1
|
Costanzo G, Coco A, Cosentino G, Patamia V, Parenti C, Amata E, Marrazzo A, Rescifina A, Pasquinucci L. Design, Synthesis, and Evaluation of Novel (-)-cis-N-Normetazocine Derivatives: In Vitro and Molecular Modeling Insights. Chem Biol Drug Des 2024; 104:e70037. [PMID: 39726303 DOI: 10.1111/cbdd.70037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 11/11/2024] [Accepted: 12/09/2024] [Indexed: 12/28/2024]
Abstract
Suitable structural modifications of the functional groups at N-substituent of (-)-cis-N-normetazocine nucleus modulate the affinity and activity profile of related ligands toward opioid receptors. Our research group has developed several compounds and the most interesting ligands, LP1 and LP2, exhibited a dual-target profile for mu-opioid receptor (MOR) and delta-opioid receptor (DOR). Recent structure-affinity relationship studies led to the discovery of novel LP2 analogs (compounds 1 and 2), which demonstrated high MOR affinity in the nanomolar range. Here, we reported the synthesis of the new (-)-cis-N-normetazocine derivatives (3-8) characterized by the absence of the phenyl ring in the N-substituent compared to all previous reported ligands. Compounds 3 and 4, featuring a methyl ester functional group in the N-substituent, retained significant MOR affinity and exhibited similar affinity for the kappa-opioid receptor (KOR). In contrast, compounds 7 and 8, which contain a hydroxamic acid functionality, maintained affinity exclusively toward MOR. Neither of compounds (3-8) showed DOR affinity. Molecular modeling studies confirmed a similar docking pose in the MOR binding pocket for these compounds. Additionally, the in silico ADME profile of the most interesting ligands (3, 4, 7, and 8) was investigated revealing a favorable profile for compound 7 regarding the blood-brain barrier permeability, suggesting its potential as a peripherally restricted opioid ligand.
Collapse
Affiliation(s)
- Giuliana Costanzo
- Department of Drug and Health Sciences, University of Catania, Catania, Italy
| | - Alessandro Coco
- Department of Drug and Health Sciences, University of Catania, Catania, Italy
| | - Giuseppe Cosentino
- Department of Drug and Health Sciences, University of Catania, Catania, Italy
| | - Vincenzo Patamia
- Department of Drug and Health Sciences, University of Catania, Catania, Italy
| | - Carmela Parenti
- Department of Drug and Health Sciences, University of Catania, Catania, Italy
| | - Emanuele Amata
- Department of Drug and Health Sciences, University of Catania, Catania, Italy
| | - Agostino Marrazzo
- Department of Drug and Health Sciences, University of Catania, Catania, Italy
| | - Antonio Rescifina
- Department of Drug and Health Sciences, University of Catania, Catania, Italy
| | - Lorella Pasquinucci
- Department of Drug and Health Sciences, University of Catania, Catania, Italy
| |
Collapse
|
2
|
Fuochi V, Furnari S, Floresta G, Patamia V, Zagni C, Drago F, Rescifina A, Furneri PM. Antiviral efficacy of heparan sulfate and enoxaparin sodium against SARS-CoV-2. Arch Pharm (Weinheim) 2024:e2400545. [PMID: 39520338 DOI: 10.1002/ardp.202400545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 10/19/2024] [Indexed: 11/16/2024]
Abstract
As the world transitions from the acute phase of the COVID-19 pandemic caused by SARS-CoV-2, the scientific community continues to explore various therapeutic avenues to control its spread and mitigate its ongoing effects. Among the promising candidates are heparan sulfate (HS) and enoxaparin (EX), which have emerged as potential virus inhibitors. HS, a type of glycosaminoglycan, plays a prominent role in the attachment of the virus to host cells. At the same time, EX, a low-molecular-weight heparin, is being investigated for its ability to disrupt the interaction between the spike protein of SARS-CoV-2 and the ACE2 receptor in human cells. Understanding the mechanisms through which these substances operate could lay the foundation for new strategies in the ongoing management of COVID-19. This study aimed to examine the details of SARS-CoV-2's entry mechanisms and the role of HS in this process. Furthermore, it examines EX's mechanism of action, highlighting how it potentially inhibits SARS-CoV-2. The interactions between HS and the virus, alongside in-vitro and in-silico inhibition studies with HS and EX, are critically analyzed to assess their antiviral efficacy. Additionally, the antiviral activity of sulfated polysaccharides and the potential therapeutic applications of these findings are discussed.
Collapse
Affiliation(s)
- Virginia Fuochi
- Department of Biomedical and Biotechnological Sciences (Biometec), University of Catania, Catania, Italy
| | - Salvatore Furnari
- Department of Biomedical and Biotechnological Sciences (Biometec), University of Catania, Catania, Italy
| | - Giuseppe Floresta
- Department of Drug and Health Sciences (DSFS), University of Catania, Catania, Italy
| | - Vincenzo Patamia
- Department of Drug and Health Sciences (DSFS), University of Catania, Catania, Italy
| | - Chiara Zagni
- Department of Drug and Health Sciences (DSFS), University of Catania, Catania, Italy
| | - Filippo Drago
- Department of Biomedical and Biotechnological Sciences (Biometec), University of Catania, Catania, Italy
| | - Antonio Rescifina
- Department of Drug and Health Sciences (DSFS), University of Catania, Catania, Italy
| | - Pio Maria Furneri
- Department of Biomedical and Biotechnological Sciences (Biometec), University of Catania, Catania, Italy
| |
Collapse
|
3
|
Failla M, Ferlazzo A, Abbate V, Neri G, Saccullo E, Gulino A, Rescifina A, Patamia V, Floresta G. THP as a sensor for the electrochemical detection of H 2O 2. Bioorg Chem 2024; 152:107721. [PMID: 39178705 DOI: 10.1016/j.bioorg.2024.107721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/08/2024] [Accepted: 08/12/2024] [Indexed: 08/26/2024]
Abstract
Hydrogen peroxide (H2O2) detection is paramount in biological and clinical domains due to its pivotal role in various physiological and pathological processes. This molecule is a crucial metabolite and effector in cellular redox mechanisms, influencing diverse cellular signaling pathways and bolstering the body's defense mechanisms against infection and oxidative stress. Organic molecule-based electrodes present unique advantages such as operational versatility and scalability, rendering them attractive candidates for sensor development across diverse fields encompassing food safety, healthcare, and environmental monitoring. This study explores the electrochemical properties of a tris(3-hydroxypyridin-4-one) THP, which has been unexplored in electrochemical sensing. Leveraging THP's chelating properties, we aimed to develop an electrochemical probe for hydrogen peroxide detection. Our investigations reveal promising results, with the developed sensor exhibiting a low limit of detection (LOD) of 144 nM, underscoring its potential utility in sensitive and selective H2O2 detection applications. In addition, the new sensor was also tested on fetal bovine serum (FBS) to emphasize future applications on biological matrices. This research signifies a significant stride in advancing electrochemical sensor technologies for hydrogen peroxide detection with several novelties related to the usage of THP, such as high sensitivity and selectivity, performance in biological matrices, repeatability, stability, and reproducibility, economical and practical advantages. This research opens new avenues for enhanced biomedical diagnostics and therapeutic interventions.
