1
|
Guha S, Bhaumik SR. Viral regulation of mRNA export with potentials for targeted therapy. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2020; 1864:194655. [PMID: 33246183 DOI: 10.1016/j.bbagrm.2020.194655] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 10/15/2020] [Accepted: 11/05/2020] [Indexed: 12/12/2022]
Abstract
Eukaryotic gene expression begins with transcription in the nucleus to synthesize mRNA (messenger RNA), which is subsequently exported to the cytoplasm for translation to protein. Like transcription and translation, mRNA export is an important regulatory step of eukaryotic gene expression. Various factors are involved in regulating mRNA export, and thus gene expression. Intriguingly, some of these factors interact with viral proteins, and such interactions interfere with mRNA export of the host cell, favoring viral RNA export. Hence, viruses hijack host mRNA export machinery for export of their own RNAs from nucleus to cytoplasm for translation to proteins for viral life cycle, suppressing host mRNA export (and thus host gene expression and immune/antiviral response). Therefore, the molecules that can impair the interactions of these mRNA export factors with viral proteins could emerge as antiviral therapeutic agents to suppress viral RNA transport and enhance host mRNA export, thereby promoting host gene expression and immune response. Thus, there has been a number of studies to understand how virus hijacks mRNA export machinery in suppressing host gene expression and promoting its own RNA export to the cytoplasm for translation to proteins required for viral replication/assembly/life cycle towards developing targeted antiviral therapies, as concisely described here.
Collapse
Affiliation(s)
- Shalini Guha
- Department of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA
| | - Sukesh R Bhaumik
- Department of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA.
| |
Collapse
|
2
|
Bong SM, Bae SH, Song B, Gwak H, Yang SW, Kim S, Nam S, Rajalingam K, Oh SJ, Kim TW, Park S, Jang H, Lee BI. Regulation of mRNA export through API5 and nuclear FGF2 interaction. Nucleic Acids Res 2020; 48:6340-6352. [PMID: 32383752 PMCID: PMC7293033 DOI: 10.1093/nar/gkaa335] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 04/19/2020] [Accepted: 04/22/2020] [Indexed: 01/13/2023] Open
Abstract
API5 (APoptosis Inhibitor 5) and nuclear FGF2 (Fibroblast Growth Factor 2) are upregulated in various human cancers and are correlated with poor prognosis. Although their physical interaction has been identified, the function related to the resulting complex is unknown. Here, we determined the crystal structure of the API5–FGF2 complex and identified critical residues driving the protein interaction. These findings provided a structural basis for the nuclear localization of the FGF2 isoform lacking a canonical nuclear localization signal and identified a cryptic nuclear localization sequence in FGF2. The interaction between API5 and FGF2 was important for mRNA nuclear export through both the TREX and eIF4E/LRPPRC mRNA export complexes, thus regulating the export of bulk mRNA and specific mRNAs containing eIF4E sensitivity elements, such as c-MYC and cyclin D1. These data show the newly identified molecular function of API5 and nuclear FGF2, and provide a clue to understanding the dynamic regulation of mRNA export.
Collapse
Affiliation(s)
- Seoung Min Bong
- Research Institute, National Cancer Center, Goyang-si, Gyeonggi 10408, Republic of Korea
| | - Seung-Hyun Bae
- Research Institute, National Cancer Center, Goyang-si, Gyeonggi 10408, Republic of Korea.,Department of Cancer Biomedical Science, National Cancer Center Graduate School of Cancer Science and Policy, Goyang-si, Gyeonggi 10408, Republic of Korea
| | - Bomin Song
- Research Institute, National Cancer Center, Goyang-si, Gyeonggi 10408, Republic of Korea
| | - HyeRan Gwak
- Research Institute, National Cancer Center, Goyang-si, Gyeonggi 10408, Republic of Korea
| | - Seung-Won Yang
- Research Institute, National Cancer Center, Goyang-si, Gyeonggi 10408, Republic of Korea
| | - Sunshin Kim
- Research Institute, National Cancer Center, Goyang-si, Gyeonggi 10408, Republic of Korea
| | - Seungyoon Nam
- Department of Life Sciences, College of BioNano Technology and Department of Genome Medicine and Science, Graduate School of Medicine, Gachon University, Incheon 21565, Republic of Korea
| | | | - Se Jin Oh
- Department of Biomedical Sciences, Graduate School of Medicine, Korea University, Seoul 02841, Republic of Korea
| | - Tae Woo Kim
- Department of Biomedical Sciences, Graduate School of Medicine, Korea University, Seoul 02841, Republic of Korea
| | - SangYoun Park
- School of Systems Biomedical Science, Soongsil University, Seoul 06978, Republic of Korea
| | - Hyonchol Jang
- Research Institute, National Cancer Center, Goyang-si, Gyeonggi 10408, Republic of Korea.,Department of Cancer Biomedical Science, National Cancer Center Graduate School of Cancer Science and Policy, Goyang-si, Gyeonggi 10408, Republic of Korea
| | - Byung Il Lee
- Research Institute, National Cancer Center, Goyang-si, Gyeonggi 10408, Republic of Korea.,Department of Cancer Biomedical Science, National Cancer Center Graduate School of Cancer Science and Policy, Goyang-si, Gyeonggi 10408, Republic of Korea
| |
Collapse
|
3
|
Wang Q, Du J, Xu B, Xu L, Wang X, Liu J, Wang J. Silence of bFGF enhances chemosensitivity of glioma cells to temozolomide through the MAPK signal pathway. Acta Biochim Biophys Sin (Shanghai) 2016; 48:501-8. [PMID: 27189511 DOI: 10.1093/abbs/gmw035] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 03/30/2016] [Indexed: 11/14/2022] Open
Abstract
Basic fibroblast growth factor (bFGF) is a multifunctional growth factor in glioma cells and has been proved to be associated with the grade malignancy of glioma and prognosis of patients. Although there is evidence showing that bFGF plays an important role in proliferation, differentiation, angiogenesis, and survival of glioma cells, the effect of bFGF on chemosensitivity of glioma has not been verified. In this study, we analyzed the relationship between bFGF and chemotherapy resistance, with the objective of offering new strategy for chemotherapy of glioma patients. Here, siRNA was used to silence the expression of bFGF in glioma cell lines including U87 and U251 followed by chemotherapy of temozolomide (TMZ). Then, the characters of glioma including proliferation, apoptosis, migration, and cell cycle were studied in U87 and U251 cell lines. Our results demonstrated that silencing bFGF enhanced the effect of TMZ by inhibiting proliferation and migration, blocking cell cycle in G0/G1, and promoting apoptosis. In addition, the phosphorylation level of MAPK was measured to explore the mechanism of chemosensitization. The results showed that bFGF could promote the activation of the MAPK signal pathway. Our data indicated that bFGF might be a potential target for chemotherapy through the MAPK signal pathway.
