1
|
Woodcock LB, Legenzov EA, Dirda NDA, Kao JPY, Eaton GR, Eaton SS. Cyclic Disulfide-Bridged Dinitroxide Biradical for Measuring Thiol Redox Status by Electron Paramagnetic Resonance. J Phys Chem B 2023; 127:8762-8768. [PMID: 37811968 PMCID: PMC10990597 DOI: 10.1021/acs.jpcb.3c03387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Among low-molecular-weight thiols, glutathione (GSH) is the main antioxidant in the cell, and its concentration is an indicator of the redox status. A cyclic disulfide-linked dinitroxide was designed for monitoring GSH by electron-paramagnetic resonance (EPR) spectroscopy. Reaction of the disulfide with GSH and three other thiols was measured at 9.6 GHz (X-band) and shown to be of first order in thiols. It is proposed that the reaction of the disulfide with 1 equiv of thiolate produced a short-lived intermediate that reacts with 1 equiv of thiolate to produce the cleavage product. The equilibrium ratio of the cleaved and intact disulfide is a measure of the redox state. Since the long-term goal is to use the disulfide to probe physiology in vivo, the feasibility of EPR spectroscopy and imaging of the disulfide and its cleavage product was demonstrated at 1 GHz (L-band).
Collapse
Affiliation(s)
- Lukas B. Woodcock
- Department of Chemistry and Biochemistry, University of Denver, Denver, Colorado 80208, United States
| | - Eric A. Legenzov
- Center for Biomedical Engineering & Technology, and Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland 21201, United States
| | - Nathaniel D. A. Dirda
- Center for Biomedical Engineering & Technology, and Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland 21201, United States
| | - Joseph P. Y. Kao
- Center for Biomedical Engineering & Technology, and Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland 21201, United States
| | - Gareth R. Eaton
- Department of Chemistry and Biochemistry, University of Denver, Denver, Colorado 80208, United States
| | - Sandra S. Eaton
- Department of Chemistry and Biochemistry, University of Denver, Denver, Colorado 80208, United States
| |
Collapse
|
2
|
Franco L, Isse AA, Barbon A, Altomare L, Hyppönen V, Rosa J, Olsson V, Kettunen M, Melone L. Redox Properties and in Vivo Magnetic Resonance Imaging of Cyclodextrin-Polynitroxides Contrast Agents. Chemphyschem 2023; 24:e202300100. [PMID: 37431722 DOI: 10.1002/cphc.202300100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 07/07/2023] [Accepted: 07/10/2023] [Indexed: 07/12/2023]
Abstract
This paper reports the synthesis, characterization and in vivo application of water-soluble supramolecular contrast agents (Mw: 5-5.6 kDa) for MRI obtained from β-cyclodextrin functionalized with different kinds of nitroxide radicals, both with piperidine structure (CD2 and CD3) and with pyrrolidine structure (CD4 and CD5). As to the stability of the radicals in presence of ascorbic acid, CD4 and CD5 have low second order kinetic constants (≤0.05 M-1 s-1 ) compared to CD2 (3.5 M-1 s-1 ) and CD3 (0.73 M-1 s-1 ). Relaxivity (r1 ) measurements on compounds CD3-CD5 were carried out at different magnetic field strength (0.7, 3, 7 and 9.4 T). At 0.7 T, r1 values comprised between 1.5 mM-1 s-1 and 1.9 mM-1 s-1 were found while a significant reduction was observed at higher fields (r1 ≈0.6-0.9 mM-1 s-1 at 9.4 T). Tests in vitro on HEK293 human embryonic kidney cells, L929 mouse fibroblasts and U87 glioblastoma cells indicated that all compounds were non-cytotoxic at concentrations below 1 μmol mL-1 . MRI in vivo was carried out at 9.4 T on glioma-bearing rats using the compounds CD3-CD5. The experiments showed a good lowering of T1 relaxation in tumor with a retention of the contrast for at least 60 mins confirming improved stability also in vivo conditions.