Collapse
Affiliation(s)
- Mariacristina Failla
- Department of Drug Science and Technology, University of Turin, Via P. Giuria 9, 10125 Turin, Italy
| | - Angelo Ferlazzo
- Department of Chemical Sciences and INSTM Research Unit, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy
| | - Vincenzo Abbate
- Institute of Pharmaceutical Sciences, King's College London, London, UK
| | - Giovanni Neri
- Department of Engineering, University of Messina, Messina 98166, Italy
| | - Erika Saccullo
- Department of Drug and Health Sciences, University of Catania, V.le A. Doria 6, 95125 Catania, Italy; Department of Biomedical and Biotechnological Sciences (Biometec), University of Catania, Via Santa Sofia 97, 95123 Catania, Italy
| | - Antonino Gulino
- Department of Chemical Sciences and INSTM Research Unit, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy
| | - Antonio Rescifina
- Department of Drug and Health Sciences, University of Catania, V.le A. Doria 6, 95125 Catania, Italy
| | - Vincenzo Patamia
- Department of Drug and Health Sciences, University of Catania, V.le A. Doria 6, 95125 Catania, Italy.
| | - Giuseppe Floresta
- Department of Drug and Health Sciences, University of Catania, V.le A. Doria 6, 95125 Catania, Italy.
| |
Collapse
|
4
|
Lo Bianco M, Fichera V, Zanghì A, Praticò AD, Falsaperla R, Vecchio M, Marino F, Palmucci S, Belfiore G, Foti P, Polizzi A. Polymicrogyria, Cobblestone Malformations, and Tubulin Mutation (Overmigration beyond Pial Limiting Membrane): Diagnosis, Treatment, and Rehabilitation Approach. JOURNAL OF PEDIATRIC NEUROLOGY 2024; 22:347-358. [DOI: 10.1055/s-0044-1786999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
AbstractPolymicrogyria, cobblestone malformations, and tubulinopathies constitute a group of neuronal migration abnormalities beyond the pial limiting membrane. Their etiopathogenesis remains unclear, with proposed environmental and genetic factors, including copy number variations and single-gene disorders, recently categorized.Polymicrogyria features numerous small circumvolutions separated by large, shallow grooves, often affecting the perisylvian cortex with various presentations. Clinical manifestations vary depending on lesion degree, extent, and location, commonly including epilepsy, encephalopathies, spastic tetraparesis, mental retardation, and cortical function deficits.Cobblestone malformations exhibit a Roman-like pavement cortex, affecting both hemispheres symmetrically due to disruption of the glia limitans, frequently linked to glycosyltransferase gene mutations. Classified separately from lissencephaly type II, they are associated with congenital muscular dystrophy syndromes such as Fukuyama congenital muscular dystrophy, Walker–Warburg syndrome, and muscle–eye–brain disease.Tubulinopathies encompass diverse cerebral malformations resulting from α-tubulin isotype gene variants, exhibiting a wide clinical spectrum including motor/cognitive impairment, facial diplegia, strabismus, and epilepsy.Diagnosis relies on magnetic resonance imaging (MRI) with age-specific protocols, highlighting the gray–white junction as a polymicrogyria marker, though neonatal diagnosis may be challenging due to technical and brain maturity issues.To date, no effective treatments are available and management include physiotherapy, speech and language therapy, and vision training program for oculomotor disabilities; antiepileptic drugs are commonly necessary, and most severe forms usually require specific nutritional support.
Collapse
Affiliation(s)
- Manuela Lo Bianco
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Valeria Fichera
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Antonio Zanghì
- Department of Medical and Surgical Sciences and Advanced Technologies, Research Center for Surgery of Complex Malformation Syndromes of Transition and Adulthood, University of Catania, Catania, Italy
| | - Andrea D. Praticò
- Chair of Pediatrics, Department of Medicine and Surgery, Kore University, Enna, Italy
| | - Raffaele Falsaperla
- Neonatal Intensive Care Unit and Neonatology, University Hospital “Policlinico Rodolico-San Marco,” Catania, Italy
| | - Michele Vecchio
- Rehabilitation Unit, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Francesco Marino
- Department of Medical Surgical Sciences and Advanced Technologies, University Hospital Policlinico “G. Rodolico-San Marco,” Catania, Italy
| | - Stefano Palmucci
- Department of Medical Surgical Sciences and Advanced Technologies, IPTRA Unit, University Hospital Policlinico “G. Rodolico-San Marco,” Catania, Italy
| | - Giuseppe Belfiore
- Department of Medical Surgical Sciences and Advanced Technologies, Unit of Radiology 1, University Hospital Policlinico “G. Rodolico-San Marco,” Catania, Italy
| | - Pietro Foti
- Department of Medical Surgical Sciences and Advanced Technologies, Unit of Radiology 1, University Hospital Policlinico “G. Rodolico-San Marco,” Catania, Italy
| | - Agata Polizzi
- Chair of Pediatrics, Department of Educational Sciences, University of Catania, Catania, Italy
| |
Collapse
|
5
|
Tosto M, Fichera V, Zanghì A, Praticò AD, Vecchio M, Palmucci S, Belfiore G, Foti P, Di Napoli C, Polizzi A. Schizencephaly: Etiopathogenesis, Classification, Therapeutic, and Rehabilitative Approach. JOURNAL OF PEDIATRIC NEUROLOGY 2024; 22:341-346. [DOI: 10.1055/s-0044-1786793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
AbstractSchizencephaly is an uncommon anomaly in neuronal migration characterized by complete clefts that extend from the pia mater to the ependymal surface of the ventricular system. These clefts are encompassed by displaced gray matter and filled with cerebrospinal fluid. Typically, they are found most often in the frontal lobe or the area around the lateral sulcus and can occur on one or both sides. The size, location, and type of these clefts carry significant clinical and prognostic implications. Moreover, they are frequently associated with other central nervous system malformations, including the absence of the septum pellucidum, septo-optic dysplasia, optic nerve hypoplasia, pachygyria, polymicrogyria, cortical dysplasia, heterotopia, and dysplasia of the corpus callosum. Occurrence of schizencephaly is almost always sporadic but its etiopathogenesis is yet to be fully understood. Most likely environmental factors, including exposure to teratogens, viral infections, and maternal factors, operate jointly with genetic defects. To date COL4A1, EMX2, SHH, and SIX3 are the genes identified as possible pathogenetic target. It is interesting to notice that schizencephaly is commonly seen in abandoned or adopted children, as proof of causative effect of intrautero insults. Clinical presentations widely vary and symptoms include a spectrum of cognitive impairment, limb paresis/tetraparesis, and epileptic seizures either with early or late onset; anyway, none of these symptoms is ever-present and patients with schizencephaly can also have normal neurocognitive and motor development. Diagnostic gold standard for schizencephaly is magnetic resonance imaging, which allows to identify and characterize typical clefts. Treatment of schizencephaly is symptomatic and supportive and depends on the severity of morbidity resulting from the malformation. Therapy includes antiepileptic drugs, psychomotor rehabilitation, and in selected cases surgical approach.
Collapse
Affiliation(s)
- Monica Tosto
- Pediatrics Postgraduate Residency Program, University of Catania, Catania, Italy
| | - Valeria Fichera
- Pediatrics Postgraduate Residency Program, University of Catania, Catania, Italy
| | - Antonio Zanghì
- Research Center for Surgery of Complex Malformation Syndromes of Transition and Adulthood, Department of Medical and Surgical Sciences and Advanced Technologies, University of Catania, Catania, Italy
| | - Andrea D. Praticò
- Division of Pediatrics, Department of Medicine and Surgery, Kore University, Enna, Italy
| | - Michele Vecchio
- Rehabilitation Unit, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Stefano Palmucci
- IPTRA Unit, Department of Medical Surgical Sciences and Advanced Technologies, University Hospital Policlinico “G. Rodolico-San Marco,” Catania, Italy
| | - Giuseppe Belfiore
- Department of Medical Surgical Sciences and Advanced Technologies, Unit of Radiology 1, University Hospital Policlinico “G. Rodolico-San Marco,” Catania, Italy
| | - Pietro Foti
- Department of Medical Surgical Sciences and Advanced Technologies, Unit of Radiology 1, University Hospital Policlinico “G. Rodolico-San Marco,” Catania, Italy
| | - Claudia Di Napoli
- Division of Pediatrics, Department of Medicine and Surgery, Kore University, Enna, Italy
| | - Agata Polizzi
- Division of Pediatrics, Department of Educational Sciences, University of Catania, Catania, Italy
| |
Collapse
|
6
|
Polizzi A, Ruggieri M, Praticò AD, Leotta M, Cavallaro P, Sciuto L, Vecchio M, Di Napoli C. At the Basis of Brain Malformations: Brain Plasticity, Developmental Neurobiology, and Considerations for Rehabilitation. JOURNAL OF PEDIATRIC NEUROLOGY 2024; 22:096-107. [DOI: 10.1055/s-0044-1786784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
AbstractFrom early age in the human brain occurs plasticity process that influences its development. The functioning of the brain is governed by its neuronal connectivity and the synaptic dynamics of these connections. A neuron, over thousands of synapses, can receive a large number of inputs and produce different outputs leading to the consolidation and integration of memory. Synaptic plasticity is the set of experience-dependent changes in neuronal pathways that support acquired habits. It is the ability of the nervous system to reshape connectivity between neurons, changing the functional and structural organization of neuronal circuits that allows us to adapt to the multiple and continuous changes in the environment and leading to processes such as cognitive development and the ability to learn. Synaptic plasticity is mainly due to short- and long-term mechanisms. Short-term synaptic plasticity refers to changes in synaptic strength that occurs very quickly (from one-thousandth of a second to 5 minutes) and are temporary and decay over minutes (maximum 30 minutes). Long-term synaptic plasticity is defined by a long-lasting, activity-dependent change in synaptic efficacy, last from hours up to a lifetime (from 30 minutes to weeks, months, and years) and is thought to constitute the basis of learning and memory. A significant difference occurs in the nature of the change; short-term plasticity adds only a functional change, whereas long-term plasticity causes not only functional but also structural changes. Aside from genetic factors and metabolic processes, brain development is mediated also by environmental factors. Interaction with the environment plays a key role in the development and growth of neural networks and neuroplasticity. Environmental interactions that can modify and increase the development of neural networks and intelligence in children are several and are herein discussed.
