1
|
Pistorius D, Richard E, Buntin K, Dresen K, Wollbrett S, Weber E, Haberkorn A, Manchado E, Petersen F. Condensation Domain Editing of the FR900359 Assembly Line Yields a Novel Analog Amenable to Late-Stage Functionalization. Chembiochem 2024; 25:e202400491. [PMID: 39076125 DOI: 10.1002/cbic.202400491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/16/2024] [Accepted: 07/29/2024] [Indexed: 07/31/2024]
Abstract
The natural product FR900359 (FR) has generated significant attention lately, due to its characteristics as potent and selective inhibitor of Gq/11 mediated signal transduction of associated G protein-coupled receptors (GPCRs). This makes FR both a widely used pharmacological tool compound and a lead molecule for targeted cancer therapy. The exploration of structure-activity-relationship (SAR) of the scaffold by total synthesis has been complicated by its structural complexity and its incompatibility with standard approaches of solid-phase peptide synthesis. Options for late-stage functionalization of FR are limited due to a lack of tractable functional groups. Here we present a mixed approach combining (i) genetic engineering of the FR-assembly line in Chromobacterium vaccinii, to obtain a novel FR analog featuring a primary amine, with (ii) its subsequent synthetic modification and biological profiling for further SAR exploration of the FR scaffold.
Collapse
Affiliation(s)
- Dominik Pistorius
- Global Discovery Chemistry, Biomedical Research, Novartis Pharma AG, Novartis Campus, 4056, Basel, Switzerland
| | - Etienne Richard
- Global Discovery Chemistry, Biomedical Research, Novartis Pharma AG, Novartis Campus, 4056, Basel, Switzerland
| | - Kathrin Buntin
- Global Discovery Chemistry, Biomedical Research, Novartis Pharma AG, Novartis Campus, 4056, Basel, Switzerland
| | - Kathrin Dresen
- Global Discovery Chemistry, Biomedical Research, Novartis Pharma AG, Novartis Campus, 4056, Basel, Switzerland
| | - Séverine Wollbrett
- Global Discovery Chemistry, Biomedical Research, Novartis Pharma AG, Novartis Campus, 4056, Basel, Switzerland
| | - Eric Weber
- Global Discovery Chemistry, Biomedical Research, Novartis Pharma AG, Novartis Campus, 4056, Basel, Switzerland
| | - Anne Haberkorn
- Oncology Disease Area, Biomedical Research, Novartis Pharma AG, Novartis Campus, 4056, Basel, Switzerland
| | - Eusebio Manchado
- Oncology Disease Area, Biomedical Research, Novartis Pharma AG, Novartis Campus, 4056, Basel, Switzerland
| | - Frank Petersen
- Global Discovery Chemistry, Biomedical Research, Novartis Pharma AG, Novartis Campus, 4056, Basel, Switzerland
| |
Collapse
|
2
|
Hassan HA, Muhammed SS, Al-Khdhairawi A, Abdelwahab SF, Abdel-Rahman IM, Abdelhamid MM. Unraveling effective extracellular signal-regulated kinase 2 inhibitors: a de novo drug design strategy enhanced by in-depth in silico analyses. J Biomol Struct Dyn 2024; 42:7906-7916. [PMID: 37584104 DOI: 10.1080/07391102.2023.2246563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 07/23/2023] [Indexed: 08/17/2023]
Abstract
Extracellular signal-regulated kinase 2 (ERK-2) is a serine/threonine protein kinase in eukaryotic cells and belongs to the mitogen-activated protein kinase (MAPK) family. An activated form of ERK-2 phosphorylates substrates in the nucleus or cytoplasm and causes specific proteins to be expressed or activated, regulating cell proliferation, differentiation and other functions. Caffeic acid (3,4 - dihydroxy cinnamic acid), as previously reported, directly interacts with ERK-2 and reduces its effects in vitro. It is also reported to have a variety of pharmacological effects, including anti-inflammatory, immunomodulatory, antioxidant and anticancer activities. In the current study, a deep-learning protocol was employed to develop effective 100 compounds by modifying the chemical structure of DHC to improve its inhibitory performance against ERK-2. Calculations of physicochemical properties for those compounds revealed that 20 compounds had drug scores better than DHC (≥ 80%). Following that, molecular docking calculations were performed on the selected compounds and DHC. The obtained data revealed that five compounds had docking scores better than DHC (≥ -5.9 kcal/mol). Moreover, data from molecular mechanics and the Poisson - Boltzmann surface area (MM/PBSA) binding energy over 200 ns MD simulation confirmed that Cmd-1 and Cmd-4 exhibited higher stability with ΔGbinding of -40.8 and -49.1 kcal/mol, respectively, which is better than DHC (-35.1 kcal/mol). Finally, various energetic and structural studies showed the high stability of the two generated compounds within the active site of ERK-2. This study highlights the potential use of Cmd-1 and Cmd-4 as promising anti-ERK-2 drug candidates.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Heba Ali Hassan
- Department of Pharmacognosy, Faculty of Pharmacy, Sohag University, Sohag, Egypt
| | - Sara S Muhammed
- Faculty of Pharmacy for girls, AlAzhar University, Banha, Egypt
| | - Ahmad Al-Khdhairawi
- Department of Biological Science and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | - Sayed F Abdelwahab
- Department of Pharmaceutics and Industrial Pharmacy, College of Pharmacy, Taif University, Taif, Saudi Arabia
| | - Islam M Abdel-Rahman
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Deraya University, New-Minia, Egypt
| | - Mahmoud M Abdelhamid
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Al-Azhar University, Assiut, Egypt
| |
Collapse
|
3
|
Bonifer C, Hanke W, Mühle J, Löhr F, Becker-Baldus J, Nagel J, Schertler GFX, Müller CE, König GM, Hilger D, Glaubitz C. Structural response of G protein binding to the cyclodepsipeptide inhibitor FR900359 probed by NMR spectroscopy. Chem Sci 2024; 15:12939-12956. [PMID: 39148790 PMCID: PMC11323312 DOI: 10.1039/d4sc01950d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 06/27/2024] [Indexed: 08/17/2024] Open
Abstract
The cyclodepsipeptide FR900359 (FR) and its analogs are able to selectively inhibit the class of Gq proteins by blocking GDP/GTP exchange. The inhibitor binding site of Gq has been characterized by X-ray crystallography, and various binding and functional studies have determined binding kinetics and mode of inhibition. Here we investigate isotope-labeled FR bound to the membrane-anchored G protein heterotrimer by solid-state nuclear magnetic resonance (ssNMR) and in solution by liquid-state NMR. The resulting data allowed us to identify regions of the inhibitor which show especially pronounced effects upon binding and revealed a generally rigid binding mode in the cis conformation under native-like conditions. The inclusion of the membrane environment allowed us to show a deep penetration of FR into the lipid bilayer illustrating a possible access mode of FR into the cell. Dynamic nuclear polarization (DNP)-enhanced ssNMR was used to observe the structural response of specific segments of the Gα subunit to inhibitor binding. This revealed rigidification of the switch I binding site and an allosteric response in the α5 helix as well as suppression of structural changes induced by nucleotide exchange due to inhibition by FR. Our NMR studies of the FR-G protein complex conducted directly within a native membrane environment provide important insights into the inhibitors access via the lipid membrane, binding mode, and structural allosteric effects.
