1
|
Abbasi-Rad S, Cloos MA, Jin J, O'Brien K, Barth M. B 1 + inhomogeneity mitigation for diffusion weighted MRI at 7T using TR-FOCI pulses. Magn Reson Med 2024; 91:2508-2518. [PMID: 38321602 DOI: 10.1002/mrm.30024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 12/14/2023] [Accepted: 01/07/2024] [Indexed: 02/08/2024]
Abstract
PURPOSE The purpose of this study is to improve the image quality of diffusion-weighted images obtained with a single RF transmit channel 7 T MRI setup using time-resampled frequency-offset corrected inversion (TR-FOCI) pulses to refocus the spins in a twice-refocused spin-echo readout scheme. METHODS We replaced the conventional Shinnar-Le Roux-pulses in the twice refocused diffusion sequence with TR-FOCI pulses. The slice profiles were evaluated in simulation and experimentally in phantoms. The image quality was evaluated in vivo comparing the Shinnar-Le Roux and TR-FOCI implementation using a b value of 0 and of 1000 s/mm2. RESULTS The b0 and diffusion-weighted images acquired using the modified sequence improved the image quality across the whole brain. A region of interest-based analysis showed an SNR increase of 113% and 66% for the nondiffusion-weighted (b0) and the diffusion-weighted (b = 1000 s/mm2) images in the temporal lobes, respectively. Investigation of all slices showed that the adiabatic pulses mitigatedB 1 + $$ {B}_1^{+} $$ inhomogeneity globally using a conventional single-channel transmission setup. CONCLUSION The TR-FOCI pulse can be used in a twice-refocused spin-echo diffusion pulse sequence to mitigate the impact ofB 1 + $$ {B}_1^{+} $$ inhomogeneity on the signal intensity across the brain at 7 T. However, further work is needed to address SAR limitations.
Collapse
Affiliation(s)
- Shahrokh Abbasi-Rad
- Centre for Advanced Imaging, The University of Queensland, St Lucia, Queensland, Australia
| | - Martijn A Cloos
- Centre for Advanced Imaging, The University of Queensland, St Lucia, Queensland, Australia
- ARC Training Centre for Innovation in Biomedical Imaging Technology, The University of Queensland, St Lucia, Queensland, Australia
| | - Jin Jin
- ARC Training Centre for Innovation in Biomedical Imaging Technology, The University of Queensland, St Lucia, Queensland, Australia
- Siemens Healthcare Pty Ltd, Brisbane, Queensland, Australia
| | - Kieran O'Brien
- ARC Training Centre for Innovation in Biomedical Imaging Technology, The University of Queensland, St Lucia, Queensland, Australia
- Siemens Healthcare Pty Ltd, Brisbane, Queensland, Australia
| | - Markus Barth
- Centre for Advanced Imaging, The University of Queensland, St Lucia, Queensland, Australia
- ARC Training Centre for Innovation in Biomedical Imaging Technology, The University of Queensland, St Lucia, Queensland, Australia
- School of Electrical Engineering and Computer Science, The University of Queensland, St Lucia, Queensland, Australia
| |
Collapse
|
2
|
Kent JL, Dragonu I, Valkovič L, Hess AT. Rapid 3D absolute B 1 + mapping using a sandwiched train presaturated TurboFLASH sequence at 7 T for the brain and heart. Magn Reson Med 2023; 89:964-976. [PMID: 36336893 PMCID: PMC10099228 DOI: 10.1002/mrm.29497] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 09/22/2022] [Accepted: 09/29/2022] [Indexed: 11/09/2022]
Abstract
PURPOSE To shorten the acquisition time of magnetization-prepared absolute transmit field (B1 + ) mapping known as presaturation TurboFLASH, or satTFL, to enable single breath-hold whole-heart 3D B1 + mapping. METHODS SatTFL is modified to remove the delay between the reference and prepared images (typically 5 T1 ), with matching transmit configurations for excitation and preparation RF pulses. The new method, called Sandwich, is evaluated as a 3D sequence, measuring whole-brain and gated whole-heart B1 + maps in a single breath-hold. We evaluate the sensitivity to B1 + and T1 using numerical Bloch, extended phase graph, and Monte Carlo simulations. Phantom and in vivo images were acquired in both the brain and heart using an 8-channel transmit 7 Tesla MRI system to support the simulations. A segmented satTFL with a short readout train was used as a reference. RESULTS The method significantly reduces acquisition times of 3D measurements from 360 s to 20 s, in the brain, while simultaneously reducing bias in the measured B1 + due to T1 and magnetization history. The mean coefficient of variation was reduced by 81% for T1 s of 0.5-3 s compared to conventional satTFL. In vivo, the reproducibility coefficient for flip angles in the range 0-130° was 4.5° for satTFL and 4.7° for our scheme, significantly smaller than for a short TR satTFL sequence, which was 12°. The 3D sequence measured B1 + maps of the whole thorax in 26 heartbeats. CONCLUSION Our adaptations enable faster B1 + mapping, with minimal T1 sensitivity and lower sensitivity to magnetization history, enabling single breath-hold whole-heart absolute B1 + mapping.
Collapse
Affiliation(s)
- James L Kent
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | | | - Ladislav Valkovič
- Oxford Centre for Clinical Magnetic Resonance Research (OCMR), University of Oxford, Oxford, UK.,Department of Imaging Methods, Institute of Measurement Science, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Aaron T Hess
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| |
Collapse
|
3
|
Löwen D, Pracht ED, Stirnberg R, Liebig P, Stöcker T. Interleaved binomial kT-Points for water-selective imaging at 7T. Magn Reson Med 2022; 88:2564-2572. [PMID: 35942989 DOI: 10.1002/mrm.29376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 06/13/2022] [Accepted: 06/13/2022] [Indexed: 11/07/2022]
Abstract
PURPOSE We present a time-efficient water-selective, parallel transmit RF excitation pulse design for ultra-high field applications. METHODS The proposed pulse design method achieves flip angle homogenization at ultra-high fields by employing spatially nonselective k T $$ {\mathrm{k}}_T $$ -points pulses. In order to introduce water-selection, the concept of binomial pulses is applied. Due to the composite nature of k T $$ {\mathrm{k}}_T $$ -points, the pulse can be split into multiple binomial subpulse blocks shorter than half the precession period of fat, that are played out successively. Additional fat precession turns, that would otherwise impair the spectral response, can thus be avoided. Bloch simulations of the proposed interleaved binomial k T $$ {\mathrm{k}}_T $$ -points pulses were carried out and compared in terms of duration, homogeneity, fat suppression and pulse energy. For validation, in vivo MP-RAGE and 3D-EPI data were acquired. RESULTS Simulation results show that interleaved binomial k T $$ {\mathrm{k}}_T $$ -points pulses achieve shorter total pulse durations, improved flip angle homogeneity and more robust fat suppression compared to available methods. Interleaved binomial k T $$ {\mathrm{k}}_T $$ -points can be customized by changing the number of k T $$ {\mathrm{k}}_T $$ -points, the subpulse duration and the order of the binomial pulse. Using shorter subpulses, the number of k T $$ {\mathrm{k}}_T $$ -points can be increased and hence better homogeneity is achieved, while still maintaining short total pulse durations. Flip angle homogenization and fat suppression of interleaved binomial k T $$ {\mathrm{k}}_T $$ -points pulses is demonstrated in vivo at 7T, confirming Bloch simulation results. CONCLUSION In this work, we present a time efficient and robust parallel transmission technique for nonselective water excitation with simultaneous flip angle homogenization at ultra-high field.
Collapse
Affiliation(s)
- Daniel Löwen
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | | | | | | | - Tony Stöcker
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Department of Physics and Astronomy, University of Bonn, Bonn, Germany
| |
Collapse
|
4
|
Leitão D, Tomi-Tricot R, Bridgen P, Wilkinson T, Liebig P, Gumbrecht R, Ritter D, Giles SL, Baburamani A, Sedlacik J, Hajnal JV, Malik SJ. Parallel transmit pulse design for saturation homogeneity (PUSH) for magnetization transfer imaging at 7T. Magn Reson Med 2022; 88:180-194. [PMID: 35266204 PMCID: PMC9315051 DOI: 10.1002/mrm.29199] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 01/25/2022] [Accepted: 01/25/2022] [Indexed: 12/24/2022]
Abstract
PURPOSE This work proposes a novel RF pulse design for parallel transmit (pTx) systems to obtain uniform saturation of semisolid magnetization for magnetization transfer (MT) contrast in the presence of transmit field B1+ inhomogeneities. The semisolid magnetization is usually modeled as being purely longitudinal, with the applied B1+ field saturating but not rotating its magnetization; thus, standard pTx pulse design methods do not apply. THEORY AND METHODS Pulse design for saturation homogeneity (PUSH) optimizes pTx RF pulses by considering uniformity of root-mean squared B1+ , B1rms , which relates to the rate of semisolid saturation. Here we considered designs consisting of a small number of spatially non-selective sub-pulses optimized over either a single 2D plane or 3D. Simulations and in vivo experiments on a 7T Terra system with an 8-TX Nova head coil in five subjects were carried out to study the homogenization of B1rms and of the MT contrast by acquiring MT ratio maps. RESULTS Simulations and in vivo experiments showed up to six and two times more uniform B1rms compared to circular polarized (CP) mode for 2D and 3D optimizations, respectively. This translated into 4 and 1.25 times more uniform MT contrast, consistently for all subjects, where two sub-pulses were enough for the implementation and coil used. CONCLUSION The proposed PUSH method obtains more uniform and higher MT contrast than CP mode within the same specific absorption rate (SAR) budget.
Collapse
Affiliation(s)
- David Leitão
- Biomedical Engineering Department, School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | | | - Pip Bridgen
- Biomedical Engineering Department, School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - Tom Wilkinson
- Biomedical Engineering Department, School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | | | | | | | - Sharon L Giles
- Biomedical Engineering Department, School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - Ana Baburamani
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - Jan Sedlacik
- Biomedical Engineering Department, School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK.,Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - Joseph V Hajnal
- Biomedical Engineering Department, School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK.,Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - Shaihan J Malik
- Biomedical Engineering Department, School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK.,Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| |
Collapse
|
5
|
Kreis R, Boer V, Choi I, Cudalbu C, de Graaf RA, Gasparovic C, Heerschap A, Krššák M, Lanz B, Maudsley AA, Meyerspeer M, Near J, Öz G, Posse S, Slotboom J, Terpstra M, Tkáč I, Wilson M, Bogner W. Terminology and concepts for the characterization of in vivo MR spectroscopy methods and MR spectra: Background and experts' consensus recommendations. NMR IN BIOMEDICINE 2020; 34:e4347. [PMID: 32808407 PMCID: PMC7887137 DOI: 10.1002/nbm.4347] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 05/20/2020] [Accepted: 05/21/2020] [Indexed: 05/04/2023]
Abstract
With a 40-year history of use for in vivo studies, the terminology used to describe the methodology and results of magnetic resonance spectroscopy (MRS) has grown substantially and is not consistent in many aspects. Given the platform offered by this special issue on advanced MRS methodology, the authors decided to describe many of the implicated terms, to pinpoint differences in their meanings and to suggest specific uses or definitions. This work covers terms used to describe all aspects of MRS, starting from the description of the MR signal and its theoretical basis to acquisition methods, processing and to quantification procedures, as well as terms involved in describing results, for example, those used with regard to aspects of quality, reproducibility or indications of error. The descriptions of the meanings of such terms emerge from the descriptions of the basic concepts involved in MRS methods and examinations. This paper also includes specific suggestions for future use of terms where multiple conventions have emerged or coexisted in the past.