Collapse
Affiliation(s)
- Lorenzo Franco
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131, Padova, Italy
| | - Abdirisak Ahmed Isse
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131, Padova, Italy
| | - Antonio Barbon
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131, Padova, Italy
| | - Lina Altomare
- Department of Chemistry, Materials and Chemical Engineering "G.Natta", Politecnico di Milano, Via Mancinelli 7, 20131, Milano, Italy
| | - Viivi Hyppönen
- Metabolic MR Imaging, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Neulaniementie 2, 70211, Kuopio, Finland
| | - Jessica Rosa
- Metabolic MR Imaging, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Neulaniementie 2, 70211, Kuopio, Finland
| | - Venla Olsson
- Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Neulaniementie 2, 70211, Kuopio, Finland
| | - Mikko Kettunen
- Metabolic MR Imaging, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Neulaniementie 2, 70211, Kuopio, Finland
- Kuopio Biomedical Imaging Unit, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Neulaniementie 2, 70211, Kuopio, Finland
| | - Lucio Melone
- Department of Chemistry, Materials and Chemical Engineering "G.Natta", Politecnico di Milano, Via Mancinelli 7, 20131, Milano, Italy
- Centro di Ricerca per l'Energia, l'Ambiente e il Territorio (CREAT), Università Telematica eCampus, Via Isimbardi 10, 22060, Novedrate, Italy
| |
Collapse
|
3
|
Sebők-Nagy K, Kóta Z, Kincses A, Fazekas ÁF, Dér A, László Z, Páli T. Spin-Label Electron Paramagnetic Resonance Spectroscopy Reveals Effects of Wastewater Filter Membrane Coated with Titanium Dioxide Nanoparticles on Bovine Serum Albumin. Molecules 2023; 28:6750. [PMID: 37836593 PMCID: PMC10574081 DOI: 10.3390/molecules28196750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/19/2023] [Accepted: 09/20/2023] [Indexed: 10/15/2023] Open
Abstract
The accumulation of proteins in filter membranes limits the efficiency of filtering technologies for cleaning wastewater. Efforts are ongoing to coat commercial filters with different materials (such as titanium dioxide, TiO2) to reduce the fouling of the membrane. Beyond monitoring the desired effect of the retention of biomolecules, it is necessary to understand what the biophysical changes are in water-soluble proteins caused by their interaction with the new coated filter membranes, an aspect that has received little attention so far. Using spin-label electron paramagnetic resonance (EPR), aided with native fluorescence spectroscopy and dynamic light scattering (DLS), here, we report the changes in the structure and dynamics of bovine serum albumin (BSA) exposed to TiO2 (P25) nanoparticles or passing through commercial polyvinylidene fluoride (PVDF) membranes coated with the same nanoparticles. We have found that the filtering process and prolonged exposure to TiO2 nanoparticles had significant effects on different regions of BSA, and denaturation of the protein was not observed, neither with the TiO2 nanoparticles nor when passing through the TiO2-coated filter membranes.
Collapse
Affiliation(s)
- Krisztina Sebők-Nagy
- Institute of Biophysics, Biological Research Centre Szeged, 6726 Szeged, Hungary; (K.S.-N.); (Z.K.); (A.K.); (A.D.)
| | - Zoltán Kóta
- Institute of Biophysics, Biological Research Centre Szeged, 6726 Szeged, Hungary; (K.S.-N.); (Z.K.); (A.K.); (A.D.)
| | - András Kincses
- Institute of Biophysics, Biological Research Centre Szeged, 6726 Szeged, Hungary; (K.S.-N.); (Z.K.); (A.K.); (A.D.)
| | - Ákos Ferenc Fazekas
- Department of Biosystems Engineering, Faculty of Engineering, University of Szeged, 6725 Szeged, Hungary; (Á.F.F.); (Z.L.)
| | - András Dér
- Institute of Biophysics, Biological Research Centre Szeged, 6726 Szeged, Hungary; (K.S.-N.); (Z.K.); (A.K.); (A.D.)
| | - Zsuzsanna László
- Department of Biosystems Engineering, Faculty of Engineering, University of Szeged, 6725 Szeged, Hungary; (Á.F.F.); (Z.L.)
| | - Tibor Páli
- Institute of Biophysics, Biological Research Centre Szeged, 6726 Szeged, Hungary; (K.S.-N.); (Z.K.); (A.K.); (A.D.)