Collapse
Affiliation(s)
- Christian Bonifer
- Institute of Biophysical Chemistry, Centre of Biomolecular Magnetic Resonance, Goethe University Frankfurt Max-von-Laue Str. 9 60438 Frankfurt Germany
| | - Wiebke Hanke
- Institute for Pharmaceutical Biology, University of Bonn Nussallee 6 53115 Bonn Germany
| | - Jonas Mühle
- Division of Biology and Chemistry, Laboratory of Biomolecular Research, Paul Scherrer Institute Forschungsstr. 111, 5232 Villigen PSI Switzerland
| | - Frank Löhr
- Institute of Biophysical Chemistry, Centre of Biomolecular Magnetic Resonance, Goethe University Frankfurt Max-von-Laue Str. 9 60438 Frankfurt Germany
| | - Johanna Becker-Baldus
- Institute of Biophysical Chemistry, Centre of Biomolecular Magnetic Resonance, Goethe University Frankfurt Max-von-Laue Str. 9 60438 Frankfurt Germany
| | - Jessica Nagel
- Department of Pharmaceutical & Medicinal Chemistry, Pharmaceutical Institute, University of Bonn An der Immenburg 4 53121 Bonn Germany
| | - Gebhard F X Schertler
- Division of Biology and Chemistry, Laboratory of Biomolecular Research, Paul Scherrer Institute Forschungsstr. 111, 5232 Villigen PSI Switzerland
| | - Christa E Müller
- Department of Pharmaceutical & Medicinal Chemistry, Pharmaceutical Institute, University of Bonn An der Immenburg 4 53121 Bonn Germany
| | - Gabriele M König
- Institute for Pharmaceutical Biology, University of Bonn Nussallee 6 53115 Bonn Germany
| | - Daniel Hilger
- Department of Pharmaceutical Chemistry, University of Marburg 35037 Marburg Germany
| | - Clemens Glaubitz
- Institute of Biophysical Chemistry, Centre of Biomolecular Magnetic Resonance, Goethe University Frankfurt Max-von-Laue Str. 9 60438 Frankfurt Germany
| |
Collapse
|
4
|
Pepanian A, Binbay FA, Pei D, Imhof D. Design, synthesis, and analysis of macrobicyclic peptides for targeting the Gαi protein. J Pept Sci 2024; 30:e3565. [PMID: 38232955 PMCID: PMC11065574 DOI: 10.1002/psc.3565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/13/2023] [Accepted: 12/14/2023] [Indexed: 01/19/2024]
Abstract
Bicyclic peptides are important chemical tools that can function, for example, as bioactive ligands switching on/off signaling pathways mediated by guanine nucleotide-binding proteins as bicycles are more broadly applicable. Despite their relevance in medicinal chemistry, the synthesis of such peptides is challenging, and the final yield is highly dependent on the chemical composition and physicochemical properties of the scaffold. We recently discovered novel, state-specific peptide modulators targeting the Gαi protein, namely, GPM-2/GPM-3, by screening a one-bead-two-compound combinatorial library. A more detailed analysis, including sequence alignments and computer-assisted conformational studies based on the hit compounds, revealed the new peptide 10 as a potential macrobicyclic Gαi ligand sharing high sequence similarity to the known Gαi modulators. The Gαs protein was included in this study for comparison and to unravel the criteria for the specificity of modulator binding to Gαi versus Gαs. This work provides in-depth computer-assisted experimental studies for the analysis of novel macrobicyclic, library-derived Gαi protein ligands. The sequence and structural comparison of 10 with the lead compounds GPM-2 and GPM-3 reveals the importance of the size and amino acid composition of one ring of the bicyclic system and suggests features enhancing the binding affinity of the peptides to the Gαi protein.
Collapse
Affiliation(s)
- Anna Pepanian
- Pharmaceutical Biochemistry and Bioanalytics, Pharmaceutical Institute, University of Bonn, 53121 Bonn, Germany
| | - F. Ayberk Binbay
- Pharmaceutical Biochemistry and Bioanalytics, Pharmaceutical Institute, University of Bonn, 53121 Bonn, Germany
| | - Dehua Pei
- Department of Chemistry and Biochemistry, The Ohio State University, 578 Biological Sciences Building, 484 W 12th Avenue, Columbus, OH 43210, USA
| | - Diana Imhof
- Pharmaceutical Biochemistry and Bioanalytics, Pharmaceutical Institute, University of Bonn, 53121 Bonn, Germany
| |
Collapse
|
5
|
Voss JH. Recommended Tool Compounds: Application of YM-254890 and FR900359 to Interrogate Gα q/11-Mediated Signaling Pathways. ACS Pharmacol Transl Sci 2023; 6:1790-1800. [PMID: 38093837 PMCID: PMC10714435 DOI: 10.1021/acsptsci.3c00214] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/16/2023] [Accepted: 10/27/2023] [Indexed: 11/12/2024]
Abstract
The macrocyclic depsipeptides YM-254890 (YM) and FR900359 (FR) are natural products, which inhibit heterotrimeric Gαq/11 proteins with high potency and outstanding selectivity. Historically, pharmacological modulation of Gα proteins was only achieved by treatment with pertussis toxin and cholera toxin, whose application can be tedious and is restricted to the inhibition of Gαi/o proteins and activation of Gαs proteins, respectively. The breakthrough discovery and characterization of YM and FR rendered the closely related Gαq, Gα11, and Gα14 proteins amenable to pharmacological inhibition, and since then, both compounds have become widely used in molecular pharmacology and were also proven to be efficacious in animal models of disease. In the past years, both YM and FR were thoroughly characterized and have substantially contributed to an improved understanding of Gαq/11 signaling on a molecular and cellular level. Yet, the possibilities to interrogate Gαq/11 signaling in complex systems have only been exploited in a very limited number of studies, whose promising initial results warrant further application of YM and FR in basic and translational research. As both compounds have become commercially available as of late, this review focuses on their application in cell-based assays and in vivo systems, highlighting their qualities as tool compounds and providing instructions for their use.
Collapse
Affiliation(s)
- Jan Hendrik Voss
- Department of Physiology and Pharmacology,
Section of Receptor Biology and Signaling, Karolinska Institutet, S-171 65 Stockholm, Sweden
| |
Collapse
|
6
|
Pepanian A, Binbay FA, Roy S, Nubbemeyer B, Koley A, Rhodes CA, Ammer H, Pei D, Ghosh P, Imhof D. Bicyclic Peptide Library Screening for the Identification of Gαi Protein Modulators. J Med Chem 2023; 66:12396-12406. [PMID: 37587416 PMCID: PMC11000586 DOI: 10.1021/acs.jmedchem.3c00873] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
Noncanonical G protein activation and inactivation, particularly for the Gαi/s protein subfamilies, have long been a focus of chemical research. Combinatorial libraries were already effectively applied to identify modulators of the guanine-nucleotide exchange, as can be exemplified with peptides such as KB-752 and GPM-1c/d, the so-called guanine-nucleotide exchange modulators. In this study, we identified novel bicyclic peptides from a combinatorial library screening that show prominent properties as molecular switch-on/off modulators of Gαi signaling. Among the series of hits, the exceptional paradigm of GPM-3, a protein and state-specific bicyclic peptide, is the first chemically identified GAP (GTPase-activating protein) modulator with a high binding affinity for Gαi protein. Computational analyses identified and assessed the structure of the bicyclic peptides, novel ligand-protein interaction sites, and their subsequent impact on the nucleotide binding site. This approach can therefore lead the way for the development of efficient chemical biological probes targeting Gαi protein modulation within a cellular context.
Collapse
Affiliation(s)
- Anna Pepanian
- Pharmaceutical Biochemistry and Bioanalytics, Pharmaceutical Institute, University of Bonn, An der Immenbeurg 4, Bonn 53121, Germany
| | - Furkan Ayberk Binbay
- Pharmaceutical Biochemistry and Bioanalytics, Pharmaceutical Institute, University of Bonn, An der Immenbeurg 4, Bonn 53121, Germany
| | - Suchismita Roy
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, California 92093, United States
| | - Britta Nubbemeyer
- Pharmaceutical Biochemistry and Bioanalytics, Pharmaceutical Institute, University of Bonn, An der Immenbeurg 4, Bonn 53121, Germany
| | - Amritendu Koley
- Department of Chemistry and Biochemistry, The Ohio State University, 578 Biological Sciences Building, 484 W 12th Avenue, Columbus, Ohio 43210, United States
| | - Curran A Rhodes
- Department of Chemistry and Biochemistry, The Ohio State University, 578 Biological Sciences Building, 484 W 12th Avenue, Columbus, Ohio 43210, United States
| | - Hermann Ammer
- Institute of Pharmacology Toxicology and Pharmacy, Veterinary Faculty, Ludwig Maximilian University of Munich, Königinstr. 16, Munich 80539, Germany
| | - Dehua Pei
- Department of Chemistry and Biochemistry, The Ohio State University, 578 Biological Sciences Building, 484 W 12th Avenue, Columbus, Ohio 43210, United States
| | - Pradipta Ghosh
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, California 92093, United States
- Department of Medicine, University of California San Diego, La Jolla, California 92093, United States
| | - Diana Imhof
- Pharmaceutical Biochemistry and Bioanalytics, Pharmaceutical Institute, University of Bonn, An der Immenbeurg 4, Bonn 53121, Germany
| |
Collapse
|
7
|
Zhu Y, Liu S, Zigmond J, Kaltenbronn KM, Blumer KJ, Moeller KD. A Building Block Approach for the Total Synthesis of YM-385781. European J Org Chem 2023; 26:e202300365. [PMID: 38188369 PMCID: PMC10766104 DOI: 10.1002/ejoc.202300365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Indexed: 01/09/2024]
Abstract
YM-254890 and FR900359 are potent and selective inhibitors of the Gq/11-signaling pathway. As such, they have been attractive targets for both synthesis and biological studies. Yet in spite of this effort, a versatile synthetic approach to the molecules that allows for the rapid construction of a variety of non-natural and labelled analogs and an increase in the amount of those analogs available remains elusive. We report here a convergent building block approach to the molecules that can solve this challenge.