Collapse
Affiliation(s)
- Roland Kreis
- Department of Radiology, Neuroradiology, and Nuclear Medicine and Department of Biomedical ResearchUniversity BernBernSwitzerland
| | - Vincent Boer
- Danish Research Centre for Magnetic Resonance, Funktions‐ og Billeddiagnostisk EnhedCopenhagen University Hospital HvidovreHvidovreDenmark
| | - In‐Young Choi
- Department of Neurology, Hoglund Brain Imaging CenterUniversity of Kansas Medical CenterKansas CityKansasUSA
| | - Cristina Cudalbu
- Centre d'Imagerie Biomedicale (CIBM)Ecole Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
| | - Robin A. de Graaf
- Department of Radiology and Biomedical Imaging & Department of Biomedical EngineeringYale UniversityNew HavenConnecticutUSA
| | | | - Arend Heerschap
- Department of Radiology and Nuclear MedicineRadboud University Medical CenterNijmegenThe Netherlands
| | - Martin Krššák
- Division of Endocrinology and Metabolism, Department of Internal Medicine III & High Field MR Centre, Department of Biomedical Imaging and Image guided TherapyMedical University of ViennaViennaAustria
| | - Bernard Lanz
- Laboratory of Functional and Metabolic Imaging (LIFMET)Ecole Polytechnique Fédérale de LausanneLausanneSwitzerland
- Sir Peter Mansfield Imaging Centre, School of MedicineUniversity of NottinghamNottinghamUK
| | - Andrew A. Maudsley
- Department of Radiology, Miller School of MedicineUniversity of MiamiMiamiFloridaUSA
| | - Martin Meyerspeer
- Center for Medical Physics and Biomedical EngineeringMedical University of ViennaViennaAustria
- High Field MR CenterMedical University of ViennaViennaAustria
| | - Jamie Near
- Douglas Mental Health University Institute and Department of PsychiatryMcGill UniversityMontrealCanada
| | - Gülin Öz
- Center for Magnetic Resonance Research, Department of RadiologyUniversity of MinnesotaMinneapolisMinnesotaUSA
| | - Stefan Posse
- Department of NeurologyUniversity of New Mexico School of MedicineAlbuquerqueNew MexicoUSA
| | - Johannes Slotboom
- Department of Radiology, Neuroradiology, and Nuclear MedicineUniversity Hospital BernBernSwitzerland
| | - Melissa Terpstra
- Center for Magnetic Resonance Research, Department of RadiologyUniversity of MinnesotaMinneapolisMinnesotaUSA
| | - Ivan Tkáč
- Center for Magnetic Resonance Research, Department of RadiologyUniversity of MinnesotaMinneapolisMinnesotaUSA
| | - Martin Wilson
- Centre for Human Brain Health and School of PsychologyUniversity of BirminghamBirminghamUK
| | - Wolfgang Bogner
- High Field MR Center, Department of Biomedical Imaging and Image‐guided TherapyMedical University of ViennaViennaAustria
| |
Collapse
|
6
|
Huber L, Tse DHY, Wiggins CJ, Uludağ K, Kashyap S, Jangraw DC, Bandettini PA, Poser BA, Ivanov D. Ultra-high resolution blood volume fMRI and BOLD fMRI in humans at 9.4 T: Capabilities and challenges. Neuroimage 2018; 178:769-779. [PMID: 29890330 PMCID: PMC6100753 DOI: 10.1016/j.neuroimage.2018.06.025] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 05/23/2018] [Accepted: 06/07/2018] [Indexed: 12/31/2022] Open
Abstract
Functional mapping of cerebral blood volume (CBV) changes has the potential to reveal brain activity with high localization specificity at the level of cortical layers and columns. Non-invasive CBV imaging using Vascular Space Occupancy (VASO) at ultra-high magnetic field strengths promises high spatial specificity but poses unique challenges in human applications. As such, 9.4 T B1+ and B0 inhomogeneities limit efficient blood tagging, while the specific absorption rate (SAR) constraints limit the application of VASO-specific RF pulses. Moreover, short T2* values at 9.4 T require short readout duration, and long T1 values at 9.4 T can cause blood-inflow contaminations. In this study, we investigated the applicability of layer-dependent CBV-fMRI at 9.4 T in humans. We addressed the aforementioned challenges by combining multiple technical advancements: temporally alternating pTx B1+ shimming parameters, advanced adiabatic RF-pulses, 3D-EPI signal readout, optimized GRAPPA acquisition and reconstruction, and stability-optimized RF channel combination. We found that a combination of suitable advanced methodology alleviates the challenges and potential artifacts, and that VASO fMRI provides reliable measures of CBV change across cortical layers in humans at 9.4 T. The localization specificity of CBV-fMRI, combined with the high sensitivity of 9.4 T, makes this method an important tool for future studies investigating cortical micro-circuitry in humans.
Collapse
Affiliation(s)
- Laurentius Huber
- Section on Functional Imaging Methods, Laboratory of Brain and Cognition, NIMH, NIH, Bethesda, MD, USA.
| | - Desmond H Y Tse
- Maastricht Brain Imaging Center, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands; Centre for Advanced Imaging, University of Queensland, Australia
| | | | - Kâmil Uludağ
- Maastricht Brain Imaging Center, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Sriranga Kashyap
- Maastricht Brain Imaging Center, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - David C Jangraw
- Section on Functional Imaging Methods, Laboratory of Brain and Cognition, NIMH, NIH, Bethesda, MD, USA
| | - Peter A Bandettini
- Section on Functional Imaging Methods, Laboratory of Brain and Cognition, NIMH, NIH, Bethesda, MD, USA; FMRIF, NIMH, NIH, Bethesda, MD, USA
| | - Benedikt A Poser
- Maastricht Brain Imaging Center, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Dimo Ivanov
- Maastricht Brain Imaging Center, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
7
|
Rohani Rankouhi S, Hong D, Dyvorne H, Balchandani P, Norris DG. MASE-sLASER, a short-TE, matched chemical shift displacement error sequence for single-voxel spectroscopy at ultrahigh field. NMR IN BIOMEDICINE 2018; 31:e3940. [PMID: 29856517 DOI: 10.1002/nbm.3940] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 04/03/2018] [Accepted: 04/09/2018] [Indexed: 06/08/2023]
Abstract
B1 inhomogeneity and chemical shift displacement error (CSDE) increase with the main magnetic field strength and are therefore deleterious for magnetic resonance spectroscopy (MRS) at ultrahigh field. A solution is to use adiabatic pulses which operate over a broad range of B1 and thus are insensitive to B1 inhomogeneity. Moreover, adiabatic pulses usually have a relatively higher bandwidth, which makes CSDE low to negligible. The use of exclusively adiabatic pulses for single-voxel spectroscopy (SVS) typically brings the disadvantage of a long echo time (TE), but the advantage of a low and matched CSDE. Herein, we took advantage of short-duration, low-power, matched-phase adiabatic spin echo (MASE) pulses to implement a matched CSDE semi-localized by adiabatic selective refocusing (sLASER) sequence capable of attaining short TEs, while CSDE is matched and still comparatively low. We also demonstrate here the feasibility of the direct measurement of the γ-aminobutyric acid (GABA) resonance at 2.28 ppm well separated from the neighboring glutamate resonance at 7 T using the implemented MASE-sLASER sequence at TEs of 68 and 136 ms. The shorter duration of MASE pulses also made it possible to implement a Mescher-Garwood-semi-localized by adiabatic selective refocusing (MEGA-sLASER) (with MASE) sequence with TE = 68 ms for editing GABA at 7 T, the results for which are also shown.