| |
Collapse
|
4
|
Boudalis AK, Constantinides CP, Chrysochos N, Carmieli R, Leitus G, Kourtellaris A, Lawson DB, Koutentis PA. Deciphering the ground state of a C 3-symmetrical Blatter-type triradical by CW and pulse EPR spectroscopy. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2023; 349:107406. [PMID: 36841142 DOI: 10.1016/j.jmr.2023.107406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 02/08/2023] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
3,3',3''-(Benzene-1,3,5-triyl)tris(1-phenyl-1H-benzo[e][1,2,4]triazin-4-yl) (1) is a C3-symmetrical triradical comprised of three Blatter radical units connected at the 1, 3, 5 positions of a central trimethylenebenzene core. This triradical has an excellent air, moisture, and thermal stability. Single-crystal XRD indicates that triradical 1 adopts a propeller-like geometry with the benzotriazinyl moieties twisted by 174.1(2)° and packs in 1D chains along the c axis to form an extensive network of weak intermolecular interactions. Frozen solution continuous wave (CW) EPR spectra and variable-temperature field-sweep echo-detected (FSED) spectra revealed an intramolecular ferromagnetic exchange within the spin system, supporting a quartet S = 3/2 ground state. DFT calculations further supported these experimental findings.
Collapse
Affiliation(s)
- Athanassios K Boudalis
- Institut de Chimie de Strasbourg (UMR 7177, CNRS-Unistra), Université de Strasbourg, 4 rue Blaise Pascal, CS 90032, F-67081 Strasbourg, France.
| | - Christos P Constantinides
- Department of Natural Sciences, University of Michigan - Dearborn, 4901 Evergreen Rd, Dearborn, MI 48128, United States.
| | - Nicolas Chrysochos
- Department of Chemistry, University of Cyprus, P.O. Box 20537, 1678 Nicosia, Cyprus
| | - Raanan Carmieli
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Gregory Leitus
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Andreas Kourtellaris
- Department of Chemistry, University of Cyprus, P.O. Box 20537, 1678 Nicosia, Cyprus
| | - Daniel B Lawson
- Department of Natural Sciences, University of Michigan - Dearborn, 4901 Evergreen Rd, Dearborn, MI 48128, United States
| | | |
Collapse
|
5
|
Larin ACR, Pfrunder MC, Mullen KM, Wiedbrauk S, Boase NR, Fairfull-Smith KE. Synergistic or antagonistic antioxidant combinations - a case study exploring flavonoid-nitroxide hybrids. Org Biomol Chem 2023; 21:1780-1792. [PMID: 36728689 DOI: 10.1039/d2ob02101c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Neurodegenerative diseases impose a considerable medical and public health burden on populations throughout the world. Oxidative stress, an imbalance in pro-oxidant/antioxidant homeostasis that leads to the generation of reactive oxygen species (ROS), has been implicated in the progression of a number of neurodegenerative diseases. The manipulation of ROS levels may represent a promising treatment option to slow down neurodegeneration, although adequate potency of treatments has not yet been achieved. Using a hybrid pharmacology approach, free radical nitroxide antioxidants were hybridised with a class of natural antioxidants, flavonoids, to form a potential multitargeted antioxidant. Modification of the Baker-Venkataraman reaction achieved the flavonoid-nitroxide hybrids (6-9) in modest yields. Antioxidant evaluation of the hybrids by cyclic voltammetry showed both redox functionalities were still active, with little influence on oxidation potential. Assessment of the peroxyl radical scavenging ability through an ORAC assay showed reduced antioxidant activity of the hybrids compared to their individual components. It was hypothesized that the presence of the phenol in the hybrids creates a more acidic medium which does not favour regeneration of the nitroxide from the corresponding oxammonium cation, disturbing the typical catalytic cycle of peroxyl radical scavenging by nitroxides. This work highlights the potential intricacies involved with drug hybridization as a strategy for new therapeutic development.