Collapse
Affiliation(s)
- Qiong Wang
- Tianjin Cerebral Vascular and Neural Degenerative Disease Key Laboratory, Tianjin Neurosurgery Institute, Tianjin Huanhu Hospital, Tianjin 300060, China
| | - Jixiang Du
- The Graduate School, Tianjin Medical University, Tianjin 300070, China
| | - Bin Xu
- The Graduate School, Tianjin Medical University, Tianjin 300070, China
| | - Lixia Xu
- Tianjin Cerebral Vascular and Neural Degenerative Disease Key Laboratory, Tianjin Neurosurgery Institute, Tianjin Huanhu Hospital, Tianjin 300060, China
| | - Xiuyu Wang
- The Graduate School, Tianjin Medical University, Tianjin 300070, China
| | - Jun Liu
- Tianjin Cerebral Vascular and Neural Degenerative Disease Key Laboratory, Tianjin Neurosurgery Institute, Tianjin Huanhu Hospital, Tianjin 300060, China
| | - Jinhuan Wang
- Tianjin Cerebral Vascular and Neural Degenerative Disease Key Laboratory, Tianjin Neurosurgery Institute, Tianjin Huanhu Hospital, Tianjin 300060, China
| |
Collapse
|
4
|
Choi CH, Chung JY, Kim JH, Kim BG, Hewitt SM. Expression of fibroblast growth factor receptor family members is associated with prognosis in early stage cervical cancer patients. J Transl Med 2016; 14:124. [PMID: 27154171 PMCID: PMC4859953 DOI: 10.1186/s12967-016-0874-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 04/25/2016] [Indexed: 02/08/2023] Open
Abstract
Background The oncogenic role of the fibroblast growth factor receptor (FGFR) has been recognized in a number of different cancer types. However, the prognostic significance of FGFRs has not been elucidated yet in cervical cancer. In the present study, we investigate the expression of FGFRs and their prognostic value in cervical cancer patients. Methods FGFR1, FGFR2, FGFR3, and FGFR4 expression was determined by immunohistochemistry in conjunction with quantitative digital image analysis of 336 formalin-fixed, paraffin-embedded cervical cancer tissues and 61 normal cervical tissues, as well as NCI60 cell microarray. Subsequently, the association between clinicopathological characteristics and patient survival was assessed. Results FGFRs proteins were differentially expressed in the NCI60 cell line panel and showed considerable correlation between protein and mRNA expression. The expression of FGFR1, FGFR2, and FGFR4 were higher in cancer tissues than in normal tissues, whereas the expression of FGFR3 was higher in normal tissues. FGFR1 was highly expressed in adeno-/adenosquamous carcinoma (P = 0.020), while FGFR2, FGFR3, and FGFR4 expression were more prominent in squamous cell carcinoma (P < 0.001, P < 0.001, and P = 0.020, respectively). FGFR2 expression was significantly higher in small sized tumors (P = 0.020). Additionally, high FGFR2 and FGFR4 were correlated with negative lymph node metastasis (P = 0.048 and P = 0.040, respectively). FGFR1, FGFR2, and FGFR3 were highly expressed in tumors without parametrial involvement (P = 0.030, P = 0.005, and P = 0.010, respectively). In survival analysis, high expressions of FGFR2, FGFR3, and FGFR4 was associated with longer disease-free survival (P = 0.006, P = 0.035, P = 0.001, respectively) and overall survival (P = 0.003, P = 0.002, P = 0.003, respectively). Notably, the co-expression of all three FGFRs was significantly associated with favorable disease-free survival (P < 0.001) and overall survival (P < 0.001), compared to the negative expressions of the three FGFRs. The prognostic significance persisted in the cox regression analysis. Conclusions The frequent expression of members of the FGFR family in cervical cancer suggests they may have prognostic and therapeutic relevance. Electronic supplementary material The online version of this article (doi:10.1186/s12967-016-0874-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Chel Hun Choi
- Experimental Pathology Laboratory, Laboratory of Pathology, National Cancer Institute, Center for Cancer Research, National Institutes of Health, MSC 1500, Bethesda, MD, 20892, USA.,Department of Obstetrics and Gynecology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 50 Irwon-dong, Gangnam-gu, Seoul, 135-710, Republic of Korea
| | - Joon-Yong Chung
- Experimental Pathology Laboratory, Laboratory of Pathology, National Cancer Institute, Center for Cancer Research, National Institutes of Health, MSC 1500, Bethesda, MD, 20892, USA
| | - Jae-Hoon Kim
- Department of Obstetrics and Gynecology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, 135-720, Korea
| | - Byoung-Gie Kim
- Department of Obstetrics and Gynecology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 50 Irwon-dong, Gangnam-gu, Seoul, 135-710, Republic of Korea.
| | - Stephen M Hewitt
- Experimental Pathology Laboratory, Laboratory of Pathology, National Cancer Institute, Center for Cancer Research, National Institutes of Health, MSC 1500, Bethesda, MD, 20892, USA.
| |
Collapse
|
5
|
Neuron-derived FGF10 ameliorates cerebral ischemia injury via inhibiting NF-κB-dependent neuroinflammation and activating PI3K/Akt survival signaling pathway in mice. Sci Rep 2016; 6:19869. [PMID: 26813160 PMCID: PMC4728497 DOI: 10.1038/srep19869] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 12/18/2015] [Indexed: 12/19/2022] Open
Abstract
FGF10 is a member of fibroblast growth factors (FGFs). We previously showed that FGF10 protects neuron against oxygen-glucose deprivation injury in vitro; however, the effect of FGF10 in ischemic stroke in vivo is unknown. In the present study, we showed that FGF10 was mainly expressed in neurons but not astrocytes, and detected FGF10 in mouse cerebrospinal fluid. The FGF10 levels in neurons culture medium and cell lysate were much higher than those in astrocytes. FGF10 expression in brain tissue and FGF10 level in CSF were increased in mouse middle cerebral artery occlusion (MCAO) model. Administration of FGF10 into lateral cerebroventricle not only decreased MCAO-induced brain infarct volume and neurological deficit, but also reduced the number of TUNEL-positive cells and activities of Caspases. Moreover, FGF10 treatment depressed the triggered inflammatory factors (TNF-α and IL-6) and NF-κB signaling pathway, and increased phosphorylation of PI3K/Akt signaling pathway. Blockade of PI3K/Akt signaling pathway by wortmannin and Akt1/2-kinase inhibitor, partly compromised the neuroprotection of FGF10. However, blockade of PI3K/Akt signaling pathway did not impair the anti-inflammation action of FGF10. Collectively, our results demonstrate that neuron-derived FGF10 ameliorates cerebral ischemia injury via inhibiting NF-κB-dependent neuroinflammation and activating PI3K/Akt survival signaling pathway in mice.
Collapse
|
6
|
Nayak S, Goel MM, Makker A, Bhatia V, Chandra S, Kumar S, Agarwal SP. Fibroblast Growth Factor (FGF-2) and Its Receptors FGFR-2 and FGFR-3 May Be Putative Biomarkers of Malignant Transformation of Potentially Malignant Oral Lesions into Oral Squamous Cell Carcinoma. PLoS One 2015; 10:e0138801. [PMID: 26465941 PMCID: PMC4605495 DOI: 10.1371/journal.pone.0138801] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 09/03/2015] [Indexed: 01/10/2023] Open
Abstract
There are several factors like angiogenesis, lymphangiogenesis, genetic alterations, mutational factors that are involved in malignant transformation of potentially malignant oral lesions (PMOLs) to oral squamous cell carcinoma (OSCC). Fibroblast growth factor-2 (FGF-2) is one of the prototypes of the large family of growth factors that bind heparin. FGF-2 induces angiogenesis and its receptors may play a role in synthesis of collagen. FGFs are involved in transmission of signals between the epithelium and connective tissue, and influence growth and differentiation of a wide variety of tissue including epithelia. The present study was undertaken to analyze expression of FGF-2 and its receptors FGFR-2 and FGFR-3 in 72 PMOLs, 108 OSCC and 52 healthy controls, and their role in risk assessment for malignant transformation of Leukoplakia (LKP) and Oral submucous fibrosis (OSMF) to OSCC. Immunohistochemistry was performed using antibodies against FGF-2, FGFR-2 and FGFR-3. IHC results were validated by Real Time PCR. Expression of FGF-2, FGFR-2 and FGFR-3 was upregulated from PMOLs to OSCC. While 90% (9/10) of PMOLs which showed malignant transformation (transformed) expressed FGF-2, only 24.19% cases (15/62) of PMOLs which were not transformed (untransformed) to OSCC expressed FGF-2. Similarly, FGFR-2 expression was seen in 16/62 (25.81%) of untransformed PMOLs and 8/10 (80%) cases of transformed PMOLs. FGFR-3 expression was observed in 23/62 (37.10%) cases of untransformed PMOLs and 6/10 (60%) cases of transformed PMOLs. A significant association of FGF-2 and FGFR-2 expression with malignant transformation from PMOLs to OSCC was observed both at phenotypic and molecular level. The results suggest that FGF-2 and FGFR-2 may be useful as biomarkers of malignant transformation in patients with OSMF and LKP.