Collapse
Affiliation(s)
- Seyedmorteza Rohani Rankouhi
- Erwin L. Hahn Institute for Magnetic Resonance Imaging, University of Duisburg-Essen, Essen, Germany
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany
| | - Donghyun Hong
- Erwin L. Hahn Institute for Magnetic Resonance Imaging, University of Duisburg-Essen, Essen, Germany
| | - Hadrien Dyvorne
- Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Priti Balchandani
- Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - David G Norris
- Erwin L. Hahn Institute for Magnetic Resonance Imaging, University of Duisburg-Essen, Essen, Germany
- Donders Institute for Brain, Cognition and Behavior, Radboud University, Nijmegen, the Netherlands
| |
Collapse
|
8
|
Battiston M, Schneider T, Prados F, Grussu F, Yiannakas MC, Ourselin S, Gandini Wheeler-Kingshott CAM, Samson RS. Fast and reproducible in vivo T 1 mapping of the human cervical spinal cord. Magn Reson Med 2017; 79:2142-2148. [PMID: 28736946 DOI: 10.1002/mrm.26852] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 07/04/2017] [Accepted: 07/05/2017] [Indexed: 12/16/2022]
Abstract
PURPOSE To develop a fast and robust method for measuring T1 in the whole cervical spinal cord in vivo, and to assess its reproducibility. METHODS A spatially nonselective adiabatic inversion pulse is combined with zonally oblique-magnified multislice echo-planar imaging to produce a reduced field-of-view inversion-recovery echo-planar imaging protocol. Multi- inversion time data are obtained by cycling slice order throughout sequence repetitions. Measurement of T1 is performed using 12 inversion times for a total protocol duration of 7 min. Reproducibility of regional T1 estimates is assessed in a scan-rescan experiment on five heathy subjects. RESULTS Regional mean (standard deviation) T1 was: 1108.5 (±77.2) ms for left lateral column, 1110.1 (±83.2) ms for right lateral column, 1150.4 (±102.6) ms for dorsal column, and 1136.4 (±90.8) ms for gray matter. Regional T1 estimates showed good correlation between sessions (Pearson correlation coefficient = 0.89 (P value < 0.01); mean difference = 2 ms, 95% confidence interval ± 20 ms); and high reproducibility (intersession coefficient of variation approximately 1% in all the regions considered, intraclass correlation coefficient = 0.88 (P value < 0.01, confidence interval 0.71-0.95)). CONCLUSIONS T1 estimates in the cervical spinal cord are reproducible using inversion-recovery zonally oblique-magnified multislice echo-planar imaging. The short acquisition time and large coverage of this method paves the way for accurate T1 mapping for various spinal cord pathologies. Magn Reson Med 79:2142-2148, 2018. © 2017 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
Collapse
Affiliation(s)
- Marco Battiston
- NMR Research Unit, Queen Square MS Center, Department of Neuroinflammation, UCL Institute of Neurology, University College London, London, United Kingdom
| | | | - Ferran Prados
- NMR Research Unit, Queen Square MS Center, Department of Neuroinflammation, UCL Institute of Neurology, University College London, London, United Kingdom.,Translational Imaging Group, Center for Medical Image Computing, Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| | - Francesco Grussu
- NMR Research Unit, Queen Square MS Center, Department of Neuroinflammation, UCL Institute of Neurology, University College London, London, United Kingdom
| | - Marios C Yiannakas
- NMR Research Unit, Queen Square MS Center, Department of Neuroinflammation, UCL Institute of Neurology, University College London, London, United Kingdom
| | - Sebastien Ourselin
- Translational Imaging Group, Center for Medical Image Computing, Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| | - Claudia A M Gandini Wheeler-Kingshott
- NMR Research Unit, Queen Square MS Center, Department of Neuroinflammation, UCL Institute of Neurology, University College London, London, United Kingdom.,Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy.,Brain MRI 3T Mondino Research Center, C. Mondino National Neurological Institute, Pavia, Italy
| | - Rebecca S Samson
- NMR Research Unit, Queen Square MS Center, Department of Neuroinflammation, UCL Institute of Neurology, University College London, London, United Kingdom
| |
Collapse
|
9
|
Suzuki Y, Fujima N, Ogino T, Meakin JA, Suwa A, Sugimori H, Van Cauteren M, van Osch MJP. Acceleration of ASL-based time-resolved MR angiography by acquisition of control and labeled images in the same shot (ACTRESS). Magn Reson Med 2017; 79:224-233. [PMID: 28321915 PMCID: PMC5947673 DOI: 10.1002/mrm.26667] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 01/19/2017] [Accepted: 02/12/2017] [Indexed: 01/15/2023]
Abstract
PURPOSE Noncontrast 4D-MR-angiography (MRA) using arterial spin labeling (ASL) is beneficial because high spatial and temporal resolution can be achieved. However, ASL requires acquisition of labeled and control images for each phase. The purpose of this study is to present a new accelerated 4D-MRA approach that requires only a single control acquisition, achieving similar image quality in approximately half the scan time. METHODS In a multi-phase Look-Locker sequence, the first phase was used as the control image and the labeling pulse was applied before the second phase. By acquiring the control and labeled images within a single Look-Locker cycle, 4D-MRA was generated in nearly half the scan time of conventional ASL. However, this approach potentially could be more sensitive to off-resonance and magnetization transfer (MT) effects. To counter this, careful optimizations of the labeling pulse were performed by Bloch simulations. In in-vivo studies arterial visualization was compared between the new and conventional ASL approaches. RESULTS Optimization of the labeling pulse successfully minimized off-resonance effects. Qualitative assessment showed that residual MT effects did not degrade visualization of the peripheral arteries. CONCLUSION This study demonstrated that the proposed approach achieved similar image quality as conventional ASL-MRA approaches in just over half the scan time. Magn Reson Med 79:224-233, 2018. © 2017 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Yuriko Suzuki
- C.J. Gorter Center for High Field MRI, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands.,Philips Electronics Japan, Ltd., Healthcare, Tokyo, Japan
| | - Noriyuki Fujima
- Department of Diagnostic and Interventional Radiology, Hokkaido University Hospital, Hokkaido, Japan
| | - Tetsuo Ogino
- Philips Electronics Japan, Ltd., Healthcare, Tokyo, Japan
| | - James Alastair Meakin
- Diagnostic Image Analysis Group, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Akira Suwa
- Philips Electronics Japan, Ltd., Healthcare, Tokyo, Japan
| | | | | | - Matthias J P van Osch
- C.J. Gorter Center for High Field MRI, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
10
|
Casula V, Nissi MJ, Podlipská J, Haapea M, Koski JM, Saarakkala S, Guermazi A, Lammentausta E, Nieminen MT. Elevated adiabatic T 1ρ and T 2ρ in articular cartilage are associated with cartilage and bone lesions in early osteoarthritis: A preliminary study. J Magn Reson Imaging 2017; 46:678-689. [PMID: 28117922 DOI: 10.1002/jmri.25616] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 12/13/2016] [Indexed: 12/13/2022] Open
Abstract
PURPOSE To evaluate adiabatic T1ρ and T2ρ of articular cartilage in symptomatic osteoarthritis (OA) patients and asymptomatic volunteers, and to determine their association with magnetic resonance imaging (MRI)-based structural abnormalities in cartilage and bone. MATERIALS AND METHODS A total of 24 subjects (age range: 50-68 years; 12 female) were enrolled, including 12 early OA patients and 12 volunteers with normal joint function. Patients and volunteers underwent 3T MRI. T2 , adiabatic T1ρ , and T2ρ relaxation times of knee articular cartilage were measured. Proton density (PD)- and T1 -weighted MR image series were also obtained and separately evaluated for morphological changes using the MRI OA Knee Scoring (MOAKS) system. Comparisons using the Mann-Whitney nonparametric test were performed after dividing the study participants according to physical symptoms as determined by Western Ontario and McMaster Universities (WOMAC) score or presence of cartilage lesions, bone marrow lesions, or osteophytes. RESULTS Elevated adiabatic T1ρ and T2ρ relaxation times of articular cartilage were associated with cartilage loss (P = 0.024-0.047), physical symptoms (0.0068-0.035), and osteophytes (0.0039-0.027). Elevated adiabatic T1ρ was also associated with bone marrow lesions (0.033). CONCLUSION Preliminary data suggest that elevated adiabatic T1ρ and T2ρ of cartilage are associated with morphological abnormalities of cartilage and bone, and thus may be applicable for in vivo OA research and diagnostics. LEVEL OF EVIDENCE 2 Technical Efficacy: Stage 2 J. MAGN. RESON. IMAGING 2017;46:678-689.
Collapse
Affiliation(s)
- Victor Casula
- Research Unit of Medical Imaging, Physics and Technology, University of Oulu, Oulu, Finland.,Medical Research Center Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland
| | - Mikko J Nissi
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland.,Diagnostic Imaging Center, Kuopio University Hospital, Kuopio, Finland
| | - Jana Podlipská
- Research Unit of Medical Imaging, Physics and Technology, University of Oulu, Oulu, Finland.,Infotech Oulu, University of Oulu, Oulu, Finland
| | - Marianne Haapea
- Medical Research Center Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland.,Department of Diagnostic Radiology, Oulu University Hospital, Oulu, Finland
| | - Juhani M Koski
- Department of Internal Medicine, Mikkeli Central Hospital, Mikkeli, Finland
| | - Simo Saarakkala
- Research Unit of Medical Imaging, Physics and Technology, University of Oulu, Oulu, Finland.,Medical Research Center Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland.,Department of Diagnostic Radiology, Oulu University Hospital, Oulu, Finland
| | - Ali Guermazi
- Quantitative Imaging Center, Department of Radiology, Boston University School of Medicine, Boston, Massachusetts, USA
| | | | - Miika T Nieminen
- Research Unit of Medical Imaging, Physics and Technology, University of Oulu, Oulu, Finland.,Medical Research Center Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland.,Department of Diagnostic Radiology, Oulu University Hospital, Oulu, Finland
| |
Collapse
|
11
|
Ma D, Coppo S, Chen Y, McGivney DF, Jiang Y, Pahwa S, Gulani V, Griswold MA. Slice profile and B 1 corrections in 2D magnetic resonance fingerprinting. Magn Reson Med 2017; 78:1781-1789. [PMID: 28074530 DOI: 10.1002/mrm.26580] [Citation(s) in RCA: 132] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 11/17/2016] [Accepted: 11/21/2016] [Indexed: 11/12/2022]
Abstract
PURPOSE The goal of this study is to characterize and improve the accuracy of 2D magnetic resonance fingerprinting (MRF) scans in the presence of slice profile (SP) and B1 imperfections, which are two main factors that affect quantitative results in MRF. METHODS The SP and B1 imperfections are characterized and corrected separately. The SP effect is corrected by simulating the radiofrequency pulse in the dictionary, and the B1 is corrected by acquiring a B1 map using the Bloch-Siegert method before each scan. The accuracy, precision, and repeatability of the proposed method are evaluated in phantom studies. The effects of both SP and B1 imperfections are also illustrated and corrected in the in vivo studies. RESULTS The SP and B1 corrections improve the accuracy of the T1 and T2 values, independent of the shape of the radiofrequency pulse. The T1 and T2 values obtained from different excitation patterns become more consistent after corrections, which leads to an improvement of the robustness of the MRF design. CONCLUSION This study demonstrates that MRF is sensitive to both SP and B1 effects, and that corrections can be made to improve the accuracy of MRF with only a 2-s increase in acquisition time. Magn Reson Med 78:1781-1789, 2017. © 2017 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Dan Ma
- Department of Radiology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Simone Coppo
- Department of Radiology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Yong Chen
- Department of Radiology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Debra F McGivney
- Department of Radiology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Yun Jiang
- Biomedical Engineering Department, Case Western Reserve University, Cleveland, Ohio, USA
| | - Shivani Pahwa
- Department of Radiology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Vikas Gulani
- Department of Radiology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Mark A Griswold
- Department of Radiology, Case Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|
12
|
Hagberg GE, Bause J, Ethofer T, Ehses P, Dresler T, Herbert C, Pohmann R, Shajan G, Fallgatter A, Pavlova MA, Scheffler K. Whole brain MP2RAGE-based mapping of the longitudinal relaxation time at 9.4T. Neuroimage 2017; 144:203-216. [DOI: 10.1016/j.neuroimage.2016.09.047] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 09/16/2016] [Accepted: 09/20/2016] [Indexed: 11/16/2022] Open
|
13
|
Padormo F, Beqiri A, Hajnal JV, Malik SJ. Parallel transmission for ultrahigh-field imaging. NMR IN BIOMEDICINE 2016; 29:1145-61. [PMID: 25989904 PMCID: PMC4995736 DOI: 10.1002/nbm.3313] [Citation(s) in RCA: 136] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2014] [Revised: 03/27/2015] [Accepted: 03/29/2015] [Indexed: 05/24/2023]
Abstract
The development of MRI systems operating at or above 7 T has provided researchers with a new window into the human body, yielding improved imaging speed, resolution and signal-to-noise ratio. In order to fully realise the potential of ultrahigh-field MRI, a range of technical hurdles must be overcome. The non-uniformity of the transmit field is one of such issues, as it leads to non-uniform images with spatially varying contrast. Parallel transmission (i.e. the use of multiple independent transmission channels) provides previously unavailable degrees of freedom that allow full spatial and temporal control of the radiofrequency (RF) fields. This review discusses the many ways in which these degrees of freedom can be used, ranging from making more uniform transmit fields to the design of subject-tailored RF pulses for both uniform excitation and spatial selection, and also the control of the specific absorption rate. © 2015 The Authors. NMR in Biomedicine published by John Wiley & Sons Ltd.