Collapse
Affiliation(s)
- Agata Polizzi
- Chair of Pediatrics, Department of Educational Sciences, University of Catania, Catania, Italy
| | - Martino Ruggieri
- Unit of Pediatric Clinic, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Andrea D. Praticò
- Chair of Pediatrics, Department of Medicine and Surgery, Kore University, Enna, Italy
| | - Michela Leotta
- Pediatrics Postgraduate Residency Program, University of Messina, Messina, Italy
| | - Paola Cavallaro
- Pediatrics Postgraduate Residency Program, University of Messina, Messina, Italy
| | - Laura Sciuto
- Pediatrics Postgraduate Residency Program, University of Catania, Catania, Italy
| | - Michele Vecchio
- Rehabilitation Unit, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Claudia Di Napoli
- Chair of Genetics, Department of Medicine and Surgery, Kore Unviersity, Enna, Italy
| |
Collapse
|
7
|
Gentile D, Chiummiento L, Santarsiere A, Funicello M, Lupattelli P, Rescifina A, Venuti A, Piperno A, Sciortino MT, Pennisi R. Targeting Viral and Cellular Cysteine Proteases for Treatment of New Variants of SARS-CoV-2. Viruses 2024; 16:338. [PMID: 38543704 PMCID: PMC10976049 DOI: 10.3390/v16030338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/12/2024] [Accepted: 02/19/2024] [Indexed: 04/21/2024] Open
Abstract
The continuous emergence of SARS-CoV-2 variants caused the persistence of the COVID-19 epidemic and challenged the effectiveness of the existing vaccines. The viral proteases are the most attractive targets for developing antiviral drugs. In this scenario, our study explores the use of HIV-1 protease inhibitors against SARS-CoV-2. An in silico screening of a library of HIV-1 proteases identified four anti-HIV compounds able to interact with the 3CLpro of SARS-CoV-2. Thus, in vitro studies were designed to evaluate their potential antiviral effectiveness against SARS-CoV-2. We employed pseudovirus technology to simulate, in a highly safe manner, the adsorption of the alpha (α-SARS-CoV-2) and omicron (ο-SARS-CoV-2) variants of SARS-CoV-2 and study the inhibitory mechanism of the selected compounds for cell-virus interaction. The results reported a mild activity against the viral proteases 3CLpro and PLpro, but efficient inhibitory effects on the internalization of both variants mediated by cathepsin B/L. Our findings provide insights into the feasibility of using drugs exhibiting antiviral effects for other viruses against the viral and host SARS-CoV-2 proteases required for entry.
Collapse
Affiliation(s)
- Davide Gentile
- Department of Chemistry, Materials and Chemical Engineering "G. Natta", Politecnico di Milano, Via Mancinelli 7, 20131 Milano, Italy
| | - Lucia Chiummiento
- Department of Scienze, University of Basilicata, Viale dell'Ateneo Lucano 10, 85100 Potenza, Italy
| | - Alessandro Santarsiere
- Department of Scienze, University of Basilicata, Viale dell'Ateneo Lucano 10, 85100 Potenza, Italy
| | - Maria Funicello
- Department of Scienze, University of Basilicata, Viale dell'Ateneo Lucano 10, 85100 Potenza, Italy
| | - Paolo Lupattelli
- Department of Chimica, Sapienza University of Roma, p. le Aldo Moro 5, 00185 Roma, Italy
| | - Antonio Rescifina
- Department of Drug and Health Sciences, University of Catania, V. le A. Doria, 95125 Catania, Italy
| | - Assunta Venuti
- International Agency for Research on Cancer (IARC), World Health Organization, 69366 LYON CEDEX 07, France
| | - Anna Piperno
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, Viale Ferdinando Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Maria Teresa Sciortino
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, Viale Ferdinando Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Rosamaria Pennisi
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, Viale Ferdinando Stagno d'Alcontres 31, 98166 Messina, Italy
| |
Collapse
|
8
|
Kim KM, Lee TK, Lee SM, Chang WS, Lee SJ, Hwang J, Cho SR. Case report: Intrathecal baclofen therapy improved gait pattern in a stroke patient with spastic dystonia. Front Neurol 2024; 15:1330811. [PMID: 38419706 PMCID: PMC10899344 DOI: 10.3389/fneur.2024.1330811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 01/22/2024] [Indexed: 03/02/2024] Open
Abstract
Background Intrathecal baclofen (ITB) therapy, a viable alternative for unsuitable candidates of conventional spasticity medications, is a preferred method of administration over the oral route. Owing to its enhanced bioavailability, ITB ensures a more effective delivery at the target site. Objective There is a lack of conclusive evidence regarding the use of ITB treatment in managing ambulatory patients with spastic dystonia. Before ITB pump implantation, patients commonly undergo an ITB bolus injection trial to rule out potential adverse reactions and verify the therapeutic effects on hypertonic issues. In this report, we highlight a case of spastic dystonia, particularly focusing on an ambulatory patient who demonstrated significant improvement in both the modified Ashworth scale (MAS) score and gait pattern following the ITB injection trial. Case report This case report outlines the medical history of a 67-year-old male diagnosed with left-side hemiplegia and spastic dystonia, resulting from his second episode of intracranial hemorrhage in the right thalamus. An ITB injection trial was initiated because the patient was not suitable for continued botulinum toxin injections and oral medications. This was due to the persistent occurrence of spastic dystonia in both the upper and lower extremities. The patient underwent a four-day ITB injection trial with progressively increasing doses, resulting in improved MAS scores and gait parameters, including cadence, step length, step time, stride length, and stride time were increased. Particularly, kinematic gait analysis demonstrates a substantial improvement of increased knee flexion in the swing phase in stiff knee gait pattern. These findings indicated a gradual reduction in spasticity-related symptoms, signifying the positive effect of the ITB injection trial. The patient eventually received an ITB pump implantation. Conclusion In this post-stroke patient with spastic dystonia, ITB therapy has demonstrated effective and substantial management of spasticity, along with improvement in gait patterns.