Collapse
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Carcinoma, Squamous Cell/diagnosis
- Carcinoma, Squamous Cell/genetics
- Carcinoma, Squamous Cell/metabolism
- Carcinoma, Squamous Cell/pathology
- Case-Control Studies
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/metabolism
- Cell Transformation, Neoplastic/pathology
- Child
- Female
- Fibroblast Growth Factor 2/genetics
- Fibroblast Growth Factor 2/metabolism
- Gene Expression Regulation, Neoplastic
- Humans
- Leukoplakia, Oral/diagnosis
- Leukoplakia, Oral/genetics
- Leukoplakia, Oral/metabolism
- Leukoplakia, Oral/pathology
- Male
- Middle Aged
- Mouth Mucosa/metabolism
- Mouth Mucosa/pathology
- Mouth Neoplasms/diagnosis
- Mouth Neoplasms/genetics
- Mouth Neoplasms/metabolism
- Mouth Neoplasms/pathology
- Oral Submucous Fibrosis/diagnosis
- Oral Submucous Fibrosis/genetics
- Oral Submucous Fibrosis/metabolism
- Oral Submucous Fibrosis/pathology
- Receptor, Fibroblast Growth Factor, Type 2/genetics
- Receptor, Fibroblast Growth Factor, Type 2/metabolism
- Receptor, Fibroblast Growth Factor, Type 3/genetics
- Receptor, Fibroblast Growth Factor, Type 3/metabolism
- Signal Transduction
Collapse
Affiliation(s)
- Seema Nayak
- Department of Pathology, King George’s Medical University, Lucknow, U.P. - 226003, India
| | - Madhu Mati Goel
- Department of Pathology, King George’s Medical University, Lucknow, U.P. - 226003, India
| | - Annu Makker
- Department of Pathology, King George’s Medical University, Lucknow, U.P. - 226003, India
| | - Vikram Bhatia
- Department of Pathology, King George’s Medical University, Lucknow, U.P. - 226003, India
| | - Saumya Chandra
- Department of Pathology, King George’s Medical University, Lucknow, U.P. - 226003, India
| | - Sandeep Kumar
- All India Institute of Medical Sciences Bhopal, M.P. – 462026, India
| | - S. P. Agarwal
- Department of Otorhinolaryngology, King George’s Medical University Lucknow, U.P. – 226003, India
| |
Collapse
|
7
|
Li S, Payne S, Wang F, Claus P, Su Z, Groth J, Geradts J, de Ridder G, Alvarez R, Marcom PK, Pizzo SV, Bachelder RE. Nuclear basic fibroblast growth factor regulates triple-negative breast cancer chemo-resistance. Breast Cancer Res 2015; 17:91. [PMID: 26141457 PMCID: PMC4491247 DOI: 10.1186/s13058-015-0590-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 05/19/2015] [Indexed: 12/18/2022] Open
Abstract
INTRODUCTION Chemotherapy remains the only available treatment for triple-negative (TN) breast cancer, and most patients exhibit an incomplete pathologic response. Half of patients exhibiting an incomplete pathologic response die within five years of treatment due to chemo-resistant, recurrent tumor growth. Defining molecules responsible for TN breast cancer chemo-resistance is crucial for developing effective combination therapies blocking tumor recurrence. Historically, chemo-resistance studies have relied on long-term chemotherapy selection models that drive genetic mutations conferring cell survival. Other models suggest that tumors are heterogeneous, being composed of both chemo-sensitive and chemo-resistant tumor cell populations. We previously described a short-term chemotherapy treatment model that enriches for chemo-residual TN tumor cells. In the current work, we use this enrichment strategy to identify a novel determinant of TN breast cancer chemotherapy resistance [a nuclear isoform of basic fibroblast growth factor (bFGF)]. METHODS Studies are conducted using our in vitro model of chemotherapy resistance. Short-term chemotherapy treatment enriches for a chemo-residual TN subpopulation that over time resumes proliferation. By western blotting and real-time polymerase chain reaction, we show that this chemotherapy-enriched tumor cell subpopulation expresses nuclear bFGF. The importance of bFGF for survival of these chemo-residual cells is interrogated using short hairpin knockdown strategies. DNA repair capability is assessed by comet assay. Immunohistochemistry (IHC) is used to determine nuclear bFGF expression in TN breast cancer cases pre- and post- neoadjuvant chemotherapy. RESULTS TN tumor cells surviving short-term chemotherapy treatment express increased nuclear bFGF. bFGF knockdown reduces the number of chemo-residual TN tumor cells. Adding back a nuclear bFGF construct to bFGF knockdown cells restores their chemo-resistance. Nuclear bFGF-mediated chemo-resistance is associated with increased DNA-dependent protein kinase (DNA-PK) expression and accelerated DNA repair. In fifty-six percent of matched TN breast cancer cases, percent nuclear bFGF-positive tumor cells either increases or remains the same post- neoadjuvant chemotherapy treatment (compared to pre-treatment). These data indicate that in a subset of TN breast cancers, chemotherapy enriches for nuclear bFGF-expressing tumor cells. CONCLUSION These studies identify nuclear bFGF as a protein in a subset of TN breast cancers that likely contributes to drug resistance following standard chemotherapy treatment.
Collapse
Affiliation(s)
- Shenduo Li
- Department of Pathology, Duke University Medical Center, P.O. Box 3712, Durham, N.C., 27710, USA.
| | - Sturgis Payne
- Department of Pathology, Duke University Medical Center, P.O. Box 3712, Durham, N.C., 27710, USA.
| | - Fang Wang
- Department of Pathology, Duke University Medical Center, P.O. Box 3712, Durham, N.C., 27710, USA.
| | - Peter Claus
- Institute of Neuroanatomy, Hannover Medical School, Hannover, Germany.
| | - Zuowei Su
- Department of Pathology, Duke University Medical Center, P.O. Box 3712, Durham, N.C., 27710, USA.
| | - Jeffrey Groth
- Department of Pathology, Duke University Medical Center, P.O. Box 3712, Durham, N.C., 27710, USA.
| | - Joseph Geradts
- Department of Pathology, Duke University Medical Center, P.O. Box 3712, Durham, N.C., 27710, USA.
| | - Gustaaf de Ridder
- Department of Pathology, Duke University Medical Center, P.O. Box 3712, Durham, N.C., 27710, USA.
| | - Rebeca Alvarez
- Department of Pathology, Duke University Medical Center, P.O. Box 3712, Durham, N.C., 27710, USA.
| | | | - Salvatore V Pizzo
- Department of Pathology, Duke University Medical Center, P.O. Box 3712, Durham, N.C., 27710, USA.
| | - Robin E Bachelder
- Department of Pathology, Duke University Medical Center, P.O. Box 3712, Durham, N.C., 27710, USA.
| |
Collapse
|
8
|
Wu J, Feng X, Zhang B, Li J, Xu X, Liu J, Wang X, Wang J, Tong X. Blocking the bFGF/STAT3 interaction through specific signaling pathways induces apoptosis in glioblastoma cells. J Neurooncol 2014; 120:33-41. [PMID: 25048528 DOI: 10.1007/s11060-014-1529-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 06/28/2014] [Indexed: 12/17/2022]
Abstract
We have reported that basic fibroblast growth factor (bFGF) demonstrates an intimate connection with signal transducer and activator of transcription 3 (STAT3) in malignant brain tumor cells. However, its mechanisms are still unclear. In this study, we used inhibitors to block specific signaling pathways, including JAK, PI3K/Akt, and Src pathways, to explore how bFGF mediates crosstalk with STAT3 in two glioblastoma(GBM) cell lines: U251 (mutant p53) and U87 (wild-type p53). Furthermore, we explored how the bFGF/STAT3 pathway affects GBM cell apoptosis. Our results suggest that bFGF can induce the activation of STAT3 mainly through the JAK and PI3K/Akt pathways, and that siRNA-mediated knockdown of STAT3 markedly reduces the bFGF levels in U251 cells. Our results also suggest that STAT3 knockdown increases the expression of pro-apoptotic genes and decreases the expression of anti-apoptotic genes, subsequently collapsing the mitochondrial membrane potentials in vitro and impairs tumor growth in vivo.