Collapse
Affiliation(s)
- Francesco Padormo
- Department of Biomedical Engineering, Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St Thomas' Hospital, London, UK
| | - Arian Beqiri
- Department of Biomedical Engineering, Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St Thomas' Hospital, London, UK
| | - Joseph V Hajnal
- Department of Biomedical Engineering, Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St Thomas' Hospital, London, UK
- Centre for the Developing Brain, Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St Thomas' Hospital, London, UK
| | - Shaihan J Malik
- Department of Biomedical Engineering, Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St Thomas' Hospital, London, UK
| |
Collapse
|
14
|
Pouymayou B, Buehler T, Kreis R, Boesch C. Test-retest analysis of multiple 31 P magnetization exchange pathways using asymmetric adiabatic inversion. Magn Reson Med 2016; 78:33-39. [PMID: 27455454 DOI: 10.1002/mrm.26337] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 05/31/2016] [Accepted: 06/17/2016] [Indexed: 01/08/2023]
Abstract
PURPOSE A 31 P-MR inversion transfer (IT) method with a short adiabatic inversion pulse is proposed and its test-retest reliability was evaluated for two spectral fitting strategies. METHODS Assessment in a test-retest design (3 Tesla, vastus muscles, 12 healthy volunteers, 14 inversion times, 22 ms asymmetric adiabatic inversion pulse, adiabatic excitation); spectral fitting in Fitting Tool for Interrelated Arrays of Datasets (FitAID) and Java Magnetic Resonance User Interface (jMRUI); least squares solution of the Bloch-McConnell-Solomon matrix formalism including all 14 measured time-points with equal weighting. RESULTS The cohort averages of k[PCr→γ-ATP] (phosphocreatine, PCr; adenosine triphosphate, ATP) are 0.246 ± 0.050s-1 versus 0.254 ± 0.050s-1 , and k[Pi→γ-ATP] 0.086 ± 0.033s-1 versus 0.066 ± 0.034s-1 (average ± standard deviation, jMRUI versus FitAID). Coefficients of variation of the differences between test and retest are lowest (9.5%) for k[PCr→γ-ATP] fitted in FitAID, larger (15.2%) for the fit in jMRUI, and considerably larger for k[Pi→γ-ATP] fitted in FitAID (43.4%) or jMRUI (47.9%). The beginning of the IT effect can be observed with magnetizations above 92% for noninverted lines while inversion of the ATP resonances is better than -72%. CONCLUSION The performance of the asymmetric adiabatic pulse allows an accurate observation of IT effects even in the early phase; the least squares fit of the Bloch-McConnell-Solomon matrix formalism is robust; and the type of spectral fitting can influence the results significantly. Magn Reson Med 78:33-39, 2017. © 2016 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Bertrand Pouymayou
- Department of Clinical Research and Department of Radiology, University of Bern, Switzerland.,Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Tania Buehler
- Department of Clinical Research and Department of Radiology, University of Bern, Switzerland
| | - Roland Kreis
- Department of Clinical Research and Department of Radiology, University of Bern, Switzerland
| | - Chris Boesch
- Department of Clinical Research and Department of Radiology, University of Bern, Switzerland
| |
Collapse
|
15
|
Casula V, Autio J, Nissi MJ, Auerbach EJ, Ellermann J, Lammentausta E, Nieminen MT. Validation and optimization of adiabatic T 1ρ and T 2ρ for quantitative imaging of articular cartilage at 3 T. Magn Reson Med 2016; 77:1265-1275. [PMID: 26946182 DOI: 10.1002/mrm.26183] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2015] [Revised: 02/02/2016] [Accepted: 02/06/2016] [Indexed: 12/22/2022]
Abstract
PURPOSE The aim of the present work was to validate and optimize adiabatic T1ρ and T2ρ mapping for in vivo measurements of articular cartilage at 3 Tesla (T). METHODS Phantom and in vivo experiments were systematically performed on a 3T clinical system to evaluate the sequences using hyperbolic secant HS1 and HS4 pulses. R1ρ and R2ρ relaxation rates were studied as a function of agarose and chondroitin sulfate concentration and pulse duration. Optimal in vivo protocol was determined by imaging the articular cartilage of two volunteers and varying the sequence parameters, and successively applied in eight additional subjects. Reproducibility was assessed in phantoms and in vivo. RESULTS Relaxation rates depended on agarose and chondroitin sulfate concentration. The sequences were able to generate relaxation time maps with pulse lengths of 8 and 6 ms for HS1 and HS4, respectively. In vivo findings were in good agreement with the phantoms. The implemented adiabatic T1ρ and T2ρ sequences demonstrated regional variation in relaxation time maps of femorotibial cartilage. Reproducibility in phantoms and in vivo was good to excellent for both adiabatic T1ρ and T2ρ . CONCLUSIONS The findings indicate that sequences are suitable for quantitative in vivo assessment of articular cartilage at 3 T. Magn Reson Med 77:1265-1275, 2017. © 2016 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Victor Casula
- Research Unit of Medical Imaging, Physics and Technology, University of Oulu, Oulu, Finland.,Medical Research Center, University of Oulu and Oulu University Hospital, Oulu, Finland
| | - Joonas Autio
- Center for Life Science and Technologies, RIKEN, Kobe, Japan
| | - Mikko J Nissi
- Research Unit of Medical Imaging, Physics and Technology, University of Oulu, Oulu, Finland.,Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN.,Department of Applied Physics, University of Eastern Finland, Kuopio, Finland.,Diagnostic Imaging Center, Kuopio University Hospital, Kuopio, Finland
| | - Edward J Auerbach
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN
| | - Jutta Ellermann
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN
| | | | - Miika T Nieminen
- Research Unit of Medical Imaging, Physics and Technology, University of Oulu, Oulu, Finland.,Medical Research Center, University of Oulu and Oulu University Hospital, Oulu, Finland.,Department of Diagnostic Radiology, Oulu University Hospital, Oulu, Finland
| |
Collapse
|
16
|
Power JE, Foroozandeh M, Adams RW, Nilsson M, Coombes SR, Phillips AR, Morris GA. Increasing the quantitative bandwidth of NMR measurements. Chem Commun (Camb) 2016; 52:2916-9. [DOI: 10.1039/c5cc10206e] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The frequency range of quantitative NMR is increased to hundreds of kHz, yielding accurate integrals even for 19F.
Collapse
Affiliation(s)
- J. E. Power
- School of Chemistry
- University of Manchester
- Manchester M13 9PL
- UK
| | - M. Foroozandeh
- School of Chemistry
- University of Manchester
- Manchester M13 9PL
- UK
| | - R. W. Adams
- School of Chemistry
- University of Manchester
- Manchester M13 9PL
- UK
| | - M. Nilsson
- School of Chemistry
- University of Manchester
- Manchester M13 9PL
- UK
| | | | | | - G. A. Morris
- School of Chemistry
- University of Manchester
- Manchester M13 9PL
- UK
| |
Collapse
|
17
|
Lin M, Kumar A, Yang S. Two-dimensional J-resolved LASER and semi-LASER spectroscopy of human brain. Magn Reson Med 2015; 71:911-20. [PMID: 23605818 DOI: 10.1002/mrm.24732] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
PURPOSE Two-dimensional J-resolved localized and semi-localized by adiabatic selective refocusing (LASER and semi-LASER) spectroscopy, named "J-resolved LASER" and "J-resolved semi-LASER", were introduced to suppress chemical shift artifacts, additional J-refocused artifactual peaks from spatially dependent J-coupling evolution, and sensitivity to radiofrequency (RF) field inhomogeneity. METHODS Three pairs of adiabatic pulses were employed for voxel localization in J-resolved LASER and two pairs in J-resolved semi-LASER. The first half of t1 period was inserted between the last pair of adiabatic pulses, which was proposed in this work to obtain two-dimensional adiabatic J-resolved spectra of human brain for the first time. Phantom and human experiments were performed to demonstrate their feasibility and advantages over conventional J-resolved spectroscopy (JPRESS). RESULTS Compared to JPRESS, J-resolved LASER or J-resolved semi-LASER exhibited significant suppression of chemical shift artifacts and additional J-refocused peaks from spatially dependent J-coupling evolution, and demonstrated insensitivity to the change of RF frequency offset over large bandwidth. CONCLUSION Experiments on phantoms and human brains verified the feasibility and strengths of two-dimensional adiabatic J-resolved spectroscopy at 3T. This technique is expected to advance the application of in vivo two-dimensional MR spectroscopy at 3T and higher field strengths for more reliable and accurate quantification of metabolites.