Collapse
Affiliation(s)
- Astrid C R Larin
- School of Chemistry and Physics, Faculty of Science, Queensland University of Technology, Brisbane, Queensland, 4001, Australia.,Centre for Materials Science, Queensland University of Technology, Brisbane, Queensland, 4001, Australia.
| | - Michael C Pfrunder
- School of Chemistry and Physics, Faculty of Science, Queensland University of Technology, Brisbane, Queensland, 4001, Australia.,Centre for Materials Science, Queensland University of Technology, Brisbane, Queensland, 4001, Australia.
| | - Kathleen M Mullen
- School of Chemistry and Physics, Faculty of Science, Queensland University of Technology, Brisbane, Queensland, 4001, Australia.,Centre for Materials Science, Queensland University of Technology, Brisbane, Queensland, 4001, Australia.
| | - Sandra Wiedbrauk
- School of Chemistry and Physics, Faculty of Science, Queensland University of Technology, Brisbane, Queensland, 4001, Australia.,Centre for Materials Science, Queensland University of Technology, Brisbane, Queensland, 4001, Australia.
| | - Nathan R Boase
- School of Chemistry and Physics, Faculty of Science, Queensland University of Technology, Brisbane, Queensland, 4001, Australia.,Centre for Materials Science, Queensland University of Technology, Brisbane, Queensland, 4001, Australia.
| | - Kathryn E Fairfull-Smith
- School of Chemistry and Physics, Faculty of Science, Queensland University of Technology, Brisbane, Queensland, 4001, Australia.,Centre for Materials Science, Queensland University of Technology, Brisbane, Queensland, 4001, Australia.
| |
Collapse
|
6
|
Suryadevara N, Boudalis AK, Olivares Peña JE, Moreno-Pineda E, Fediai A, Wenzel W, Turek P, Ruben M. Molecular-Engineered Biradicals Based on the Y III-Phthalocyanine Platform. J Am Chem Soc 2023; 145:2461-2472. [PMID: 36656167 DOI: 10.1021/jacs.2c11760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
A mixed-ligand phthalocyanine/porphyrin yttrium(III) radical double-decker complex (DD) was synthesized using the custom-made 5,10,15-tris(4-methoxyphenyl)-20-(4-((trimethylsilyl)ethynyl)phenyl)porphyrin. The trimethylsilyl functionality was then used to couple two such complexes into biradicals through rigid tethers. Glaser coupling was used to synthesize a short-tethered biradical (C1) and Sonogashira coupling to synthesize longer-tethered ones (C2 and C3). Field-swept echo-detected (FSED), saturation recovery, and spin nutation-pulsed electron paramagnetic resonance experiments revealed marked similarities of the magnetic properties of DD with those of the parent [Y(pc)2]• complex, both in the solid state and in CD2Cl2/CDCl3 4:1 frozen glasses. FSED experiments on the biradicals C2 and C3 revealed a spectral broadening with respect to the spectra of DD and [Y(pc)2]• assigned to the effect of dipolar interactions in solution. Apart from the main resonance, satellite features were also observed, which were simulated with dipole-dipole pairs of shortest distances, suggesting spin delocalization on the organic tether. FSED experiments on C1 yielded spectral line shapes that could not be simulated as the integration of the off-resonance echoes was complicated by field-dependent modulations. While, for all dimers, the on-resonance spin nutation experiments yielded Rabi oscillations of the same frequencies, off-resonance nutations on C1 yielded Rabi oscillations that could be assigned to a MS = -1 to MS = 0 transition within a S = 1 multiplet. The DFT calculations showed that the trans conformation of the complexes was significantly more stable than the cis one and that it induced a marked spin delocalization over the rigid organic tether. This "spin leakage" was most pronounced for the shortest biradical C1.