Collapse
Affiliation(s)
- Jingchao Wu
- Department of Neurosurgery, Tianjin Huanhu Hospital, Tianjin, 300060, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
McEachern LA, Murphy PR. Chromatin-remodeling factors mediate the balance of sense-antisense transcription at the FGF2 locus. Mol Endocrinol 2014; 28:477-89. [PMID: 24552587 DOI: 10.1210/me.2013-1220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Antisense transcription is prevalent in mammalian genomes, yet the function of many antisense transcripts remains elusive. We have previously shown that the fibroblast growth factor 2 (FGF2) gene is regulated endogenously by an overlapping antisense gene called Nudix-type motif 6 (NUDT6). However, the molecular mechanisms that determine the balance of FGF2 and NUDT6 transcripts are not yet well understood. Here we demonstrate that there is a strong negative correlation between FGF2 and NUDT6 across 7 different cell lines. Small interfering RNA-mediated knockdown of NUDT6 causes an increase in nascent FGF2 transcripts, including a short FGF2 variant that lacks sequence complementarity with NUDT6, indicating the involvement of transcriptional mechanisms. In support of this, we show that changes in histone acetylation by trichostatin A treatment, histone deacetylase inhibition, or small interfering RNA knockdown of the histone acetyltransferase CSRP2BP, oppositely affect NUDT6 and FGF2 mRNA levels. A significant increase in histone acetylation with trichostatin A treatment was only detected at the genomic region where the 2 genes overlap, suggesting that this may be an important regulatory region for determining the balance of NUDT6 and FGF2. Knockdown of the histone demethylase KDM4A similarly causes a shift in the balance of NUDT6 and FGF2 transcripts. Expression of CSRP2BP and KDM4A correlates positively with NUDT6 expression and negatively with FGF2 expression. The results presented here indicate that histone acetylation and additional chromatin modifiers are important in determining the relative levels of FGF2 and NUDT6 and support a model in which epigenetic remodeling contributes to their relative expression levels.
Collapse
Affiliation(s)
- Lori A McEachern
- Department of Physiology and Biophysics, Dalhousie University, Halifax, Nova Scotia, B3H 4R2, Canada
| | | |
Collapse
|
10
|
Chaudhry NS, Shah AH, Ferraro N, Snelling BM, Bregy A, Madhavan K, Komotar RJ. Predictors of long-term survival in patients with glioblastoma multiforme: advancements from the last quarter century. Cancer Invest 2013; 31:287-308. [PMID: 23614654 DOI: 10.3109/07357907.2013.789899] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Over the last quarter century there has been significant progress toward identifying certain characteristics and patterns in GBM patients to predict survival times and outcomes. We sought to identify clinical predictors of survival in GBM patients from the past 24 years. We examined patient survival related to tumor locations, surgical treatment, postoperative course, radiotherapy, chemotherapy, patient age, GBM recurrence, imaging characteristics, serum, and molecular markers. We present predictors that may increase, decrease, or play no significant role in determining a GBM patient's long-term survival or affect the quality of life.
Collapse
Affiliation(s)
- Nauman S Chaudhry
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | | | | | | | | | | | | |
Collapse
|
11
|
Chen D, Persson A, Sun Y, Salford LG, Nord DG, Englund E, Jiang T, Fan X. Better prognosis of patients with glioma expressing FGF2-dependent PDGFRA irrespective of morphological diagnosis. PLoS One 2013; 8:e61556. [PMID: 23630597 PMCID: PMC3632602 DOI: 10.1371/journal.pone.0061556] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Accepted: 03/12/2013] [Indexed: 11/18/2022] Open
Abstract
Signaling of platelet derived growth factor receptor alpha (PDGFRA) is critically involved in the development of gliomas. However, the clinical relevance of PDGFRA expression in glioma subtypes and the mechanisms of PDGFRA expression in gliomas have been controversial. Under the supervision of morphological diagnosis, analysis of the GSE16011 and the Repository of Molecular Brain Neoplasia Data (Rembrandt) set revealed enriched PDGFRA expression in low-grade gliomas. However, gliomas with the top 25% of PDGFRA expression levels contained nearly all morphological subtypes, which was associated with frequent IDH1 mutation, 1p LOH, 19q LOH, less EGFR amplification, younger age at disease onset and better survival compared to those gliomas with lower levels of PDGFRA expression. SNP analysis in Rembrandt data set and FISH analysis in eleven low passage glioma cell lines showed infrequent amplification of PDGFRA. Using in vitro culture of these low passage glioma cells, we tested the hypothesis of gliogenic factor dependent expression of PDGFRA in glioma cells. Fibroblast growth factor 2 (FGF2) was able to maintain PDGFRA expression in glioma cells. FGF2 also induced PDGFRA expression in glioma cells with low or non-detectable PDGFRA expression. FGF2-dependent maintenance of PDGFRA expression was concordant with the maintenance of a subset of gliogenic genes and higher rates of cell proliferation. Further, concordant expression patterns of FGF2 and PDGFRA were detected in glioma samples by immunohistochemical staining. Our findings suggest a role of FGF2 in regulating PDGFRA expression in the subset of gliomas with younger age at disease onset and longer patient survival regardless of their morphological diagnosis.
Collapse
Affiliation(s)
- Dongfeng Chen
- The Rausing Laboratory, Department of Neurosurgery, Lund University, Lund, Sweden
| | | | - Yingyu Sun
- Beijing Key Laboratory of Gene Resource and Molecular Development, Laboratory of Neuroscience and Brain Development, Beijing Normal University, Beijing, China
| | - Leif G. Salford
- The Rausing Laboratory, Department of Neurosurgery, Lund University, Lund, Sweden
| | - David Gisselsson Nord
- Department of Pathology, Lund University, Lund, Sweden
- Department of Clinical Genetics, Lund University, Lund, Sweden
| | | | - Tao Jiang
- Glioma Center, Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xiaolong Fan
- The Rausing Laboratory, Department of Neurosurgery, Lund University, Lund, Sweden
- Beijing Key Laboratory of Gene Resource and Molecular Development, Laboratory of Neuroscience and Brain Development, Beijing Normal University, Beijing, China
- * E-mail:
| |
Collapse
|
12
|
αvβ3 Integrin and Fibroblast growth factor receptor 1 (FGFR1): Prognostic factors in a phase I-II clinical trial associating continuous administration of Tipifarnib with radiotherapy for patients with newly diagnosed glioblastoma. Eur J Cancer 2013; 49:2161-9. [PMID: 23566417 DOI: 10.1016/j.ejca.2013.02.033] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2012] [Revised: 02/04/2013] [Accepted: 02/26/2013] [Indexed: 12/30/2022]
Abstract
BACKGROUND Based on our previous results showing the involvement of the farnesylated form of RhoB in glioblastoma radioresistance, we designed a phase II trial associating the farnesyltransferase inhibitor Tipifarnib with radiotherapy in patients with glioblastoma and studied the prognostic values of the proteins which we have previously shown control this pathway. PATIENTS AND METHODS Patients were treated with 200mg Tipifarnib (recommended dose (RD)) given continuously during radiotherapy. Twenty-seven patients were included in the phase II whose primary end-point was time to progression (TTP). Overall survival (OS) and biomarker analysis were secondary end-points. Expressions of αvβ3, αvβ5 integrins, FAK, ILK, fibroblast growth factor 2 (FGF2) and fibroblast growth factor receptor 1 (FGFR1) were studied by immuno-histochemistry in the tumour of the nine patients treated at the RD during the previously performed phase I and on those of the phase II patients. We evaluated the correlation of the expressions of these proteins with the clinical outcome. RESULTS For the phase II patients median TTP was 23.1 weeks (95%CI = [15.4; 28.2]) while the median OS was 80.3 weeks (95%CI = [57.8; 102.7]). In the pooled phase I and II population, median OS was 60.4 w (95%CI = [47.3; 97.6]) while median TTP was 18.1 w (95%CI = [16.9; 25.6]). FGFR1 over-expression (HR = 4.65; 95%CI = [1.02; 21.21], p = 0.047) was correlated with shorter TTP while FGFR1 (HR = 4.1 (95% CI = [1.09-15.4]; p = 0.036)) and αvβ3 (HR = 10.38 (95%CI = [2.70; 39.87], p = 0.001)) over-expressions were associated with reduced OS. CONCLUSION Association of 200mg Tipifarnib with radiotherapy shows promising OS but no increase in TTP compared to historical data. FGFR1 and αvβ3 integrin are independent bad prognostic factors of OS and TTP.