Collapse
Affiliation(s)
- Kyung Min Kim
- Department and Research Institute of Rehabilitation Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Tae Kwon Lee
- Department and Research Institute of Rehabilitation Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Su Min Lee
- Department and Research Institute of Rehabilitation Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Won Seok Chang
- Department of Neurosurgery and Brain Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Su Ji Lee
- Department and Research Institute of Rehabilitation Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jihye Hwang
- Department and Research Institute of Rehabilitation Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
- Graduate Program of Biomedical Engineering, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Sung-Rae Cho
- Department and Research Institute of Rehabilitation Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
- Graduate Program of Biomedical Engineering, Yonsei University College of Medicine, Seoul, Republic of Korea
- Brain Korea 21 FOUR Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
- Rehabilitation Institute of Neuromuscular Disease, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
9
|
De Gaetano F, Pastorello M, Pistarà V, Rescifina A, Margani F, Barbera V, Ventura CA, Marino A. Rutin/Sulfobutylether-β-Cyclodextrin as a Promising Therapeutic Formulation for Ocular Infection. Pharmaceutics 2024; 16:233. [PMID: 38399286 PMCID: PMC10892075 DOI: 10.3390/pharmaceutics16020233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 01/26/2024] [Accepted: 01/30/2024] [Indexed: 02/25/2024] Open
Abstract
Ocular pathologies present significant challenges to achieving effective therapeutic results due to various anatomical and physiological barriers. Natural products such as flavonoids, alone or in association with allopathic drugs, present many therapeutic actions including anticancer, anti-inflammatory, and antibacterial action. However, their clinical employment is challenging for scientists due to their low water solubility. In this study, we designed a liquid formulation based on rutin/sulfobutylether-β-cyclodextrin (RTN/SBE-β-CD) inclusion complex for treating ocular infections. The correct stoichiometry and the accurate binding constant were determined by employing SupraFit software (2.5.120) in the UV-vis titration experiment. A deep physical-chemical characterization of the RTN/SBE-β-CD inclusion complex was also performed; it confirmed the predominant formation of a stable complex (Kc, 9660 M-1) in a 1:1 molar ratio, with high water solubility that was 20 times (2.5 mg/mL) higher than the free molecule (0.125 mg/mL), permitting the dissolution of the solid complex within 30 min. NMR studies revealed the involvement of the bicyclic flavonoid moiety in the complexation, which was also confirmed by molecular modeling studies. In vitro, the antibacterial and antibiofilm activity of the formulation was assayed against Staphylococcus aureus and Pseudomonas aeruginosa strains. The results demonstrated a significant activity of the formulation than that of the free molecules.
Collapse
Affiliation(s)
- Federica De Gaetano
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy; (F.D.G.); (M.P.)
| | - Martina Pastorello
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy; (F.D.G.); (M.P.)
| | - Venerando Pistarà
- Department of Pharmaceutical and Health Sciences, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy; (V.P.); (A.R.)
| | - Antonio Rescifina
- Department of Pharmaceutical and Health Sciences, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy; (V.P.); (A.R.)
| | - Fatima Margani
- Department of Chemistry, Materials and Chemical Engineering “G. Natta”, Politecnico di Milano, Via Mancinelli 7, 20131 Milano, Italy; (F.M.); (V.B.)
| | - Vincenzina Barbera
- Department of Chemistry, Materials and Chemical Engineering “G. Natta”, Politecnico di Milano, Via Mancinelli 7, 20131 Milano, Italy; (F.M.); (V.B.)
| | - Cinzia Anna Ventura
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy; (F.D.G.); (M.P.)
| | - Andreana Marino
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy; (F.D.G.); (M.P.)
| |
Collapse
|
10
|
Pennisi R, Gentile D, Rescifina A, Napoli E, Trischitta P, Piperno A, Sciortino MT. An Integrated In Silico and In Vitro Approach for the Identification of Natural Products Active against SARS-CoV-2. Biomolecules 2023; 14:43. [PMID: 38254643 PMCID: PMC10813393 DOI: 10.3390/biom14010043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/22/2023] [Accepted: 12/25/2023] [Indexed: 01/24/2024] Open
Abstract
Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has provoked a global health crisis due to the absence of a specific therapeutic agent. 3CLpro (also known as the main protease or Mpro) and PLpro are chymotrypsin-like proteases encoded by the SARS-CoV-2 genome, and play essential roles during the virus lifecycle. Therefore, they are recognized as a prospective therapeutic target in drug discovery against SARS-CoV-2 infection. Thus, this work aims to collectively present potential natural 3CLpro and PLpro inhibitors by in silico simulations and in vitro entry pseudotype-entry models. We screened luteolin-7-O-glucuronide (L7OG), cynarin (CY), folic acid (FA), and rosmarinic acid (RA) molecules against PLpro and 3CLpro through a luminogenic substrate assay. We only reported moderate inhibitory activity on the recombinant 3CLpro and PLpro by L7OG and FA. Afterward, the entry inhibitory activity of L7OG and FA was tested in cell lines transduced with the two different SARS-CoV-2 pseudotypes harboring alpha (α) and omicron (o) spike (S) protein. The results showed that both compounds have a consistent inhibitory activity on the entry for both variants. However, L7OG showed a greater degree of entry inhibition against α-SARS-CoV-2. Molecular modeling studies were used to determine the inhibitory mechanism of the candidate molecules by focusing on their interactions with residues recognized by the protease active site and receptor-binding domain (RBD) of spike SARS-CoV-2. This work allowed us to identify the binding sites of FA and L7OG within the RBD domain in the alpha and omicron variants, demonstrating how FA is active in both variants. We have confidence that future in vivo studies testing the safety and effectiveness of these natural compounds are warranted, given that they are effective against a variant of concerns.
Collapse
Affiliation(s)
- Rosamaria Pennisi
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy; (P.T.); (A.P.); (M.T.S.)
| | - Davide Gentile
- Department of Chemistry, Materials and Chemical Engineering “G. Natta”, Politecnico di Milano, Via Mancinelli 7, 20131 Milano, Italy
| | - Antonio Rescifina
- Department of Drug and Health Sciences, University of Catania, V.le A. Doria 6, 95125 Catania, Italy;
| | - Edoardo Napoli
- Istituto di Chimica Biomolecolare—Consiglio Nazionale delle Ricerche, 95126 Catania, Italy;
| | - Paola Trischitta
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy; (P.T.); (A.P.); (M.T.S.)
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via Elce di Sotto 8, 06123 Perugia, Italy
| | - Anna Piperno
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy; (P.T.); (A.P.); (M.T.S.)
| | - Maria Teresa Sciortino
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy; (P.T.); (A.P.); (M.T.S.)
| |
Collapse
|
11
|
de Chaves MA, da Costa BS, de Souza JA, Batista MA, de Andrade SF, Hage-Melim LIDS, Abegg M, Lopes MS, Fuentefria AM. In silico and in vitro analysis of the mechanisms of action of nitroxoline against some medically important opportunistic fungi. J Mycol Med 2023; 33:101411. [PMID: 37413753 DOI: 10.1016/j.mycmed.2023.101411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 06/04/2023] [Accepted: 06/26/2023] [Indexed: 07/08/2023]
Abstract
The increasing resistance to antifungal agents associated with toxicity and interactions turns therapeutic management of fungal infections difficult. This scenario emphasizes the importance of drug repositioning, such as nitroxoline - a urinary antibacterial agent that has shown potential antifungal activity. The aims of this study were to discover the possible therapeutic targets of nitroxoline using an in silico approach, and to determine the in vitro antifungal activity of the drug against the fungal cell wall and cytoplasmic membrane. We explored the biological activity of nitroxoline using PASS, SwissTargetPrediction and Cortellis Drug Discovery Intelligence web tools. After confirmation, the molecule was designed and optimized in HyperChem software. GOLD 2020.1 software was used to predict the interactions between the drug and the target proteins. In vitro investigation evaluated the effect of nitroxoline on the fungal cell wall through sorbitol protection assay. Ergosterol binding assay was carried out to assess the effect of the drug on the cytoplasmic membrane. In silico investigation revealed biological activity with alkane 1-monooxygenase and methionine aminopeptidase enzymes, showing nine and five interactions in the molecular docking, respectively. In vitro results exhibited no effect on the fungal cell wall or cytoplasmic membrane. Finally, nitroxoline has potential as an antifungal agent due to the interaction with alkane 1-monooxygenase and methionine aminopeptidase enzymes, which are not the main human therapeutic targets. These results have potentially revealed a new biological target for the treatment of fungal infections. We also consider that further studies are required to confirm the biological activity of nitroxoline on fungal cells, mainly the confirmation of the alkB gene.