Collapse
Affiliation(s)
- Meijin Lin
- Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois, USA
| | | | | |
Collapse
|
18
|
Padormo F, Hess AT, Aljabar P, Malik SJ, Jezzard P, Robson MD, Hajnal JV, Koopmans PJ. Large dynamic range relative B1+ mapping. Magn Reson Med 2015; 76:490-9. [PMID: 26308375 PMCID: PMC4949544 DOI: 10.1002/mrm.25884] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 07/02/2015] [Accepted: 07/21/2015] [Indexed: 11/16/2022]
Abstract
Purpose Parallel transmission (PTx) requires knowledge of the
B1+ produced by each element. However,
B1+ mapping can be challenging when transmit fields exhibit large dynamic range. This study presents a method to produce high quality relative
B1+ maps when this is the case. Theory and Methods The proposed technique involves the acquisition of spoiled gradient echo (SPGR) images at multiple radiofrequency drive levels for each transmitter. The images are combined using knowledge of the SPGR signal equation using maximum likelihood estimation, yielding an image for each channel whose signal is proportional to the
B1+ field strength. Relative
B1+ maps are then obtained by taking image ratios. The method was tested using numerical simulations, phantom imaging, and through in vivo experiments. Results The numerical simulations demonstrated that the proposed method can reconstruct relative transmit sensitivities over a wide range of
B1+ amplitudes and at several SNR levels. The method was validated at 3 Tesla (T) by comparing it with an alternative
B1+ mapping method, and demonstrated in vivo at 7T. Conclusion Relative
B1+ mapping in the presence of large dynamic range has been demonstrated through numerical simulations, phantom imaging at 3T and experimentally at 7T. The method will enable PTx to be applied in challenging imaging scenarios at ultrahigh field. Magn Reson Med 76:490–499, 2016. © 2015 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
Collapse
Affiliation(s)
- Francesco Padormo
- King's College London, Division of Imaging Sciences and Biomedical Engineering, The Rayne Institute, St Thomas' Hospital, London, United Kingdom
| | - Aaron T Hess
- University of Oxford Centre for Clinical Magnetic Resonance Research, Division of Cardiovascular Medicine, Radcliffe Department of Medicine, Oxford, United Kingdom
| | - Paul Aljabar
- King's College London, Division of Imaging Sciences and Biomedical Engineering, The Rayne Institute, St Thomas' Hospital, London, United Kingdom
| | - Shaihan J Malik
- King's College London, Division of Imaging Sciences and Biomedical Engineering, The Rayne Institute, St Thomas' Hospital, London, United Kingdom
| | - Peter Jezzard
- Centre for Functional Magnetic Resonance Imaging of the Brain, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Matthew D Robson
- University of Oxford Centre for Clinical Magnetic Resonance Research, Division of Cardiovascular Medicine, Radcliffe Department of Medicine, Oxford, United Kingdom
| | - Joseph V Hajnal
- King's College London, Division of Imaging Sciences and Biomedical Engineering, The Rayne Institute, St Thomas' Hospital, London, United Kingdom.,King's College London, Centre for the Developing Brain, Division of Imaging Sciences and Biomedical Engineering, The Rayne Institute, St Thomas' Hospital, London, United Kingdom
| | - Peter J Koopmans
- Centre for Functional Magnetic Resonance Imaging of the Brain, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
19
|
Cartilage health in high tibial osteotomy using dGEMRIC: Relationships with joint kinematics. Knee 2015; 22:156-62. [PMID: 25715920 DOI: 10.1016/j.knee.2015.02.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 11/25/2014] [Accepted: 02/04/2015] [Indexed: 02/02/2023]
Abstract
PURPOSE The aims of this study are to determine how opening-wedge high tibial osteotomy (HTO) affects cartilage health in the tibiofemoral (TF) joint and patella, and to explore relationships between TF and patellofemoral (PF) joint kinematics and cartilage health in HTO. METHODS 14 knees (13 subjects) with medial TF osteoarthritis (OA) were examined before HTO and 6 and 12 months after HTO using delayed gadolinium-enhanced MRI of cartilage (dGEMRIC) to evaluate cartilage health at the TF joint and patella. They were also examined using a validated 3D MR knee kinematics measurement to obtain 11 rotations and translations at both TF and PF joints. RESULTS No statistically significant differences in overall TF or patellar dGEMRIC score were found at 6 or 12 months after HTO. However three subjects had large decreases (mean 105 ms) in TF dGEMRIC at 6 months that recovered at 12 months. Kinematics for these subjects were compared to subjects who did not have decreases in TF dGEMRIC at 6 months (n=5). Differences were observed between groups with HTO in anterior and proximal tibial translation (mean differences 3.05 mm and 1.35 mm), and patellar flexion (mean difference 3.65°). These changes were consistent between 6 and 12 months, despite recovery of TF dGEMRIC values. CONCLUSIONS We did not find significant differences in TF or patellar dGEMRIC before and after HTO with all subjects, however there were differences in kinematics between subjects who had a decrease in TF dGEMRIC at 6 months and those who did not. This suggests a link between joint kinematics and cartilage health in HTO. CLINICAL RELEVANCE The effect of opening-wedge high tibial osteotomy on cartilage GAG concentration may be linked to specific changes in knee kinematics following surgery.
Collapse
|
20
|
Buehler T, Kreis R, Boesch C. Comparison of (31)P saturation and inversion magnetization transfer in human liver and skeletal muscle using a clinical MR system and surface coils. NMR IN BIOMEDICINE 2015; 28:188-199. [PMID: 25483778 DOI: 10.1002/nbm.3242] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Revised: 11/07/2014] [Accepted: 11/10/2014] [Indexed: 06/04/2023]
Abstract
(31)P MRS magnetization transfer ((31)P-MT) experiments allow the estimation of exchange rates of biochemical reactions, such as the creatine kinase equilibrium and adenosine triphosphate (ATP) synthesis. Although various (31)P-MT methods have been successfully used on isolated organs or animals, their application on humans in clinical scanners poses specific challenges. This study compared two major (31)P-MT methods on a clinical MR system using heteronuclear surface coils. Although saturation transfer (ST) is the most commonly used (31)P-MT method, sequences such as inversion transfer (IT) with short pulses might be better suited for the specific hardware and software limitations of a clinical scanner. In addition, small NMR-undetectable metabolite pools can transfer MT to NMR-visible pools during long saturation pulses, which is prevented with short pulses. (31)P-MT sequences were adapted for limited pulse length, for heteronuclear transmit-receive surface coils with inhomogeneous B1 , for the need for volume selection and for the inherently low signal-to-noise ratio (SNR) on a clinical 3-T MR system. The ST and IT sequences were applied to skeletal muscle and liver in 10 healthy volunteers. Monte-Carlo simulations were used to evaluate the behavior of the IT measurements with increasing imperfections. In skeletal muscle of the thigh, ATP synthesis resulted in forward reaction constants (k) of 0.074 ± 0.022 s(-1) (ST) and 0.137 ± 0.042 s(-1) (IT), whereas the creatine kinase reaction yielded 0.459 ± 0.089 s(-1) (IT). In the liver, ATP synthesis resulted in k = 0.267 ± 0.106 s(-1) (ST), whereas the IT experiment yielded no consistent results. ST results were close to literature values; however, the IT results were either much larger than the corresponding ST values and/or were widely scattered. To summarize, ST and IT experiments can both be implemented on a clinical body scanner with heteronuclear transmit-receive surface coils; however, ST results are much more robust against experimental imperfections than the current implementation of IT.
Collapse
Affiliation(s)
- Tania Buehler
- Departments of Clinical Research and Radiology, University of Bern, Switzerland
| | | | | |
Collapse
|
21
|
Goluch S, Kuehne A, Meyerspeer M, Kriegl R, Schmid AI, Fiedler GB, Herrmann T, Mallow J, Hong SM, Cho ZH, Bernarding J, Moser E, Laistler E. A form-fitted three channel (31) P, two channel (1) H transceiver coil array for calf muscle studies at 7 T. Magn Reson Med 2014; 73:2376-89. [PMID: 25046817 DOI: 10.1002/mrm.25339] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Revised: 05/05/2014] [Accepted: 06/06/2014] [Indexed: 02/06/2023]
Abstract
PURPOSE To enhance sensitivity and coverage for calf muscle studies, a novel, form-fitted, three-channel phosphorus-31 ((31) P), two-channel proton ((1) H) transceiver coil array for 7 T MR imaging and spectroscopy is presented. METHODS Electromagnetic simulations employing individually generated voxel models were performed to design a coil array for studying nonpathological muscle metabolism. Static phase combinations of the coil elements' transmit fields were optimized based on homogeneity and efficiency for several voxel models. The best-performing design was built and tested both on phantoms and in vivo. RESULTS Simulations revealed that a shared conductor array for (31) P provides more robust interelement decoupling and better homogeneity than an overlap array in this configuration. A static B1 (+) shim setting that suited various calf anatomies was identified and implemented. Simulations showed that the (31) P array provides signal-to-noise ratio (SNR) benefits over a single loop and a birdcage coil of equal radius by factors of 3.2 and 2.6 in the gastrocnemius and by 2.5 and 2.0 in the soleus muscle. CONCLUSION The performance of the coil in terms of B1 (+) and achievable SNR allows for spatially localized dynamic (31) P spectroscopy studies in the human calf. The associated higher specificity with respect to nonlocalized measurements permits distinguishing the functional responses of different muscles.
Collapse
Affiliation(s)
- Sigrun Goluch
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria.,MR Centre of Excellence, Medical University of Vienna, Vienna, Austria
| | - Andre Kuehne
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria.,MR Centre of Excellence, Medical University of Vienna, Vienna, Austria
| | - Martin Meyerspeer
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria.,MR Centre of Excellence, Medical University of Vienna, Vienna, Austria
| | - Roberta Kriegl
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria.,MR Centre of Excellence, Medical University of Vienna, Vienna, Austria.,IR4M (Imagerie par Résonance Magnétique Médicale et Multi-Modalités), UMR808, Université Paris Sud-CNRS, Orsay, France
| | - Albrecht I Schmid
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria.,MR Centre of Excellence, Medical University of Vienna, Vienna, Austria
| | - Georg B Fiedler
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria.,MR Centre of Excellence, Medical University of Vienna, Vienna, Austria
| | - Tim Herrmann
- Department of Biometrics and Medicine Informatics, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Johannes Mallow
- Department of Biometrics and Medicine Informatics, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Suk-Min Hong
- Neuroscience Research Institute, Gachon University, Incheon, Korea
| | - Zang-Hee Cho
- Neuroscience Research Institute, Gachon University, Incheon, Korea
| | - Johannes Bernarding
- Department of Biometrics and Medicine Informatics, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Ewald Moser
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria.,MR Centre of Excellence, Medical University of Vienna, Vienna, Austria
| | - Elmar Laistler
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria.,MR Centre of Excellence, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
22
|
Nimerovsky E, Gupta R, Yehl J, Li M, Polenova T, Goldbourt A. Phase-modulated LA-REDOR: a robust, accurate and efficient solid-state NMR technique for distance measurements between a spin-1/2 and a quadrupole spin. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2014; 244:107-113. [PMID: 24745816 DOI: 10.1016/j.jmr.2014.03.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Revised: 02/26/2014] [Accepted: 03/04/2014] [Indexed: 06/03/2023]
Abstract
Distances between a spin-1/2 and a spin>1/2 can be efficiently measured by a variety of magic-angle spinning solid state NMR methods such as Rotational Echo Adiabatic Passage Double Resonance (REAPDOR), Low-Alpha/Low-Amplitude REDOR (LA-REDOR) and Rotational-Echo Saturation-Pulse Double-Resonance (R/S-RESPDOR). In this manuscript we show that the incorporation of a phase modulation into a long quadrupolar recoupling pulse, lasting 10 rotor periods that are sandwiched between rotor-synchronized pairs of dipolar recoupling π pulses, extends significantly the range of the values of the quadrupole moments that can be accessed by the experiment. We show by a combination of simulations and experiments that the new method, phase-modulated LA-REDOR, is very weakly dependent on the actual value of the radio-frequency field, and is highly robust with respect to off-resonance irradiation. The experimental results can be fitted by numerical simulations or using a universal formula corresponding to an equal-transition-probability model. Phase-modulated LA-REDOR (13)C{(11)B} and (15)N{(51)V} dipolar recoupling experiments confirm the accuracy and applicability of this new method.