Collapse
|
13
|
Du laboratoire vers la clinique : expérience du glioblastome pour moduler la radiosensibilité tumorale. Cancer Radiother 2012; 16:25-8. [DOI: 10.1016/j.canrad.2011.10.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2010] [Revised: 07/19/2011] [Accepted: 10/27/2011] [Indexed: 11/23/2022]
|
14
|
Liu J, Xu X, Feng X, Zhang B, Wang J. Adenovirus-mediated delivery of bFGF small interfering RNA reduces STAT3 phosphorylation and induces the depolarization of mitochondria and apoptosis in glioma cells U251. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2011; 30:80. [PMID: 21906308 PMCID: PMC3179445 DOI: 10.1186/1756-9966-30-80] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Accepted: 09/09/2011] [Indexed: 01/03/2023]
Abstract
Glioblastoma multiforme (GBM) carries a dismal prognosis primarily due to its aggressive proliferation in the brain regulated by complex molecular mechanisms. One promising molecular target in GBM is over-expressed basic fibroblast growth factor (bFGF), which has been correlated with growth, progression, and vascularity of human malignant gliomas. Previously, we reported significant antitumor effects of an adenovirus-vector carrying bFGF small interfering RNA (Ad-bFGF-siRNA) in glioma in vivo and in vitro. However, its mechanisms are unknown. Signal transducer and activator of transcription 3 (STAT3) is constitutively active in GBM and correlates positively with the glioma grades. In addition, as a specific transcription factor, STAT3 serves as the convergent point of various signaling pathways activated by multiple growth factors and/or cytokines. Therefore, we hypothesized that the proliferation inhibition and apoptosis induction by Ad-bFGF-siRNA may result from the interruption of STAT3 phosphorylation. In the current study, we found that in glioma cells U251, Ad-bFGF-siRNA impedes the activation of ERK1/2 and JAK2, but not Src, decreases IL-6 secretion, reduces STAT3 phosphorylation, decreases the levels of downstream molecules CyclinD1 and Bcl-xl, and ultimately results in the collapse of mitochondrial membrane potentials as well as the induction of mitochondrial-related apoptosis. Our results offer a potential mechanism for using Ad-bFGF-siRNA as a gene therapy for glioma. To our knowledge, it is the first time that the bFGF knockdown using adenovirus-mediated delivery of bFGF siRNA and its potential underlying mechanisms are reported. Therefore, this finding may open new avenues for developing novel treatments against GBM.
Collapse
Affiliation(s)
- Jun Liu
- Graduate school, Tianjin Medical University (22# Qixiangtai road Hexi District), Tianjin(300070), China
| | | | | | | | | |
Collapse
|
15
|
Moyal ECJ. [Optimization of the radiotherapy for the gliomas: hopes and research axis for the next future]. Rev Neurol (Paris) 2011; 167:656-60. [PMID: 21889179 DOI: 10.1016/j.neurol.2011.07.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Accepted: 07/26/2011] [Indexed: 11/25/2022]
Abstract
Glioma and particularly glioblastoma are tumours of very bad prognosis despite association of surgery and radiochemotherapy. This bad prognosis is mainly due to the local relapse after radiochemotherapy which occurs invariably despite constant technical progress in radiotherapy. This local recurrence is mainly due to the biologic intracellular and micro-environmental radioresistance of these tumours but also to a probable bad definition of the irradiated target. The two main axis of research aiming at optimizing the radiotherapy of these patients will be discussed: on one hand, the study of the biological pathways involved in the tumor radioresistance in order to highlight new targets of interest and to inhibit them by targeted drugs in combination with radiotherapy, and on the other hand, research in metabolic and functional imaging with the aim to define areas of most aggressive disease and even predictive zones of the site of relapse and thus of radioresistance, in order to integrate them in the radiotherapy treatment planning in prospective trials.
Collapse
Affiliation(s)
- E Cohen-Jonathan Moyal
- Département des radiations, institut Claudius-Regaud, 20-24 rue du Pont-Saint-Pierre, Toulouse, France.
| |
Collapse
|
16
|
Muramatsu M, Yamamoto S, Osawa T, Shibuya M. Vascular Endothelial Growth Factor Receptor-1 Signaling Promotes Mobilization of Macrophage Lineage Cells from Bone Marrow and Stimulates Solid Tumor Growth. Cancer Res 2010; 70:8211-21. [DOI: 10.1158/0008-5472.can-10-0202] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
17
|
Zhang B, Feng X, Wang J, Xu X, Lin N, Liu H. Combined Antitumor Effect of Ad-bFGF-siRNA and Ad-Vpr on the Growth of Xenograft Glioma in Nude Mouse Model. Pathol Oncol Res 2010; 17:237-42. [DOI: 10.1007/s12253-010-9303-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2009] [Accepted: 08/19/2010] [Indexed: 10/19/2022]
|
18
|
Feng X, Zhang B, Wang J, Xu X, Lin N, Liu H. Adenovirus-mediated transfer of siRNA against basic fibroblast growth factor mRNA enhances the sensitivity of glioblastoma cells to chemotherapy. Med Oncol 2010; 28:24-30. [DOI: 10.1007/s12032-010-9445-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2009] [Accepted: 01/29/2010] [Indexed: 11/30/2022]
|
19
|
Zhang B, Feng X, Wang J, Xu X, Liu H, Lin N. Adenovirus-mediated delivery of bFGF small interfering RNA increases levels of connexin 43 in the glioma cell line, U251. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2010; 29:3. [PMID: 20074329 PMCID: PMC2830951 DOI: 10.1186/1756-9966-29-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2009] [Accepted: 01/14/2010] [Indexed: 11/10/2022]
Abstract
BACKGROUND bFGF is an important growth factor for glioma cell proliferation and invasion, while connexin 43 is implicated in the suppression of glioma growth. Correspondingly, gliomas have been shown to have reduced, or compromised, connexin 43 expression. METHODS In this study, a bFGF-targeted siRNA was delivered to the glioma cell line, U251, using adenovirus (Ad-bFGF-siRNA) and the expression of connexin 43 and its phosphorylation state were evaluated. U251 cells were infected with Ad-bFGF-siRNA (100, 50, or 25 MOI), and infection with adenovirus expressing green fluorescent protein (Ad-GFP) at 100 MOI served as a control. Western blotting and immunofluorescence were used to detect the expression levels, phosphorylation, and localization of connexin 43 in U251 cells infected, and not infected, with Ad-bFGF-siRNA. RESULTS Significantly higher levels of connexin 43 were detected in U251 cells infected with Ad-bFGF-siRNA at 100 and 50 MOI than in cells infected with Ad-GFP, and the same amount of connexin 43 was detected in Ad-GFP-infected and uninfected U251 cells. Connexin 43 phosphorylation did not differ between Ad-bFGF-siRNA-infected and uninfected U251 cells. However, the ratio of phosphorylated to unphosphorylated connexin 43 in Ad-bFGF-siRNA cells was lower, and connexin 43 was predominantly localized to the cytoplasm. Using a scrape loading dye transfer assay, more Lucifer Yellow was transferred to neighboring cells in the Ad-bFGF-siRNA treated group than in the control group. CONCLUSION To our knowledge, this is the first description of a role for connexin 43 in the inhibition of U251 growth using Ad-bFGF-siRNA.