Collapse
Affiliation(s)
- Magda Antunes de Chaves
- Graduate Program in Agricultural and Environmental Microbiology, Federal University of Rio Grande do Sul, Porto Alegre, Brazil.
| | - Bárbara Souza da Costa
- Graduate Program in Pharmaceutical Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Jade André de Souza
- Graduate Program in Agricultural and Environmental Microbiology, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Mateus Alves Batista
- Laboratory of Pharmaceutical and Medicinal Chemistry (PharMedChem), Federal University of Amapá, Rod JK Km 2, Macapá, Amapá, Brazil
| | - Saulo Fernandes de Andrade
- Graduate Program in Pharmaceutical Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | | | - Maxwell Abegg
- Institute of Exact Sciences and Technology, Federal University of Amazonas, Itacoatiara, Amazonas, Brazil
| | - Marcela Silva Lopes
- Graduate Program in Pharmaceutical Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Alexandre Meneghello Fuentefria
- Graduate Program in Agricultural and Environmental Microbiology, Federal University of Rio Grande do Sul, Porto Alegre, Brazil; Graduate Program in Pharmaceutical Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
12
|
Heparan Sulfate and Enoxaparin Interact at the Interface of the Spike Protein of HCoV-229E but Not with HCoV-OC43. Viruses 2023; 15:v15030663. [PMID: 36992372 PMCID: PMC10056857 DOI: 10.3390/v15030663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 11/20/2022] [Accepted: 01/05/2023] [Indexed: 03/05/2023] Open
Abstract
It is known that the spike protein of human coronaviruses can bind to a secondary receptor, or coreceptor, to facilitate the virus entry. While HCoV-229E uses human aminopeptidase N (hAPN) as a receptor, HCoV-OC43 binds to 9-O-acetyl-sialic acid (9-O-Ac-Sia), which is linked in a terminal way to the oligosaccharides that decorate glycoproteins and gangliosides on the surface of the host cell. Thus, evaluating the possible inhibitory activity of heparan sulfate, a linear polysaccharide found in animal tissues, and enoxaparin sodium on these viral strains can be considered attractive. Therefore, our study also aims to evaluate these molecules’ antiviral activity as possible adsorption inhibitors against non-SARS-CoV. Once the molecules’ activity was verified in in vitro experiments, the binding was studied by molecular docking and molecular dynamic simulations confirming the interactions at the interface of the spike proteins.
Collapse
|
13
|
Patamia V, Floresta G, Zagni C, Pistarà V, Punzo F, Rescifina A. 1,2-Dibenzoylhydrazine as a Multi-Inhibitor Compound: A Morphological and Docking Study. Int J Mol Sci 2023; 24:1425. [PMID: 36674938 PMCID: PMC9864281 DOI: 10.3390/ijms24021425] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 12/24/2022] [Accepted: 01/07/2023] [Indexed: 01/12/2023] Open
Abstract
In the framework of the multitarget inhibitor study, we report an in silico analysis of 1,2-dibenzoylhydrazine (DBH) with respect to three essential receptors such as the ecdysone receptor (EcR), urease, and HIV-integrase. Starting from a crystallographic structural study of accidentally harvested crystals of this compound, we performed docking studies to evaluate the inhibitory capacity of DBH toward three selected targets. A crystal morphology prediction was then performed. The results of our molecular modeling calculations indicate that DBH is an excellent candidate as a ligand to inhibit the activity of EcR receptors and urease. Docking studies also revealed the activity of DBH on the HIV integrase receptor, providing an excellent starting point for developing novel inhibitors using this molecule as a starting lead compound.
Collapse
Affiliation(s)
| | | | | | | | | | - Antonio Rescifina
- Department of Drug and Health Sciences, University of Catania, V.le A. Doria 6, 95125 Catania, Italy
| |
Collapse
|
14
|
Attiq N, Arshad U, Brogi S, Shafiq N, Imtiaz F, Parveen S, Rashid M, Noor N. Exploring the anti-SARS-CoV-2 main protease potential of FDA approved marine drugs using integrated machine learning templates as predictive tools. Int J Biol Macromol 2022; 220:1415-1428. [PMID: 36122771 PMCID: PMC9479384 DOI: 10.1016/j.ijbiomac.2022.09.086] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/09/2022] [Accepted: 09/09/2022] [Indexed: 11/22/2022]
Abstract
Since the inception of COVID-19 pandemic in December 2019, socio-economic crisis begins to rise globally and SARS-CoV-2 was responsible for this outbreak. With this outbreak, currently, world is in need of effective and safe eradication of COVID-19. Hence, in this study anti-SAR-Co-2 potential of FDA approved marine drugs (Biological macromolecules) data set is explored computationally using machine learning algorithm of Flare by Cresset Group, Field template, 3D-QSAR and activity Atlas model was generated against FDA approved M-pro SARS-CoV-2 repurposed drugs including Nafamostat, Hydroxyprogesterone caporate, and Camostat mesylate. Data sets were categorized into active and inactive molecules on the basis of their structural and biological resemblance with repurposed COVID-19 drugs. Then these active compounds were docked against the five different M-pro proteins co-crystal structures. Highest LF VS score of Holichondrin B against all main protease co-crystal structures ranked it as lead drug. Finally, this new technique of drug repurposing remained efficient to explore the anti-SARS-CoV-2 potential of FDA approved marine drugs.
Collapse
Affiliation(s)
- Naila Attiq
- Synthetic and Natural Products Discovery (SNPD) Laboratory, Department of Chemistry, Government College Women University Faisalabad, 38000, Pakistan
| | - Uzma Arshad
- Synthetic and Natural Products Discovery (SNPD) Laboratory, Department of Chemistry, Government College Women University Faisalabad, 38000, Pakistan
| | - Simone Brogi
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy.
| | - Nusrat Shafiq
- Synthetic and Natural Products Discovery (SNPD) Laboratory, Department of Chemistry, Government College Women University Faisalabad, 38000, Pakistan.
| | - Fazeelat Imtiaz
- Green Chemistry Laboratory, Department of Chemistry, Government College Women University Faisalabad, 38000, Pakistan
| | - Shagufta Parveen
- Synthetic and Natural Products Discovery (SNPD) Laboratory, Department of Chemistry, Government College Women University Faisalabad, 38000, Pakistan
| | - Maryam Rashid
- Synthetic and Natural Products Discovery (SNPD) Laboratory, Department of Chemistry, Government College Women University Faisalabad, 38000, Pakistan
| | - Nadia Noor
- Micro-biology Laboratory, Department of Chemistry, Government College Women University Faisalabad, 38000, Pakistan
| |
Collapse
|
15
|
Gentile D, Coco A, Patamia V, Zagni C, Floresta G, Rescifina A. Targeting the SARS-CoV-2 HR1 with Small Molecules as Inhibitors of the Fusion Process. Int J Mol Sci 2022; 23:10067. [PMID: 36077465 PMCID: PMC9456533 DOI: 10.3390/ijms231710067] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/30/2022] [Accepted: 08/31/2022] [Indexed: 11/16/2022] Open
Abstract
The rapid and global propagation of the novel human coronavirus that causes severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has produced an immediate urgency to discover promising targets for the treatment of this virus. In this paper, we studied the spike protein S2 domain of SARS-CoV-2 as it is the most conserved component and controls the crucial fusion process of SARS-CoV-2 as a target for different databases of small organic compounds. Our in silico methodology, based on pharmacophore modeling, docking simulation and molecular dynamics simulations, was first validated with ADS-J1, a potent small-molecule HIV fusion inhibitor that has already proved effective in binding the HR1 domain and inhibiting the fusion core of SARS-CoV-1. It then focused on finding novel small molecules and new peptides as fusion inhibitors. Our methodology identified several small molecules and peptides as potential inhibitors of the fusion process. Among these, NF 023 hydrate (MolPort-006-822-583) is one of the best-scored compounds. Other compounds of interest are ZINC00097961973, Salvianolic acid, Thalassiolin A and marine_160925_88_2. Two interesting active peptides were also identified: AP00094 (Temporin A) and AVP1227 (GBVA5). The inhibition of the spike protein of SARS-CoV-2 is a valid target to inhibit the virus entry in human cells. The discussed compounds reported in this paper led to encouraging results for future in vitro tests against SARS-CoV-2.