Collapse
Affiliation(s)
- Yu Zhu
- Department of Chemistry, Washington University, St. Louis, MO 63130
| | - Siyue Liu
- Department of Chemistry, Washington University, St. Louis, MO 63130
| | - Johnny Zigmond
- Department of Chemistry, Washington University, St. Louis, MO 63130
| | - Kevin M Kaltenbronn
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO
| | - Kendall J Blumer
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO
| | - Kevin D Moeller
- Department of Chemistry, Washington University, St. Louis, MO 63130
| |
Collapse
|
8
|
Voss JH, Crüsemann M, Bartling CR, Kehraus S, Inoue A, König GM, Strømgaard K, Müller CE. Structure-affinity and structure-residence time relationships of macrocyclic Gα q protein inhibitors. iScience 2023; 26:106492. [PMID: 37091255 PMCID: PMC10119753 DOI: 10.1016/j.isci.2023.106492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 02/02/2023] [Accepted: 03/21/2023] [Indexed: 04/25/2023] Open
Abstract
The macrocyclic depsipeptides YM-254890 (YM) and FR900359 (FR) are potent inhibitors of Gαq/11 proteins. They are important pharmacological tools and have potential as therapeutic drugs. The hydrogenated, tritium-labeled YM and FR derivatives display largely different residence times despite similar structures. In the present study we established a competition-association binding assay to determine the dissociation kinetics of unlabeled Gq protein inhibitors. Structure-affinity and structure-residence time relationships were analyzed. Small structural modifications had a large impact on residence time. YM and FR exhibited 4- to 10-fold higher residence times than their hydrogenated derivatives. While FR showed pseudo-irreversible binding, YM displayed much faster dissociation from its target. The isopropyl anchor present in FR and some derivatives was essential for slow dissociation. These data provide a basis for future drug design toward modulating residence times of macrocyclic Gq protein inhibitors, which has been recognized as a crucial determinant for therapeutic outcome.
Collapse
Affiliation(s)
- Jan H. Voss
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
| | - Max Crüsemann
- Institute of Pharmaceutical Biology, University of Bonn, Nussallee 6, 53115 Bonn, Germany
| | - Christian R.O. Bartling
- Department of Drug Design and Pharmacology, Center for Biopharmaceuticals, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Stefan Kehraus
- Institute of Pharmaceutical Biology, University of Bonn, Nussallee 6, 53115 Bonn, Germany
| | - Asuka Inoue
- Tohoku University, Graduate School of Pharmaceutical Sciences, Sendai, Miyagi 980-8578, Japan
| | - Gabriele M. König
- Institute of Pharmaceutical Biology, University of Bonn, Nussallee 6, 53115 Bonn, Germany
| | - Kristian Strømgaard
- Department of Drug Design and Pharmacology, Center for Biopharmaceuticals, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Christa E. Müller
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
- Corresponding author
| |
Collapse
|
9
|
Medcalf MR, Krueger RL, Medcalf ZT, Rosston PA, Zhu Y, Kaltenbronn KM, Blumer KJ, Moeller KD. Building Chemical Probes Based on the Natural Products YM-254890 and FR900359: Advances toward Scalability. SYNTHESIS-STUTTGART 2023; 55:90-106. [PMID: 36644007 PMCID: PMC9838186 DOI: 10.1055/a-1873-6891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The biological activity of natural products YM-254890 (YM) and FR900359 (FR) has led to significant interest in both their synthesis and the construction of more simplified analogs. While the simplified analogs lose much of the potency of the natural products, they are of interest in their own right, and their synthesis has revealed synthetic barriers to the family of molecules that need to be addressed if a scalable synthesis of YM and FR analogs is to be constructed. In the work described here, a synthetic route to simplified analogs of YM is examined and strategies for circumventing some of the challenges inherent to constructing the molecules are forwarded.
Collapse
Affiliation(s)
| | - Ruby L. Krueger
- Department of Chemistry, Washington University, St. Louis, MO, USA
| | - Zach T. Medcalf
- Department of Chemistry, Washington University, St. Louis, MO, USA
| | - Peter A. Rosston
- Department of Chemistry, Washington University, St. Louis, MO, USA
| | - Yu Zhu
- Department of Chemistry, Washington University, St. Louis, MO, USA
| | - Kevin M. Kaltenbronn
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Kendall J. Blumer
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Kevin D. Moeller
- Department of Chemistry, Washington University, St. Louis, MO, USA
| |
Collapse
|
10
|
Targeting Natural Plant Metabolites for Hunting SARS-CoV-2 Omicron BA.1 Variant Inhibitors: Extraction, Molecular Docking, Molecular Dynamics, and Physicochemical Properties Study. Curr Issues Mol Biol 2022; 44:5028-5047. [PMID: 36286057 PMCID: PMC9600405 DOI: 10.3390/cimb44100342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/12/2022] [Accepted: 10/18/2022] [Indexed: 12/02/2022] Open
Abstract
(1) Background: SARS-CoV-2 Omicron BA.1 is the most common variation found in most countries and is responsible for 99% of cases in the United States. To overcome this challenge, there is an urgent need to discover effective inhibitors to prevent the emerging BA.1 variant. Natural products, particularly flavonoids, have had widespread success in reducing COVID-19 prevalence. (2) Methods: In the ongoing study, fifteen compounds were annotated from Echium angustifolium and peach (Prunus persica), which were computationally analyzed using various in silico techniques. Molecular docking calculations were performed for the identified phytochemicals to investigate their efficacy. Molecular dynamics (MD) simulations over 200 ns followed by molecular mechanics Poisson–Boltzmann surface area calculations (MM/PBSA) were performed to estimate the binding energy. Bioactivity was also calculated for the best components in terms of drug likeness and drug score. (3) Results: The data obtained from the molecular docking study demonstrated that five compounds exhibited remarkable potency, with docking scores greater than −9.0 kcal/mol. Among them, compounds 1, 2 and 4 showed higher stability within the active site of Omicron BA.1, with ΔGbinding values of −49.02, −48.07, and −67.47 KJ/mol, respectively. These findings imply that the discovered phytoconstituents are promising in the search for anti-Omicron BA.1 drugs and should be investigated in future in vitro and in vivo research.
Collapse
|
11
|
Conducting the RBD of SARS-CoV-2 Omicron Variant with Phytoconstituents from Euphorbia dendroides to Repudiate the Binding of Spike Glycoprotein Using Computational Molecular Search and Simulation Approach. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27092929. [PMID: 35566281 PMCID: PMC9099834 DOI: 10.3390/molecules27092929] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 04/30/2022] [Accepted: 05/02/2022] [Indexed: 12/24/2022]
Abstract
(1) Background: Natural constituents are still a preferred route for counteracting the outbreak of COVID-19. Essentially, flavonoids have been found to be among the most promising molecules identified as coronavirus inhibitors. Recently, a new SARS-CoV-2 B.1.1.529 variant has spread in many countries, which has raised awareness of the role of natural constituents in attempts to contribute to therapeutic protocols. (2) Methods: Using various chromatographic techniques, triterpenes (1–7), phenolics (8–11), and flavonoids (12–17) were isolated from Euphorbia dendroides and computationally screened against the receptor-binding domain (RBD) of the SARS-CoV-2 Omicron variant. As a first step, molecular docking calculations were performed for all investigated compounds. Promising compounds were subjected to molecular dynamics simulations (MD) for 200 ns, in addition to molecular mechanics Poisson–Boltzmann surface area calculations (MM/PBSA) to determine binding energy. (3) Results: MM/PBSA binding energy calculations showed that compound 14 (quercetin-3-O-β-D-glucuronopyranoside) and compound 15 (quercetin-3-O-glucuronide 6″-O-methyl ester) exhibited strong inhibition of Omicron, with ΔGbinding of −41.0 and −32.4 kcal/mol, respectively. Finally, drug likeness evaluations based on Lipinski’s rule of five also showed that the discovered compounds exhibited good oral bioavailability. (4) Conclusions: It is foreseeable that these results provide a novel intellectual contribution in light of the decreasing prevalence of SARS-CoV-2 B.1.1.529 and could be a good addition to the therapeutic protocol.
Collapse
|
12
|
Nubbemeyer B, George AAP, Kühl T, Pepanian A, Beck MS, Maghraby R, Boushehri MS, Muehlhaupt M, Pfeil EM, Annala SK, Ammer H, Imhof D, Pei D. Targeting Gαi/s Proteins with Peptidyl Nucleotide Exchange Modulators. ACS Chem Biol 2022; 17:463-473. [PMID: 35042325 PMCID: PMC11002716 DOI: 10.1021/acschembio.1c00929] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Chemical probes that specifically modulate the activity of heterotrimeric G proteins provide excellent tools for investigating G protein-mediated cell signaling. Herein, we report a family of selective peptidyl Gαi/s modulators derived from peptide library screening and optimization. Conjugation to a cell-penetrating peptide rendered the peptides cell-permeable and biologically active in cell-based assays. The peptides exhibit potent guanine-nucleotide exchange modulator-like activity toward Gαi and Gαs. Molecular docking and dynamic simulations revealed the molecular basis of the protein-ligand interactions and their effects on GDP binding. This study demonstrates the feasibility of developing direct Gαi/s modulators and provides a novel chemical probe for investigating cell signaling through GPCRs/G proteins.