Collapse
Affiliation(s)
- Evgeny Nimerovsky
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel
| | - Rupal Gupta
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, USA
| | - Jenna Yehl
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, USA
| | - Mingyue Li
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, USA
| | - Tatyana Polenova
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, USA
| | - Amir Goldbourt
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel.
| |
Collapse
|
23
|
d'Entremont AG, Kolind SH, Mädler B, Wilson DR, MacKay AL. Using the dGEMRIC technique to evaluate cartilage health in the presence of surgical hardware at 3T: comparison of inversion recovery and saturation recovery approaches. Skeletal Radiol 2014; 43:331-44. [PMID: 24357123 DOI: 10.1007/s00256-013-1777-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Revised: 10/18/2013] [Accepted: 11/04/2013] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To evaluate the effect of metal artifact reduction techniques on dGEMRIC T(1) calculation with surgical hardware present. MATERIALS AND METHODS We examined the effect of stainless-steel and titanium hardware on dGEMRIC T(1) maps. We tested two strategies to reduce metal artifact in dGEMRIC: (1) saturation recovery (SR) instead of inversion recovery (IR) and (2) applying the metal artifact reduction sequence (MARS), in a gadolinium-doped agarose gel phantom and in vivo with titanium hardware. T(1) maps were obtained using custom curve-fitting software and phantom ROIs were defined to compare conditions (metal, MARS, IR, SR). RESULTS A large area of artifact appeared in phantom IR images with metal when T(I) ≤ 700 ms. IR maps with metal had additional artifact both in vivo and in the phantom (shifted null points, increased mean T(1) (+151 % IR ROI(artifact)) and decreased mean inversion efficiency (f; 0.45 ROI(artifact), versus 2 for perfect inversion)) compared to the SR maps (ROI(artifact): +13 % T(1) SR, 0.95 versus 1 for perfect excitation), however, SR produced noisier T(1) maps than IR (phantom SNR: 118 SR, 212 IR). MARS subtly reduced the extent of artifact in the phantom (IR and SR). CONCLUSIONS dGEMRIC measurement in the presence of surgical hardware at 3T is possible with appropriately applied strategies. Measurements may work best in the presence of titanium and are severely limited with stainless steel. For regions near hardware where IR produces large artifacts making dGEMRIC analysis impossible, SR-MARS may allow dGEMRIC measurements. The position and size of the IR artifact is variable, and must be assessed for each implant/imaging set-up.
Collapse
Affiliation(s)
- Agnes G d'Entremont
- Department of Mechanical Engineering, University of British Columbia, Vancouver, BC, Canada,
| | | | | | | | | |
Collapse
|
24
|
Arteaga de Castro CS, Luttje MP, van Vulpen M, Luijten PR, van der Heide UA, Klomp DWJ. Composite slice-selective adiabatic excitation for prostate MRSI. NMR IN BIOMEDICINE 2013; 26:436-442. [PMID: 23074162 DOI: 10.1002/nbm.2881] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Revised: 09/12/2012] [Accepted: 09/12/2012] [Indexed: 06/01/2023]
Abstract
Higher magnetic field strengths, such as 7 T, offer increased spectral resolution and higher signal-to-noise ratio. These properties can be very advantageous for MRSI. In particular, signals that generally overlap at lower fields, such as choline, polyamines and creatine, can be resolved at 7 T. However, higher magnetic field strengths suffer from strong radiofrequency (RF) field nonuniformities. These nonuniformities become even stronger when using surface transceivers, such as an endorectal coil for prostate imaging. In order to obtain uniform excitations for accurate MRSI measurements, adiabatic sequences are therefore recommended. Conventional adiabatic MRS sequences (i.e. localization by adiabatic selective refocusing, LASER) have relatively long TEs, especially when optimized to measure the strongly coupled spins of citrate in the prostate. The semi-LASER (sLASER) sequence has a significantly shorter TE, although it does not provide adiabatic excitation. Therefore, we propose an adiabatic sLASER sequence that either has a composite adiabatic slice-selective excitation (cLASER) or a non-slice-selective adiabatic excitation (nsLASER), allowing for shorter TEs, whilst maintaining the adiabatic spin excitation. Furthermore, the spatial properties of the composite adiabatic excitation allow for a high slice excitation bandwidth, resulting in negligible chemical shift displacement artifacts. Exclusion of the slice selection can be considered once the field of view extends beyond the transmit field of the RF coil. The use of a transceiver at high magnetic field strengths has shown that the cLASER and nsLASER sequences are suitable for MRSI of the prostate in both phantom and in vivo validations.
Collapse
|
25
|
Arterial Spin Labeling (ASL) fMRI: advantages, theoretical constrains, and experimental challenges in neurosciences. Int J Biomed Imaging 2012; 2012:818456. [PMID: 22966219 PMCID: PMC3432878 DOI: 10.1155/2012/818456] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Revised: 09/27/2011] [Accepted: 10/11/2011] [Indexed: 11/17/2022] Open
Abstract
Cerebral blood flow (CBF) is a well-established correlate of brain function and therefore an essential parameter for studying the brain at both normal and diseased states. Arterial spin labeling (ASL) is a noninvasive fMRI technique that uses arterial water as an endogenous tracer to measure CBF. ASL provides reliable absolute quantification of CBF with higher spatial and temporal resolution than other techniques. And yet, the routine application of ASL has been somewhat limited. In this review, we start by highlighting theoretical complexities and technical challenges of ASL fMRI for basic and clinical research. While underscoring the main advantages of ASL versus other techniques such as BOLD, we also expound on inherent challenges and confounds in ASL perfusion imaging. In closing, we expound on several exciting developments in the field that we believe will make ASL reach its full potential in neuroscience research.
Collapse
|
26
|
Wang G, El-Sharkawy AM, Edelstein WA, Schär M, Bottomley PA. Measuring T₂ and T₁, and imaging T₂ without spin echoes. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2012; 214:273-280. [PMID: 22197502 PMCID: PMC3304500 DOI: 10.1016/j.jmr.2011.11.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Revised: 11/18/2011] [Accepted: 11/24/2011] [Indexed: 05/31/2023]
Abstract
During adiabatic excitation, the nuclear magnetization in the transverse plane is subject to T(2) (spin-spin) relaxation, depending on the pulse length τ. Here, this property is exploited in a method of measuring T(2) using the ratio of NMR signals acquired with short and long-duration self-refocusing adiabatic pulses, without spin-echoes. This Dual-τ method is implemented with B(1)-insensitive rotation (BIR-4) pulses. It is validated theoretically with Bloch equation simulations independent of flip-angle, and experimentally in phantoms. Dual-τT(2) measurements are most accurate at short T(2) where results agree with standard spin-echo measures to within 10% for T(2) ≤ 100 ms. Dual-τ MRI performed with a long 0° BIR-4 pre-pulse provides quantitative T(2) imaging of phantoms and the human foot while preserving desired contrast and functional properties of the rest of the MRI sequence. A single 0° BIR-4 pre-pulse can provide T(2) contrast-weighted MRI and serve as a "T(2)-prep" sequence with a lower B(1) requirement than prior approaches. Finally, a Tri-τ experiment is introduced in which both τ and flip-angle are varied, enabling measurement of T(2), T(1) and signal intensity in just three acquisitions if flip-angles are well-characterized. These new methods can potentially save time and simplify relaxation measurements and/or contrast-weighted NMR and MRI.
Collapse
Affiliation(s)
- G Wang
- Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, MD, USA
| | | | | | | | | |
Collapse
|
27
|
Arteaga de Castro CS, van den Bergen B, Luijten PR, van der Heide UA, van Vulpen M, Klomp DWJ. Improving SNR and B1 transmit field for an endorectal coil in 7 T MRI and MRS of prostate cancer. Magn Reson Med 2011; 68:311-8. [PMID: 22127763 DOI: 10.1002/mrm.23200] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2010] [Revised: 07/19/2011] [Accepted: 08/06/2011] [Indexed: 11/07/2022]
Abstract
Higher magnetic field strengths like 7 T and above are desirable for MR spectroscopy given the increased spectral resolution and signal to noise ratio. At these field strengths, substantial nonuniformities in B(1)(+/-) and radiofrequency power deposition become apparent. In this investigation, we propose an improvement on a conventionally used endorectal coil, through the addition of a second element (stripline). Both elements are used as transceivers. In the center of the prostate, approximately 40% signal to noise ratio increase is achieved. In fact, the signal to noise ratio gain obtained with the quadrature configuration locally can be even greater than 40% when compared to the single loop configuration. This is due to the natural asymmetry of the B(1)(+/-) fields at high frequencies, which causes destructive and constructive interference patterns. Global specific absorption rate is reduced by almost a factor of 2 as expected. Furthermore, approximately a 4-fold decrease in local specific absorption rate is observed when normalized to the B(1) values in the center of the prostate. Because of the 4-fold local specific absorption rate decrease obtained with the dual channel setup for the same reference B(1) value (20 μT at 3.5 cm depth into the prostate) as compared to the single loop, the transmission power B(1) duty cycle can be increased by a factor 4. Consequently, when using the two-element endorectal coil, the radiofrequency power deposition is significantly reduced and radiofrequency intense sequences with adiabatic pulses can be safely applied at 7 T for (1)H magnetic resonance spectroscopy and MRI in the prostate. Altogether, in vivo (1)H magnetic resonance spectroscopic imaging of prostate cancer with a fully adiabatic sequence operated at a minimum B(1)(+) of 20 μT shows insensitivity to the nonuniform transmit field, while remaining within local specific absorption rate guidelines of 10 W/kg.