Collapse
Affiliation(s)
| | | | | | | | | | - Antonio Rescifina
- Dipartimento di Scienze del Farmaco e Della Salute, Università di Catania, Viale A. Doria 6, 95125 Catania, Italy
| |
Collapse
|
16
|
Rasetti-Escargueil C, Popoff MR. Recent Developments in Botulinum Neurotoxins Detection. Microorganisms 2022; 10:microorganisms10051001. [PMID: 35630444 PMCID: PMC9145529 DOI: 10.3390/microorganisms10051001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 04/29/2022] [Accepted: 05/03/2022] [Indexed: 02/04/2023] Open
Abstract
Botulinum neurotoxins (BoNTs) are produced as protein complexes by bacteria of the genus Clostridium that are Gram-positive, anaerobic and spore forming (Clostridium botulinum, C. butyricum, C. baratii and C. argentinense spp.). BoNTs show a high immunological and genetic diversity. Therefore, fast, precise, and more reliable detection methods are still required to monitor outbreaks and ensure surveillance of botulism. The botulinum toxin field also comprises therapeutic uses, basic research studies and biodefense issues. This review presents currently available detection methods, and new methods offering the potential of enhanced precision and reproducibility. While the immunological methods offer a range of benefits, such as rapid analysis time, reproducibility and high sensitivity, their implementation is subject to the availability of suitable tools and reagents, such as specific antibodies. Currently, the mass spectrometry approach is the most sensitive in vitro method for a rapid detection of active or inactive forms of BoNTs. However, these methods require inter-laboratory validation before they can be more widely implemented in reference laboratories. In addition, these surrogate in vitro models also require full validation before they can be used as replacement bioassays of potency. Cell-based assays using neuronal cells in culture recapitulate all functional steps of toxin activity, but are still at various stages of development; they are not yet sufficiently robust, due to high batch-to-batch cell variability. Cell-based assays have a strong potential to replace the mouse bioassay (MBA) in terms of BoNT potency determination in pharmaceutical formulations; they can also help to identify suitable inhibitors while reducing the number of animals used. However, the development of safe countermeasures still requires the use of in vivo studies to complement in vitro immunological or cell-based approaches.
Collapse
|
17
|
Szczepańska K, Podlewska S, Dichiara M, Gentile D, Patamia V, Rosier N, Mönnich D, Ruiz Cantero MC, Karcz T, Łażewska D, Siwek A, Pockes S, Cobos EJ, Marrazzo A, Stark H, Rescifina A, Bojarski AJ, Amata E, Kieć-Kononowicz K. Structural and Molecular Insight into Piperazine and Piperidine Derivatives as Histamine H 3 and Sigma-1 Receptor Antagonists with Promising Antinociceptive Properties. ACS Chem Neurosci 2022; 13:1-15. [PMID: 34908391 PMCID: PMC8739840 DOI: 10.1021/acschemneuro.1c00435] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 11/29/2021] [Indexed: 12/11/2022] Open
Abstract
In an attempt to extend recent studies showing that some clinically evaluated histamine H3 receptor (H3R) antagonists possess nanomolar affinity at sigma-1 receptors (σ1R), we selected 20 representative structures among our previously reported H3R ligands to investigate their affinity at σRs. Most of the tested compounds interact with both sigma receptors to different degrees. However, only six of them showed higher affinity toward σ1R than σ2R with the highest binding preference to σ1R for compounds 5, 11, and 12. Moreover, all these ligands share a common structural feature: the piperidine moiety as the fundamental part of the molecule. It is most likely a critical structural element for dual H3/σ1 receptor activity as can be seen by comparing the data for compounds 4 and 5 (hH3R Ki = 3.17 and 7.70 nM, σ1R Ki = 1531 and 3.64 nM, respectively), where piperidine is replaced by piperazine. We identified the putative protein-ligand interactions responsible for their high affinity using molecular modeling techniques and selected compounds 5 and 11 as lead structures for further evaluation. Interestingly, both ligands turned out to be high-affinity histamine H3 and σ1 receptor antagonists with negligible affinity at the other histamine receptor subtypes and promising antinociceptive activity in vivo. Considering that many literature data clearly indicate high preclinical efficacy of individual selective σ1 or H3R ligands in various pain models, our research might be a breakthrough in the search for novel, dual-acting compounds that can improve existing pain therapies. Determining whether such ligands are more effective than single-selective drugs will be the subject of our future studies.
Collapse
Affiliation(s)
- Katarzyna Szczepańska
- Department
of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Kraków 30-688, Poland
- Maj
Institute of Pharmacology, Polish Academy
of Sciences, Smętna 12, Kraków 31-343, Poland
| | - Sabina Podlewska
- Department
of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Kraków 30-688, Poland
- Maj
Institute of Pharmacology, Polish Academy
of Sciences, Smętna 12, Kraków 31-343, Poland
| | - Maria Dichiara
- Department
of Drug and Health Sciences, University
of Catania, V.le A. Doria, 95125 Catania, Italy
| | - Davide Gentile
- Department
of Drug and Health Sciences, University
of Catania, V.le A. Doria, 95125 Catania, Italy
| | - Vincenzo Patamia
- Department
of Drug and Health Sciences, University
of Catania, V.le A. Doria, 95125 Catania, Italy
| | - Niklas Rosier
- Institute
of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany
| | - Denise Mönnich
- Institute
of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany
| | - Ma Carmen Ruiz Cantero
- Department
of Pharmacology and Neurosciences Institute (Biomedical Research Center)
and Biosanitary Research Institute ibs.GRANADA, University of Granada, Avenida de la Investigación 11, 18016 Granada, Spain
| | - Tadeusz Karcz
- Department
of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Kraków 30-688, Poland
| | - Dorota Łażewska
- Department
of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Kraków 30-688, Poland
| | - Agata Siwek
- Department
of Pharmacobiology, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Kraków 30-688, Poland
| | - Steffen Pockes
- Institute
of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany
| | - Enrique J. Cobos
- Department
of Pharmacology and Neurosciences Institute (Biomedical Research Center)
and Biosanitary Research Institute ibs.GRANADA, University of Granada, Avenida de la Investigación 11, 18016 Granada, Spain
| | - Agostino Marrazzo
- Department
of Drug and Health Sciences, University
of Catania, V.le A. Doria, 95125 Catania, Italy
| | - Holger Stark
- Institute
of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Universitaetsstr. 1, 40225 Duesseldorf, Germany
| | - Antonio Rescifina
- Department
of Drug and Health Sciences, University
of Catania, V.le A. Doria, 95125 Catania, Italy
| | - Andrzej J. Bojarski
- Maj
Institute of Pharmacology, Polish Academy
of Sciences, Smętna 12, Kraków 31-343, Poland
| | - Emanuele Amata
- Department
of Drug and Health Sciences, University
of Catania, V.le A. Doria, 95125 Catania, Italy
| | - Katarzyna Kieć-Kononowicz
- Department
of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Kraków 30-688, Poland
| |
Collapse
|
18
|
Avram S, Stan MS, Udrea AM, Buiu C, Boboc AA, Mernea M. 3D-ALMOND-QSAR Models to Predict the Antidepressant Effect of Some Natural Compounds. Pharmaceutics 2021; 13:pharmaceutics13091449. [PMID: 34575524 PMCID: PMC8470101 DOI: 10.3390/pharmaceutics13091449] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 09/06/2021] [Accepted: 09/07/2021] [Indexed: 11/30/2022] Open
Abstract
The current treatment of depression involves antidepressant synthetic drugs that have a variety of side effects. In searching for alternatives, natural compounds could represent a solution, as many studies reported that such compounds modulate the nervous system and exhibit antidepressant effects. We used bioinformatics methods to predict the antidepressant effect of ten natural compounds with neuroleptic activity, reported in the literature. For all compounds we computed their drug-likeness, absorption, distribution, metabolism, excretion (ADME), and toxicity profiles. Their antidepressant and neuroleptic activities were predicted by 3D-ALMOND-QSAR models built by considering three important targets, namely serotonin transporter (SERT), 5-hydroxytryptamine receptor 1A (5-HT1A), and dopamine D2 receptor. For our QSAR models we have used the following molecular descriptors: hydrophobicity, electrostatic, and hydrogen bond donor/acceptor. Our results showed that all compounds present drug-likeness features as well as promising ADME features and no toxicity. Most compounds appear to modulate SERT, and fewer appear as ligands for 5-HT1A and D2 receptors. From our prediction, linalyl acetate appears as the only ligand for all three targets, neryl acetate appears as a ligand for SERT and D2 receptors, while 1,8-cineole appears as a ligand for 5-HT1A and D2 receptors.