Collapse
Affiliation(s)
- Nithin Suryadevara
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Eggenstein-LeopoldshafenD-76344, Germany.,Institute for Quantum Materials and Technology (IQMT), Karlsruhe Institute of Technology (KIT), Eggenstein-LeopoldshafenD-76344, Germany
| | - Athanassios K Boudalis
- Institute for Quantum Materials and Technology (IQMT), Karlsruhe Institute of Technology (KIT), Eggenstein-LeopoldshafenD-76344, Germany.,Institut de Science et d'Ingénierie Suparamolaiculaires─ISIS, 8 allée Gaspard Monge, BP 70028, Strasbourg CedexF-67083, France.,Institut de Chimie de Strasbourg (UMR 7177, CNRS-Unistra), Université de Strasbourg, 4 rue Blaise Pascal, CS 90032, StrasbourgF-67081, France
| | - Jorge Enrique Olivares Peña
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Eggenstein-LeopoldshafenD-76344, Germany
| | - Eufemio Moreno-Pineda
- Departamento de Química-Física, Facultad de Ciencias Naturales, Exactas y Tecnología, Universidad de Panamá, Panama0824, Panama
| | - Artem Fediai
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Eggenstein-LeopoldshafenD-76344, Germany
| | - Wolfgang Wenzel
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Eggenstein-LeopoldshafenD-76344, Germany
| | - Philippe Turek
- Institut de Chimie de Strasbourg (UMR 7177, CNRS-Unistra), Université de Strasbourg, 4 rue Blaise Pascal, CS 90032, StrasbourgF-67081, France
| | - Mario Ruben
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Eggenstein-LeopoldshafenD-76344, Germany.,Institute for Quantum Materials and Technology (IQMT), Karlsruhe Institute of Technology (KIT), Eggenstein-LeopoldshafenD-76344, Germany.,Institut de Science et d'Ingénierie Suparamolaiculaires─ISIS, 8 allée Gaspard Monge, BP 70028, Strasbourg CedexF-67083, France
| |
Collapse
|
7
|
Asanbaeva NB, Gurskaya LY, Polienko YF, Rybalova TV, Kazantsev MS, Dmitriev AA, Gritsan NP, Haro-Mares N, Gutmann T, Buntkowsky G, Tretyakov EV, Bagryanskaya EG. Effects of Spiro-Cyclohexane Substitution of Nitroxyl Biradicals on Dynamic Nuclear Polarization. Molecules 2022; 27:3252. [PMID: 35630726 PMCID: PMC9143461 DOI: 10.3390/molecules27103252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 05/17/2022] [Accepted: 05/17/2022] [Indexed: 11/20/2022] Open
Abstract
Spiro-substituted nitroxyl biradicals are widely used as reagents for dynamic nuclear polarization (DNP), which is especially important for biopolymer research. The main criterion for their applicability as polarizing agents is the value of the spin-spin exchange interaction parameter (J), which can vary considerably when different couplers are employed that link the radical moieties. This paper describes a study on biradicals, with a ferrocene-1,1'-diyl-substituted 1,3-diazetidine-2,4-diimine coupler, that have never been used before as DNP agents. We observed a substantial difference in the temperature dependence between Electron Paramagnetic Resonance (EPR) spectra of biradicals carrying either methyl or spirocyclohexane substituents and explain the difference using Density Functional Theory (DFT) calculation results. It was shown that the replacement of methyl groups by spirocycles near the N-O group leads to an increase in the contribution of conformers having J ≈ 0. The DNP gain observed for the biradicals with methyl substituents is three times higher than that for the spiro-substituted nitroxyl biradicals and is inversely proportional to the contribution of biradicals manifesting the negligible exchange interaction. The effects of nucleophiles and substituents in the nitroxide biradicals on the ring-opening reaction of 1,3-diazetidine and the influence of the ring opening on the exchange interaction were also investigated. It was found that in contrast to the methyl-substituted nitroxide biradical (where we observed the ring-opening reaction upon the addition of amines), the ring opening does not occur in the spiro-substituted biradical owing to a steric barrier created by the bulky cyclohexyl substituents.
Collapse
Affiliation(s)
- Nargiz B. Asanbaeva
- N.N. Vorozhtsov Institute of Organic Chemistry, Siberian Branch of Russian Academy of Sciences (SB RAS), 9 Acad. Lavrentiev Avenue, Novosibirsk 630090, Russia; (N.B.A.); (L.Y.G.); (Y.F.P.); (T.V.R.); (M.S.K.)
| | - Larisa Yu. Gurskaya
- N.N. Vorozhtsov Institute of Organic Chemistry, Siberian Branch of Russian Academy of Sciences (SB RAS), 9 Acad. Lavrentiev Avenue, Novosibirsk 630090, Russia; (N.B.A.); (L.Y.G.); (Y.F.P.); (T.V.R.); (M.S.K.)
| | - Yuliya F. Polienko
- N.N. Vorozhtsov Institute of Organic Chemistry, Siberian Branch of Russian Academy of Sciences (SB RAS), 9 Acad. Lavrentiev Avenue, Novosibirsk 630090, Russia; (N.B.A.); (L.Y.G.); (Y.F.P.); (T.V.R.); (M.S.K.)
| | - Tatyana V. Rybalova
- N.N. Vorozhtsov Institute of Organic Chemistry, Siberian Branch of Russian Academy of Sciences (SB RAS), 9 Acad. Lavrentiev Avenue, Novosibirsk 630090, Russia; (N.B.A.); (L.Y.G.); (Y.F.P.); (T.V.R.); (M.S.K.)