Collapse
Affiliation(s)
- Biao Zhang
- Key Lab for Critical Care Medicine of the Ministry of Health, Affiliated Tianjin First Center Hospital, Tianjin Medical University, Tianjin, 300192, China
| | | | | | | | | | | |
Collapse
|
20
|
Cohen-Jonathan Moyal E. Thérapies antiangiogéniques et radiothérapie : du concept à l’essai clinique. Cancer Radiother 2009; 13:562-7. [DOI: 10.1016/j.canrad.2009.07.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2009] [Revised: 06/25/2009] [Accepted: 07/09/2009] [Indexed: 11/28/2022]
|
21
|
The G-rich promoter and G-rich coding sequence of basic fibroblast growth factor are the targets of thalidomide in glioma. Mol Cancer Ther 2008; 7:2405-14. [DOI: 10.1158/1535-7163.mct-07-2398] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
22
|
Bachis A, Mallei A, Cruz MI, Wellstein A, Mocchetti I. Chronic antidepressant treatments increase basic fibroblast growth factor and fibroblast growth factor-binding protein in neurons. Neuropharmacology 2008; 55:1114-20. [PMID: 18682257 DOI: 10.1016/j.neuropharm.2008.07.014] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2008] [Revised: 07/02/2008] [Accepted: 07/03/2008] [Indexed: 11/19/2022]
Abstract
One of the mechanisms proposed for antidepressant drugs is the enhancement of synaptic connections and plasticity in the hippocampus and cerebral cortex. Fibroblast growth factor 2 (FGF2) is a growth factor essential for the proper formation of synaptic connections in the cerebral cortex, maturation and survival of catecholamine neurons, and neurogenesis. In this report, we attempted to establish a correlation between antidepressant treatments and FGF2 expression in the cerebral cortex and hippocampus, two brain areas relevant for depression. Desipramine (DMI, 10mg/kg) or fluoxetine (FLU, 5mg/kg) was injected acutely (single injection) or chronically (daily injection for two weeks) in adult rats. Chronic, but not acute, antidepressant treatments increase FGF2 immunoreactivity in neurons of the cerebral cortex and in both astrocytes and neurons of the hippocampus. FGF2 immunoreactivity in the cortex was increased mainly in the cytoplasm of neurons of layer V. Western blot analyses of nuclear and cytosolic extracts from the cortex revealed that both antidepressants increase FGF2 isoforms in the cytosolic extracts and decrease accumulation of FGF2 immunoreactivity in the nucleus. To characterize the anatomical and cellular specificity of antidepressants, we examined FGF-binding protein (FBP), a secreted protein that acts as an extracellular chaperone for FGF2 and enhances its activity. DMI and FLU increased FBP immunoreactivity in both cortical and hippocampal neurons. Our data suggest that FGF2 and FBP may participate in the plastic responses underlying the clinical efficacy of antidepressants.
Collapse
Affiliation(s)
- Alessia Bachis
- Department of Neuroscience, Georgetown University Medical Center, EP04, New Research Building, 3970 Reservoir Road, NW, Washington, DC 20057, USA
| | | | | | | | | |
Collapse
|
23
|
|
24
|
Moyal ECJ, Laprie A, Delannes M, Poublanc M, Catalaa I, Dalenc F, Berchery D, Sabatier J, Bousquet P, De Porre P, Alaux B, Toulas C. Phase I Trial of Tipifarnib (R115777) Concurrent With Radiotherapy in Patients with Glioblastoma Multiforme. Int J Radiat Oncol Biol Phys 2007; 68:1396-401. [PMID: 17570606 DOI: 10.1016/j.ijrobp.2007.02.043] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2007] [Revised: 02/02/2007] [Accepted: 02/05/2007] [Indexed: 10/23/2022]
Abstract
PURPOSE To conduct a Phase I trial to determine the maximally tolerated dose (MTD) of tipifarnib in combination with conventional three-dimensional conformal radiotherapy (RT) for patients with glioblastoma multiforme. METHODS AND MATERIALS After resection or biopsy, tipifarnib was given 1 week before and then continuously during RT (60 Gy), followed by adjuvant administration until progression. The tipifarnib dose during RT was escalated in cohorts of 3 starting at 200 mg/day. RESULTS Thirteen patients were enrolled, and 12 were evaluable for MTD. Of these patients, 7 had undergone biopsy, 4 had partial resection, and 1 had gross total resection. No dose-limiting toxicity (DLT) was observed during the concomitant treatment at 200 mg. All 3 patients at 300 mg experienced DLT during the concomitant treatment: 1 with sudden death and 2 with acute pneumonitis. The MTD was reached at 300 mg. The adjuvant treatment was suppressed from the protocol after a case of pneumonitis during this treatment. Six additional patients were included at 200 mg/day of the new protocol, confirming the safety of this treatment. Of the 9 evaluable patients, 1 had partial response, 4 had stable disease, and 3 had rapid progression; the patient with gross total resection was relapse-free after 21 months. Median survival of the evaluable patients was 12 months (range, 5.2-21 months). CONCLUSION Tipifarnib (200 mg/day) concurrent with standard radiotherapy is well tolerated in patients with glioblastoma. Preliminary efficacy results are encouraging.
Collapse
|
25
|
Yu PJ, Ferrari G, Galloway AC, Mignatti P, Pintucci G. Basic fibroblast growth factor (FGF-2): the high molecular weight forms come of age. J Cell Biochem 2007; 100:1100-8. [PMID: 17131363 DOI: 10.1002/jcb.21116] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
After over thirty years from its discovery, research on basic fibroblast growth factor (FGF-2) keeps revealing new aspects of the complexity of its gene expression as it evolved in the eukaryotic organisms. The discovery of multiple forms of FGF-2 generated by alternative translation from AUG and non-canonical CUG codons on the same mRNA transcript has led to the characterization of a low molecular weight (LMW) FGF-2 form and various high molecular weight (HMW) forms (four in humans). In this review, we discuss the biochemical features and biological activities of the different FGF-2 forms. In particular, we focus on the properties that are unique to the HMW forms and its biological functions.
Collapse
Affiliation(s)
- Pey-Jen Yu
- The Seymour Cohn Cardiovascular Research Laboratory, Department of Cardiothoracic Surgery, New York University School of Medicine, New York, New York 10016, USA
| | | | | | | | | |
Collapse
|
26
|
Baguma-Nibasheka M, Li AW, Murphy PR. The fibroblast growth factor-2 antisense gene inhibits nuclear accumulation of FGF-2 and delays cell cycle progression in C6 glioma cells. Mol Cell Endocrinol 2007; 267:127-36. [PMID: 17306451 DOI: 10.1016/j.mce.2007.01.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2006] [Revised: 12/21/2006] [Accepted: 01/10/2007] [Indexed: 11/30/2022]
Abstract
Fibroblast growth factor-2 (FGF-2) is a potent heparin-binding protein with growth-promoting and anti-apoptotic activity. Transcription of the GFG/NUDT6 gene on the opposite DNA strand generates an overlapping antisense RNA (FGF-AS) implicated in the post-transcriptional regulation of FGF-2. C6 glioma cells coordinately express FGF-2 and FGF-AS mRNA in a cell cycle-dependent manner. Cellular FGF-2 immunoreactivity was also cell cycle-dependent, with marked nuclear accumulation during S-phase. Stable transfection and overexpression of the FGF-AS RNA resulted in suppression of total cellular FGF-2, and a reduction in nuclear accumulation of FGF-2 isoforms. Serum stimulation of growth-arrested wild-type cells evoked a rapid nuclear translocation of FGF-2, and cell cycle re-entry. FGF-AS transfectants, in contrast, showed a significant delay in recovery of both nuclear FGF-2 staining and S-phase re-entry. Similar results were observed when cells were released from aphidicolin-induced G1 arrest or subjected to heat shock. These findings indicate that FGF-AS RNA inhibits expression and cell cycle-dependent nuclear accumulation of FGF-2, and this is associated with a marked delay in S-phase progression. The results suggest that the endogenous FGF antisense RNA may play a significant functional role in the regulation of FGF-2 dependent cell proliferation in FGF-2 expressing cells.