Collapse
Affiliation(s)
- C S Arteaga de Castro
- Department of Radiology, University Medical Center Utrecht, Utrecht, The Netherlands.
| | | | | | | | | | | |
Collapse
|
28
|
Beyers RJ, Smith RS, Xu Y, Piras BA, Salerno M, Berr SS, Meyer CH, Kramer CM, French BA, Epstein FH. T₂ -weighted MRI of post-infarct myocardial edema in mice. Magn Reson Med 2011; 67:201-9. [PMID: 21630350 DOI: 10.1002/mrm.22975] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Revised: 02/28/2011] [Accepted: 04/04/2011] [Indexed: 11/11/2022]
Abstract
T(2) -weighted, cardiac magnetic resonance imaging (T(2) w CMR) can be used to noninvasively detect and quantify the edematous region that corresponds to the area at risk (AAR) following myocardial infarction (MI). Previously, CMR has been used to examine structure and function in mice, expediting the study of genetic manipulations. To date, CMR has not been applied to imaging of post-MI AAR in mice. We developed a whole-heart, T(2) w CMR sequence to quantify the AAR in mouse models of ischemia and infarction. The ΔB(0) and ΔB(1) environment around the mouse heart at 7 T were measured, and a T(2) -preparation sequence suitable for these conditions was developed. Both in vivo T(2) w and late gadolinium enhanced CMR were performed in mice after 20-min coronary occlusions, resulting in measurements of AAR size of 32.5 ± 3.1 (mean ± SEM)% left ventricular mass, and MI size of 50.1 ± 6.4% AAR size. Excellent interobserver agreement and agreement with histology were also found. This T(2) w imaging method for mice may allow for future investigations of genetic manipulations and novel therapies affecting the AAR and salvaged myocardium following reperfused MI.
Collapse
Affiliation(s)
- Ronald J Beyers
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Idiyatullin D, Corum C, Moeller S, Garwood M. Gapped pulses for frequency-swept MRI. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2008; 193:267-73. [PMID: 18554969 PMCID: PMC2566780 DOI: 10.1016/j.jmr.2008.05.009] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2008] [Revised: 04/15/2008] [Accepted: 05/13/2008] [Indexed: 05/22/2023]
Abstract
A recently introduced method called SWIFT (SWeep Imaging with Fourier Transform) is a fundamentally different approach to MRI which is particularly well suited to imaging objects with extremely fast spin-spin relaxation rates. The method exploits a frequency-swept excitation pulse and virtually simultaneous signal acquisition in a time-shared mode. Correlation of the spin system response with the excitation pulse function is used to extract the signals of interest. With SWIFT, image quality is highly dependent on producing uniform and broadband spin excitation. These requirements are satisfied by using frequency-modulated pulses belonging to the hyperbolic secant family (HSn pulses). This article describes the experimental steps needed to properly implement HSn pulses in SWIFT. In addition, properties of HSn pulses in the rapid passage, linear region are investigated, followed by an analysis of the pulses after inserting the "gaps" needed for time-shared excitation and acquisition. Finally, compact expressions are presented to estimate the amplitude and flip angle of the HSn pulses, as well as the relative energy deposited by the SWIFT sequence.
Collapse
Affiliation(s)
- Djaudat Idiyatullin
- The Center for Magnetic Resonance Research and Department of Radiology, University of Minnesota, 2021 6th St. SE, Minneapolis, MN 55455, USA.
| | | | | | | |
Collapse
|
30
|
Forgeron MAM, Wasylishen RE. A solid-state 53Cr NMR study of chromate and dichromate salts. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2008; 46:206-214. [PMID: 18098150 DOI: 10.1002/mrc.2164] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Solid-state (53)Cr NMR spectra of a series of chromate (CrO4(2-)) and dichromate (Cr2O7(2-)) salts have been examined by employing the stepped-frequency quadrupolar Carr-Purcell Meiboom-Gill (QCPMG) experiment and high applied magnetic field strengths, 11.75 and 18.8 T. Cr-53 nuclear quadrupolar coupling constants, CQ(53Cr), ranging from 1.23 to 5.01 MHz for the Cr(4(2-) salts and 7.25 to 8.14 MHz for the Cr2O7(2-) salts have been measured. For the dichromate salts, this corresponds to central transition 53Cr NMR lineshapes of 200-250 kHz at 18.8 T. The use of hyperbolic secant (HS) pulses in combination with the Hahn-echo (HE) or QCPMG experiment results in significant sensitivity enhancements when acquiring 53Cr NMR spectra of magic-angle spinning (MAS) samples, provided the MAS rate is fast with respect to the second-order quadrupolar interaction. For the CrO4(2-) and Cr2O7(2-) salts, the anisotropic chromium magnetic shielding interaction is generally negligible compared to the second-order 53Cr nuclear quadrupolar interaction. No simple correlation between the structure of the CrO4(2-) and Cr2O7(2-) anions and the observed CQ(53Cr) values has been found.
Collapse
Affiliation(s)
- Michelle A M Forgeron
- Department of Chemistry, Gunning/Lemieux Chemistry Centre, University of Alberta, Edmonton, Alberta, T6G 2G2, Canada
| | | |
Collapse
|
31
|
Haldar JP, Hernando D, Song SK, Liang ZP. Anatomically constrained reconstruction from noisy data. Magn Reson Med 2008; 59:810-8. [PMID: 18383297 DOI: 10.1002/mrm.21536] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Justin P Haldar
- Department of Electrical and Computer Engineering, University of Illinois, Urbana, Illinois 61801, USA.
| | | | | | | |
Collapse
|
32
|
Leskes M, Thakur RS, Madhu PK, Kurur ND, Vega S. Bimodal Floquet description of heteronuclear dipolar decoupling in solid-state nuclear magnetic resonance. J Chem Phys 2007; 127:024501. [PMID: 17640131 DOI: 10.1063/1.2746039] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
A theoretical treatment of heteronuclear dipolar decoupling in solid-state nuclear magnetic resonance is presented here based on bimodal Floquet theory. The conditions necessary for good heteronuclear decoupling are derived. An analysis of a few of the decoupling schemes implemented until date is presented with regard to satisfying such decoupling conditions and efficiency of decoupling. Resonance conditions for efficient heteronuclear dipolar decoupling are derived with and without the homonuclear (1)H-(1)H dipolar couplings and their influence on heteronuclear dipolar decoupling is pointed out. The analysis points to the superior efficiency of the newly introduced swept two-pulse phase-modulation (SW(f)-TPPM) sequence. It is shown that the experimental robustness of SW(f)-TPPM as compared to the original TPPM sequence results from an adiabatic sweeping of the modulation frequencies. Based on this finding alternative strategies are compared here. The theoretical findings are corroborated by both numerical simulations and representative experiments.
Collapse
Affiliation(s)
- Michal Leskes
- Department of Chemical Physics, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | | | |
Collapse
|
33
|
Siegel R, Nakashima TT, Wasylishen RE. Sensitivity enhancement of NMR spectra of half-integer spin quadrupolar nuclei in solids using hyperbolic secant pulses. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2007; 184:85-100. [PMID: 17046297 DOI: 10.1016/j.jmr.2006.09.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2006] [Revised: 09/14/2006] [Accepted: 09/15/2006] [Indexed: 05/12/2023]
Abstract
The experimental factors influencing the enhancements achievable for the central NMR transition, m(I)=1/2-->m(I)=-1/2, of spin-3/2 and spin-5/2 nuclei in the solid state using hyperbolic secant, HS, pulses for population transfer are investigated. In the case of powder samples spinning at the magic angle, it is found that the spinning frequency, the bandwidth and the frequency offset of the HS pulse play a crucial role in determining the maximum enhancements. Specifically, the bandwidth must be set to the spinning frequency for maximum signal enhancements. The (87)Rb NMR enhancement obtained for RbClO(4) using HS pulses was relatively insensitive to the magic angle spinning frequency; however, in the case of Al(acac)(3), the (27)Al enhancement increased with MAS frequency. In order to obtain an adiabatic HS sweep, one should optimize the rf field for a given pulse duration or optimize the pulse duration for a given rf field.
Collapse
Affiliation(s)
- Renée Siegel
- Department of Chemistry, Gunning/Lemieux Chemistry Centre, University of Alberta, Edmonton, Alta., Canada T6G 2G2
| | | | | |
Collapse
|
34
|
Gui D, Tsekos NV. Fast magnetization-driven preparation for imaging of contrast-enhanced coronary arteries during intra-arterial injection of contrast agent. J Magn Reson Imaging 2006; 24:1151-8. [PMID: 17031833 DOI: 10.1002/jmri.20728] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
PURPOSE To implement a short-duration magnetization preparation sequence, which consists of a saturation followed by multiple inversion pulses, for imaging of short-T1 species and suppression of long-T1 species. MATERIALS AND METHODS Computer optimizations were performed to derive preparation schemes that 1) suppress long-T1 background species with T1>or=250 msec, 2) maximize the MZ of contrast-enhanced (CE) structures with T1<or=50 msec, and 3) have a preparation duration in the range of 200 msec. The optimized sequences were tested on a phantom and a pig model instrumented with an intracoronary catheter for infusion of contrast media. RESULTS Computer simulations generated preparation schemes with durations of 165-225 msec depending on the number of preparation pulses used, which generated saturation of over 98% for T1>250 msec, and about a 30% reduction for 20 msec<T1<50 msec. The phantom studies validated the performance of the optimized sequences. Coronary artery angiograms (380 msec for preparation and image acquisition) demonstrated signal-to-noise ratios (SNRs) in the range of 13-15.5 and contrast-to-noise ratios (CNRs) in the range of 6.3-7.1 in the CE coronary vessels. CONCLUSION This work demonstrates that fast magnetization-driven preparation schemes can be implemented for fast imaging of CE coronary vessels with efficient saturation of background species.
Collapse
Affiliation(s)
- Dawei Gui
- Cardiovascular Imaging Laboratory, Mallinckrodt Institute of Radiology, Washington University Medical School, St. Louis, Missouri 63110, USA
| | | |
Collapse
|
35
|
Wang J, Mao W, Qiu M, Smith MB, Constable RT. Factors influencing flip angle mapping in MRI: RF pulse shape, slice-select gradients, off-resonance excitation, andB0 inhomogeneities. Magn Reson Med 2006; 56:463-8. [PMID: 16773653 DOI: 10.1002/mrm.20947] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
To understand the various effects that influence actual flip angles, and correct for these effects, it is important to precisely quantify the MRI parameters (such as T1, T2, and perfusion). In this paper actual flip angle maps are calculated using a conventional gradient-echo (GRE) sequence with different radiofrequency (RF) pulse shapes (Gaussian, sinc, and truncated-sinc), slice-selection gradients, off-resonance excitations, and B0 field inhomogeneities. The experimental results demonstrate that RF pulse shapes significantly affect the flip angle distribution and calibration factors. Off-resonance RF excitations, B0 nonuniformities, and slice-selection gradients can lead to degradations in the signal intensities of the images used to map the flip angle, and potentially introduce a bias and increased variance in the measured flip angles.