| | - Maxim S. Kazantsev
- N.N. Vorozhtsov Institute of Organic Chemistry, Siberian Branch of Russian Academy of Sciences (SB RAS), 9 Acad. Lavrentiev Avenue, Novosibirsk 630090, Russia; (N.B.A.); (L.Y.G.); (Y.F.P.); (T.V.R.); (M.S.K.)
| | - Alexey A. Dmitriev
- V.V. Voevodsky Institute of Chemical Kinetics and Combustion, SB RAS, 3 Institutskaya Str., Novosibirsk 630090, Russia; (A.A.D.); (N.P.G.)
| | - Nina P. Gritsan
- V.V. Voevodsky Institute of Chemical Kinetics and Combustion, SB RAS, 3 Institutskaya Str., Novosibirsk 630090, Russia; (A.A.D.); (N.P.G.)
| | - Nadia Haro-Mares
- TU Darmstadt, Eduard-Zintl-Institute for Inorganic and Physical Chemistry, Alarich-Weiss-Straße 8, 64287 Darmstadt, Germany; (N.H.-M.); (T.G.); (G.B.)
| | - Torsten Gutmann
- TU Darmstadt, Eduard-Zintl-Institute for Inorganic and Physical Chemistry, Alarich-Weiss-Straße 8, 64287 Darmstadt, Germany; (N.H.-M.); (T.G.); (G.B.)
| | - Gerd Buntkowsky
- TU Darmstadt, Eduard-Zintl-Institute for Inorganic and Physical Chemistry, Alarich-Weiss-Straße 8, 64287 Darmstadt, Germany; (N.H.-M.); (T.G.); (G.B.)
| | - Evgeny V. Tretyakov
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prosp., Moscow 119991, Russia;
| | - Elena G. Bagryanskaya
- N.N. Vorozhtsov Institute of Organic Chemistry, Siberian Branch of Russian Academy of Sciences (SB RAS), 9 Acad. Lavrentiev Avenue, Novosibirsk 630090, Russia; (N.B.A.); (L.Y.G.); (Y.F.P.); (T.V.R.); (M.S.K.)
| |
Collapse
|
8
|
Ghosh R, Dumarieh R, Xiao Y, Frederick KK. Stability of the nitroxide biradical AMUPol in intact and lysed mammalian cells. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2022; 336:107150. [PMID: 35151975 PMCID: PMC8961433 DOI: 10.1016/j.jmr.2022.107150] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 01/21/2022] [Accepted: 01/22/2022] [Indexed: 06/14/2023]
Abstract
Dynamic Nuclear Polarization (DNP) enhanced solid state NMR increases experimental sensitivity, potentially enabling detection of biomolecules at their physiological concentrations. The sensitivity of DNP experiments is due to the transfer of polarization from electron spins of free radicals to the nuclear spins of interest. Here, we investigate the reduction of AMUPol in both lysed and intact HEK293 cells. We find that nitroxide radicals are reduced with first order reduction kinetics by cell lysates at a rate of ∼ 12% of the added nitroxide radical concentration per hour. We also found that electroporation delivered a consistent amount of AMUPol to intact cells and that nitroxide radicals are reduced just slightly more rapidly (∼15% per hour) by intact cells than by cell lysates. The two nitroxide radicals of AMUPol are reduced independently and this leads to considerable accumulation of the DNP-silent monoradical form of AMUPol, particularly in preparations of intact cells where nearly half of the AMUPol is already reduced to the DNP silent monoradical form at the earliest experimental time points. This confirms that the loss of the DNP-active biradical form of AMUPol is faster than the nitroxide reduction rate. Finally, we investigate the effect of adding N-ethyl maleimide, a well-known inhibitor of thiol (-SH) group-based reduction of nitroxide biradicals in cells, on AMUPol reduction, cellular viability, and DNP performance. Although pre-treatment of cells with NEM effectively inhibited the reduction of AMUPol, exposure to NEM compromised cellular viability and, surprisingly, did not improve DNP performance. Collectively, these results indicate that, currently, the most effective strategy to obtain high DNP enhancements for DNP-assisted in-cell NMR is to minimize room temperature contact times with cellular constituents and suggest that the development of bio-resistant polarization agents for DNP could considerably increase the sensitivity of DNP-assisted in-cell NMR experiments.