Collapse
Affiliation(s)
- Britta Nubbemeyer
- Pharmaceutical Biochemistry and Bioanalytics, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121, Bonn, Germany
| | - Ajay Abisheck Paul George
- Pharmaceutical Biochemistry and Bioanalytics, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121, Bonn, Germany
- BioSolveIT GmbH, An der Ziegelei 79, 53757, Sankt Augustin, Germany
| | - Toni Kühl
- Pharmaceutical Biochemistry and Bioanalytics, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121, Bonn, Germany
| | - Anna Pepanian
- Pharmaceutical Biochemistry and Bioanalytics, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121, Bonn, Germany
| | - Maximilian Steve Beck
- Pharmaceutical Biochemistry and Bioanalytics, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121, Bonn, Germany
| | - Rahma Maghraby
- Pharmaceutical Biochemistry and Bioanalytics, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121, Bonn, Germany
| | - Maryam Shetab Boushehri
- Pharmaceutical Technology and Biopharmacy, University of Bonn, Gerhard-Domagk-Str. 3, 53121, Bonn, Germany
| | - Maximilian Muehlhaupt
- Institute of Pharmacology, Toxicology and Pharmacy, Veterinary Faculty, Ludwig Maximilian University of Munich, Königinstr. 16, 80539, Munich, Germany
| | - Eva Marie Pfeil
- Molecular, Cellular and Pharmacobiology Section, Institute of Pharmaceutical Biology, University of Bonn, Nussallee 6, 53115, Bonn, Germany
| | - Suvi Katariina Annala
- Molecular, Cellular and Pharmacobiology Section, Institute of Pharmaceutical Biology, University of Bonn, Nussallee 6, 53115, Bonn, Germany
| | - Hermann Ammer
- Institute of Pharmacology, Toxicology and Pharmacy, Veterinary Faculty, Ludwig Maximilian University of Munich, Königinstr. 16, 80539, Munich, Germany
| | - Diana Imhof
- Pharmaceutical Biochemistry and Bioanalytics, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121, Bonn, Germany
| | - Dehua Pei
- Department of Chemistry and Biochemistry, The Ohio State University, 578 Biosciences Building, 484 W 12 Avenue, Columbus, OH 43210, USA
| |
Collapse
|
13
|
Lapadula D, Benovic JL. Targeting Oncogenic Gα q/11 in Uveal Melanoma. Cancers (Basel) 2021; 13:6195. [PMID: 34944815 PMCID: PMC8699590 DOI: 10.3390/cancers13246195] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 12/02/2021] [Accepted: 12/06/2021] [Indexed: 11/17/2022] Open
Abstract
Uveal melanoma is the most common intraocular cancer in adults and arises from the transformation of melanocytes in the uveal tract. While treatment of the primary tumor is often effective, 36-50% of patients develop metastatic disease primarily to the liver. While various strategies have been used to treat the metastatic disease, there remain no effective treatments that improve survival. Significant insight has been gained into the pathways that are altered in uveal melanoma, with mutually exclusive activating mutations in the GNAQ and GNA11 genes being found in over 90% of patients. These genes encode the alpha subunits of the hetetrotrimeric G proteins, Gq and G11, and mutations result in activation of several important signaling pathways, including phospholipase C and activation of the transcription factor YAP. In this review, we discuss current efforts to target various signaling pathways in the treatment of uveal melanoma including recent efforts to target Gq and G11 in mouse models. While selective targeting of Gq and G11 provides a potential therapeutic strategy to treat uveal melanoma, it is evident that improved inhibitors and methods of delivery are needed.
Collapse
Affiliation(s)
| | - Jeffrey L. Benovic
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA;
| |
Collapse
|
14
|
Pistorius D, Buntin K, Weber E, Richard E, Bouquet C, Wollbrett S, Regenass H, Peón V, Böhm M, Kessler R, Gempeler T, Haberkorn A, Wimmer L, Lanshoeft C, Davis J, Hainzl D, D'Alessio JA, Manchado E, Petersen F. Promoter-Driven Overexpression in Chromobacterium vaccinii Facilitates Access to FR900359 and Yields Novel Low Abundance Analogs. Chemistry 2021; 28:e202103888. [PMID: 34878202 DOI: 10.1002/chem.202103888] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Indexed: 11/11/2022]
Abstract
Access to the cyclic depsipeptide FR900359 (FR), a selective Gq/11 protein inhibitor of high pharmacological interest and a potential lead molecule for targeted therapy of cancers with oncogenic GNAQ or GNA11 mutations (encoding Gq and G11 respectively), has been challenging ever since its initial discovery more than three decades ago. The recent discovery of Chromobacterium vaccinii as a cultivable FR producer enables the development of approaches leading to a high-yielding, scalable and sustainable biotechnological process for production of FR, thereby removing this bottleneck. Here we characterize different promoters in exchange of the native promoter of the FR assembly line, resulting in an overexpression mutant with significantly increased production of FR. Thereby, the isolation and structure elucidation of novel FR analogs of low abundance is enabled. Further, we explore the antiproliferative activities of fifteen chromodepsins against uveal melanoma cell lines harboring Gq/11 mutations and characterize the major metabolite of FR formed in plasma.
Collapse
Affiliation(s)
- Dominik Pistorius
- Global Discovery Chemistry, Novartis Institutes for BioMedical Research, Novartis Pharma AG, Novartis Campus, 4056, Basel, Switzerland
| | - Kathrin Buntin
- Global Discovery Chemistry, Novartis Institutes for BioMedical Research, Novartis Pharma AG, Novartis Campus, 4056, Basel, Switzerland
| | - Eric Weber
- Global Discovery Chemistry, Novartis Institutes for BioMedical Research, Novartis Pharma AG, Novartis Campus, 4056, Basel, Switzerland
| | - Etienne Richard
- Global Discovery Chemistry, Novartis Institutes for BioMedical Research, Novartis Pharma AG, Novartis Campus, 4056, Basel, Switzerland
| | - Caroline Bouquet
- Global Discovery Chemistry, Novartis Institutes for BioMedical Research, Novartis Pharma AG, Novartis Campus, 4056, Basel, Switzerland
| | - Séverine Wollbrett
- Global Discovery Chemistry, Novartis Institutes for BioMedical Research, Novartis Pharma AG, Novartis Campus, 4056, Basel, Switzerland
| | - Hugo Regenass
- Global Discovery Chemistry, Novartis Institutes for BioMedical Research, Novartis Pharma AG, Novartis Campus, 4056, Basel, Switzerland
| | - Victor Peón
- Global Discovery Chemistry, Novartis Institutes for BioMedical Research, Novartis Pharma AG, Novartis Campus, 4056, Basel, Switzerland
| | - Marcel Böhm
- Global Discovery Chemistry, Novartis Institutes for BioMedical Research, Novartis Pharma AG, Novartis Campus, 4056, Basel, Switzerland
| | - Régis Kessler
- Global Discovery Chemistry, Novartis Institutes for BioMedical Research, Novartis Pharma AG, Novartis Campus, 4056, Basel, Switzerland
| | - Thomas Gempeler
- Global Discovery Chemistry, Novartis Institutes for BioMedical Research, Novartis Pharma AG, Novartis Campus, 4056, Basel, Switzerland
| | - Anne Haberkorn
- Oncology Disease Area, Novartis Institutes for BioMedical Research, Novartis Pharma AG, Novartis Campus, 4056, Basel, Switzerland
| | - Laurin Wimmer
- Chemical & Analytical Development, Technical Research & Development, Global Drug Development, Novartis Pharma AG, Novartis Campus, 4056, Basel, Switzerland
| | - Christian Lanshoeft
- Pharmakokinetic Sciences, Novartis Institutes for BioMedical Research, Novartis Pharma AG, Novartis Campus, 4056, Basel, Switzerland
| | - John Davis
- Pharmacokinetic Sciences, Novartis Institutes for BioMedical Research, Novartis Pharma AG, 250 Massachusetts Ave, Cambridge, MA, 02139, USA
| | - Dominik Hainzl
- Pharmacokinetic Sciences, Novartis Institutes for BioMedical Research, Novartis Pharma AG, 250 Massachusetts Ave, Cambridge, MA, 02139, USA
| | - Joseph Anthony D'Alessio
- Oncology Disease Area, Novartis Institutes for BioMedical Research, Novartis Pharma AG, 250 Massachusetts Ave, Cambridge, MA, 02139, USA
| | - Eusebio Manchado
- Oncology Disease Area, Novartis Institutes for BioMedical Research, Novartis Pharma AG, Novartis Campus, 4056, Basel, Switzerland
| | - Frank Petersen
- Global Discovery Chemistry, Novartis Institutes for BioMedical Research, Novartis Pharma AG, Novartis Campus, 4056, Basel, Switzerland
| |
Collapse
|
15
|
Voss JH, Nagel J, Rafehi M, Guixà-González R, Malfacini D, Patt J, Kehraus S, Inoue A, König GM, Kostenis E, Deupi X, Namasivayam V, Müller CE. Unraveling binding mechanism and kinetics of macrocyclic Gα q protein inhibitors. Pharmacol Res 2021; 173:105880. [PMID: 34506902 DOI: 10.1016/j.phrs.2021.105880] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 08/23/2021] [Accepted: 09/05/2021] [Indexed: 10/20/2022]
Abstract
G proteins represent intracellular switches that transduce signals relayed from G protein-coupled receptors. The structurally related macrocyclic depsipeptides FR900359 (FR) and YM-254890 (YM) are potent, selective inhibitors of the Gαq protein family. We recently discovered that radiolabeled FR and YM display strongly divergent residence times, which translates into significantly longer antiasthmatic effects of FR. The present study is aimed at investigating the molecular basis for this observed disparity. Based on docking studies, we mutated amino acid residues of the Gαq protein predicted to interact with FR or YM, and recombinantly expressed the mutated Gαq proteins in cells in which the native Gαq proteins had been knocked out by CRISPR-Cas9. Both radioligands showed similar association kinetics, and their binding followed a conformational selection mechanism, which was rationalized by molecular dynamics simulation studies. Several mutations of amino acid residues near the putative binding site of the "lipophilic anchors" of FR, especially those predicted to interact with the isopropyl group present in FR but not in YM, led to dramatically accelerated dissociation kinetics. Our data indicate that the long residence time of FR depends on lipophilic interactions within its binding site. The observed structure-kinetic relationships point to a complex binding mechanism of FR, which likely involves snap-lock- or dowel-like conformational changes of either ligand or protein, or both. These experimental data will be useful for the design of compounds with a desired residence time, a parameter that has now been recognized to be of utmost importance in drug development.