Collapse
Affiliation(s)
- Mark Baguma-Nibasheka
- Department of Physiology and Biophysics, Dalhousie University, 5850 College Street, Halifax, Nova Scotia, Canada B3H 1X5
| | | | | |
Collapse
|
27
|
Planque N. Nuclear trafficking of secreted factors and cell-surface receptors: new pathways to regulate cell proliferation and differentiation, and involvement in cancers. Cell Commun Signal 2006; 4:7. [PMID: 17049074 PMCID: PMC1626074 DOI: 10.1186/1478-811x-4-7] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2006] [Accepted: 10/18/2006] [Indexed: 12/14/2022] Open
Abstract
Secreted factors and cell surface receptors can be internalized by endocytosis and translocated to the cytoplasm. Instead of being recycled or proteolysed, they sometimes translocate to the nucleus. Nuclear import generally involves a nuclear localization signal contained either in the secreted factor or its transmembrane receptor, that is recognized by the importins machinery. In the nucleus, these molecules regulate transcription of specific target genes by direct binding to transcription factors or general coregulators. In addition to the transcription regulation, nuclear secreted proteins and receptors seem to be involved in other important processes for cell life and cellular integrity such as DNA replication, DNA repair and RNA metabolism. Nuclear secreted proteins and transmembrane receptors now appear to induce new signaling pathways to regulate cell proliferation and differentiation. Their nuclear localization is often transient, appearing only during certain phases of the cell cycle. Nuclear secreted and transmembrane molecules regulate the proliferation and differentiation of a large panel of cell types during embryogenesis and adulthood and are also potentially involved in wound healing. Secreted factors such as CCN proteins, EGF, FGFs and their receptors are often detected in the nucleus of cancer cells. Nuclear localization of these molecules has been correlated with tumor progression and poor prognosis for patient survival. Nuclear growth factors and receptors may be responsible for resistance to radiotherapy.
Collapse
Affiliation(s)
- Nathalie Planque
- Laboratoire d'Oncologie Virale et Moléculaire, Université Paris7-Denis Diderot, UFR de Biochimie, 2 place Jussieu, 75005 Paris, France.
| |
Collapse
|
28
|
Mukdsi JH, De Paul AL, Petiti JP, Gutiérrez S, Aoki A, Torres AI. Pattern of FGF-2 isoform expression correlated with its biological action in experimental prolactinomas. Acta Neuropathol 2006; 112:491-501. [PMID: 16823503 DOI: 10.1007/s00401-006-0101-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2006] [Revised: 06/08/2006] [Accepted: 06/08/2006] [Indexed: 11/28/2022]
Abstract
Fibroblast growth factor-2 (FGF-2) synthesized in the pituitary is involved in the formation and progression of pituitary tumors. The aim of this study was to analyze the pattern expression of two FGF-2 isoforms at different subcellular levels and to determine its correlation with prolactinoma development. Estrogen administration to male rats for 7, 20, and 60 days generated pituitary tumors, with lactotrophs being the prevalent cell type. Ultrastructural immunolabeling showed FGF-2 in the cytosolic and nuclear compartments of somatotrophs, lactotrophs and gonadotrophs, as well as in folliculo-stellate cells of normal rats. Estrogen stimulation increased FGF-2 immunoreactivity in various tumors and enhanced the expression of two FGF-2 isoforms, 18 and 22 kDa, as quantified by western blot. The 18 kDa isoform observed in cytosol extracts reached the highest levels after 60 days of hormonal stimulation and this was related to lactotroph proliferation. However, the 22 kDa FGF-2 isoform was only detected in the nuclear compartment and achieved the maximum expression at 7 days of estrogen treatment, without any correlation with lactotroph proliferation. These results suggest that the 18 kDa FGF-2 may play a role in the modulation of lactotroph proliferation in prolactinomas induced by estrogen. The overproduction of both FGF-2 isoforms appears to be implicated in autocrine-paracrine-intracrine mitogenic loops; this FGF-2 activity could lead to uncontrolled cell growth, angiogenesis, and tumor formation.
Collapse
Affiliation(s)
- Jorge H Mukdsi
- Centro de Microscopía Electrónica, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Haya de la Torre, Pabellón de Biología Celular, Ciudad Universitaria, X5000, HRA, Córdoba, Argentina
| | | | | | | | | | | |
Collapse
|
29
|
Raimondi AR, Molinolo AA, Itoiz ME. Fibroblast growth factor-2 expression during experimental oral carcinogenesis. Its possible role in the induction of pre-malignant fibrosis. J Oral Pathol Med 2006; 35:212-7. [PMID: 16519768 DOI: 10.1111/j.1600-0714.2006.00394.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND The fibroblastic growth factor (FGF)-2 has been shown to induce angiogenesis in several tumor types. To date, the activity of FGF during the development of oral pre-cancerous lesions has not been analyzed. We herein evaluated the role of FGF-2 in the pre-cancerous and cancerous lesions in the hamster cheek pouch oral cancer model. METHODS Expression of FGF-2 and its receptors FGFR-2 and FGFR-3 was assessed by immunohistochemistry at different stages of the carcinogenesis protocol. Activity of FGF-2 isoforms was analyzed by Western blots. RESULTS Increase and abnormal localization of FGF-2 expression was evident in cancerized epithelium before it was possible to detect morphologic alterations. The changes in FGF-2 are concomitant with the evolution of subepithelial fibrosis. Immunolabeling of carcinomas was faint or completely negative. Increases of FGF-2 activity are mainly due to the increase in the 18 kDa isoform. Receptors 2 and 3 of FGF are present in epithelium, fibroblasts, and vascular endothelia of control samples and in all stages of malignant transformation. CONCLUSIONS Our results would suggest a role for FGF-2 in the epithelium-connective interactions and a deregulation of its expression in the early stages of oral cancerization. In pre-cancerous tissue FGF-2 would play a central role in the development of fibrosis and a more collateral role in the induction of angiogenesis. The data would indicate its involvement in the process via the 18 kDa isoform.
Collapse
MESH Headings
- Animals
- Blotting, Western
- Cheek
- Cricetinae
- Fibroblast Growth Factor 2/biosynthesis
- Fibroblast Growth Factor 2/genetics
- Fibrosis/genetics
- Fibrosis/metabolism
- Gene Expression
- Immunohistochemistry
- Mesocricetus
- Mouth Mucosa/metabolism
- Mouth Mucosa/pathology
- Mouth Neoplasms/blood supply
- Mouth Neoplasms/genetics
- Mouth Neoplasms/metabolism
- Neovascularization, Pathologic/genetics
- Precancerous Conditions/blood supply
- Precancerous Conditions/genetics
- Precancerous Conditions/metabolism
- Protein Isoforms/biosynthesis
- Protein Isoforms/genetics
- Receptor, Fibroblast Growth Factor, Type 2/biosynthesis
- Receptor, Fibroblast Growth Factor, Type 2/genetics
- Receptor, Fibroblast Growth Factor, Type 3/biosynthesis
- Receptor, Fibroblast Growth Factor, Type 3/genetics
Collapse
Affiliation(s)
- A R Raimondi
- Oral Pathology Department, Faculty of Dentistry, University of Buenos Aires, Argentina
| | | | | |
Collapse
|
30
|
Abstract
The response of a cell to the myriad of signals that it receives is varied, and it is dependent on many different factors. The most-studied responses involve growth-factor signalling and these signalling cascades have become key targets for cancer therapy. Recent reports have indicated that growth-factor receptors and associated adaptors can accumulate in the nucleus. Are there novel functions for these proteins that might affect our understanding of their role in cancer and have implications for drug resistance?