Collapse
Affiliation(s)
- Rupam Ghosh
- Department of Biophysics, UT Southwestern Medical Center, Dallas, 75390-8816, United States
| | - Rania Dumarieh
- Department of Biophysics, UT Southwestern Medical Center, Dallas, 75390-8816, United States
| | - Yiling Xiao
- Department of Biophysics, UT Southwestern Medical Center, Dallas, 75390-8816, United States
| | - Kendra K Frederick
- Department of Biophysics, UT Southwestern Medical Center, Dallas, 75390-8816, United States; Center for Neurodegenerative and Alzheimer's Disease, UT Southwestern Medical Center, Dallas 75390, United States.
| |
Collapse
|
9
|
Tretyakov EV, Ovcharenko VI, Terent'ev AO, Krylov IB, Magdesieva TV, Mazhukin DG, Gritsan NP. Conjugated nitroxide radicals. RUSSIAN CHEMICAL REVIEWS 2022. [DOI: 10.1070/rcr5025] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
10
|
Moore W, Yao R, Liu Y, Eaton SS, Eaton GR. Spin-spin interaction and relaxation in two trityl-nitroxide diradicals. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2021; 332:107078. [PMID: 34649176 PMCID: PMC8592039 DOI: 10.1016/j.jmr.2021.107078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/24/2021] [Accepted: 08/30/2021] [Indexed: 05/11/2023]
Abstract
Trityl-nitroxides show substantial promise as polarizing agents in solid state dynamic nuclear polarization. To optimize performance it is important to understand the impact of spin-spin interactions on relaxation times of the diradicals. CW spectra and electron spin relaxation were measured for two trityl-nitroxides that differ in the substituents on the amide linker and have different strengths of the exchange interaction J. Analysis of the EPR spectra in terms of overlapping AB spin-spin splitting patterns explains the impact of J on various regions of the spectra. Even modest values of J are large relative to the separation between trityl and nitroxide resonances for some nitrogen nuclear spin state. Two conformations for each diradical were observed in CW spectra in fluid solution at X-band and Q-band. For one diradical J = 15 G (83%) and 5 G (17%) at 293 K, and J = 27 G (67%) and 3 G (33%) with interspin distances of 16 Å and 12 Å, respectively, at 80 K. For the second diradical the exchange interaction is stronger: the two conformations in fluid solution at 293 K had J = 113 G (67%) and 59 G (33%) and at 80 K the value of J was 43 G and there were two conformations with interspin distances of 13 and 11.5 Å. The observation of two conformations for each diradical, with different values of J, demonstrates the dependence of their exchange interactions on through-bond orbital interactions. X-band values of spin relaxation rates 1/T1 and 1/Tm at 80 to 120 K for the trityl-nitroxides are similar to values for nitroxide mono-radicals, and faster than for trityl radicals. These observations show that even for a relatively small value of J, the nitroxide is very effective in enhancing the relaxation of the more slowly relaxing trityl.
Collapse
Affiliation(s)
- Whylder Moore
- Department of Chemistry and Biochemistry, University of Denver, Denver, CO 80210, United States
| | - Ru Yao
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, PR China
| | - Yangping Liu
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, PR China.
| | - Sandra S Eaton
- Department of Chemistry and Biochemistry, University of Denver, Denver, CO 80210, United States
| | - Gareth R Eaton
- Department of Chemistry and Biochemistry, University of Denver, Denver, CO 80210, United States.