Collapse
Affiliation(s)
- Jan H Voss
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
| | - Jessica Nagel
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
| | - Muhammad Rafehi
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
| | - Ramon Guixà-González
- Condensed Matter Theory Group, Paul Scherrer Institute (PSI), Forschungsstrasse 111, Villigen 5232, Switzerland
| | - Davide Malfacini
- Institute of Pharmaceutical Biology, University of Bonn, Nussallee 6, 53113 Bonn, Germany
| | - Julian Patt
- Institute of Pharmaceutical Biology, University of Bonn, Nussallee 6, 53113 Bonn, Germany
| | - Stefan Kehraus
- Institute of Pharmaceutical Biology, University of Bonn, Nussallee 6, 53113 Bonn, Germany
| | - Asuka Inoue
- Tohoku University, Graduate School of Pharmaceutical Sciences, Sendai, Miyagi 980-8578 Japan
| | - Gabriele M König
- Institute of Pharmaceutical Biology, University of Bonn, Nussallee 6, 53113 Bonn, Germany
| | - Evi Kostenis
- Institute of Pharmaceutical Biology, University of Bonn, Nussallee 6, 53113 Bonn, Germany
| | - Xavier Deupi
- Condensed Matter Theory Group, Paul Scherrer Institute (PSI), Forschungsstrasse 111, Villigen 5232, Switzerland; Laboratory of Biomolecular Research, Paul Scherrer Institute (PSI), Forschungsstrasse 111, Villigen 5232, Switzerland
| | - Vigneshwaran Namasivayam
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
| | - Christa E Müller
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany.
| |
Collapse
|
16
|
Hanke W, Patt J, Alenfelder J, Voss JH, Zdouc MM, Kehraus S, Kim JB, Grujičić GV, Namasivayam V, Reher R, Müller CE, Kostenis E, Crüsemann M, König GM. Feature-Based Molecular Networking for the Targeted Identification of G q-Inhibiting FR900359 Derivatives. JOURNAL OF NATURAL PRODUCTS 2021; 84:1941-1953. [PMID: 34197116 DOI: 10.1021/acs.jnatprod.1c00194] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Both the soil bacterium Chromobacterium vaccinii and the bacterial endosymbiont Candidatus Burkholderia crenata of the plant Ardisia crenata are producers of FR900359 (FR). This cyclic depsipeptide is a potent and selective Gq protein inhibitor used extensively to investigate the intracellular signaling of G protein coupled receptors (GPCRs). In this study, the metabolomes of both FR producers were investigated and compared using feature-based molecular networking (FBMN). As a result, 30 previously unknown FR derivatives were identified, one-third being unique to C. vaccinii. Guided by MS, a novel FR derivative, FR-6 (compound 1), was isolated, and its structure unambiguously established. In a whole-cell biosensing assay based on detection of dynamic mass redistribution (DMR) as readout for Gq inhibition, FR-6 suppressed Gq signaling with micromolar potency (pIC50 = 5.56). This functional activity was confirmed in radioligand binding assays (pKi = 7.50). This work demonstrates the power of molecular networking, guiding the way to a novel Gq-inhibiting FR derivative and underlining the potency of FR as a Gq inhibitor.
Collapse
Affiliation(s)
- Wiebke Hanke
- Institute of Pharmaceutical Biology, University of Bonn, Nussallee 6, D-53115 Bonn, Germany
| | - Julian Patt
- Institute of Pharmaceutical Biology, University of Bonn, Nussallee 6, D-53115 Bonn, Germany
| | - Judith Alenfelder
- Institute of Pharmaceutical Biology, University of Bonn, Nussallee 6, D-53115 Bonn, Germany
| | - Jan H Voss
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
| | - Mitja M Zdouc
- Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH Amsterdam, The Netherlands
| | - Stefan Kehraus
- Institute of Pharmaceutical Biology, University of Bonn, Nussallee 6, D-53115 Bonn, Germany
| | - Jung Bong Kim
- Institute of Pharmaceutical Biology, University of Bonn, Nussallee 6, D-53115 Bonn, Germany
| | - Goran V Grujičić
- Institute of Pharmaceutical Biology, University of Bonn, Nussallee 6, D-53115 Bonn, Germany
| | - Vigneshwaran Namasivayam
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
| | - Raphael Reher
- Institute of Pharmaceutical Biology, University of Bonn, Nussallee 6, D-53115 Bonn, Germany
| | - Christa E Müller
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
| | - Evi Kostenis
- Institute of Pharmaceutical Biology, University of Bonn, Nussallee 6, D-53115 Bonn, Germany
| | - Max Crüsemann
- Institute of Pharmaceutical Biology, University of Bonn, Nussallee 6, D-53115 Bonn, Germany
| | - Gabriele M König
- Institute of Pharmaceutical Biology, University of Bonn, Nussallee 6, D-53115 Bonn, Germany
| |
Collapse
|
17
|
Nubbemeyer B, Pepanian A, Paul George AA, Imhof D. Strategies towards Targeting Gαi/s Proteins: Scanning of Protein-Protein Interaction Sites To Overcome Inaccessibility. ChemMedChem 2021; 16:1696-1715. [PMID: 33615736 PMCID: PMC8252600 DOI: 10.1002/cmdc.202100039] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Indexed: 12/16/2022]
Abstract
Heterotrimeric G proteins are classified into four subfamilies and play a key role in signal transduction. They transmit extracellular signals to intracellular effectors subsequent to the activation of G protein-coupled receptors (GPCRs), which are targeted by over 30 % of FDA-approved drugs. However, addressing G proteins as drug targets represents a compelling alternative, for example, when G proteins act independently of the corresponding GPCRs, or in cases of complex multifunctional diseases, when a large number of different GPCRs are involved. In contrast to Gαq, efforts to target Gαi/s by suitable chemical compounds has not been successful so far. Here, a comprehensive analysis was conducted examining the most important interface regions of Gαi/s with its upstream and downstream interaction partners. By assigning the existing compounds and the performed approaches to the respective interfaces, the druggability of the individual interfaces was ranked to provide perspectives for selective targeting of Gαi/s in the future.