Collapse
Affiliation(s)
- Jinghua Wang
- Department of Diagnostic Radiology, Yale University School Medical Center, New Haven, Connecticut 06520-8042, USA.
| | | | | | | | | |
Collapse
|
36
|
Ouwerkerk R, Weiss RG, Bottomley PA. Measuring human cardiac tissue sodium concentrations using surface coils, adiabatic excitation, and twisted projection imaging with minimal T2 losses. J Magn Reson Imaging 2005; 21:546-55. [PMID: 15834912 DOI: 10.1002/jmri.20322] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
PURPOSE To measure tissue sodium concentrations in the human heart with (23)Na MRI using a surface coil, thereby eliminating the effects of inhomogeneous excitation by surface coils and minimizing T(1) and T(2) relaxation. MATERIALS AND METHODS We combined fully relaxed, very short-echo, (23)Na twisted projection imaging (TPI) with adiabatic half passage (AHP) excitation and external referencing on subjects and comparing with a concentration reference phantom scan to quantify TSC with surface coils. (23)Na signal losses during hard (square), composite, and tanh/tan amplitude/frequency-modulated AHP excitation pulses were analyzed over a wide range of RF field strengths and T(2short) values. RESULTS AHP excitation yielded a homogeneous excitation flip angle and negligible losses compared to a 90 degrees hard pulse wherever the B1 field exceeded the adiabatic threshold, rendering this sequence suitable for applications that use surface coil excitation. An AHP (23)Na TPI sequence was used with a surface coil at 1.5 T to noninvasively quantify myocardial TSC in 10 normal volunteers. The mean TSC was 43 +/- 4, 53 +/- 12, and 17 +/- 4 micromol/g in the left ventricular (LV) free wall, septum, and adipose tissue, respectively, consistent with prior invasive measurements on biopsy and autopsy specimens. CONCLUSION It is now possible to noninvasively quantify TSC in the human heart with surface coil (23)Na MRI.
Collapse
Affiliation(s)
- Ronald Ouwerkerk
- Division of MR Research, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287-0845, USA.
| | | | | |
Collapse
|
37
|
Werner R, Norris DG, Alfke K, Mehdorn HM, Jansen O. Improving the amplitude-modulated control experiment for multislice continuous arterial spin labeling. Magn Reson Med 2005; 53:1096-102. [PMID: 15844087 DOI: 10.1002/mrm.20443] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The use of an amplitude-modulated radiofrequency (RF) pulse for a control experiment is a proven method to control for off-resonance effects in multislice continuous arterial spin labeling (CASL) experiments. This method is also known as double adiabatic inversion. The adiabaticity factor of a single half-pulse, beta(1/2), and a new dimensionless parameter alpha, which is obtained from the labeling parameters and the flow velocity, are introduced. This makes it possible to distinguish three distinct cases: 1) With low alpha, a double inversion occurs. 2) With alpha > or = approximately 4, the efficiency with which the longitudinal magnetization is returned to the z-axis depends on the phase of the amplitude modulation at the time the spins cross the center of the labeling plane. 3) In the intermediate region, the efficiency shows undesirable fluctuations. In a Bloch equation simulation, three optimized parameter sets are determined. Near ideal performance should always be achieved by combinations of parameters for which beta(1/2) > or = approximately 2 and alpha approximately pi/beta(1/2). The efficiency increases were realized in a volunteer study, showing the practical application of the suggested optimization.
Collapse
Affiliation(s)
- Richard Werner
- Section of Neuroradiology, Christian Albrechts Universität, Kiel, Germany.
| | | | | | | | | |
Collapse
|
38
|
Priest AN, Bansmann PM, Kaul MG, Stork A, Adam G. Magnetic resonance imaging of the coronary vessel wall at 3 T using an obliquely oriented reinversion slab with adiabatic pulses. Magn Reson Med 2005; 54:1115-22. [PMID: 16206145 DOI: 10.1002/mrm.20681] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Three-dimensional methods offer volumetric coverage in coronary vessel wall imaging, in addition to high signal-to-noise ratios (SNR). To increase SNR further, it is desirable to implement such 3D methods at 3 T. At this field strength, the pulse sequence must be robust to main field and RF inhomogeneities. To achieve this, the double inversion-recovery (DIR) preparation was adapted to use adiabatic pulses, with a slab-selective reinversion replacing the previously used 2D pencil-beam. The slab was oriented obliquely, in order to avoid upstream blood (e.g., left ventricle) or the navigator beam. Phantom experiments suggest that at 3 T, this approach improves both the net profile of the DIR pulse pair and the restoration of magnetization in the navigator region. Using this method, the feasibility of 3D coronary vessel wall imaging was demonstrated at 3 T. Fourteen healthy subjects were scanned using a segmented gradient-echo sequence with prospective navigator gating. Good-quality images of left and right coronary arteries were obtained, with SNR values of 29.7 +/- 7.5 (vessel wall); 10.5 +/- 4.4 (blood); 14.3 +/- 5.2 (fat); and 45.6 +/- 18.0 (myocardium). No problems occurred with ECG-gating or power deposition (SAR) limits.
Collapse
Affiliation(s)
- Andrew N Priest
- University Hospital Hamburg-Eppendorf, Department of Diagnostic and Interventional Radiology, Hamburg, Germany.
| | | | | | | | | |
Collapse
|
39
|
Trampel R, Jochimsen TH, Mildner T, Norris DG, Möller HE. Efficiency of flow-driven adiabatic spin inversion under realistic experimental conditions: a computer simulation. Magn Reson Med 2004; 51:1187-93. [PMID: 15170839 DOI: 10.1002/mrm.20080] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Continuous arterial spin labeling (CASL) using adiabatic inversion is a widely used approach for perfusion imaging. For the quantification of perfusion, a reliable determination of the labeling efficiency is required. A numerical method for predicting the labeling efficiency in CASL experiments under various experimental conditions, including spin relaxation, is demonstrated. The approach is especially useful in the case of labeling at the carotid artery with a surface coil, as consideration of the experimental or theoretical profile of the B(1) field is straightforward. Other effects that are also accounted for include deviations from a constant labeling gradient, and variations in the blood flow velocity due to the cardiac cycle. Assuming relevant experimental and physiological conditions, maximum inversion efficiencies of about 85% can be obtained.
Collapse
Affiliation(s)
- Robert Trampel
- Max Planck Institute of Cognitive Neuroscience, Leipzig, Germany.
| | | | | | | | | |
Collapse
|
40
|
Topgaard D, Pines A. Self-diffusion measurements with chemical shift resolution in inhomogeneous magnetic fields. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2004; 168:31-35. [PMID: 15082246 DOI: 10.1016/j.jmr.2004.01.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2003] [Revised: 01/27/2004] [Indexed: 05/24/2023]
Abstract
A methodology for chemical shift resolved molecular self-diffusion measurements in time-independent static and radiofrequency field gradients is demonstrated. Diffusion encoding is provided by a stimulated echo sequence with additional z-storage that allows for a change of diffusion time without affecting the relaxation weighting. The signal is acquired stroboscopically between the pulses of a train of adiabatic double passages that induces a z-rotation counteracting the phase spread resulting from precession in the inhomogeneous static field, as demonstrated in recent approaches to the goal of high-resolution "ex situ" NMR. Simulations of the pulse sequence show that the acquired signal results from the desired coherence pathway. Successful demonstrations of the experiment were performed on a mixture of water and isopropanol.
Collapse
Affiliation(s)
- Daniel Topgaard
- Materials Sciences Division, Ernest Orlando Lawrence Berkeley National Laboratory and Department of Chemistry, University of California, Berkeley, CA 94720, USA.
| | | |
Collapse
|
41
|
Zektzer AS, Swanson MG, Jarso S, Nelson SJ, Vigneron DB, Kurhanewicz J. Improved signal to noise in high-resolution magic angle spinning total correlation spectroscopy studies of prostate tissues using rotor-synchronized adiabatic pulses. Magn Reson Med 2004; 53:41-8. [PMID: 15690501 DOI: 10.1002/mrm.20335] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A rotor-synchronized WURST-8 adiabatic pulse scheme was compared to the conventional MLEV-17 hard pulse scheme for isotropic mixing in total correlation spectroscopy (TOCSY) studies of intact human prostate tissues under high-resolution magic angle spinning (HR-MAS) conditions. Both mixing schemes were extremely sensitive to the rotational resonance condition and dramatic reductions in signal to noise were observed when pulse durations deviated from 1/(spin rate). A significant increase in cross-peak intensities was observed using rotor-synchronized WURST-8 adiabatic pulses versus those observed using the rotor-synchronized MLEV-17 hard pulse scheme in both solution and tissue. In tissue, absolute signal intensities ranged from 1.5x to 10.5x greater (average: 4.75x) when WURST-8 was used in place of MLEV-17. Moreover, the difference was so dramatic that several metabolite cross peaks observed using WURST-8 pulses were not observed using MLEV-17 pulses, including cross peaks corresponding to many of the choline- and ethanolamine-containing metabolites. Due to the complex modulation of TOCSY cross peaks for multiply coupled spins and the shorter T(2) relaxation times of tissue metabolites, maximum cross-peak intensities occurred at shorter mixing times than predicted by theory. In summary, a WURST-8 adiabatic mixing scheme produced significantly greater absolute cross-peak signal intensities than MLEV-17 hard pulse mixing, and maximum cross-peak intensity versus mixing time must be established for specific spin systems and T(2) relaxation times.
Collapse
Affiliation(s)
- Andrew S Zektzer
- Center for Molecular and Functional Imaging, Department of Radiology, University of California, 185 Berry Street, San Francisco, CA 94017, USA
| | | | | | | | | | | |
Collapse
|
42
|
Meriles CA, Sakellariou D, Pines A. Broadband phase modulation by adiabatic pulses. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2003; 164:177-181. [PMID: 12932471 DOI: 10.1016/s1090-7807(03)00157-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The use of inhomogeneous but spatially correlated static and radiofrequency (RF) magnetic fields offers a potential methodology for performing magnetic resonance spectroscopy of samples placed outside the bore of the magnet. However, its practical implementation still presents challenging problems, among them the control of nuclear spins over broad frequency offset intervals. The present study introduces an efficient method of encoding the phase of the magnetization when the variation of the static field along the sample is much larger than the RF amplitude. The procedure is based on the use of consecutively applied full-passage adiabatic pulses. The induced phase modulation is broadband and selective because it does not depend on the offset relative to the central frequency and the limits can be sharply defined. Finally, the encoded phase depends almost linearly on the local RF amplitude. All these features enable the recovery of an inhomogeneity-free spectrum with amplitudes close to the theoretically attainable maximum.
Collapse
Affiliation(s)
- Carlos A Meriles
- Department of Chemistry, University of California and Materials Sciences Division, Ernest Orlando Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | | | | |
Collapse
|
43
|
Current awareness in NMR in biomedicine. NMR IN BIOMEDICINE 2002; 15:367-374. [PMID: 12224543 DOI: 10.1002/nbm.750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
|