| |
Collapse
|
11
|
Jiang WL, Peng Z, Huang B, Zhao XL, Sun D, Shi X, Yang HB. TEMPO Radical-Functionalized Supramolecular Coordination Complexes with Controllable Spin–Spin Interactions. J Am Chem Soc 2020; 143:433-441. [DOI: 10.1021/jacs.0c11738] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Wei-Ling Jiang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P. R. China
| | - Zhiyong Peng
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P. R. China
| | - Bin Huang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P. R. China
| | - Xiao-Li Zhao
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P. R. China
| | - Di Sun
- Key Lab of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China
| | - Xueliang Shi
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P. R. China
| | - Hai-Bo Yang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P. R. China
| |
Collapse
|
12
|
Bogdanov AV, Mladenova Kattnig BY, Vorobiev AK, Grampp G, Kokorin AI. Rotational Dynamics of Nitroxide Biradical in Room-Temperature Ionic Liquids Measured by Quantitative Simulation of EPR Spectra. J Phys Chem B 2020; 124:11007-11014. [PMID: 33205985 DOI: 10.1021/acs.jpcb.0c08457] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Temperature dependences of electron paramagnetic resonance (EPR) spectra of an imidazoline nitroxide biradical spin probe in a series of room-temperature ionic liquids in the temperature range 124-390 K have been quantitatively simulated. The unusual asymmetric EPR spectrum shape previously observed in these systems [Kokorin et al., Appl. Magn. Res. 48 (2016) 287] is shown to originate from anisotropic rotational diffusion of the probe molecule. All experimental spectra were quantitatively reproduced in simulation using a unified set of geometrical and magnetic parameters of the spin probe, which were found to be fully consistent with the biradical geometry obtained from density functional theory calculations. Temperature dependences of rotation diffusion coefficient of the probe characterize the molecular mobility of the ionic liquid, whereas the temperature dependences of the spin-exchange integral J and of the isotropic hyperfine interaction constant, aN, are shown to reflect the intramolecular conformation motions of the biradical probe.
Collapse
Affiliation(s)
- A V Bogdanov
- Chemistry Department, M. V. Lomonosov Moscow State University, Moscow 119991, Russia
| | - B Y Mladenova Kattnig
- Institute of Physical and Theoretical Chemistry, Graz University of Technology, Graz 8010, Austria
| | - A Kh Vorobiev
- Chemistry Department, M. V. Lomonosov Moscow State University, Moscow 119991, Russia
| | - G Grampp
- Institute of Physical and Theoretical Chemistry, Graz University of Technology, Graz 8010, Austria
| | - A I Kokorin
- N. N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow 119991, Russia.,Plekhanov Russian University of Economics, Moscow 115093, Russia
| |
Collapse
|
13
|
Bogdanov AV, Tamura R, Vorobiev AK. Novel nitroxide biradical probe with spiro-fused rigid core for EPR determination of rotational mobility and orientational order of soft materials. Chem Phys Lett 2020. [DOI: 10.1016/j.cplett.2020.137432] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
14
|
Buchanan LA, Woodcock LB, Quine RW, Rinard GA, Eaton SS, Eaton GR. Background correction in rapid scan EPR spectroscopy. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2018; 293:1-8. [PMID: 29800785 PMCID: PMC6047921 DOI: 10.1016/j.jmr.2018.05.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 05/16/2018] [Accepted: 05/16/2018] [Indexed: 05/12/2023]
Abstract
In rapid scan EPR the rapidly-changing magnetic field induces a background signal that may be larger than the EPR signal. A method has been developed to correct for that background signal by acquiring two sets of data, denoted as scan 1 and scan 2. In scan 2 the external field B0 is reversed and the data acquisition trigger is offset by one half cycle of the scan field relative to the settings used in scan 1. For data acquired with a cross-loop resonator subtraction of scan 2 from scan 1 cancels the background and enhances the EPR signal. Experiments were performed at an EPR frequency of about 258 MHz, which is in the range that is commonly used for in vivo imaging. Samples include nitroxide radicals, a trityl radical, a dinitroxide, and a nitroxide in the presence of a magnetic field gradient. This method has the advantage that no assumption is made about the shape of the background signal, and it provides an approach to automating the background correction.
Collapse
Affiliation(s)
- Laura A Buchanan
- Department of Chemistry and Biochemistry, University of Denver, Denver, CO 80210, United States
| | - Lukas B Woodcock
- Department of Chemistry and Biochemistry, University of Denver, Denver, CO 80210, United States
| | - Richard W Quine
- School of Engineering and Computer Science, University of Denver, Denver, CO 80210, United States
| | - George A Rinard
- School of Engineering and Computer Science, University of Denver, Denver, CO 80210, United States
| | - Sandra S Eaton
- Department of Chemistry and Biochemistry, University of Denver, Denver, CO 80210, United States
| | - Gareth R Eaton
- Department of Chemistry and Biochemistry, University of Denver, Denver, CO 80210, United States.
| |
Collapse
|