Collapse
Affiliation(s)
- Britta Nubbemeyer
- Pharmaceutical Biochemistry and BioanalyticsPharmaceutical InstituteUniversity of BonnAn der Immenburg 453121BonnGermany
| | - Anna Pepanian
- Pharmaceutical Biochemistry and BioanalyticsPharmaceutical InstituteUniversity of BonnAn der Immenburg 453121BonnGermany
| | | | - Diana Imhof
- Pharmaceutical Biochemistry and BioanalyticsPharmaceutical InstituteUniversity of BonnAn der Immenburg 453121BonnGermany
| |
Collapse
|
18
|
Hermes C, König GM, Crüsemann M. The chromodepsins - chemistry, biology and biosynthesis of a selective Gq inhibitor natural product family. Nat Prod Rep 2021; 38:2276-2292. [PMID: 33998635 DOI: 10.1039/d1np00005e] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Covering: up to April 2021The bacterial cyclic depsipeptides FR900359 (FR) and YM-254890 (YM) were shown to selectively inhibit Gαq proteins with high potency and selectivity and have recently emerged as valuable pharmacological tools due to their effective mechanism of action. Here, we summarize important aspects of this small and specialized natural product family, for which we propose the name chromodepsins, starting from their discovery, producing organisms and structural variety. We then review biosynthesis, structure-activity relationships and ecological and evolutionary aspects of the chromodepsins. Lastly, we discuss their mechanism of action, potential medicinal applications and future opportunities and challenges for further use and development of these complex inhibitor molecules from nature.
Collapse
Affiliation(s)
- Cornelia Hermes
- Institute of Pharmaceutical Biology, Rheinische Friedrich-Wilhelms-University of Bonn, 53115 Bonn, Germany.
| | - Gabriele M König
- Institute of Pharmaceutical Biology, Rheinische Friedrich-Wilhelms-University of Bonn, 53115 Bonn, Germany.
| | - Max Crüsemann
- Institute of Pharmaceutical Biology, Rheinische Friedrich-Wilhelms-University of Bonn, 53115 Bonn, Germany.
| |
Collapse
|
19
|
Hermes C, Richarz R, Wirtz DA, Patt J, Hanke W, Kehraus S, Voß JH, Küppers J, Ohbayashi T, Namasivayam V, Alenfelder J, Inoue A, Mergaert P, Gütschow M, Müller CE, Kostenis E, König GM, Crüsemann M. Thioesterase-mediated side chain transesterification generates potent Gq signaling inhibitor FR900359. Nat Commun 2021; 12:144. [PMID: 33420046 PMCID: PMC7794379 DOI: 10.1038/s41467-020-20418-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 12/01/2020] [Indexed: 12/18/2022] Open
Abstract
The potent and selective Gq protein inhibitor depsipeptide FR900359 (FR), originally discovered as the product of an uncultivable plant endosymbiont, is synthesized by a complex biosynthetic system comprising two nonribosomal peptide synthetase (NRPS) assembly lines. Here we characterize a cultivable bacterial FR producer, enabling detailed investigations into biosynthesis and attachment of the functionally important FR side chain. We reconstitute side chain assembly by the monomodular NRPS FrsA and the non-heme monooxygenase FrsH, and characterize intermolecular side chain transesterification to the final macrocyclic intermediate FR-Core, mediated by the FrsA thioesterase domain. We harness FrsA substrate promiscuity to generate FR analogs with altered side chains and demonstrate indispensability of the FR side chain for efficient Gq inhibition by comparative bioactivity, toxicity and docking studies. Finally, evolution of FR and side chain biosynthesis is discussed based on bioinformatics analyses. Side chain transesterification boosts potency and target affinity of selective Gq inhibitor natural products. FR900359 (FR) is a Gq protein inhibitor depsipeptide isolated from an uncultivable plant endosymbiont and synthesized by non-ribosomal peptide synthetases. Here, the authors discover a cultivable bacterial FR producer and show that FrsA thioesterase domain catalyses intermolecular transesterification of the FR side chain to the depsipeptide core during biosynthesis, improving Gq inhibition properties.
Collapse
Affiliation(s)
- Cornelia Hermes
- Institute of Pharmaceutical Biology, University of Bonn, Nussallee 6, 53115, Bonn, Germany
| | - René Richarz
- Institute of Pharmaceutical Biology, University of Bonn, Nussallee 6, 53115, Bonn, Germany
| | - Daniel A Wirtz
- Institute of Pharmaceutical Biology, University of Bonn, Nussallee 6, 53115, Bonn, Germany
| | - Julian Patt
- Institute of Pharmaceutical Biology, University of Bonn, Nussallee 6, 53115, Bonn, Germany
| | - Wiebke Hanke
- Institute of Pharmaceutical Biology, University of Bonn, Nussallee 6, 53115, Bonn, Germany
| | - Stefan Kehraus
- Institute of Pharmaceutical Biology, University of Bonn, Nussallee 6, 53115, Bonn, Germany
| | - Jan Hendrik Voß
- Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, 53121, Bonn, Germany
| | - Jim Küppers
- Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, 53121, Bonn, Germany
| | - Tsubasa Ohbayashi
- University of Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Avenue de la Terrasse, Gif-sur-Yvette, 91198, France.,Institute for Agro-Environmental Sciences, National Agriculture and Food Research Organization (NARO), Tsukuba, 305-8604, Japan
| | - Vigneshwaran Namasivayam
- Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, 53121, Bonn, Germany
| | - Judith Alenfelder
- Institute of Pharmaceutical Biology, University of Bonn, Nussallee 6, 53115, Bonn, Germany
| | - Asuka Inoue
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, 980-8578, Japan
| | - Peter Mergaert
- University of Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Avenue de la Terrasse, Gif-sur-Yvette, 91198, France
| | - Michael Gütschow
- Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, 53121, Bonn, Germany
| | - Christa E Müller
- Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, 53121, Bonn, Germany
| | - Evi Kostenis
- Institute of Pharmaceutical Biology, University of Bonn, Nussallee 6, 53115, Bonn, Germany
| | - Gabriele M König
- Institute of Pharmaceutical Biology, University of Bonn, Nussallee 6, 53115, Bonn, Germany
| | - Max Crüsemann
- Institute of Pharmaceutical Biology, University of Bonn, Nussallee 6, 53115, Bonn, Germany.
| |
Collapse
|
20
|
Boesgaard MW, Harpsøe K, Malmberg M, Underwood CR, Inoue A, Mathiesen JM, König GM, Kostenis E, Gloriam DE, Bräuner-Osborne H. Delineation of molecular determinants for FR900359 inhibition of G q/11 unlocks inhibition of Gα s. J Biol Chem 2020; 295:13850-13861. [PMID: 32753482 DOI: 10.1074/jbc.ra120.013002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 07/31/2020] [Indexed: 12/28/2022] Open
Abstract
Heterotrimeric G proteins are essential mediators of intracellular signaling of G protein-coupled receptors. The Gq/11 subfamily consists of Gq, G11, G14, and G16 proteins, of which all but G16 are inhibited by the structurally related natural products YM-254890 and FR900359. These inhibitors act by preventing the GDP/GTP exchange, which is necessary for activation of all G proteins. A homologous putative binding site for YM-254890/FR900359 can also be found in members of the other three G protein families, Gs, Gi/o, and G12/13, but none of the published analogs of YM-254890/FR900359 have shown any inhibitory activity for any of these. To explain why the YM-254890/FR900359 scaffold only inhibits Gq/11/14, the present study delineated the molecular selectivity determinants by exchanging amino acid residues in the YM-254890/FR900359-binding site in Gq and Gs We found that the activity of a Gs mutant with a Gq-like binding site for YM-254890/FR900359 can be inhibited by FR900359, and a minimum of three mutations are necessary to introduce inhibition in Gs In all, this suggests that although the YM-254890/FR900359 scaffold has proven unsuccessful to derive Gs, Gi/o, and G12/13 inhibitors, the mechanism of inhibition between families of G proteins is conserved, opening up the possibility of targeting by other, novel inhibitor scaffolds. In lack of a selective Gαs inhibitor, FR900359-sensitive Gαs mutants may prove useful in studies where delicate control over Gαs signaling would be of the essence.