Collapse
Affiliation(s)
- Charles Massie
- CRUK Uro-Oncology Group, Department of Oncology, University of Cambridge, c/o Hutchison/MRC Cancer Research Centre, Addenbrookes Hospital, Hills Road, Cambridge, CB2 2XZ, UK
| | | |
Collapse
|
31
|
Hortala M, Estival A, Pradayrol L, Susini C, Clemente F. Identification of c-Jun as a critical mediator for the intracrine 24 kDa FGF-2 isoform-induced cell proliferation. Int J Cancer 2005; 114:863-9. [PMID: 15609298 DOI: 10.1002/ijc.20744] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Tumor cells frequently synthesize an N-terminally extended the FGF-2 isoform of 24 kDa devoid of signal peptide but that contains a functional nuclear localization sequence (NLS). Although the signaling pathways elicited by secreted FGF-2 are well described, the molecular mechanisms involved in the growth promoting action of nuclearized 24 kDa FGF-2 remain unknown. The cancer cell line AR4-2J was engineered to stably express only the 24 kDa FGF-2 isoform and cDNA microarrays were used to identify targets implicated in the intracrine-induced cell proliferation. Levels of 27 transcripts were found either upregulated or downregulated compared to control cells. Among the 18 upregulated genes was c-jun, which is often involved in cell proliferation. Real-time PCR and Western blot analyses confirmed c-jun induction at both mRNA and protein levels. The c-jun antisense oligonucleotide strategy pointed out the involvement of c-Jun in the 24 kDa FGF-2-induced cell proliferation. The mitogenic effect was found to depend on ERK pathway and not on phosphoinositide 3-kinase, p38 MAPK, c-Jun NH2-terminal kinase signal transducers. In addition, the MEK inhibitor PD98059 reduced the 24 kDa FGF-2-dependent c-Jun level. These data show that intracrine FGF-2-mediated regulation of cell growth involves ERK activation and consequent c-Jun expression. Thus, despite its incapacity to be secreted, the intracellular-localized 24 kDa FGF-2 can activate a growth-related signaling pathway normally elicited by cell surface receptors.
Collapse
Affiliation(s)
- Marylis Hortala
- INSERM U 531, IFR31, Institut Louis Bugnard, CHU Rangueil Bat L3, TSA 50032, 31059 Toulouse, France
| | | | | | | | | |
Collapse
|
32
|
Pavel ME, Hassler G, Baum U, Hahn EG, Lohmann T, Schuppan D. Circulating levels of angiogenic cytokines can predict tumour progression and prognosis in neuroendocrine carcinomas. Clin Endocrinol (Oxf) 2005; 62:434-43. [PMID: 15807874 DOI: 10.1111/j.1365-2265.2005.02238.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVE The growth behaviour of well-differentiated neuroendocrine carcinomas of the gastro-entero-pancreatic system varies greatly and parameters predicting their prognosis are lacking. The aim of our study was to investigate whether tumour growth could be correlated with the release of proangiogenic factors into the circulation. PATIENTS AND METHODS Circulating vascular endothelial growth factor (VEGF), interleukin-8 (IL-8), basic fibroblast growth factor (bFGF) and angiogenin were measured in 38 patients with advanced neuroendocrine carcinomas and compared to healthy age-matched controls. In 20 patients, angiogenic cytokine levels were measured at consecutive time points and correlated to tumour progression as assessed by abdominal CT scan, MRI and chromogranin A levels. RESULTS VEGF levels were elevated in patients compared to controls (P < 0.002) and clearly associated with tumour progression (P < 0.005). Angiogenin levels were significantly higher in patients than in controls (P < 0.003), while high IL-8 levels were predictive of shorter survival. Angiogenin and bFGF levels were correlated neither with tumour growth nor with patient survival. CONCLUSIONS VEGF and IL-8 are associated with tumour progression and might qualify as markers of prognosis and therapy control in patients with neuroendocrine carcinomas. Our results support the notion that specific anti-angiogenic therapies should be evaluated in neuroendocrine carcinoma patients.
Collapse
Affiliation(s)
- Marianne E Pavel
- Department of Medicine I, University Hospital Erlangen-Nuernberg, Ulmensweg 18, 91054 Erlangen, Germany.
| | | | | | | | | | | |
Collapse
|
33
|
Peles E, Lidar Z, Simon AJ, Grossman R, Nass D, Ram Z. Angiogenic Factors in the Cerebrospinal Fluid of Patients with Astrocytic Brain Tumors. Neurosurgery 2004; 55:562-7; discussion 567-8. [PMID: 15335423 DOI: 10.1227/01.neu.0000134383.27713.9a] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2003] [Accepted: 03/26/2004] [Indexed: 11/19/2022] Open
Abstract
Abstract
OBJECTIVE:
Gliomas account for most primary brain tumors in adults, and survival correlates with the grade and vascularity of the tumor. The degree of tumor-related angiogenesis seems to be a significant predictor of tumor progression, recurrence, and metastatic spread in a variety of malignant diseases, including brain tumors. Our study's objective was to quantify the levels of two angiogenic factors, basic fibroblast growth factor (bFGF) and vascular endothelial growth factor (VEGF), in the cerebrospinal fluid (CSF) and serum of patients with gliomas and to correlate these levels with tumor grade, vascularity, and overall survival.
METHODS:
Twenty-six patients with the diagnosis of cerebral glioma (19 high-grade, 7 low-grade) comprised the study group. Ten patients with communicating hydrocephalus served as controls. Levels of VEGF and bFGF in the CSF and serum were determined using enzyme-linked immunosorbent assay analysis. Tumor vascularity was graded qualitatively using immunohistochemical staining for CD34. Nonparametric statistical techniques were used for data analysis.
RESULTS:
Median levels of bFGF and VEGF in the CSF were significantly higher in patients with high-grade glioma as compared with patients with low-grade glioma or hydrocephalus (bFGF levels, 52, 26, and 24 ng/ml, respectively, P < 0.0001; VEGF levels, 17.6, 7.2, and 8.3 ng/ml, respectively, P < 0.005). A significant correlation was found comparing CSF levels of bFGF with levels of VEGF (P < 0.001). The levels of the angiogenic factors in the CSF correlated with the degree of tumor vascularity and were adversely associated with patient survival. Serum levels of the angiogenic factors showed no correlation to tumor grade, vascularity, or survival.
CONCLUSION:
Our data suggest that CSF levels of bFGF and VEGF may serve as an additional marker for tumor grading and vascularity and may help predict survival.
Collapse
Affiliation(s)
- Einat Peles
- Department of Neurosurgery, Sheba Medical Center, Tel-Hashomer and Tel Aviv University, Sackler School of Medicine, Tel Aviv, Israel
| | | | | | | | | | | |
Collapse
|
34
|
Thomas-Mudge RJ, Okada-Ban M, Vandenbroucke F, Vincent-Salomon A, Girault JM, Thiery JP, Jouanneau J. Nuclear FGF-2 facilitates cell survival in vitro and during establishment of metastases. Oncogene 2004; 23:4771-9. [PMID: 15122340 DOI: 10.1038/sj.onc.1207638] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Nuclear-targeted high molecular weight 24 kDa fibroblast growth factor 2 (FGF-2) may induce specific cell functions through intracrine mechanisms. The role of nuclear FGF-2 on the metastatic potential of carcinoma cells was examined by conditional FGF-2 expression, which demonstrated that spontaneous metastasis in nude mice is a direct consequence of its expression. The lung colonizing capacities of fluorescent nuclear FGF-2-expressing cells following intravenous injection was also investigated. All cells reaching the lung extravasated as soon as 5 min following injection with similar in vivo behavior during the first 24 h. However, after 2 days, dramatic differences were observed between the FGF-2 and parental cells: most control cells underwent apoptosis, while the FGF-2-producing cells instigated a survival program and proliferated. Therefore, sustained apoptosis in vivo prevents growth of metastatic foci, while nuclear FGF-2 induction of a survival program is responsible for growth of the lung metastases. In vitro serum deprivation assays also established that 24 kDa FGF-2 expression improves carcinoma cell survival. This study provides both in vitro and in vivo evidence that the role of the nuclear 24 kDa FGF-2 isoform in carcinoma is the promotion of cell survival, thereby defining its association with poor prognosis in some human carcinomas.
Collapse
Affiliation(s)
- Rachel J Thomas-Mudge
- UMR144 CNRS, Institut Curie, Research Division, 26 rue d'Ulm, 75248 Paris 05, France
| | | | | | | | | | | | | |
Collapse
|