 91052, Erlangen, Germany
| | - Barbara Kappes
- Institute of Medical Biotechnology, Friedrich-Alexander University of Erlangen-Nürnberg, Paul-Gordon-Straße 3, 91052, Erlangen, Germany
| | - Yohann Couté
- Université Grenoble Alpes, CEA, INSERM, BIG-BGE, 38000, Grenoble, France
| | - Manfred Marschall
- Institute for Clinical and Molecular Virology, Friedrich-Alexander University of Erlangen-Nürnberg, Schlossgarten 4, 91054, Erlangen, Germany
| | - Svetlana B Tsogoeva
- Organic Chemistry Chair I and Interdisciplinary Center for Molecular, Materials (ICMM), Friedrich-Alexander University of Erlangen-Nürnberg, Nikolaus-Fiebiger-Straße 10, 91058, Germany
| |
Collapse
|