Collapse
Affiliation(s)
- Michael W Boesgaard
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kasper Harpsøe
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Michelle Malmberg
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Christina R Underwood
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Asuka Inoue
- Laboratory of Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi, Japan
| | - Jesper M Mathiesen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Gabriele M König
- Institute for Pharmaceutical Biology, University of Bonn, Bonn, Germany
| | - Evi Kostenis
- Molecular, Cellular, and Pharmacobiology Section, Institute for Pharmaceutical Biology, University of Bonn, Bonn, Germany
| | - David E Gloriam
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Hans Bräuner-Osborne
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
21
|
Pandya PN, Kumar SP, Bhadresha K, Patel CN, Patel SK, Rawal RM, Mankad AU. Identification of promising compounds from curry tree with cyclooxygenase inhibitory potential using a combination of machine learning, molecular docking, dynamics simulations and binding free energy calculations. MOLECULAR SIMULATION 2020. [DOI: 10.1080/08927022.2020.1764552] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Pujan N. Pandya
- Department of Botany, Bioinformatics, and Climate Change Impacts Management, University School of Sciences, Gujarat University, Ahmedabad, India
| | - Sivakumar Prasanth Kumar
- Department of Life Sciences, University School of Sciences, Gujarat University, Ahmedabad, India
| | - Kinjal Bhadresha
- Department of Life Sciences, University School of Sciences, Gujarat University, Ahmedabad, India
| | - Chirag N. Patel
- Department of Botany, Bioinformatics, and Climate Change Impacts Management, University School of Sciences, Gujarat University, Ahmedabad, India
| | - Saumya K. Patel
- Department of Botany, Bioinformatics, and Climate Change Impacts Management, University School of Sciences, Gujarat University, Ahmedabad, India
| | - Rakesh M. Rawal
- Department of Life Sciences, University School of Sciences, Gujarat University, Ahmedabad, India
| | - Archana U. Mankad
- Department of Botany, Bioinformatics, and Climate Change Impacts Management, University School of Sciences, Gujarat University, Ahmedabad, India
| |
Collapse
|
22
|
Abstract
Heterotrimeric G proteins are the core upstream elements that transduce and amplify the cellular signals from G protein-coupled receptors (GPCRs) to intracellular effectors. GPCRs are the largest family of membrane proteins encoded in the human genome and are the targets of about one-third of prescription medicines. However, to date, no single therapeutic agent exerts its effects via perturbing heterotrimeric G protein function, despite a plethora of evidence linking G protein malfunction to human disease. Several recent studies have brought to light that the Gq family-specific inhibitor FR900359 (FR) is unexpectedly efficacious in silencing the signaling of Gq oncoproteins, mutant Gq variants that mostly exist in the active state. These data not only raise the hope that researchers working in drug discovery may be able to potentially strike Gq oncoproteins from the list of undruggable targets, but also raise questions as to how FR achieves its therapeutic effect. Here, we place emphasis on these recent studies and explain why they expand our pharmacological armamentarium for targeting Gq protein oncogenes as well as broaden our mechanistic understanding of Gq protein oncogene function. We also highlight how this novel insight impacts the significance and utility of using G(q) proteins as targets in drug discovery efforts.
Collapse
Affiliation(s)
- Evi Kostenis
- Section of Molecular, Cellular and Pharmacobiology, Institute of Pharmaceutical Biology, Nussallee 6, 53115 Bonn, Germany.
| | - Eva Marie Pfeil
- Section of Molecular, Cellular and Pharmacobiology, Institute of Pharmaceutical Biology, Nussallee 6, 53115 Bonn, Germany
| | - Suvi Annala
- Section of Molecular, Cellular and Pharmacobiology, Institute of Pharmaceutical Biology, Nussallee 6, 53115 Bonn, Germany
| |
Collapse
|
23
|
Li J, Ge Y, Huang JX, Strømgaard K, Zhang X, Xiong XF. Heterotrimeric G Proteins as Therapeutic Targets in Drug Discovery. J Med Chem 2019; 63:5013-5030. [PMID: 31841625 DOI: 10.1021/acs.jmedchem.9b01452] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Heterotrimeric G proteins are molecular switches in GPCR signaling pathways and regulate a plethora of physiological and pathological processes. GPCRs are efficient drug targets, and more than 30% of the drugs in use target them. However, selectively targeting an individual GPCR may be undesirable in various multifactorial diseases in which multiple receptors are involved. In addition, abnormal activation or expression of G proteins is frequently associated with diseases. Furthermore, G proteins harboring mutations often result in malignant diseases. Thus, targeting G proteins instead of GPCRs might provide alternative approaches for combating these diseases. In this review, we discuss the biochemistry of heterotrimeric G proteins, describe the G protein-associated diseases, and summarize the currently known modulators that can regulate the activities of G proteins. The outlook for targeting G proteins to treat diverse diseases is also included in this manuscript.
Collapse
Affiliation(s)
- Jian Li
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, 510006 Guangzhou, Guangdong, P. R. China
| | - Yang Ge
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, 510006 Guangzhou, Guangdong, P. R. China
| | - Jun-Xiang Huang
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, 510006 Guangzhou, Guangdong, P. R. China
| | - Kristian Strømgaard
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Xiaolei Zhang
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, 510006 Guangzhou, Guangdong, P. R. China
| | - Xiao-Feng Xiong
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, 510006 Guangzhou, Guangdong, P. R. China
| |
Collapse
|
24
|
Tietze D, Kaufmann D, Tietze AA, Voll A, Reher R, König G, Hausch F. Structural and Dynamical Basis of G Protein Inhibition by YM-254890 and FR900359: An Inhibitor in Action. J Chem Inf Model 2019; 59:4361-4373. [PMID: 31539242 DOI: 10.1021/acs.jcim.9b00433] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Specific inhibition of G proteins holds a great pharmacological promise to, e.g., target oncogenic Gq/11 proteins and can be achieved by the two natural products FR900359 (FR) and YM-254890 (YM). Unfortunately, recent rational-design-based approaches to address G proteins other than Gq/11/14 subtypes were not successful mainly due to the conformational complexity of these new modalities-like compounds. Here, we report the water-derived NMR structure of YM, which strongly differs from the conformation of Gq-bound YM as found in the crystal structure. Reanalysis of the crystal structure suggests that the water-derived NMR structure of YM also represents a valid solution of the electron density. Extensive molecular dynamic simulations unveiled much higher binding affinities of the water-derived NMR structure compared to the original YM conformation of pdb 3ah8 . Employing a in-silico-designed, fast activating G protein conformation molecular dynamics data ultimately show how the inhibitor impairs the domain motion of the G protein necessary to hinder nucleotide exchange.
Collapse
Affiliation(s)
- Daniel Tietze
- Eduard-Zintl-Institute for Inorganic and Physical Chemistry , Darmstadt University of Technology , Alarich-Weiss-Strasse 8 , 64287 Darmstadt , Germany.,Department of Chemistry and Molecular Biology, Wallenberg Centre for Molecular and Translational Medicine , University of Gothenburg , Kemigården 4 , 412 96 Göteborg , Sweden
| | - Desireé Kaufmann
- Eduard-Zintl-Institute for Inorganic and Physical Chemistry , Darmstadt University of Technology , Alarich-Weiss-Strasse 8 , 64287 Darmstadt , Germany
| | - Alesia A Tietze
- Department of Chemistry and Molecular Biology, Wallenberg Centre for Molecular and Translational Medicine , University of Gothenburg , Kemigården 4 , 412 96 Göteborg , Sweden
| | - Andreas Voll
- Clemens Schöpf Institute for Organic Chemistry and Biochemistry , Darmstadt University of Technology , Alarich-Weiss-Strasse 4 , 64287 Darmstadt , Germany
| | - Raphael Reher
- Institute for Pharmaceutical Biology , University of Bonn , Nussallee 6 , 53115 Bonn , Germany
| | - Gabriele König
- Institute for Pharmaceutical Biology , University of Bonn , Nussallee 6 , 53115 Bonn , Germany
| | - Felix Hausch
- Clemens Schöpf Institute for Organic Chemistry and Biochemistry , Darmstadt University of Technology , Alarich-Weiss-Strasse 4 , 64287 Darmstadt , Germany
| |
Collapse
|
25
|
Küppers J, Benkel T, Annala S, Schnakenburg G, Kostenis E, Gütschow M. BIM-46174 fragments as potential ligands of G proteins. MEDCHEMCOMM 2019; 10:1838-1843. [PMID: 32180917 DOI: 10.1039/c9md00269c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 08/16/2019] [Indexed: 12/31/2022]
Abstract
The 5,6,7,8-tetrahydroimidazo[1,2-a]pyrazine derivative BIM-46174 has received attention as Gαq inhibitor. We conducted structural reductions to monocyclic and bicyclic substructures to explore the chemical space of BIM fragments and to gain insights into the pharmacophore of BIM-type Gαq inhibitors. Two piperazin-2-one-containing fragments and a small library of bicyclic lactams featuring fused pyrazine and diazepine rings were synthesized and evaluated. The results of a second messenger-based cellular assay indicate that the entire BIM structure is required for efficient Gαq inhibition.