Collapse
Affiliation(s)
- Speranta Avram
- Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, SplaiulIndependentei, No 91-95, 050095 Bucharest, Romania; (S.A.); (M.S.S.); (M.M.)
| | - Miruna Silvia Stan
- Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, SplaiulIndependentei, No 91-95, 050095 Bucharest, Romania; (S.A.); (M.S.S.); (M.M.)
- Research Institute of the University of Bucharest–ICUB, University of Bucharest, 91–95, SplaiulIndependentei, 050095 Bucharest, Romania;
| | - Ana Maria Udrea
- Research Institute of the University of Bucharest–ICUB, University of Bucharest, 91–95, SplaiulIndependentei, 050095 Bucharest, Romania;
- Laser Department, National Institute for Laser, Plasma and Radiation Physics, 077125 Magurele, Romania
| | - Cătălin Buiu
- Department of Automatic Control and Systems Engineering, Politehnica University of Bucharest, 313 SplaiulIndependenţei, 060042 Bucharest, Romania
- Correspondence: ; Tel.: +40-021-402-9167
| | - Anca Andreea Boboc
- “Maria Sklodowska Curie” Emergency Children’s Hospital, 20, Constantin Brancoveanu Bd., 077120 Bucharest, Romania;
- Department of Pediatrics 8, “Carol Davila” University of Medicine and Pharmacy, EroiiSanitari Bd., 020021 Bucharest, Romania
| | - Maria Mernea
- Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, SplaiulIndependentei, No 91-95, 050095 Bucharest, Romania; (S.A.); (M.S.S.); (M.M.)
| |
Collapse
|
19
|
Fallica A, Barbaraci C, Amata E, Pasquinucci L, Turnaturi R, Dichiara M, Intagliata S, Gariboldi MB, Marras E, Orlandi VT, Ferroni C, Martini C, Rescifina A, Gentile D, Varchi G, Marrazzo A. Nitric Oxide Photo-Donor Hybrids of Ciprofloxacin and Norfloxacin: A Shift in Activity from Antimicrobial to Anticancer Agents. J Med Chem 2021; 64:11597-11613. [PMID: 34319100 PMCID: PMC8389907 DOI: 10.1021/acs.jmedchem.1c00917] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Indexed: 12/11/2022]
Abstract
The potential anticancer effect of fluoroquinolone antibiotics has been recently unveiled and related to their ability to interfere with DNA topoisomerase II. We herein envisioned the design and synthesis of novel Ciprofloxacin and Norfloxacin nitric oxide (NO) photo-donor hybrids to explore the potential synergistic antitumor effect exerted by the fluoroquinolone scaffold and NO eventually produced upon light irradiation. Anticancer activity, evaluated on a panel of tumor cell lines, showed encouraging results with IC50 values in the low micromolar range. Some compounds displayed intense antiproliferative activity on triple-negative and doxorubicin-resistant breast cancer cell lines, paving the way for their potential use to treat aggressive, refractory and multidrug-resistant breast cancer. No significant additive effect was observed on PC3 and DU145 cells following NO release. Conversely, antimicrobial photodynamic experiments on both Gram-negative and Gram-positive microorganisms displayed a significant killing rate in Staphylococcus aureus, accounting for their potential effectiveness as selective antimicrobial photosensitizers.
Collapse
Affiliation(s)
- Antonino
Nicolò Fallica
- Department
of Drug and Health Sciences (DSFS), University
of Catania, Viale A. Doria, 6, 95125 Catania, Italy
| | - Carla Barbaraci
- Department
of Drug and Health Sciences (DSFS), University
of Catania, Viale A. Doria, 6, 95125 Catania, Italy
| | - Emanuele Amata
- Department
of Drug and Health Sciences (DSFS), University
of Catania, Viale A. Doria, 6, 95125 Catania, Italy
| | - Lorella Pasquinucci
- Department
of Drug and Health Sciences (DSFS), University
of Catania, Viale A. Doria, 6, 95125 Catania, Italy
| | - Rita Turnaturi
- Department
of Drug and Health Sciences (DSFS), University
of Catania, Viale A. Doria, 6, 95125 Catania, Italy
| | - Maria Dichiara
- Department
of Drug and Health Sciences (DSFS), University
of Catania, Viale A. Doria, 6, 95125 Catania, Italy
| | - Sebastiano Intagliata
- Department
of Drug and Health Sciences (DSFS), University
of Catania, Viale A. Doria, 6, 95125 Catania, Italy
| | - Marzia Bruna Gariboldi
- Department
of Biotechnology and Life Sciences (DBSV), University of Insubria, Via JH Dunant 3, 21100 Varese, Italy
| | - Emanuela Marras
- Department
of Biotechnology and Life Sciences (DBSV), University of Insubria, Via JH Dunant 3, 21100 Varese, Italy
| | - Viviana Teresa Orlandi
- Department
of Biotechnology and Life Sciences (DBSV), University of Insubria, Via JH Dunant 3, 21100 Varese, Italy
| | - Claudia Ferroni
- Institute
for the Organic Synthesis and Photoreactivity − ISOF, Via Piero Gobetti, 101, 40129 Bologna, Italy
| | - Cecilia Martini
- Institute
for the Organic Synthesis and Photoreactivity − ISOF, Via Piero Gobetti, 101, 40129 Bologna, Italy
| | - Antonio Rescifina
- Department
of Drug and Health Sciences (DSFS), University
of Catania, Viale A. Doria, 6, 95125 Catania, Italy
| | - Davide Gentile
- Department
of Drug and Health Sciences (DSFS), University
of Catania, Viale A. Doria, 6, 95125 Catania, Italy
| | - Greta Varchi
- Institute
for the Organic Synthesis and Photoreactivity − ISOF, Via Piero Gobetti, 101, 40129 Bologna, Italy
| | - Agostino Marrazzo
- Department
of Drug and Health Sciences (DSFS), University
of Catania, Viale A. Doria, 6, 95125 Catania, Italy
| |
Collapse
|
20
|
Moon C, Jin C, Dong X, Abrar S, Zheng W, Chirkova RY, Tropsha A. Learning Drug-Disease-Target Embedding (DDTE) from knowledge graphs to inform drug repurposing hypotheses. J Biomed Inform 2021; 119:103838. [PMID: 34119691 DOI: 10.1016/j.jbi.2021.103838] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 05/10/2021] [Accepted: 06/08/2021] [Indexed: 10/21/2022]
Abstract
We aimed to develop and validate a new graph embedding algorithm for embedding drug-disease-target networks to generate novel drug repurposing hypotheses. Our model denotes drugs, diseases and targets as subjects, predicates and objects, respectively. Each entity is represented by a multidimensional vector and the predicate is regarded as a translation vector from a subject to an object vectors. These vectors are optimized so that when a subject-predicate-object triple represents a known drug-disease-target relationship, the summed vector between the subject and the predicate is to be close to that of the object; otherwise, the summed vector is distant from the object. The DTINet dataset was utilized to test this algorithm and discover unknown links between drugs and diseases. In cross-validation experiments, this new algorithm outperformed the original DTINet model. The MRR (Mean Reciprocal Rank) values of our models were around 0.80 while those of the original model were about 0.70. In addition, we have identified and verified several pairs of new therapeutic relations as well as adverse effect relations that were not recorded in the original DTINet dataset. This approach showed excellent performance, and the predicted drug-disease and drug-side-effect relationships were found to be consistent with literature reports. This novel method can be used to analyze diverse types of emerging biomedical and healthcare-related knowledge graphs (KG).