Collapse
Affiliation(s)
- Jim Küppers
- Pharmaceutical Institute , Pharmaceutical Chemistry I , University of Bonn , An der Immenburg 4 , 53121 Bonn , Germany .
| | - Tobias Benkel
- Molecular, Cellular and Pharmacobiology Section , Institute for Pharmaceutical Biology , University of Bonn , Nussallee 6 , 53115 Bonn , Germany.,Research Training Group 1873 , University of Bonn , Bonn , Germany
| | - Suvi Annala
- Molecular, Cellular and Pharmacobiology Section , Institute for Pharmaceutical Biology , University of Bonn , Nussallee 6 , 53115 Bonn , Germany
| | - Gregor Schnakenburg
- Institute of Inorganic Chemistry , University of Bonn , Gerhard-Domagk-Str. 1 , 53121 Bonn , Germany
| | - Evi Kostenis
- Molecular, Cellular and Pharmacobiology Section , Institute for Pharmaceutical Biology , University of Bonn , Nussallee 6 , 53115 Bonn , Germany
| | - Michael Gütschow
- Pharmaceutical Institute , Pharmaceutical Chemistry I , University of Bonn , An der Immenburg 4 , 53121 Bonn , Germany .
| |
Collapse
|
26
|
Zhang H, Nielsen AL, Strømgaard K. Recent achievements in developing selective Gqinhibitors. Med Res Rev 2019; 40:135-157. [DOI: 10.1002/med.21598] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 04/09/2019] [Accepted: 04/26/2019] [Indexed: 02/06/2023]
Affiliation(s)
- Hang Zhang
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Co‐innovation Center of Henan Province for New Drug R&D and Preclinical Safety, and School of Pharmaceutical SciencesZhengzhou UniversityZhengzhou Henan China
| | - Alexander L. Nielsen
- Department of Drug Design and Pharmacology, Center for BiopharmaceuticalsUniversity of CopenhagenCopenhagen Denmark
| | - Kristian Strømgaard
- Department of Drug Design and Pharmacology, Center for BiopharmaceuticalsUniversity of CopenhagenCopenhagen Denmark
| |
Collapse
|
27
|
Xiong X, Zhang H, Boesgaard MW, Underwood CR, Bräuner‐Osborne H, Strømgaard K. Structure–Activity Relationship Studies of the Natural Product G
q/11
Protein Inhibitor YM‐254890. ChemMedChem 2019; 14:865-870. [DOI: 10.1002/cmdc.201900018] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Indexed: 01/01/2023]
Affiliation(s)
- Xiao‐Feng Xiong
- Department of Drug Design and PharmacologyUniversity of Copenhagen 2100 Copenhagen Denmark
- School of Pharmaceutical SciencesSun Yat-sen University Guangzhou 510006 China
| | - Hang Zhang
- Department of Drug Design and PharmacologyUniversity of Copenhagen 2100 Copenhagen Denmark
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Co-innovation Center of Henan Province for New Drug R&D and Preclinical SafetySchool of Pharmaceutical SciencesZhengzhou University 100 Kexue Avenue Zhengzhou Henan 450001 China
| | - Michael W. Boesgaard
- Department of Drug Design and PharmacologyUniversity of Copenhagen 2100 Copenhagen Denmark
| | - Christina R. Underwood
- Department of Drug Design and PharmacologyUniversity of Copenhagen 2100 Copenhagen Denmark
| | - Hans Bräuner‐Osborne
- Department of Drug Design and PharmacologyUniversity of Copenhagen 2100 Copenhagen Denmark
| | - Kristian Strømgaard
- Department of Drug Design and PharmacologyUniversity of Copenhagen 2100 Copenhagen Denmark
| |
Collapse
|
28
|
Malfacini D, Patt J, Annala S, Harpsøe K, Eryilmaz F, Reher R, Crüsemann M, Hanke W, Zhang H, Tietze D, Gloriam DE, Bräuner-Osborne H, Strømgaard K, König GM, Inoue A, Gomeza J, Kostenis E. Rational design of a heterotrimeric G protein α subunit with artificial inhibitor sensitivity. J Biol Chem 2019; 294:5747-5758. [PMID: 30745359 PMCID: PMC6463727 DOI: 10.1074/jbc.ra118.007250] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 01/28/2019] [Indexed: 12/31/2022] Open
Abstract
Transmembrane signals initiated by a range of extracellular stimuli converge on members of the Gq family of heterotrimeric G proteins, which relay these signals in target cells. Gq family G proteins comprise Gq, G11, G14, and G16, which upon activation mediate their cellular effects via inositol lipid–dependent and –independent signaling to control fundamental processes in mammalian physiology. To date, highly specific inhibition of Gq/11/14 signaling can be achieved only with FR900359 (FR) and YM-254890 (YM), two naturally occurring cyclic depsipeptides. To further development of FR or YM mimics for other Gα subunits, we here set out to rationally design Gα16 proteins with artificial FR/YM sensitivity by introducing an engineered depsipeptide-binding site. Thereby we permit control of G16 function through ligands that are inactive on the WT protein. Using CRISPR/Cas9-generated Gαq/Gα11-null cells and loss- and gain-of-function mutagenesis along with label-free whole-cell biosensing, we determined the molecular coordinates for FR/YM inhibition of Gq and transplanted these to FR/YM-insensitive G16. Intriguingly, despite having close structural similarity, FR and YM yielded biologically distinct activities: it was more difficult to perturb Gq inhibition by FR and easier to install FR inhibition onto G16 than perturb or install inhibition with YM. A unique hydrophobic network utilized by FR accounted for these unexpected discrepancies. Our results suggest that non-Gq/11/14 proteins should be amenable to inhibition by FR scaffold–based inhibitors, provided that these inhibitors mimic the interaction of FR with Gα proteins harboring engineered FR-binding sites.
Collapse
Affiliation(s)
- Davide Malfacini
- From the Molecular, Cellular and Pharmacobiology Section, Institute for Pharmaceutical Biology, University of Bonn, Nussallee 6, 53115 Bonn, Germany
| | - Julian Patt
- From the Molecular, Cellular and Pharmacobiology Section, Institute for Pharmaceutical Biology, University of Bonn, Nussallee 6, 53115 Bonn, Germany
| | - Suvi Annala
- From the Molecular, Cellular and Pharmacobiology Section, Institute for Pharmaceutical Biology, University of Bonn, Nussallee 6, 53115 Bonn, Germany
| | - Kasper Harpsøe
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Funda Eryilmaz
- From the Molecular, Cellular and Pharmacobiology Section, Institute for Pharmaceutical Biology, University of Bonn, Nussallee 6, 53115 Bonn, Germany
| | - Raphael Reher
- Institute for Pharmaceutical Biology, University of Bonn, Nussallee 6, 53115 Bonn, Germany
| | - Max Crüsemann
- Institute for Pharmaceutical Biology, University of Bonn, Nussallee 6, 53115 Bonn, Germany
| | - Wiebke Hanke
- Institute for Pharmaceutical Biology, University of Bonn, Nussallee 6, 53115 Bonn, Germany
| | - Hang Zhang
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Daniel Tietze
- Eduard Zintl Institute of Inorganic and Physical Chemistry, Technische Universität Darmstadt, 64287 Darmstadt, Germany
| | - David E Gloriam
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Hans Bräuner-Osborne
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Kristian Strømgaard
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Gabriele M König
- Institute for Pharmaceutical Biology, University of Bonn, Nussallee 6, 53115 Bonn, Germany
| | - Asuka Inoue
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Jesus Gomeza
- From the Molecular, Cellular and Pharmacobiology Section, Institute for Pharmaceutical Biology, University of Bonn, Nussallee 6, 53115 Bonn, Germany
| | - Evi Kostenis
- From the Molecular, Cellular and Pharmacobiology Section, Institute for Pharmaceutical Biology, University of Bonn, Nussallee 6, 53115 Bonn, Germany.
| |
Collapse
|
29
|
Reher R, Kuschak M, Heycke N, Annala S, Kehraus S, Dai HF, Müller CE, Kostenis E, König GM, Crüsemann M. Applying Molecular Networking for the Detection of Natural Sources and Analogues of the Selective Gq Protein Inhibitor FR900359. JOURNAL OF NATURAL PRODUCTS 2018; 81:1628-1635. [PMID: 29943987 DOI: 10.1021/acs.jnatprod.8b00222] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The cyclic depsipeptide FR900359 (FR), isolated from the traditional Chinese medicine plant Ardisia crenata, is a potent Gq protein inhibitor and thus a valuable tool to study Gq-mediated signaling of G protein-coupled receptors. Two new FR analogues (3 and 4) were isolated from A. crenata together with the known analogues 1 and 2. The structures of compounds 3 and 4 were established by NMR spectroscopic data and MS-based molecular networking followed by in-depth LCMS2 analysis. The latter approach led to the annotation of further FR analogues 5-9. Comparative bioactivity tests of compounds 1-4 along with the parent molecule FR showed high-affinity binding to Gq proteins in the low nanomolar range (IC50 = 2.3-16.8 nM) for all analogues as well as equipotent inhibition of Gq signaling, which gives important SAR insights into this valuable natural product. Additionally, FR was detected from leaves of five other Ardisia species, among them the non-nodulated leaves of Ardisia lucida, implying a much broader distribution of FR than originally anticipated.
Collapse
Affiliation(s)
| | | | | | | | | | - Hao-Fu Dai
- Institute of Tropical Bioscience and Biotechnology , Chinese Academy of Tropical Agricultural Sciences , Haikou 571101 , Hainan , China
| | | | | | | | | |
Collapse
|