Collapse
Affiliation(s)
- Changsung Moon
- Department of Computer Science, North Carolina State University, Raleigh, NC 27695, USA
| | - Chunming Jin
- BRITE Institute and Department of Pharmaceutical Sciences, College of Health and Sciences, North Carolina Central University, Durham, NC 27707, USA
| | - Xialan Dong
- BRITE Institute and Department of Pharmaceutical Sciences, College of Health and Sciences, North Carolina Central University, Durham, NC 27707, USA
| | - Saad Abrar
- Department of Computer Science, North Carolina State University, Raleigh, NC 27695, USA
| | - Weifan Zheng
- BRITE Institute and Department of Pharmaceutical Sciences, College of Health and Sciences, North Carolina Central University, Durham, NC 27707, USA; UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, NC 27599, USA.
| | - Rada Y Chirkova
- Department of Computer Science, North Carolina State University, Raleigh, NC 27695, USA.
| | - Alexander Tropsha
- UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, NC 27599, USA.
| |
Collapse
|
21
|
Pseudo-Dipeptide Bearing α,α-Difluoromethyl Ketone Moiety as Electrophilic Warhead with Activity against Coronaviruses. Int J Mol Sci 2021; 22:ijms22031398. [PMID: 33573283 PMCID: PMC7866854 DOI: 10.3390/ijms22031398] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 01/26/2021] [Indexed: 12/18/2022] Open
Abstract
The synthesis of α-fluorinated methyl ketones has always been challenging. New methods based on the homologation chemistry via nucleophilic halocarbenoid transfer, carried out recently in our labs, allowed us to design and synthesize a target-directed dipeptidyl α,α-difluoromethyl ketone (DFMK) 8 as a potential antiviral agent with activity against human coronaviruses. The ability of the newly synthesized compound to inhibit viral replication was evaluated by a viral cytopathic effect (CPE)-based assay performed on MCR5 cells infected with one of the four human coronaviruses associated with respiratory distress, i.e., hCoV-229E, showing antiproliferative activity in the micromolar range (EC50 = 12.9 ± 1.22 µM), with a very low cytotoxicity profile (CC50 = 170 ± 3.79 µM, 307 ± 11.63 µM, and 174 ± 7.6 µM for A549, human embryonic lung fibroblasts (HELFs), and MRC5 cells, respectively). Docking and molecular dynamics simulations studies indicated that 8 efficaciously binds to the intended target hCoV-229E main protease (Mpro). Moreover, due to the high similarity between hCoV-229E Mpro and SARS-CoV-2 Mpro, we also performed the in silico analysis towards the second target, which showed results comparable to those obtained for hCoV-229E Mpro and promising in terms of energy of binding and docking pose.
Collapse
|
22
|
An Integrated Pharmacophore/Docking/3D-QSAR Approach to Screening a Large Library of Products in Search of Future Botulinum Neurotoxin A Inhibitors. Int J Mol Sci 2020; 21:ijms21249470. [PMID: 33322848 PMCID: PMC7764241 DOI: 10.3390/ijms21249470] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 12/05/2020] [Accepted: 12/08/2020] [Indexed: 12/19/2022] Open
Abstract
Botulinum toxins are neurotoxins produced by Clostridium botulinum. This toxin can be lethal for humans as a cause of botulism; however, in small doses, the same toxin is used to treat different conditions. Even if the therapeutic doses are effective and safe, the adverse reactions could be local and could unmask a subclinical impairment of neuromuscular transmissions. There are not many cases of adverse events in the literature; however, it is possible that sometimes they do not occur as they are transient and, if they do occur, there is no possibility of a cure other than to wait for the pharmacological effect to end. Inhibition of botulinum neurotoxin type A (BoNT/A) effects is a strategy for treating botulism as it can provide an effective post-exposure remedy. In this paper, 13,592,287 compounds were screened through a pharmacophore filter, a 3D-QSAR model, and a virtual screening; then, the compounds with the best affinity were selected. Molecular dynamics simulation studies on the first four compounds predicted to be the most active were conducted to verify that the poses foreseen by the docking were stable. This approach allowed us to identify compounds with a calculated inhibitory activity in the range of 316–500 nM.
Collapse
|
23
|
Toxemia in Human Naturally Acquired Botulism. Toxins (Basel) 2020; 12:toxins12110716. [PMID: 33202855 PMCID: PMC7697460 DOI: 10.3390/toxins12110716] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/07/2020] [Accepted: 11/10/2020] [Indexed: 12/18/2022] Open
Abstract
Human botulism is a severe disease characterized by flaccid paralysis and inhibition of certain gland secretions, notably salivary secretions, caused by inhibition of neurotransmitter release. Naturally acquired botulism occurs in three main forms: food-borne botulism by ingestion of preformed botulinum neurotoxin (BoNT) in food, botulism by intestinal colonization (infant botulism and intestinal toxemia botulism in infants above one year and adults), and wound botulism. A rapid laboratory confirmation of botulism is required for the appropriate management of patients. Detection of BoNT in the patient's sera is the most direct way to address the diagnosis of botulism. Based on previous published reports, botulinum toxemia was identified in about 70% of food-borne and wound botulism cases, and only in about 28% of infant botulism cases, in which the diagnosis is mainly confirmed from stool sample investigation. The presence of BoNT in serum depends on the BoNT amount ingested with contaminated food or produced locally in the intestine or wound, and the timeframe between serum sampling and disease onset. BoNT levels in patient's sera are most frequently low, requiring a highly sensitive method of detection. Mouse bioassay is still the most used method of botulism identification from serum samples. However, in vitro methods based on BoNT endopeptidase activity with detection by mass spectrometry or immunoassay have been developed and depending on BoNT type, are more sensitive than the mouse bioassay. These new assays show high specificity for individual BoNT types and allow more accurate differentiation between positive toxin sera from botulism and autoimmune neuropathy patients.
Collapse
|
24
|
Gentile D, Fuochi V, Rescifina A, Furneri PM. New Anti SARS-Cov-2 Targets for Quinoline Derivatives Chloroquine and Hydroxychloroquine. Int J Mol Sci 2020; 21:E5856. [PMID: 32824072 PMCID: PMC7461590 DOI: 10.3390/ijms21165856] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/01/2020] [Accepted: 08/12/2020] [Indexed: 12/18/2022] Open
Abstract
The rapid spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has created a severe global health crisis. In this paper, we used docking and simulation methods to identify potential targets and the mechanism of action of chloroquine (CQ) and hydroxychloroquine (HCQ) against SARS-CoV-2. Our results showed that both CQ and HCQ influenced the functionality of the envelope (E) protein, necessary in the maturation processes of the virus, due to interactions that modify the flexibility of the protein structure. Furthermore, CQ and HCQ also influenced the proofreading and capping of viral RNA in SARS-CoV-2, performed by nsp10/nsp14 and nsp10/nsp16. In particular, HCQ demonstrated a better energy binding with the examined targets compared to CQ, probably due to the hydrogen bonding of the hydroxyl group of HCQ with polar amino acid residues.
Collapse
Affiliation(s)
- Davide Gentile
- Dipartimento di Scienze del Farmaco, University of Catania, 95125 Catania, Italy;
| | - Virginia Fuochi
- Dipartimento di Scienze Biomediche e Biotecnologiche, University of Catania, 95125 Catania, Italy;
| | - Antonio Rescifina
- Dipartimento di Scienze del Farmaco, University of Catania, 95125 Catania, Italy;
| | - Pio Maria Furneri
- Dipartimento di Scienze Biomediche e Biotecnologiche, University of Catania, 95125 Catania, Italy;
| |
Collapse
|